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This article is in commemoration of Ramanujan’s
election as Fellow of The Royal Society 100 years ago,
as celebrated at the October 2018 scientific meeting
at the Royal Society in London. Ramanujan’s last
letter to Hardy, written shortly after his election,
surrounds his mock theta functions. While these
functions have been of great importance and interest
in the decades following Ramanujan’s death in 1920,
it was unclear how exactly they fit into the theory
of modular forms—Dyson called this ‘a challenge
for the future’ at another centenary conference in
Illinois in 1987, honouring the 100th anniversary
of Ramanujan’s birth. In the early 2000s, Zwegers
finally recognized that Ramanujan had discovered
glimpses of special families of non-holomorphic
modular forms, which we now know to be Bruinier
and Funke’s harmonic Maass forms from 2004,
the holomorphic parts of which are called mock
modular forms. As of a few years ago, a fundamental
question from Ramanujan’s last letter remained,
on a certain asymptotic relationship between mock
theta functions and ordinary modular forms. The
author, with Ono and Rhoades, revisited Ramanujan’s
asymptotic claim, and established a connection
between mock theta functions and quantum modular
forms, which were not defined until 90 years later
in 2010 by Zagier. Here, we bring together past
and present, and study the relationships between
mock modular forms and quantum modular
forms, with Ramanujan’s mock theta functions
as motivation. In particular, we highlight recent
work of Bringmann–Rolen, Choi–Lim–Rhoades
and Griffin–Ono–Rolen in our discussion. This
article is largely expository, but not exclusively: we
also establish a new interpretation of Ramanujan’s
radial asymptotic limits in the subject of topology.
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This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the
centenary of his election as FRS’.

1. The mock theta functions, then
It is well known, undoubtedly to readers of this theme issue of Philosophical Transactions A in
celebration of the centenary of Ramanujan’s election as Fellow of The Royal Society in 1918, that
Ramanujan was a prolific mathematician who has been referred to as a mathematical visionary,
and whose life ended in 1920 at the early age of 32 due to illness. Shortly after Ramanujan’s death,
G.N. Watson, who in 1919 had also just been elected as Fellow of The Royal Society, and B.M.
Wilson, began editing Ramanujan’s mathematical notebooks. The pair worked on this pursuit for
many years, but by the late 1930s, their work had dwindled, affected by Wilson’s own death in
1935 at the young age of 38 due to infection. Coinciding with his work on Ramanujan’s notebooks,
Watson assumed the role of President of the London Mathematical Society from 1933 to 1935. For
his retiring presidential address in 1935, Watson chose to speak on ‘The final problem: an account
of the mock theta functions’, curious q-series appearing in Ramanujan’s final letter to G.H. Hardy
in 1920.

The topic which I have selected [is] unfortunately not too well adapted for oral exposition . . . I
make no apologies for my subject being what is now regarded as old-fashioned, because . . . I am an
old-fashioned mathematician,

said Watson [1]. Ramanujan’s 17 mock theta functions referenced in the title of Watson’s address
include the functions

f (q) :=
∞∑

n=0

qn2

(−q; q)2
n

= 1 + q
(1 + q)2 + q4

(1 + q)2(1 + q2)2 + · · ·

and

ω(q) :=
∞∑

n=0

q2n(n+1)

(q; q2)2
n

= 1 + q4

(1 − q)2 + q12

(1 − q)2(1 − q3)2 + · · · .

Like these two, Ramanujan’s other mock theta functions are defined as q-hypergeometric
series built using the q-Pochhammer symbol (a; q)n := (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1)
(n ∈N0 ∪ ∞).

About the mock theta function f (q), Ramanujan wrote to Hardy [1,2]

I have proved that if f (q) = 1 + q
(1 + q)2 + q4

(1 + q)2(1 + q2)2 + · · · then

f (q) + (1 − q)(1 − q3)(1 − q5) · · · (1 − 2q + 2q4 − 2q9 + · · · ) = O(1)

at all the points q = −1, q3 = −1, q5 = −1, q7 = −1, . . . , and at the same time

f (q) − (1 − q)(1 − q3)(1 − q5) · · · (1 − 2q + 2q4 − 2q9 + · · · ) = O(1)

at all the points q2 = −1, q4 = −1, q6 = −1, . . . . Also obviously f (q) = O(1) at all the points
q = 1, q3 = 1, q5 = 1, . . . . And so f (q) is a mock ϑ-function.

The function

b(q) := (1 − q)(1 − q3)(1 − q5) · · · (1 − 2q + 2q4 − 2q9 + · · · )
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which Ramanujan includes in his statement above is perhaps more easily recognized as a modular
form1 (up to multiplication by q−1/24) when it is rewritten in terms of the weight-1/2 modular
Dedekind η-function, as

b(q) = q1/24 η3(τ )
η2(2τ )

,

with q = qτ = e2π iτ , τ ∈H := {τ ∈C : Im(τ ) > 0}. That is, the modular forms ±b asymptotically ‘cut
out’ all of the mock theta function f ’s exponential singularities at even ordered roots of unity.
Expanding upon this, the following definition of a mock theta function captures the essence of
these functions as described by Ramanujan in his letter to Hardy. For this reason, the definition
below (see [3]) is attributed to Ramanujan, although he did not literally write it down exactly in
this way.

Definition 1.1. A mock theta function is a function F, defined on H, satisfying the following
conditions:

(i) There are infinitely many roots of unity ζ for which F(τ ) grows exponentially as q = e2π iτ

approaches ζ radially from inside the unit disc.
(ii) For every root of unity ζ , there exists a (weakly holomorphic) modular form gζ and a

rational number αζ such that
F(τ ) − qαζ gζ (τ )

is bounded as q → ζ radially from within the unit disc.
(iii) There does not exist a single (weakly holomorphic) modular form g that satisfies (ii) for

every root of unity ζ .

To paraphrase (omitting some technical details), mock theta functions are asymptotically close
to ordinary modular forms, at their exponential singularities. In his address, Watson commented
on Ramanujan’s lack of rigour surrounding this definition of a mock theta function, a quality
which also seeps into his claim on f and b described above:

[Ramanujan’s] remarks about lack of rigorous proof indicate that he was not completely convinced
that the functions which he had constructed actually cannot be expressed in terms of ϑ-functions
and ‘trivial’ functions. It would therefore seem that his work on the transformation theory of
mock ϑ-functions did not lead him to the precise formulae (such as I shall describe presently) for
transformations of mock ϑ-functions of the third order. The precise forms of the transformation
formulae make it clear that the behaviour of mock ϑ-functions near the unit circle is of a more complex
character than that of ordinary ϑ-functions.

One such transformation result that Watson is referring to is the following, which appeared in his
same 1935 address [1]:

Theorem 1.2. Let q = e−α , β = π2/α, q1 = e−β , where α ∈C, Re(α) > 0. Then

q−1/24f (q) = 2

√
2π

α
q4/3

1 ω(q2
1) + 4

√
3α

2π

∫∞

0

sinh(αt)
sinh(3αt/2)

e−3αt2/2 dt.

Changing variables and setting α = −2π iτ , this may be interpreted as a modular-type
transformation, under τ �→ −1/(2τ ), between the mock theta functions f and ω. Watson’s
transformation notably contains an ‘error’ integral, which would be absent if this was a true
modular transformation.

Both of these properties of the mock theta function f , its curious asymptotic closeness to
modular forms at exponential singularities, as well as its modular-like transformation properties,
influenced extensive further work on the mock theta functions in the decades following

1As is standard in the subject, here and throughout we may refer to a function as automorphic of some variety, when in reality
it may need to be slightly normalized before exhibiting appropriate transformation properties.
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Ramanujan’s death, by mathematicians including Andrews, Berndt, Bringmann, Dragonette,
Dyson, Garvan, Gordon, Griffin, Hardy, Hickerson, McIntosh, Ono, Rademacher, Rhoades, Rolen,
Watson, Zagier, Zwegers and scores more (for example, see [3]). It turns out, as we shall describe
in the next section, that a more complete picture of the modular properties of the mock theta
functions emerged only within the last 15 years, in the context of harmonic Maass forms (defined
in 2004) and quantum modular forms (defined in 2010).

2. The mock theta functions, now

(a) Harmonic Maass forms and mock modular forms
Work of Zwegers [4,5], which emerged circa the year 2000, 80 years after Ramanujan’s letter
and 65 years after Watson’s transformation formulae, finally resolved the question of precisely
understanding the transformation theory of Ramanujan’s mock theta functions: they could be
completed by the addition of a suitable non-holomorphic function, in such a way that the
resulting function, although no longer holomorphic, transforms like a modular form. In short,
we may now view Ramanujan’s functions as holomorphic parts of harmonic Maass forms, which
were defined by Bruinier and Funke in 2004. For additional details on these functions and the
technicalities of the definition below, we refer the reader to [3,6].

Definition 2.1. If k ∈ 1
2Z, then a weight-k harmonic Maass form on a subgroup Γ = Γ0(N) for

some N ∈N, where 4|N if k ∈ 1
2Z\Z, is any smooth function M : H→C satisfying the following

properties.

(i) For all
(

a b
c d

) ∈ Γ and all τ ∈H, we have

M
(

aτ + b
cτ + d

)
=

⎧⎪⎨
⎪⎩

(cτ + d)kM(τ ) if k ∈Z,( c
d

)
ε−2k

d (cτ + d)kM(τ ) if k ∈ 1
2 + Z.

(ii) We have that �k(M) = 0, where for τ = x + iy,

�k := −y2((∂2/∂x2) + (∂2/∂y2)) + iky((∂/∂x) + i(∂/∂y)).

(iii) There exists a polynomial PM(τ ) ∈C[e−2π iτ ] such that

M(τ ) − PM(τ ) = O
(
e−εy) ,

where τ = x + iy, as y → ∞ for some ε > 0. Analogous conditions hold at all cusps.

The group Γ0(N) in the above definition is the set of all 2 × 2 matrices with integer entries and
determinant 1, with lower left entry congruent to 0 (mod N). The operator �k in condition (ii)
above is called the weight-k Laplacian operator. The complex numbers εd appearing in condition (i)
are defined to be 1 or i depending on whether d is 1 or −1 (mod 4).

It is a fact that harmonic Maass forms M decompose as M = M+ + M−, a sum of a holomorphic
part M+ and a non-holomorphic part M−, where M+ and M− have prescribed shapes (see [3,
Definition 4.4] for specific details). We refer to such holomorphic parts as mock modular forms
[7], aptly named, since Ramanujan’s mock theta functions are among the first explicit examples
(up to possible multiplication by rational powers of q and/or the addition of constants, see [3,
Theorem 9.4]). The theory of harmonic Maass forms has developed in many analogous ways
to the theories of ordinary modular and Maass forms, though it has also led to numerous new
applications (see, for example [3] and the many references therein).

(b) Quantummodular forms
Understanding Ramanujan’s mock theta functions within the context of harmonic Maass forms
has opened many doors in recent years. However, questions remained, as B.C. Berndt (author
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of numerous contemporary volumes on Ramanujan’s notebooks [8–12] (with G.E. Andrews) and
[13–17]) recently pointed out [18]:

We emphasize that Ramanujan does not prove that f (q) is actually a mock theta function according
to his somewhat imprecise definition. Moreover, no one since has actually proved this statement, nor
has anyone proved that any of Ramanujan’s mock theta functions are really mock theta functions
according to his definition.

Armed with the start of a theory of harmonic Maass forms, as well as Zwegers’ important work,
Ono, Rhoades and the author revisited Ramanujan’s asymptotic claim about the mock theta
function f and the modular form b (described in §1). We sought to better understand the implied
O(1) constants, and wondered if there could be any connection between what Ramanujan was
studying in 1920, and quantum modular forms, defined 90 years later in 2010 by Zagier. Quantum
modular forms, which we more precisely define below, transform like modular forms but with
some notable differences: they are defined on Q as opposed to H, and they transform only up to
additive error terms, which are required to extend to suitably analytic or continuous functions in
R. It may be unclear from this terse description why we imagined quantum modular forms may
be at play in Ramanujan’s asymptotic claim. In fact, we saw potential hints in the transformation
exhibited by f (q) on H (see Watson’s theorem in §1), and also in Ramanujan’s asymptotic claim: if
we rewrite q = e2π iτ where τ ∈H, then q → ζ (a root of unity) radially is equivalent to τ → x ∈Q,
a rational number, vertically.

More precisely, we have the following definition of a quantum modular form, which we
attribute to Zagier [19], noting that his original definition was slightly more restrictive.

Definition 2.2. A quantummodular form of weight k ∈ 1
2Z is a function ϕ : Q\S →C, for some

discrete subset S, such that for all γ = (
a b
c d

) ∈ Γ , an appropriate subgroup of SL2(Z), the functions

hγ (x) = hϕ,γ (x) := ϕ(x) − ε−1(γ )(cx + d)−kϕ

(
ax + b
cx + d

)
(2.1)

satisfy a suitable property of continuity or analyticity in R.

(The multiplier systems ε(γ ) which appear satisfy |ε(γ )| = 1, in accordance with the theory of
ordinary modular forms.)

To elaborate on this definition, in which the analytic property required to hold in R is left
intentionally a bit vague by Zagier, a typical example of a quantum modular form may be
(but is not necessarily required to be) such that the corresponding functions hγ are defined on
Q\{γ −1(i∞)}, and extend to functions which are C∞, or perhaps analytic in R\{γ −1(i∞)}. Given
the nature of the modular action of SL2(Z), it does not quite make sense to define quantum
modular forms exactly analogously to ordinary modular forms with only a change in domain.
Zagier’s definition above exhibits functions which fail to be modular in such a way that precisely
offsets their failure to be analytic, and vice versa.

We offer the following explicit example of a quantum modular form, deliberately chosen for
reasons revealed in the next subsection. Let

U(q) :=
∑
n≥1

(ue(n) − uo(n))qn =
∞∑

n=0

(q; q)2
nqn+1 (2.2)

be a certain weighted combinatorial generating function for strongly unimodal sequence ranks.
(Precisely, ue/o(n) := #{size-n strongly unimodal sequences with even/odd rank}.) Bryson–Ono–
Pitman–Rhoades [20] proved that U (x) := e−π ix/12U(e2π ix) is in fact a quantum modular form
of weight 3/2. Interestingly, the authors showed that U simultaneously exhibits mock modular-
type transformation properties when viewed as a function on H. Generalizations and extensions
of these results related to U have since been established, some of which we discuss in §3 (see
also [3]). Moreover, many quantum modular forms have been studied in addition to U, arising
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from diverse areas such as number theory, combinatorics, representation theory, topology and
more [3,19].

(c) Ramanujan’s radial limits revisited
We are now prepared to state, and explain, the following result and its generalization, established
in [21]. Below and in what follows, we use the notation ζA := e2π i/A. Theorem 2.3 below resolves,
makes explicit and reinterprets Ramanujan’s observation on the asymptotic behaviour of the
mock theta function f described in §1.

Theorem 2.3. As q approaches a primitive even-order 2k-th root of unity ζ h
2k radially from within the

unit disc, we have that

f (q) − (−1)kb(q) = −4
k−1∑
n=0

(−ζ h
2k; ζ h

2k)2
nζ

h(n+1)
2k .

The right-hand side of the radial limit in theorem 2.3 is closely related to the quantum
modular form U discussed above. In particular, it is (up to multiplication by −4) the special
value at ζ h

2k of the generating function for strongly unimodal sequences, which are also known to
possess quantum modular properties (see [22,23], and the narrative below). That is, theorem 2.3
reveals, in a single asymptotic statement, a relationship between three different types of modular
forms: mock theta functions, (ordinary) modular forms and quantum modular forms, the first
of which emerged in 1920, and the last of which emerged over 90 years later. In addition to
offering this connection between various types of modular forms, the statement of theorem 2.3
also asymptotically relates three different combinatorial generating functions: one arising from
partition ranks, one from partition cranks and one from strongly unimodal sequences (see [21]
and the narrative below for further details).

The theory of harmonic Maass forms indeed plays a role in the proof of theorem 2.3 and its
generalization (theorem 2.4 in [21]). In particular, Zwegers’ so-called μ-function, which may be
viewed as a mock Jacobi form, plays a key role. Also crucial in our proof is an identity due to
Ramanujan himself, listed as entry 3.4.7 in his ‘lost’ notebook [9], which was unearthed by G.E.
Andrews in 1976 in the Trinity College library:

Entry 3.4.7

∞∑
n=0

a−n−1b−nqn2

(−a−1; q)n+1(−qb−1; q)n
+

∞∑
n=1

(−aq; q)n−1(−b; q)nqn

= (−aq; q)∞
(q; q)∞(−q/b; q)∞

( ∞∑
n=0

bnqn(n+1)/2

1 + aqn + 1
a

∞∑
n=1

b−nqn(n+1)/2

1 + a−1qn

)
.

Theorem 2.4 below is stated in terms of the partition rank and crank generating functions
R and C, respectively, and the strongly unimodal sequence rank generating function U.2 These
functions satisfy

R(w; q) =
∞∑

n=0

qn2

(wq; q)n(w−1q; q)n
, C(w; q) = (q; q)∞

(wq; q)∞(w−1q; q)∞
,

U(w; q) =
∞∑

n=0

(wq; q)n(w−1q; q)nqn+1.

Theorem 2.4. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1 and b|k. If h′ ∈Z

satisfies hh′ ≡ −1 (mod k) then as q approaches ζ h
k radially within the unit disc, we have that

lim
q→ζ h

k

(R(ζ a
b ; q) − ζ−a2h′k

b2 C(ζ a
b ; q)) = −(1 − ζ a

b )(1 − ζ−a
b )U(ζ a

b ; ζ h
k ).

2We caution the reader that the function U is defined with slightly different normalizations (using the same notation for the
function) in different sources. Here, we have used the definition from [21].
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Theorem 2.3 is deduced from theorem 2.4 in [21] by setting (a, b) = (1, 2). We also point the
reader to a later proof of theorem 2.3 not involving harmonic Maass forms by Zudilin in [24].

Similar quantum properties (to those possessed by U(q) mentioned above) are possessed by
the right-hand side of the radial limit displayed in theorem 2.4. Namely, in [23], we established
quantum modular properties of U(w; q) when w is fixed to be a root of unity, when viewed as
a function of x ∈Q, where q = e2π ix. In [22], we defined the notion of a quantum Jacobi form,
and established quantum Jacobi properties of U(w; q) when viewed as a two-variable function
in (x1, x2) ∈Q × Q, with w = e2π ix1 and q = e2π ix2 .

Later alternative expressions for the right-hand side of the radial limit difference in theorem 2.4
have also been given. We mention three such expressions in (e1)–(e3) below:

(e1) In [23], we show that the right-hand side of the radial limit in theorem 2.4 may be
expressed as

−(1 − ζ a
b )(1 − ζ−a

b )F(ζ a
b ; ζ−h

k ),

where

F(w; q) :=
∞∑

n=0

wn+1(wq; q)n.

The function F(w; q) is an extension of a function originally studied by Kontsevich and
Zagier [19].

(e2) In [22], using quantum Jacobi properties, we show that the right-hand side of the radial
limit in theorem 2.4 may be expressed as the following simple (non-q-hypergeometric)
polynomial in roots of unity:

1
2

(1 − ζ−a
b )ζ−2a

b ζ−h
k

k−1∑
j=0

(−1)j+1ζ
−5hj
2k (1 − ζ 2a

b ζ
h(2j+1)
k )ζ−3ja

b ζ
−3j2h
2k .

(e3) In §3(d), we state and prove new expressions for the right-hand sides of the radial limits
in theorem 2.3 and theorem 2.4 in terms of coloured Jones polynomials from topology.

3. Applications and the future of the mock theta functions
Addressing Dyson’s claim, the future is here, and if Watson, who called the mock theta functions
(and himself) old-fashioned, only knew to what lengths Ramanujan’s mock theta functions would
travel over the course of the next 100 years. In the remaining sections, we discuss some modern
generalizations and applications of the results described in the previous sections surrounding the
mock theta functions. In particular, in §3(d), we discuss applications to topology, and state and
prove a new interpretation of the right-hand sides of the radial limits in theorems 2.3 and 2.4.

(a) Radial limits of universal mock theta functions
As a companion to a function studied by Hickerson (sometimes denoted by g3(w; q)), Gordon and
McIntosh defined the universal mock theta function [25]

g2(w; q) :=
∞∑

n=0

(−q; q)nqn(n+1)/2

(w; q)n+1(w−1q; q)n+1
.

This function is so named due to the fact that all of Ramanujan’s mock theta functions can be
expressed in terms of linear combinations of specializations of g2 and ordinary modular forms.
Extending results from [21], some of which are discussed above, Rhoades [26] asked if one could
similarly explicitly determine modular forms fa,b,A,B,h,k in a uniform way such that g2(ζ a

b qA; qB) −
fa,b,A,B,h,k(q) is bounded as q → ζ h

k radially from within the unit disc, and subsequently find finite
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formulae for these radial limits. These questions were answered by Bringmann & Rolen [27] in
2015, who determined modular forms fa,b,A,B,h,k such that

Qa,b,A,B,h,k := lim
q→ζ h

k

(g2(ζ a
b qA; qB) − fa,b,A,B,h,k(q))

is bounded as q → ζ h
k radially from within the unit disc. Moreover, they obtained explicit finite

formulae for the constants Qa,b,A,B,h,k, and in parallel to theorems 2.3 and 2.4 from [21], they
showed that the functions Q(h/k) := Qa,b,A,B,h,k are quantum modular forms. Similar results related
to the universal mock theta function g3 are established in [28]. To prove their results, the authors
of [27] use results from [29], which we discuss in the next section.

(b) Radial limits of mock modular forms
Given the radial limit results described above related to mock theta functions, it is a
natural question to ask whether similar results hold for more arbitrary mock modular forms
(holomorphic parts of harmonic Maass forms). Indeed this is the case, as established in the
following results of Choi, Lim and Rhoades from 2016 [29].

Theorem 3.1. Let M+ be a mock modular form, so that M = M+ + M− (with M− �= 0) is a harmonic
Maass form of weight k ∈ 1

2Z and level N with t > 1 inequivalent cusps {c1, c2, . . . , ct} ⊂Q ∪ {∞}. Then
there is a collection {gj}t

j=1 of weakly holomorphic modular forms such that M+ − gj is bounded towards
all rationals equivalent to the cusp cj.

In [29], the authors generalize a result of Borcherds from [30] in order to prove theorem 3.1.
They also establish the analogous result that these radial limit differences may be realized as
special values of quantum modular forms.

(c) Ramanujan’s definition of a mock theta function
As stated in §2b, Berndt observed that no one had actually proved that Ramanujan’s mock
theta functions actually satisfied his definition of a mock theta function. By making use of the
realization that Ramanujan’s examples are essentially mock modular forms of weight 1/2, Griffin,
Ono and Rolen proved this in [31]. A key result to this end (established in [31]) is theorem 3.2
below. The group Γ1(N) appearing is the set of all 2 × 2 matrices

(
a b
c d

)
with integer entries a, b, c, d,

and determinant 1, satisfying a ≡ d ≡ 1 (mod N) and c ≡ 0 (mod N).

Theorem 3.2. Suppose that M = M+ + M− is a weight-k harmonic Maass form on Γ1(N), where k ∈
1
2Z. If M− is non-trivial3 and g is a weight-k weakly holomorphic modular form on Γ1(N), then there are
infinitely many roots of unity ζ for which M+ − g has exponential growth as q radially approaches ζ .

This theorem confirmed Ramanujan’s original claim about his examples. Namely, if F is one of
Ramanujan’s mock theta functions and a ∈N, b ∈Z, c ∈C such that qbF(aτ ) + c is the holomorphic
part of a weight-1/2 harmonic Maass form, then it is proved in [31] using the above theorem, that
there does not exist a weakly holomorphic modular form g of any half-integral weight on any
group Γ1(N) such that at every root of unity ζ we have limq→ζ (qbF(aτ ) + c − g(τ )) = O(1).

(d) Coloured Jones polynomials for torus knots
We conclude with an application to the area of topology, which has been shown to exhibit
interesting intersections with the subject of quantum modular forms in recent years. This
connection has been seen through certain Jones polynomials, Laurent polynomials which are a
type of knot invariant, unchanged under isotopy (see [32]). Zagier made this observation in his
original paper on quantum modular forms [19], and this subject is an active and current area of
research [33,34]. To provide a specific example, which turns out to be related to the subject of this

3If N = 1 then M− is trivial.
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paper, we set some notation. Let JN(T∗
2,3; q) be the N-coloured Jones polynomial for the left-handed

trefoil knot T∗
(2,3). Hikami and Lovejoy [35] observed that when evaluated at q = ζN , where ζN is

an Nth root of unity, the coloured Jones polynomial JN(T∗
(2,3), ζN) equals ζ−1

N U(ζN), where U(q) is
the quantum combinatorial generating function from (2.2) discussed in §2b. We extend this idea,
and establish the following new result, which shows that the radial limit sums or differences
discussed previously, including those for the mock theta function f (q), may be realized as special
values of coloured Jones polynomials.

Theorem 3.3. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1 and b|k, so that
bb′ = k for some integer b′. Let h′ ∈Z satisfy hh′ ≡ −1 (mod k). Then for any positive integer N =
Na,b,h,k ≡ −ab′h′ (mod k), as q approaches ζ h

k radially within the unit disc, we have that

lim
q→ζ h

k

(R(ζ a
b ; q) − ζ−a2h′k

b2 C(ζ a
b ; q)) = −(1 − ζ a

b )(1 − ζ−a
b )ζ h

k JN(T∗
(2,3); ζ

h
k ),

where JN(T∗
(2,3); q) is the N-coloured Jones polynomial for the left-handed trefoil knot T∗

(2,3).
In particular, with k = 2κ , for any positive integer N = Nh,κ ≡ −κh′ (mod 2κ), we have that

lim
q→ζ h

2κ

( f (q) − (−1)κb(q)) = −4ζ h
2kJN(T∗

(2,3); ζ
h
2κ ).

Proof. We begin with theorem 2.4, so that establishing theorem 3.3 is equivalent to establishing
that U(ζ a

b ; ζ h
k ) equals ζ h

k JN(T∗
(2,3); ζ

h
k ) for any N = Na,b,h,k ≡ −ab′h′ (mod k). This was recently

established by the author in the course of the proof of theorem 3 in [36], drawing from work
of Hikami and Lovejoy. For completeness, we give the argument here. From [35, (1.7)], for any
positive integer N, we deduce that ζ h

k JN(T∗
(2,3); ζ

h
k ) = U(ζ hN

k ; ζ h
k ). Now suppose N = Na,b,h,k ≡ −ab′h′

(mod k). Then

ζ hN
k = ζ−ab′h′h

k = ζ ab′
k = ζ a

b .

Thus we have proved the first assertion for N = Na,b,h,k under the prescribed hypotheses. The
second assertion follows by setting (a, b) = (1, 2) and letting k = 2κ . �

The interested reader may also wish to consult the websites of the recent related workshops
at Banff International Research Station (BIRS) in Banff, AB [33], and at The Institute for
Computational and Experimental Research in Mathematics (ICERM) in Providence, RI [34].
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