
Earth Surf. Dynam., 8, 379–397, 2020
https://doi.org/10.5194/esurf-8-379-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Short communication: Landlab v2.0: a software
package for Earth surface dynamics

Katherine R. Barnhart1,2,a, Eric W. H. Hutton3,4, Gregory E. Tucker1,2,3, Nicole M. Gasparini5,
Erkan Istanbulluoglu6, Daniel E. J. Hobley7, Nathan J. Lyons5, Margaux Mouchene8,

Sai Siddhartha Nudurupati6, Jordan M. Adams9, and Christina Bandaragoda6

1Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado, USA

2Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
3Community Surface Dynamics Modeling System Integration Facility,

University of Colorado, Boulder, Colorado, USA
4Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA

5Department of Earth and Environmental Sciences, Tulane University, New Orleans, Louisiana, USA
6Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA

7School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK
8University of Grenoble Alpes, INRAE, ETNA, 38402 Saint-Martin-d’Hères, France

9Science and Math Division, Delgado Community College, New Orleans, Louisiana, USA
apresent affiliation: US Geological Survey, Landslide Hazards Program, 1711 Illinois St., Golden, CO, USA

Correspondence: Katherine R. Barnhart (krbarnhart@usgs.gov)

Received: 14 February 2020 – Discussion started: 4 March 2020
Revised: 22 April 2020 – Accepted: 9 May 2020 – Published: 26 May 2020

Abstract. Numerical simulation of the form and characteristics of Earth’s surface provides insight into its evo-
lution. Landlab is an open-source Python package that contains modularized elements of numerical models for
Earth’s surface, thus reducing time required for researchers to create new or reimplement existing models. Land-
lab contains a gridding engine which represents the model domain as a dual graph of structured quadrilaterals
(e.g., raster) or irregular Voronoi polygon–Delaunay triangle mesh (e.g., regular hexagons, radially symmetric
meshes, and fully irregular meshes). Landlab also contains components – modular implementations of single
physical processes – and a suite of utilities that support numerical methods, input/output, and visualization. This
contribution describes package development since version 1.0 and backward-compatibility-breaking changes
that necessitate the new major release, version 2.0. Substantial changes include refactoring the grid, improving
the component standard interface, dropping Python 2 support, and creating 31 new components – for a total of
58 components in the Landlab package. We describe reasons why many changes were made in order to provide
insight for designers of future packages. We conclude by discussing lessons about the dynamics of scientific
software development gained from the experience of using, developing, maintaining, and teaching with Landlab.

Published by Copernicus Publications on behalf of the European Geosciences Union.



380 K. R. Barnhart et al.: Landlab 2.0

1 Introduction

Landlab is a Python package to support the creation of nu-
merical models in Earth surface dynamics. Numerical mod-
els support researchers to simulate past, present, and future
dynamics of a system. This enables conceptual model valida-
tion, testing of alternative hypotheses, and prediction under
uncertainty. Numerical modeling is especially important for
Earth surface dynamics because of the timescale mismatch
between human observation and system evolution. Landlab
is an open-source Python-language package that provides the
common elements of infrastructure needed to support the cre-
ation of new models. These include a model domain repre-
sentation (the model grid), physical process components, and
utilities that support use and extension of the package. Land-
lab’s modular design lowers the barriers of entry to com-
putational research, reduces researcher time, and supports
publication of reproducible scientific research products (e.g.,
Bandaragoda et al., 2019). Development and maintenance
of Landlab follows modern software development standards
such as version control, integrated testing and documenta-
tion, continuous integration, and multiplatform binary distri-
bution (e.g., Adorf et al., 2019; Hwang et al., 2017; Mandli
et al., 2016; Poisot, 2015; Taschuk and Wilson, 2017; Wil-
son et al., 2014). Our open-source development and use of
semantic versioning (SemVer 2.0.0, https://semver.org, last
access: 12 May 2020) provides a necessary but not suffi-
cient tool for reproducible research in Earth surface dynam-
ics (e.g., Chen et al., 2018).

Landlab was designed as a key element in the Commu-
nity Surface Dynamics Modeling System (CSDMS) suite of
tools (Peckham et al., 2013). Initial development of Landlab
began in 2012 and culminated in a version 1.0 release (re-
ferred to as v1.0) described by Hobley et al. (2017). Figure 1
provides examples of the breadth of modeling efforts imple-
mented with Landlab.

Subsequent to the release of v1.0, the core development
team and many community members have contributed addi-
tional features and bug fixes to the software. Based on ex-
perience using and developing with Landlab, the develop-
ment team identified changes to Landlab that were not back-
wards compatible, indicating a major release was necessary
to convey to Landlab users to expect substantial changes.
This motivated the creation of Landlab v2.0, the focus of
this contribution. A new major version was needed to sup-
port (a) backward-compatibility-breaking changes associ-
ated with refactoring core data structures and (b) removal of
support below Python version 3.

The scope of this contribution is to review the core con-
cepts that underpin Landlab’s design (Sect. 3), describe the
changes and new features added since v1.0 (Sect. 4), dis-
cuss citation of software (Sect. 5), and document lessons we
have learned about community software development from
developing and maintaining Landlab (Sect. 6). Before con-
cluding we provide recommendations for those interested in

being involved with Landlab (Sect. 7). We note that while
much of the contribution discusses general issues of scientific
software development, Sect. 4 is inherently specific to Land-
lab and describes technical details of changes between v1.0
and v2.0. For a comprehensive description of the design and
theory behind Landlab v1.0 the reader is referred to Hobley
et al. (2017). Additionally, we will not present detailed de-
scription of the use of the software, discuss numerical meth-
ods, or review the literature that supports each process im-
plemented in Landlab. In general, methods and supporting
literature can be found in key publications introducing each
component (see Sect. 5), and guidance on software usage can
be found on the Landlab website.

2 The three Landlab audiences

The design of the Landlab package, its development prac-
tices, and the changes made in v2.0 are best understood in
light of the three audiences who interact with the package.
Unlike software that is developed by dedicated software en-
gineers who may not use the software themselves, Landlab
developers also use the software for their research and teach-
ing. Thus, the first audience is user-developers, people who
extend, modify, or otherwise contribute to the source code in
order to accomplish their goals. Notably, most Landlab user-
developers have little to no background in software engineer-
ing. The second audience is users: people who use Landlab
to write their own programs but do not modify or contribute
to Landlab’s source code. Among this group, it is natural for
some to transition to becoming user-developers, who con-
tribute new components or utilities to the main Landlab code
base. The final audience is teachers–students, people who
use Landlab in an instructional classroom setting as part of a
course.

In creating the source code, writing the documentation,
determining the development practices, and maintaining the
package, the needs, abilities, and time constraints of all three
audiences must be balanced. This is particularly important
for packages like Landlab with a small active developer com-
munity (n < 20) and a research-scale user community (e.g.,
tens to hundreds of researchers and perhaps a few thousand
students over the lifetime of the software, rather than mil-
lions of users). Our approach is to adopt many of the key de-
sign principles underlying modern academic software design
best practice (e.g., Wilson et al., 2017; Turing Way Com-
munity et al., 2019). These include an extensive automatic
test suite, integrated documentation, version control, contin-
uous integration, lint checking, and releasing binary pack-
ages for users. These design choices were made to ensure
that Landlab is sustainable into the future to support the user–
developer–learner communities (see Hobley et al., 2017).
Community contributors play an important role in develop-
ing community open-source software. Two of their most im-
portant roles are improving and refining documentation when

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020

https://semver.org


K. R. Barnhart et al.: Landlab 2.0 381

Figure 1. Examples of modeling applications implemented with Landlab span a wide range of timescales and topics. A recent selection of
examples intended to highlight diversity of applications includes the following examples: (a) sediment provenance studies (Sharman et al.,
2019, reproduction modified from their Fig. 2), (b) landscape evolution of anticlines (Zebari et al., 2019, reproduction of their Fig. 8), (c) cel-
lular automaton simulation of normal fault facets (Tucker et al., 2020, reproduction of their Fig. 9), (d) the evolution of post-glacial drainage
networks (Lai and Anders, 2018, reproduction of their Fig. 4), (e) estimates of landslide probability (Strauch et al., 2018, reproduction
modified from their Fig. 9), (f) and coevolution of vegetation and erosion (Schmid et al., 2018, reproduction of their Fig. 3). All subpanels
except (d) covered by CC BY license. Permission to reproduce (d) was obtained through Copyright Clearance Center RightsLink.

it is unclear and identifying software bugs. Because Landlab
currently has a relatively small user base with limited experi-
ence contributing to documentation, it takes longer (months
to years) for documentation to be refined by users compared
to software with more users (days to months). The relatively
long “refinement residence time” means that a commitment
to high-quality tests is critically important (see Sect. 6.1).

3 Landlab core concepts

A core design principle behind the Landlab package is mod-
ularity. Separating the elements of a numerical model into
reusable parts decreases the human time associated with cre-
ating a new model or extending a current one. The design
of Landlab is discussed extensively in Hobley et al. (2017).
Here we briefly summarize the key points to provide context
to the changes and new features that are discussed further in
Sect. 4.

The modular design of Landlab comprises the following
categories of software infrastructure:

1. Model grids: data structures implemented as Python
classes that represent the computational domain, con-
nectivity between parts of the domain, and provide a
centralized location to store state variables.

2. Utilities: functions that provide solutions to common
problems (e.g., numerical functions for gradients, map-
ping, and flux divergence; basic plotting; watershed de-
lineation; and file input/output).

3. Components: representation of core surface processes
(e.g., stream power, flow accumulation, and precipita-
tion) as a Python class with a common interface.

The grid represents a 2-D domain as a dual graph. Each
graph in the dual graph is a set of points, connected by lines,
and outlining polygons. The two graphs are offset from one
another such that the points of one graph are located inside
of the polygons of the other graph. Each graph is a planar
graph, meaning that the lines connecting points do not cross.
In Landlab, we refer to the first graph as composed of nodes
connected by links which outline patches. Corners are lo-
cated inside patches and are connected by faces, which out-

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



382 K. R. Barnhart et al.: Landlab 2.0

Figure 2. Grid elements of RasterModelGrid (a) without and (b) with diagonals.

line cells. With this framework, data identified at a given
point in space have both a connectivity to other points de-
fined by its lines and a uniquely associated spatial area and
set of bounding edges drawn the from enclosing polygon in
the other graph (Fig. 2).

There are four aspects of the grid that are worth highlight-
ing. First is that the Landlab model grids provide informa-
tion about the connectivity and adjacency of all grid elements
(nodes, links, patches, corners, faces, and cells). Second, the
model grids use a consistent framework for the numbering
of grid elements and identifying a direction for each link and
face (note that this is a topologic direction based on the ori-
entation of the link in x–y space, not a flow direction). This
permits consistent application of numerical methods based
on grid element ID that may be transferred to grids of differ-
ent shapes and sizes.

Third, Landlab supports regular and irregular model grids
through the same interface. The Landlab model grid library
includes data structures for networks, regular rasters, general
irregular meshes (Voronoi cells with Delaunay triangulated
nodes), regular hexagons, and radially symmetric irregular
meshes. Landlab v2.0 assumes all links and faces are straight.
The model grids were designed to accommodate extension to
more exotic 2-D geometries.

Finally, the model grid may be used to store data fields at
any grid element. Fields represent state variables and are use-
ful when multiple components use or modify the state vari-
ables. When a field is stored on the grid, Landlab enforces
characteristics such as the number of elements and provides
the ability to use adjacency information associated with the
grid.

The Landlab model grids keep track of boundary condi-
tions using arrays of integers with flags indicating charac-
teristics such as fixed-value, fixed-gradient, or closed to flux
(grid.status_at_X where X is the name of the grid el-
ement). Note that we will use preformatted style text
to indicate Landlab syntax. Thus far, most applications with
Landlab use nodes and links as the primary grid elements.

Thus, sets of standard boundary condition flags are presently
only implemented for these two types of grid elements.

Utilities fall into two subcategories: general numerical
utilities and application-focused utilities. In the first category
are general functions to calculate quantities such as gradients
or flux divergence and map values from one grid element
to another. Development has created numerical utilities fo-
cused on finite-difference/volume numerical solutions to dif-
ferential equations and cellular automaton applications. The
focus on finite-difference and finite-volume utilities, how-
ever, reflects the interests of developers rather than the po-
tential characteristics of the package. In the second cate-
gory are application-focused utilities. These utilities are typ-
ically developed for use in a particular component but have
grown to have broader use within the package. For example
the watershed utility submodule was developed to support
the SpeciesEvolver but provides the broadly applicable
ability to label watersheds.

Components are Python objects with a standard interface
that implement a single Earth surface process, set of equa-
tions, or analysis compatible with the component interface
(e.g., calculation of drainage density). All components re-
quire a Landlab model grid to instantiate and have a built-
in function that advances the component forward in time or
updates it based on the current values stored as fields. Com-
ponents can be coupled by accessing and modifying the same
fields stored on the model grid elements.

4 Changes and new features added since
Landlab v1.0

Landlab v2.0 contains many changes to the core source
code that add new features. We have compiled tables de-
scribing the pre-existing, refactored, and new core capabil-
ities of the Landlab package. These include data structures
(Table 1), utilities (Table 2), new components (Table 3),
and pre-existing or refactored components (Table 4). We

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020



K. R. Barnhart et al.: Landlab 2.0 383

list core package, development environment, testing, tutorial,
and documentation dependencies in Table 5.

This section focuses on the technical details of what has
changed between Landlab v1.0 and v2.0. One might glean
comparable information from reading the software reposito-
ries’ change logs. Inclusion of the technical details here is
intended to summarize key changes. In addition, where rele-
vant, we describe why changes or improvements were made.
This explanation is intended both for current and future users
of Landlab as well as for those interested in scientific soft-
ware development generally.

Changes that broke backward compatibility were required
to incorporate some of the new features in Landlab v2.0. This
necessitated a new major version. These changes included
(i) binding of the boundary condition flags to model grids
(Sect. 4.1.3), (ii) a revision to the Component standard in-
terface (Sect. 4.2), (iii) deprecation and removal of certain
components and utilities (Sect. 4.3), (iv) dropping Python 2
support (following sunsetting of this version at the end of
2019 by the Python Software Foundation). Additionally, we
completely revised the documentation structure (Sect. 4.4).
Landlab v2.0 is designed to work with a number of other
Python tools for numerical modeling. They are summarized
in Sect. 4.5.

4.1 Improvements to the Landlab model grids

Here we highlight three improvements to the Landlab model
grid in v2.0.

4.1.1 Grids inherit from graphs

Each Landlab model grid combines a dual graph topology
with the ability to store fields at grid elements and keep track
of boundary conditions. While the concept of a dual graph is
not new in Landlab v2.0, the package architecture has been
revised to create a set of graph classes from which the Land-
lab model grids inherit (Table 1).

The Landlab graphs describe the topology and connectiv-
ity of a dual graph of nodes–links–patches/corners–faces–
cells and specify the x and y coordinates of the nodes
and corners. The package contains support for 1-D and 2-
D graphs and for graphs not yet used in Landlab grids (e.g.,
DualStructuredQuadGraph). It was designed to be
reusable by projects external to Landlab. While the graph ca-
pabilities do not yet support 3-D graphs, the package was
designed with extension to 3-D in mind.

Building the model grids to inherit from the graph
data structure results in all model grids containing
a complete set of topology-derived attributes (e.g.,
grid.links_at_node) and attribute naming con-
sistency between model grids. In addition, all of the
topology-derived attributes are only created when needed
(just-in-time memory allocation) and are cached. This

was inconsistently implemented in v1.0 and provides an
improvement for memory management and speed.

The graph and model grid data structures are all built on
the xarray Python package’s Dataset (Hoyer and Ham-
man, 2016). Using xarray.Dataset provides a number
of advantages including improved input and output to the
NetCDF format, use of xarray’s optimized data structures,
and the possibility to take advantage of xarray-compatible
parallelization-related tools (e.g., dask; Dask Development
Team, 2016; Rocklin, 2015) without breaking backwards
compatibility.

4.1.2 Improved treatment of diagonals

The RasterModelGrid can optionally contain an addi-
tional grid element called a diagonal, which not only con-
nects nodes but also crosses corners (Fig. 2). Including this
grid element violates the assumption of a plane graph be-
cause the diagonal elements cross one another. However,
use of diagonal elements has a long history in Earth sur-
face dynamics modeling; in order to support historical algo-
rithms (e.g., D8 flow routing, O’Callaghan and Mark, 1984),
Landlab’s RasterModelGrid contains support for diag-
onals. This permits studies that cross-compare implemen-
tations with and without diagonals (e.g., Shelef and Hilley,
2013).

Landlab v1.0 had a partial implementation of diagonals in
which there was no consistent way to refer to the diagonals or
the group of linear elements composed of both links and di-
agonals. In addition, we had an incomplete set of adjacency
structures describing diagonals, and we had no mechanism
to store values at diagonals on fields. We now consistently
call the set of links and diagonals d8s and have implemented
adjacency structures and some numerical functions for diag-
onals and d8s that mirror those for links. Landlab assigns a
unique ID to each grid element (see Hobley et al., 2017, their
Fig. 4). For example, the nodes are identified with ID num-
bers from 0 to the number of nodes minus 1, and links are
identified with numbers from 0 to the number of links mi-
nus 1. The unique IDs assigned to the d8s refer first to the
links and then to the diagonals (in this contribution we will
use “d8” to refer to the grid element and “D8” to refer to the
flow-routing approach).

4.1.3 Boundary condition flags

Landlab v2.0 provides boundary condition status arrays for
nodes, links, corners, faces, and, if applicable, diagonals
and d8s. Because cells and patches are uniquely associated
with their own nodes and corners, we do not supply specific
status arrays for those elements. Boundary condition status
is indicated by a set of flags that indicate the status (Table 6
indicates flag names; see Hobley et al., 2017, their Sect. 3.1.4
for discussion of boundary conditions). Landlab does not en-
force whether a component honors boundary condition flags

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



384 K. R. Barnhart et al.: Landlab 2.0

Table 1. Major data structures in Landlab v2.0.

Name Summary New/refactored?

Graphs

NetworkGraph Graph with only nodes and links. New

DualVoronoiGraph Unstructured dual graph of node–link–patch New
Delaunay triangles and corner–face–cell Voronoi
polygons.

DualHexGraph Dual graph of node–link–patch triangles and New
corner–face–cell regular hexagons.

DualRadialGraph Dual graph with radially symmetric nodes. New
DualStructuredQuadGraph Dual graph of structured quadrilaterals. Link and New

face lengths vary, and orthogonality of links and
faces is not required. This graph does not yet support
a grid.

DualRectilinearGraph Dual graph of quadrilaterals. Link and face lengths New
may be variable, but angles are orthogonal. This
graph does not yet support a grid.

DualUniformRectilinearGraph Dual graph of constant-sized rectangles. x and y link New
and face lengths may be different but are constant
across the grid and are orthogonal.

Model grids

NetworkModelGrid Model grid that inherits from the NetworkGraph. New

VoronoiDelaunayModelGrid Model grid that inherits from the Refactored
DualVoronoiGraph.

HexModelGrid Model grid that inherits from the DualHexGraph. Refactored

RadialModelGrid Model grid that inherits from the Refactored
DualRadialGraph.

RasterModelGrid Model grid that inherits from the Refactored
DualUniformRectilinearGraph.

Other data structures

EventLayers Data structure that keeps track of a time series of New
thicknesses and a generic set of properties at all of
one grid element (e.g., cells). In EventLayers
every time point is recorded, such that erosion of
layers retains a series of zero thickness.
EventLayers is more appropriate if a user is
interested in chronostratigraphy.

MaterialLayers Same as EventLayers except that when erosion New
occurs, no layer is recorded, and when equivalent
material is deposited, layers can be joined.

DataRecord Data structure to store a generic set of variables in New
time and/or on grid elements.

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020



K. R. Barnhart et al.: Landlab 2.0 385

Table 2. Major new utilities in Landlab v2.0.

Submodule Summary

landlab.utils.distance_to_divide Calculate distance between nodes and watershed divides.
landlab.utils.flow__distance Calculate distance between nodes and watershed outlets.
landlab.utils.watershed Identify and label nodes that belong to individual watershed.
landlab.values Create generic, reproducible, synthetic fields based on Python dictionaries or Yaml input files.

– the status arrays and flags are provided simply as a conve-
nience to developers. As in v1.0, we enforce internal consis-
tency of boundary conditions across connected grid element
types. For example, an update to boundary status at a node
will automatically propagate into the connecting links as ap-
propriate and vice versa.

Prior to v2.0, the flags used to indicate node and link status
were not formally attached to the model grids and instead
existed as separate variables provided by the package. In v2.0
we made boundary condition flags attributes of the grid so
that these flags are inseparable from the grids that use them.
We also modified the names for clarity (Table 6).

4.2 Updates to the component standard interface

Scientific software and data are much easier to work with
when they follows standards. Software tools in particular be-
come much more accessible when they provide a standard
interface: a common set of functions that look and act in a
similar way across many different elements of the software.
Landlab’s components use a lightweight interface that is in-
spired by the CSDMS Basic Model Interface (BMI) (Peck-
ham et al., 2013; Hutton and Piper, 2020a) but which takes
advantage of object-oriented features of the Python language,
allowing it to be more compact. Landlab also includes built-
in functionality that converts any Landlab component into
a BMI component, for use in frameworks like the CSDMS
Python Modeling Tool (Hutton and Piper, 2020b). In addi-
tion to its interface, each Landlab component also encodes
metadata in a standardized format; these metadata include,
for example, information about the input and output fields of
the component.

We made changes to the expectations of component in-
terface, metadata, and code standards based on our experi-
ence developing components, supporting community mem-
bers, and using components in science applications. The en-
hanced interface standard is designed to improve usability
and documentation and to make clearer expectations for con-
tributed components. We have implemented automated tests
that ensure existing and contributed components meet this
interface standard.

4.2.1 Changes to the component __init__ method

The design of many numerical model programs follows the
“initialize-run-finalize” pattern (e.g., Peckham et al., 2013;

Hutton and Piper, 2020a). In the BMI, the initialization
step is handled by the standard initialize() function,
and stepwise updating is handled by the update()
function. For Landlab components, which are implemented
as Python objects, the class __init__ method imple-
ments initialization, and stepwise updating is normally
handled by a method called either run_one_step or
update. Hobley et al. (2017, their Sect. 3.3.1) defined
the interface for Landlab components with the function
signature for instantiation (Component.__init__)
and advancing forward (Component.run_one_step).
The v1.0 component instantiation interface defined with
the function definition as follows: __init__(self,
grid, arg1, arg2...,kwd1=a, kwd2=b,
kwd3=c, . . . , ∗∗kwds). Here arg1 represents a generic
argument, and kwd1=a represents a generic keyword
argument. The ∗∗kwds was included so that a user could
make a single dictionary (or Yaml file) containing all of
the keyword arguments for all components used in a model
and pass the same dictionary to all components. However,
an undesirable side effect of this design was that a slight
misspelling of a keyword argument would result in use of
the default value with no error raised. To remedy this flaw
we revised the instantiation standard to remove the ∗∗kwds;
that is, a user may now only supply the component with
input parameters that are explicitly declared in its signature.

In addition we expanded the requirements for component
instantiation. These requirements help promote standardiza-
tion among Landlab components. One new requirement is
that components must inherit from the Component base
class and call the instantiation method of the base class
(super) as part of their instantiation. This ensures that all
components take full advantage of the base class functional-
ity and internal checking; for example, the base class will au-
tomatically make sure that all of the output fields listed in the
header metadata are created, so the component author only
needs to ensure that the metadata are present. A related re-
quirement is that by the end of instantiation, all output fields
made by the component must exist and have the data type
specified by the component metadata. This provides for other
components that may check for these fields as input. Finally,
a component must raise a sensible error when bad values are
provided (for example if an unsupported grid type or unused
keyword argument is provided).

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



386 K. R. Barnhart et al.: Landlab 2.0

Table 3. New components added since Landlab v1.0.

Component Summary Required citation∗ Additional references

ChannelProfiler Extract channel networks

DepthDependentDiffuser Linear, depth-dependent diffusion of Barnhart et al. (2019b) Johnstone and Hilley (2015)
topography

DepthDependentTaylorDiffuser Nonlinear, depth-dependent diffusion of Barnhart et al. (2019b) Johnstone and Hilley (2015),
topography Ganti et al. (2012)

DischargeDiffuser Diffuse sediment proportional to an implicit
water discharge value

ErosionDeposition Fluvial erosion and transport Barnhart et al. (2019b) Davy and Lague (2009)

ExponentialWeatherer Calculate weathering rate based on Barnhart et al. (2019b) Ahnert (1976),
exponential function of soil thickness Armstrong (1976)

Flexure1D 1-D lithospheric flexure under loading

FlowAccumulator Calculate drainage area and discharge Braun and Willett (2013)

FlowDirectorD8 Direct flow based on D8 scheme O’Callaghan and Mark (1984)

FlowDirectorDINF Direct flow based on D∞ scheme Tarboton (1997)

FlowDirectorMFD Direct flow to multiple downstream receivers Quinn et al. (1991),
Freeman (1991)

FlowDirectorSteepest Direct flow based on D4 scheme

GroundwaterDupuitPercolator Model flow in a shallow unconfined aquifer Litwin et al. (2020) Childs (1971),
using the Dupuit–Forcheimer approximation Marçais et al. (2017)

HackCalculator Calculate Hack’s law parameters for drainage basins

LakeMapperBarnes Identify and route flow through lakes Barnes et al. (2014)

LandslideProbability Simulate landslide probability of failure, Strauch et al. (2018)
mean relative wetness, and probability
of saturation

LateralEroder Lateral erosion of fluvial channels Langston and Tucker (2018)

LithoLayers Manage layered material with variable Barnhart et al. (2018)
properties

Lithology Manage material with spatially variable Barnhart et al. (2018)
properties

LossyFlowAccumulator Calculate drainage area and discharge while Braun and Willett (2013)
permitting dynamic loss or gain of flow
downstream

NormalFault Vertical uplift on a generic fault

PotentialityFlowRouter Calculate a discharge field using a matrix
solution

Profiler Extract generic profiles across a Landlab
field

SinkFillerBarnes Fill depressions in a surface Barnes et al. (2014)

Space Fluvial erosion by stream power with Shobe et al. (2017)
alluvium conservation and entrainment

SpatialPrecipitationDistribution Generate spatially resolved precipitation Singer et al. (2018)
events

SpeciesEvolver Evolve life in a landscape Lyons et al. (2020) Albert et al. (2016),
Lyons et al. (2019)

StreamPowerSmoothThresholdEroder Fluvial erosion with a smoothed-threshold Barnhart et al. (2019b) Braun and Willett (2013)
version of stream power

TaylorNonLinearDiffuser Nonlinear diffusion of topography Barnhart et al. (2019b) Ganti et al. (2012)

TransportLengthHillslopeDiffuser Nonlocal hillslope diffusion Davy and Lague (2009),
Carretier et al. (2016)

TrickleDownProfiler Extract profiles downstream of arbitrary
points

∗ In addition to Hobley et al. (2017) and this contribution.

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020



K. R. Barnhart et al.: Landlab 2.0 387

Table 4. Landlab components in v1.0 (after Hobley et al., 2017, their Table 5).

Component Summary Required citation∗ Additional references

ChiFinder Calculates the chi index along a channel Perron and Royden (2012)
network

DepressionFinderAndRouter A lake filler that can route flow across Tucker et al. (2001b)
depressions

DepthSlopeProductErosion Detachment limited fluvial erosion
calculated using depth–slope product for
shear stress

DetachmentLtdErosion General implementation of detachment Howard (1994)
limited fluvial erosion

DrainageDensity Calculate drainage density Tucker et al. (2001a)

FastscapeEroder Implements fluvial erosion according to Braun and Willett (2013)
stream power, using the Fastscape
algorithms

FireGenerator Produces intervals between fire events, Polakow and Dunne (1999)
following a Weibull distribution

Flexure Simple lithospheric flexure under loading Hutton and Syvitski (2008) Lambeck (1988)

FractureGridGenerator Generate fractures in a model grid

gFlex A more complex flexure model, utilizing Wickert (2016)
gFlex

KinwaveImplicitOverlandFlow Locally implicit implementation of the
2-D kinematic wave model

KinwaveOverlandFlowModel Simple implementation of the
2-D kinematic wave model

LinearDiffuser Linear diffusion of topography Culling (1963)

OverlandFlow An inertial approximation of the shallow Adams et al. (2017) de Almeida et al. (2012)
water equations for overland flow applications

OverlandFlowBates An inertial approximation of the shallow Bates et al. (2010)
water equations for overland flow application

PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011)

PotentialEvapotranspiration Calculate potential evapotranspiration across ASCE (2005),
a surface Zhou et al. (2013)

PrecipitationDistribution Generate a storm sequence of intervals and Eagleson (1978)
intensities

Radiation Calculate total incident shortwave solar Bras (1990)
radiation

SedDepEroder Sediment-flux-dependent, shear-stress-based Hobley et al. (2011)
fluvial incision

SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001c)

SoilMoisture Compute local inter-storm water balance and Laio et al. (2001)
root-zone soil moisture saturation fraction

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following Rengers et al. (2016) Julien et al. (1995)
the Green–Ampt method

SteepnessFinder Calculates steepness indices for a channel Wobus et al. (2006)
network

StreamPowerEroder Implements fluvial erosion according to Braun and Willett (2013)
stream power, using the Fastscape
algorithms

VegCA Cellular automata algorithm to simulate Zhou et al. (2013)
spatial organization of plant functional types

Vegetation Calculate above-ground live and dead Zhou et al. (2013)
biomass and leaf area index

∗ In addition to Hobley et al. (2017) and this contribution.

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



388 K. R. Barnhart et al.: Landlab 2.0

Table 5. Dependencies and citations.

Category Name Citation

Core Package bmipy Peckham et al. (2013), Hutton and Piper (2020a)
matplotlib Hunter (2007)
netcdf4 Whitaker et al. (2019)
pyyaml
pyshp
scipy Virtanen et al. (2019)
statsmodels Seabold and Perktold (2010)
pandas McKinney (2010)
xarray Hoyer and Hamman (2016)

Testing coveralls
pytest Krekel et al. (2004)
pytest-cov
pyyaml
pytest-datadir

Tutorials dask Dask Development Team (2016), Rocklin (2015)
jupyter Pérez and Granger (2007), Kluyver et al. (2016)
holoviews
nbformat

Development black
flake8
isort

Documentation sphinx
sphinx_rtd_theme
pandoc
tornado
entrypoints

Table 6. Boundary condition flag changes.

Landlab v1.0 Name Landlab v2.0 Name

BAD_INDEX_VALUE ModelGrid.BAD_INDEX
CORE_NODE ModelGrid.BC_NODE_IS_CORE
FIXED_VALUE_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_VALUE
FIXED_GRADIENT_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_GRADIENT
LOOPED_BOUNDARY ModelGrid.BC_NODE_IS_LOOPED
CLOSED_BOUNDARY ModelGrid.BC_NODE_IS_CLOSED
ACTIVE_LINK ModelGrid.BC_LINK_IS_ACTIVE
INACTIVE_LINK ModelGrid.BC_LINK_IS_INACTIVE
FIXED_LINK ModelGrid.BC_LINK_IS_FIXED

4.2.2 Changes to the component run method

The v1.0 component interface defined a run method with a
function signature run_one_step(dt, ∗args, ∗∗kwds),
where dt represents the duration of time the model runs
forward, ∗args represents a generic list of arguments, and
∗∗kwds represents a generic set of keyword arguments. In
practice, we found that many Landlab components were not
able to follow this interface standard because it was not flex-
ible enough. For example, some components do not require

a dt and thus did not take dt. We also found the presence
of ∗args and ∗∗kwds in the run_one_step problematic
because it complicated wrapping components with a Basic
Model Interface (BMI; Peckham et al., 2013; Hutton and
Piper, 2020a) for use with the Python Modeling Tool (PyMT;
Hutton and Piper, 2020b).

The revised interface balances standardization and flex-
ibility. Components are no longer required to provide a
method with the name run_one_step, but if they do not,
then an alternative update/execution function must be pro-

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020



K. R. Barnhart et al.: Landlab 2.0 389

vided and its usage clearly documented in the header doc-
string of the component. The new expectation is that if
run_one_step is used, it will take either a time dura-
tion or nothing. Thus components with a run_one_step
method can be easily incorporated into PyMT. Pre-existing
components that took arguments or keyword arguments in
their run_one_step method have been refactored to ei-
ther provide those values at instantiation or to use properties,
getters, and setters. The terms getter and setter come from
object-oriented programming, and they refer to small func-
tions that retrieve the value of (get) or assign a value to (set)
a particular variable. Although it might seem odd to create
functions to handle such seemingly trivial tasks, the practice
has the advantage of enabling defensive programming (e.g.,
a setter can check for the right data type), allowing a pro-
gram to create a particular variable only when it is requested
(which can save memory), and supporting built-in documen-
tation (in the form of function documentation) for each vari-
able. In Landlab (as in Python practice generally) getters and
setters are implemented using the Python @property dec-
orator. Those variables that use getters and setters are con-
sidered to be public, meaning that programmers using the
component can easily inspect and, if desired, change their
values. Other variables are considered private: used only by
the component internally and not to be modified (to indicate
this, the names of private variables are preceded by an under-
score character).

4.2.3 New component metadata standard

For both data and software, standardized metadata promote
efficiency, interoperability, and reuse. To that end, each
Landlab component includes a set of metadata in the header
of the class that defines the component. Our experience with
component metadata in Landlab led us to revise its design for
version 2.0.

The metadata section of a Landlab component describes its
input fields, output fields, field units, the type of grid element
associated with each field, and a long-format description of
the field. Metadata are now organized into a single Python
dictionary, which has a key-value pair for each field used by
the component. The new data structure makes it easier to test
for completeness and consistency across components. Each
key is a string indicating the field name. The associated value
is itself a dictionary that has a standard, required set of keys
(Table 7).

4.2.4 Additional component content requirements and
recommendations

Here we highlight the few remaining component require-
ments and recommendations. The use of must indicates a re-
quirement, while the use of may or should indicates a recom-
mendation.

Table 7. Metadata for fields component fields.

Name Description

“dtype” The data type for the items in the field indicated as a Python
data type (e.g., float, int).

“intent” A string indicating the input/output intent of the field. Valid
options are “in”, “out”, and “inout”.

“optional” Boolean indicating whether the field is an optional input or
output.

“units” String indicating the units of the field. Some components
are unit agnostic, in which case these units can be
interpreted as dimensions (see description of
Component.unit_agnostic in Sect. 4.2.4).

“mapping” String indicating the type of grid element associated with the
field (e.g., node, link).

“doc” String describing the field.

– All public attributes must be documented proper-
ties of the Component class; that is, they have the
@property standard Python decorator. This ensures
that other users are able to identify what each public at-
tribute is and prevents variable modification unless the
developer explicitly permits it. This change has little im-
pact on developers time because a developer may elect
to use only private attributes.

– If a developer envisions that the public attribute of
a component may be modified, they must create a
setter for it. This provides a place for a component
author to write checks that ensure a user cannot incor-
rectly assign invalid component attributes.

– Field names shared between multiple components must
use a consistent definition and dimensions. Some
components require parameters and fields to use a
particular set of units, while others are unit ag-
nostic. This is flagged in the component attribute
Component.unit_agnostic. It is up to the user
to ensure that an application uses consistent units across
all fields, components, and input parameters.

– Arguments and keyword arguments should start with
lowercase letters.

– The grid should be the only argument to the component
__init__. All other inputs are provided as keyword
arguments.

– Keyword arguments should have reasonable default val-
ues so that all keywords are truly optional.

– The main method of a component (either
run_one_step or a custom-designed up-
date/execution function) should return either nothing,
the grid, or a single calculated value.

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



390 K. R. Barnhart et al.: Landlab 2.0

4.3 Removed or modified components and utilities

Several obsolete components and utilities have been removed
from Landlab v2.0. Other components were substantially
modified. Here we describe these changes.

– The FlowRouter component, which did D8 and
D4/steepest descent flow routing and accumulation, was
removed and replaced with the FlowAccumulator
and a family of FlowDirector components. This
change provides greater flexibility in options for flow-
routing algorithms (e.g., multiple flow directions, D∞).

– The routing-based surface-water erosion compo-
nents (such as StreamPowerEroder) now use
a single consistent method for handling the input
runoff rate. The keyword argument runoff_rate
to the FlowAccumulator can now specify a
float, array, or field name indicating the runoff
rate. This is then accumulated to create the field
surface__water_discharge, which can be used
by components that model surface-water erosion.

– The ModelParameterDictionary was removed
because it represents an old-style input file that has been
superseded by the Yaml format.

– A new ChannelProfiler component re-
places the previous channel-profiling submodule
(landlab.plot.channel_profile).

– The noclobber keyword argument for field cre-
ation was changed to clobber because the orig-
inal name required double negatives and was not
intuitive. noclobber=False is equivalent to
clobber=True.

– The ability to pass an array of flooded nodes to
the run_one_step method in surface-water
erosion components was removed and replaced
with a keyword argument to __init__ called
erode_flooded_nodes.

4.4 Reorganization of the Landlab documentation

The Landlab online documentation is now consolidated onto
a single Sphinx-based platform (https://landlab.readthedocs.
io/, last access: 12 May 2020). Consolidating the documen-
tation onto a single platform with a consistent interface re-
duces duplication of information, improves consistency, and
permits comprehensive searches. The site design is similar
to that of widely used scientific Python packages and was
modeled after that of pandas (McKinney, 2010). The re-
vised documentation pages include installation instructions,
a user guide (including tutorials), a guide for developers, and
an API reference that contains formatted versions of inline
documentation within the source code. The documentation

source is written in reStructuredText format, and the source
files are provided as part of the Landlab package.

4.5 Packages built to work with Landlab

Landlab was designed as a generic, extensible modeling
framework for Earth surface dynamics. Because Landlab ex-
poses a BMI (Hutton and Piper, 2020a), it is compatible with
the PyMT package (Hutton and Piper, 2020b) – a Python
package that supports running and coupling models that ex-
pose a BMI. PyMT provides access to a suite of models writ-
ten in multiple languages (e.g., Python, Fortran, C++) and a
standard interface for initializing and running.

In addition, two packages have been built using Land-
lab to support applications in sensitivity analysis, calibra-
tion, validation, and multimodel comparison (see Barn-
hart et al., 2020a, b, c, for example applications). First,
terrainbento is a Python package for multimodel anal-
ysis that provides an extensible set of 27 Landlab-built mod-
els for long-term drainage basin and landform evolution,
along with general classes for handling boundary conditions
through an input-file format (Barnhart et al., 2019b). Second,
umami is used to calculate model–data comparison met-
rics for observed and simulated topography (Barnhart et al.,
2019a).

5 Citation of Landlab and parts of Landlab

Citation of scientific software is an outstanding challenge
(e.g., Niemeyer et al., 2016). Scientific software is cited less
frequently than it is used (e.g., Pan et al., 2015). Indicating
a recommended citation for use of Landlab is additionally
challenging because, depending on the portion of Landlab
used, the set of citations required may vary. We describe our
recommendations for which citations to use and present a
tool within Landlab to improve citation discoverability.

Any time any part of Landlab is used, Hobley et al. (2017)
should be cited; if the version used is > 1.0, then this contri-
bution should be additionally cited. These two citations ac-
knowledge the development of the Landlab package itself.
We also recommend that authors state the specific version
of Landlab used (the version can be found by evaluating
landlab.__version__).

Each application of Landlab may use a different set of
components, each with a different citation for the software
itself and general set of theory references (Tables 3 and 4).
Additionally, some parts of Landlab may internally use oth-
ers; thus a user may not easily be able to assess the entire set
of elements of Landlab their application has used and what
to cite for each part.

This challenge is not new. For example, it is faced by the
scipy package, which addresses it by providing a core-
package citation – Virtanen et al. (2019) – and indicating
that users should look to the reference section of the docu-
mentation for additional citations. Similarly, the codes dis-

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020

https://landlab.readthedocs.io/
https://landlab.readthedocs.io/


K. R. Barnhart et al.: Landlab 2.0 391

Listing 1. Using the Landlab citation registry.

tributed through the Computational Infrastructure for Geo-
dynamics (CIG) have a citation builder that distinguishes be-
tween citations specific to the software implementation, pri-
mary citations describing the code development and numer-
ical methods, and secondary citations that pertain to parts of
the code a user may or may not have used (Kellogg et al.,
2018). This example from CIG highlights a further chal-
lenge: a component may have one or more citations for each
of the following categories: (i) the theory behind the imple-
mented idea, (ii) a description of the software implementa-
tion itself, (iii) any specialized algorithms developed for the
implementation, and (iv) the first reported use of the software
in a publication.

Should one of these or all of these be the recommended
and/or required citations for a given software component?
We do not think it is our role to decide which citations, if
any, a component author indicates as recommended or re-
quired. Additionally, it is not our place – as the software de-
velopers behind Landlab – to determine which citations best
represent the theory behind an implementation. Instead we
provide two places for a component author to indicate what
they think the minimum required citations are as follows: a
component attribute called Component.cite_as which
lists required citations for a given component and a section
in the component docstring that provides the broader refer-
ence context. These two categories are reflected by the two
citation columns in Tables 3 and 4. Clearly, a component de-
veloper has the authority to decide exactly what to put in
either of these locations.

To aid discoverability of citations, we have created the
Landlab citation registry, a tool that compiles citation-related
metadata for the specific set of Landlab components used
in an application (Listing 1). The citation registry compiles
citation information for all components currently instanti-
ated in a Python session by automatically interrogating their
cite_as properties.

6 Lessons on geoscientific software development

In this section we highlight several lessons about software
development we have learned in the processes of support-
ing and improving Landlab v1.0 to its current v2.0 state and
working with the growing community of users.

We reflect on these lessons because the production of re-
search software is itself research, and there are many aspects
of scientific software which are distinct from other software,
notably that (i) the development lifecycle includes additional
stages because the methods used to implement a piece of
software may not exist at the outset of a project, (ii) re-
quirements evolve because they are part of the research, and
(iii) the state of the scientific field may be complex and evolv-
ing (e.g., Carver et al., 2016).

6.1 Value of testing

The development of docstring and unit tests within Landlab
was motivated by following software development best prac-
tices (e.g., Wilson et al., 2014, 2017). That is, our focus was
on ensuring that the package behaves as described and, where
an analytical solution exists, that Landlab correctly solves it.
While using a testing suite is standard in many software de-
velopment contexts, it is relatively uncommon in scientific
software development (e.g., Prabhu et al., 2011). Tests do not
ensure that elements of the Landlab software represent the
truth or guarantee that a model is appropriate for a specific
application; in other words, Landlab cannot and does not at-
tempt to validate (sensu Schlesinger et al., 1979) the assump-
tions of its components. Instead, the tests verify (Schlesinger
et al., 1979) that the software is behaving as expected and
that numerical methods are solving stated equations reliably.
Through coupled use of an automatic testing suite and con-
tinuous integration we ensure that changes to the code base
do not break existing tests.

The process of developing Landlab, working with its user
community, and revising it to v2.0 illustrated another, ob-
vious in retrospect, benefit of the tests: developing a set of
tests for the package interface and numerical behavior make

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020



392 K. R. Barnhart et al.: Landlab 2.0

it possible to refactor. Without these tests, it would have been
much more difficult to implement beneficial revisions (such
as refactoring the model grid to derive from the graph-based
class).

Writing effective unit tests that ensure Landlab compo-
nents reliably solve their equations under a variety of ini-
tial and boundary conditions is not a trivial task. When a
set of equations that a component solves have an analyti-
cal solution then the numerics of a component can be ver-
ified based on the ability to reproduce such a relationship
(e.g., stream power erosion produces a known slope-area re-
lationship, Willgoose et al., 1991). When such analytical pre-
dictions do not exist—as is often the case—a more detailed
analysis of the equations must be performed in order to create
a full verification test. Even in the absence of such analyti-
cal solutions, however, many existing components have made
headway during development simply by testing for mass bal-
ance and timestep consistency, and the value of such simpli-
fications should not be ignored.

In contrast, it is much easier to design and implement
tests for the Landlab interface (e.g., when an invalid value
is passed to a component, is the correct type of error raised).
In general, designing a thorough set of tests is a learned skill
that requires thinking through many edge cases of model be-
havior.

6.2 Collaborative development of research software
requires many skills

Scientific software development requires distinct skills.
Based on working with community user-developers and on-
boarding new members of the core development team, we
describe the set of skills that are needed to interact with a
project like Landlab as a user-developer. Our intention here is
to document a concrete example so that efforts to create sci-
entific software development curricula can be based on use-
cases. In the case of Landlab, the skills required to contribute
to the project include:

1. Python programming, including functions, classes, and
basic package organization.

2. Fundamental elements of version control using git
(branching, commits).

3. GitHub for collaboration (issues trackers, merging, pull
requests, managing forks, code reviews).

4. Package dependency management (currently imple-
mented with conda environments).

5. Conceptual design and practical implementation of unit
tests.

6. reStructuredText syntax for creating documentation.

In addition, there are a number of skills that not all user-
developers need but are necessary to have within the project

team in order to maintain continuous integration, documenta-
tion, building binaries, and distributing (e.g., sphinx, con-
figuring and debugging continuous integration platforms).

The importance of these skills is highlighted in the context
of technical debt, or the cost of implementing a fast and easy
solution now, as opposed to a better approach that may take
longer. For example, we have found that it is much easier
to create content than to make it accessible (this observation
motivated the restructuring of the documentation described
in Sect. 4.4). It is also easier to write code than to write thor-
ough and effective tests for it, yet omitting tests greatly in-
creases the risk of serious bugs, which can invalidate the re-
search that the software is meant to facilitate.

6.3 Balancing the burden on developers and users

Open-source software (scientific or otherwise) commonly
has many more users than developers or user-developers
(e.g., numpy). Under those circumstances, moderate invest-
ments in developer time are justified to make use faster or
more intuitive for users. However, Landlab is a case with
slightly different dynamics, which are worth reflecting on.
Landlab is an example of a niche scientific software package
with a relatively small development community. Here we re-
flect on some of the development dynamics of this type of
scientific software and the relative burdens for use on devel-
opers and users.

Our goal is to create an extensible software package
that solves a variety of Earth surface dynamics problems
and is accessible to undergraduates and active researchers
and to support community members in contributing to the
code (transitioning from users to user-developers). Effec-
tively serving the community requires a balance between
minimizing technical debt (by enforcing standards within the
code base), while also making development and contribution
accessible to inexperienced but motivated community mem-
bers.

One aspect of our approach, inspired by experience work-
ing with community members, is to be flexible with the
software engineering and interface standards. This includes
relaxing standards when necessary. For example, while a
strict interface standard for components would likely reduce
technical debt, our experience is that such rigidity would
raise a substantial barrier to community contribution. This
means that we need to strike a balance in our design prin-
ciples between standardization and flexibility (e.g., relaxing
the standard for the run_one_step method described in
Sect. 4.2).

Second, we embrace the idea that good is better than not at
all. That is, some tests are better than none, meaningful tests
are better than non-meaningful ones, and bare-bones docu-
mentation is better than none. We find that documentation
improves the most when users try to use it, find that it is in-
sufficient or unclear, and interact with developers through the
online and open GitHub Issues forum. Users and developers

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020



K. R. Barnhart et al.: Landlab 2.0 393

then together revise the text. Because the development team
is small and supported primarily by grants, we rely on users
to indicate where improvements must be made.

7 How do I get started?

We highly encourage all contributions to Landlab. The pack-
age is designed as an extensible piece of community soft-
ware, and we look forward to it growing to meet community
needs. Common ways that an interested individual might get
started include the following: identifying or making improve-
ments to the documentation and example notebooks, finding
and fixing bugs, and describing and creating desired features
– such as new components. For information about how to
get started, including source code and prepackaged binary
installation (via PyPI or conda-forge), visit the website at
https://landlab.readthedocs.io/ (last access: 12 May 2020).

8 Conclusions

Landlab v2.0 provides the community with a robust and ex-
tensible package for modeling Earth surface dynamics. It is
distributed as source code and as prepackaged binaries for
Linux, MacOS, and Windows. An extensive set of unit tests
ensure reliability of the code base. This version provides sub-
stantial improvements over v1.0 including (i) a revised set of
model grid classes, (ii) updates to the component interface,
(iii) 31 new components, (iv) expanded and consolidated
documentation, and (v) a tool for identifying appropriate ci-
tations. The backward-compatibility-breaking changes made
in Landlab v2.0 reflect changes necessary based on use and
development of the package. The modular design of Land-
lab means that developers only need to create the new piece
they need, and researchers can mix and match components to
create a desired model. As a tested, version-controlled, and
documented software package, Landlab reduces barriers to
computational modeling and supports reproducible research.

Code availability. The v2.0 version of the software is provided
as a supplement to this contribution and is archived with Zenodo
(Hutton et al., 2020).

Author contributions. KRB and EWHH led the design and
v2.0 refactoring of the Landlab package with input from all coau-
thors. KRB wrote the original draft of the paper, with input from
all coauthors. All authors edited the paper. KRB, EWHH, GET,
NMG, DEJH, NJL, MM, SSN, and JMA contributed to the Land-
lab code base. All authors designed and taught short courses which
provided usability testing and resulted in critical improvements to
package architecture and documentation. CB expanded accessibil-
ity of Landlab using advanced cyberinfrastructure by leading inte-
gration of Landlab with the HydroShare platform. GET, NMG, EI,
and EWHH conceptualized Landlab and created its prototype. GET,

NMG, EI, and DEJH acquired the core funding to support Landlab,
with additional funding acquired by KRB, CB, and NJL.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. Funding sources for Landlab are acknowl-
edged in the next section. In addition, we recognize support and
guidance from the Community Surface Dynamics Modeling Sys-
tem. We thank Tristan Salles and Wolfgang Schwanghart for
thoughtful reviews, and Simon Mudd for serving as handling ed-
itor. Tony Castronova and the Consortium of Universities for the
Advancement of Hydrologic Science, Inc. support use of Landlab
on the HydroShare Platform (NSF EAR 1338606). Landlab Group
members on HydroShare have freely shared research, data, training,
and teaching resources with Landlab and HydroShare communities.
Landlab relies on free open-source package builds from TravisCI
and Appveyor for our continuous integration. Our documentation is
hosted for free by ReadTheDocs.

Landlab would not exist without decades of open-source soft-
ware development. In this spirit, we thank all community mem-
bers who have asked questions, made issues, commented on doc-
umentation that did not make sense, and contributed code to the
package. Below we list the results of our best efforts to compile all
non-author community contributors to the Landlab package source
code. The are as follows (in alphabetical order): Guiseppe Cip-
polla, Jon Czuba, Vanessa Gabel, Rachel Glade, Jenny Knuth,
Abby Langston, David Litwin, Amanda Manaster, Allison Pfeiffer,
Francis Rengers, Charlie Shobe, and Rhonda Strauch.

Financial support. This research has been supported by the
US National Science Foundation (grant nos. 1147454, 1450409,
1147519, 1450338, 1148305, 1450412, 1246761, 1725774,
1902600, 1226297, and 1831623), the Marie Curie/Sêr Cymru II
Cofund Research Fellowship (grant no. 663830-CU-035), a Soft-
ware Sustainability Institute Fellowship, and a Tulane University
Oliver Fund Scholar Award.

Review statement. This paper was edited by Simon Mudd and
reviewed by Tristan Salles and Wolfgang Schwanghart.

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020

https://landlab.readthedocs.io/


394 K. R. Barnhart et al.: Landlab 2.0

References

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G.
E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu,
E.: The Landlab v1.0 OverlandFlow component: a Python tool
for computing shallow-water flow across watersheds, Geosci.
Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-
1645-2017, 2017.

Adorf, C. S., Ramasubramani, V., Anderson, J. A., and Glotzer,
S. C.: How to Professionally Develop Reusable Scientific Soft-
ware – And When Not To, Comput. Sci. Eng., 21, 66–79,
https://doi.org/10.1109/mcse.2018.2882355, 2019.

Ahnert, F.: Brief description of a comprehensive three-dimensional
process-response model of landform development, Z. Geomor-
phol. Suppl. Band, 25, 29–49, 1976.

Albert, J. S., Schoolmaster Jr., D. R., Tagliacollo, V., and Duke-
Sylvester, S. M.: Barrier Displacement on a Neutral Landscape:
Toward a Theory of Continental Biogeography, System. Biol.,
66, 167–182, https://doi.org/10.1093/sysbio/syw080, 2016.

Armstrong, A. C.: A three dimensional simulation of slope forms,
Z. Geomorphol., 25, 20–28, 1976.

ASCE: The ASCE Standardized Reference Evapotranspiration
Equation, in: Standardization of Reference Evapotranspiration
Task Committee Final Report, edited by: Allen, R. G., Walter,
I. A., Elliot, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E., and
Snyder, R. L., Technical Committee report to the Environmental
and Water Resources Institute of the American Society of Civil
Engineers from the Task Committee on Standardization of Ref-
erence Evapotranspiration, Reston, VA, USA, 2005.

Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R.,
Nudurupati, S., Phuong, J., Adams, J., Gasparini, N., Barn-
hart, K. R., Hutton, E., Hobley, D., Lyons, N. J., Tucker, G.
E., Tarboton, D. G., Idaszak, R., and Wang, S.-W.: Enabling
Collaborative Numerical Modeling in Earth Sciences using
Knowledge Infrastructure, Environ. Model. Softw., 120, 104424,
https://doi.org/10.1016/j.envsoft.2019.03.020, 2019.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An
optimal depression-filling and watershed-labeling algorithm
for digital elevation models, Comput. Geosci., 62, 117–127,
https://doi.org/10.1016/j.cageo.2013.04.024, 2014.

Barnhart, K. R., Hutton, E., Gasparini, N., and Tucker,
G.: Lithology: A Landlab submodule for spatially vari-
able rock properties, J. Open Sour. Softw., 3, 979,
https://doi.org/10.21105/joss.00979, 2018.

Barnhart, K. R., Hutton, E., and Tucker, G.: umami: A Python pack-
age for Earth surface dynamics objective function construction, J.
Open Sour. Softw., 4, 1776, https://doi.org/10.21105/joss.01776,
2019a.

Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.:
Terrainbento 1.0: a Python package for multi-model analysis
in long-term drainage basin evolution, Geosci. Model Dev., 12,
1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R.
C., Rossi, M. W., and Hill, M. C.: Inverting topography for land-
scape evolution model process representation: Part 1. Conceptu-
alization and sensitivity analysis, J. Geophys. Res.-Earth, 125,
e2018JF004961, https://doi.org/10.1029/2018JF004961, 2020a.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R.
C., Rossi, M. W., and Hill, M. C.: Inverting topography for land-

scape evolution model process representation: Part 2. Calibration
and validation, J. Geophys. Res.-Earth, 125, e2018JF004963,
https://doi.org/10.1029/2018JF004963, 2020b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade,
R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for
landscape evolution model process representation: Part 3. De-
termining parameter ranges for select mature geomorphic trans-
port laws and connecting changes in fluvial erodibility to
changes in climate, J. Geophys. Res.-Earth, e2019JF005287,
https://doi.org/10.1029/2019JF005287, 2020c.

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-
dimensional flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.

Bras, R.: Hydrology: An introduction to hydrologic science,
Addison-Wesley, Reading, MA, USA, 1990.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and
parallel method to solve the stream power equation governing
fluvial incision and landscape evolution, Geomorphology, 180-
181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008,
2013.

Carretier, S., Martinod, P., Reich, M., and Godderis, Y.: Modelling
sediment clasts transport during landscape evolution, Earth Surf.
Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016,
2016.

Carver, J. C., Hong, N. P. C., and Thiruvathukal, G. K.: Software en-
gineering for science, CRC Press, Boca Raton, FL, USA, 2016.

Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos, P.,
Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A., Mele,
S., Rodriguez, D. R., Šimko, T., Smith, T., Trisovic, A., Trzcin-
ska, A., Tsanaktsidis, I., Zimmermann, M., Cranmer, K., Hein-
rich, L., Watts, G., Hildreth, M., Iglesias, L. L., Lassila-Perini,
K., and Neubert, S.: Open is not enough, Nat. Phys., 15, 113–
119, https://doi.org/10.1038/s41567-018-0342-2, 2018.

Childs, E. C.: Drainage of Groundwater Resting on
a Sloping Bed, Water Resour. Res., 7, 1256–1263,
https://doi.org/10.1029/wr007i005p01256, 1971.

Culling, W. E. H.: Soil Creep and the Development of Hillside
Slopes, J. Geol., 71, 127–161, https://doi.org/10.1086/626891,
1963.

Dask Development Team: Dask: Library for dynamic task schedul-
ing, available at: https://dask.org (last access: 12 May 2020),
2016.

Davy, P. and Lague, D.: Fluvial erosion/transport equation of land-
scape evolution models revisited, J. Geophys. Res., 114, F03007,
https://doi.org/10.1029/2008jf001146, 2009.

de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.:
Improving the stability of a simple formulation of the shallow
water equations for 2-D flood modeling, Water Resour. Res., 48,
W05528, https://doi.org/10.1029/2011wr011570, 2012.

Eagleson, P. S.: Climate, soil, and vegetation: 2. The dis-
tribution of annual precipitation derived from observed
storm sequences, Water Resour. Res., 14, 713–721,
https://doi.org/10.1029/wr014i005p00713, 1978.

Freeman, T. G.: Calculating catchment area with divergent flow
based on a regular grid, Comput. Geosci., 17, 413–422,
https://doi.org/10.1016/0098-3004(91)90048-i, 1991.

Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A
sub-grid scale closure for nonlinear hillslope sediment

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020

https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.1109/mcse.2018.2882355
https://doi.org/10.1093/sysbio/syw080
https://doi.org/10.1016/j.envsoft.2019.03.020
https://doi.org/10.1016/j.cageo.2013.04.024
https://doi.org/10.21105/joss.00979
https://doi.org/10.21105/joss.01776
https://doi.org/10.5194/gmd-12-1267-2019
https://doi.org/10.1029/2018JF004961
https://doi.org/10.1029/2018JF004963
https://doi.org/10.1029/2019JF005287
https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.1016/j.geomorph.2012.10.008
https://doi.org/10.5194/esurf-4-237-2016
https://doi.org/10.1038/s41567-018-0342-2
https://doi.org/10.1029/wr007i005p01256
https://doi.org/10.1086/626891
https://dask.org
https://doi.org/10.1029/2008jf001146
https://doi.org/10.1029/2011wr011570
https://doi.org/10.1029/wr014i005p00713
https://doi.org/10.1016/0098-3004(91)90048-i


K. R. Barnhart et al.: Landlab 2.0 395

transport models, J. Geophys. Res.-Earth, 117, F02012,
https://doi.org/10.1029/2011jf002181, 2012.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and
Cowie, P. A.: Field calibration of sediment flux de-
pendent river incision, J. Geophys. Res., 116, F04017,
https://doi.org/10.1029/2010jf001935, 2011.

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W.
H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Cre-
ative computing with Landlab: an open-source toolkit for build-
ing, coupling, and exploring two-dimensional numerical mod-
els of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46,
https://doi.org/10.5194/esurf-5-21-2017, 2017.

Howard, A. D.: A detachment-limited model of drainage
basin evolution, Water Resour. Res., 30, 2261–2285,
https://doi.org/10.1029/94wr00757, 1994.

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays
and Datasets in Python, J. Open Res. Softw., 5, 10,
https://doi.org/10.5334/jors.148, 2016.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.
Sci. Eng., 9, 90–95, https://doi.org/10.1109/mcse.2007.55, 2007.

Hutton, E. W. H. and Piper, M.: csdms/bmi-python: v2.0, zenodo,
https://doi.org/10.5281/zenodo.3647556, 2020a.

Hutton, E. W. H. and Piper, M.: csdms/pymt: The Python Mod-
eling Toolkit, zenodo, https://doi.org/10.5281/zenodo.3644240,
2020b.

Hutton, E. W. H. and Syvitski, J. P.: Sedflux 2.0: An ad-
vanced process-response model that generates three-
dimensional stratigraphy, Comput. Geosci., 34, 1319–1337,
https://doi.org/10.1016/j.cageo.2008.02.013, 2008.

Hutton, E. W. H., Barnhart, K. R., Hobley, D. E. J., Tucker, G. E.,
Nudurupati, S. S., Adams, J. M., Gasparini, N. M., Shobe, C.
M., Strauch, R., Knuth, J., Mouchene, M., Lyons, N., Litwin,
D., Glade, R., Cipolla, G., Manaster, A., Langston, A., Thyng,
K., and Rengers, F.: landlab/landlab: Mrs. Weasley, zenodo,
https://doi.org/10.5281/zenodo.3776837, 2020.

Hwang, L., Fish, A., Soito, L., Smith, M., and Kellogg,
L. H.: Software and the scientist: Coding and citation
practices in geodynamics, Earth Space Sci., 4, 670–680,
https://doi.org/10.1002/2016EA000225, 2017.

Johnstone, S. A. and Hilley, G. E.: Lithologic control on
the form of soil-mantled hillslopes, Geology, 43, 83–86,
https://doi.org/10.1130/g36052.1, 2015.

Julien, P. Y., Saghafian, B., and Ogden, F. L.: Raster-based hydro-
logic modeling of spatially-varied surface runoff, J. Am. Wa-
ter Resour. Assoc., 31, 523–536, https://doi.org/10.1111/j.1752-
1688.1995.tb04039.x, 1995.

Kellogg, L. H., Hwang, L. J., Gassmoller, R., Bangerth, W., and
Heister, T.: The Role of Scientific Communities in Creating
Reusable Software: Lessons From Geophysics, Comput. Sci.
Eng., 21, 25–35, https://doi.org/10.1109/mcse.2018.2883326,
2018.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., and Willing, C.: Jupyter Note-
books – a publishing format for reproducible computational
workflows, in: Positioning and Power in Academic Publish-
ing: Players, Agents and Agendas, edited by: Loizides, F. and
Schmidt, B., IOS Press, Amsterdam, the Netherlands, 87–90,
2016.

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F.,
Laugher, B., and Bruhin, F.: pytest 5.3.2, available at: https:
//github.com/pytest-dev/pytest (last access: 12 May 2020), 2004.

Lai, J. and Anders, A. M.: Modeled Postglacial Landscape Evolu-
tion at the Southern Margin of the Laurentide Ice Sheet: Hydro-
logical Connection of Uplands Controls the Pace and Style of
Fluvial Network Expansion, J. Geophys. Res.-Earth, 123, 967–
984, https://doi.org/10.1029/2017JF004509, 2018.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.:
Plants in water-controlled ecosystems: active role in hydro-
logic processes and response to water stress II. Probabilis-
tic soil moisture dynamics, Adv. Water Resour., 24, 707–723,
https://doi.org/10.1016/s0309-1708(01)00005-7, 2001.

Lambeck, K.: Geophysical Geodesy: The Slow Deformations of the
Earth, Clarendon, Oxford, 1988.

Langston, A. L. and Tucker, G. E.: Developing and exploring
a theory for the lateral erosion of bedrock channels for use
in landscape evolution models, Earth Surf. Dynami., 6, 1–27,
https://doi.org/10.5194/esurf-6-1-2018, 2018.

Litwin, D., Tucker, G., Barnhart, K., and Harman, C.:
GroundwaterDupuitPercolator: A Landlab component
for groundwater flow, J. Open Sour. Softw., 5, 1935,
https://doi.org/10.21105/joss.01935, 2020.

Lyons, N. J., Val, P., Albert, J. S., Willenbring, J. K., and Gasparini,
N. M.: Topographic controls on divide migration, stream capture,
and diversification in riverine life, Earth Surf. Dynam. Discuss.,
https://doi.org/10.5194/esurf-2019-55, in review, 2019.

Lyons, N. J., Albert, J. S., and Gasparini, N. M.: SpeciesEvolver:
A Landlab component to evolve life in simulated landscapes, J.
Open Sour. Softw., 5, 2066, https://doi.org/10.21105/joss.02066,
2020.

Mandli, K. T., Ahmadia, A. J., Berger, M., Calhoun, D., George,
D. L., Hadjimichael, Y., Ketcheson, D. I., Lemoine, G. I., and
LeVeque, R. J.: Clawpack: building an open source ecosys-
tem for solving hyperbolic PDEs, PeerJ. Comp. Sci., 2, e68,
https://doi.org/10.7717/peerj-cs.68, 2016.

Marçais, J., Dreuzy, J.-R. D., and Erhel, J.: Dynamic coupling
of subsurface and seepage flows solved within a regular-
ized partition formulation, Adv. Water Resour., 109, 94–105,
https://doi.org/10.1016/j.advwatres.2017.09.008, 2017.

McKinney, W.: Data Structures for Statistical Computing in Python,
edited by: van der Walt, S. and Millman, J., Proceedings of the
9th Python in Science Conference, Austin, TX, USA, 51–56,
2010.

Niemeyer, K. E., Smith, A. M., and Katz, D. S.: The Chal-
lenge and Promise of Software Citation for Credit, Identifi-
cation, Discovery, and Reuse, J. Data Inform. Qual., 7, 5,
https://doi.org/10.1145/2968452, 2016.

O’Callaghan, J. F. and Mark, D. M.: The extraction of
drainage networks from digital elevation data, Computer Vis.
Graph. Image Proc., 28, 323–344, https://doi.org/10.1016/s0734-
189x(84)80011-0, 1984.

Pan, X., Yan, E., Wang, Q., and Hua, W.: Assessing the im-
pact of software on science: A bootstrapped learning of soft-
ware entities in full-text papers, J. Informetr., 9, 860–871,
https://doi.org/10.1016/j.joi.2015.07.012, 2015.

Peckham, S. D., Hutton, E. W. H., and Norris, B.: A
component-based approach to integrated modeling in the geo-

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020

https://doi.org/10.1029/2011jf002181
https://doi.org/10.1029/2010jf001935
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.1029/94wr00757
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.5281/zenodo.3647556
https://doi.org/10.5281/zenodo.3644240
https://doi.org/10.1016/j.cageo.2008.02.013
https://doi.org/10.5281/zenodo.3776837
https://doi.org/10.1002/2016EA000225
https://doi.org/10.1130/g36052.1
https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
https://doi.org/10.1109/mcse.2018.2883326
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.1029/2017JF004509
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.5194/esurf-6-1-2018
https://doi.org/10.21105/joss.01935
https://doi.org/10.5194/esurf-2019-55
https://doi.org/10.21105/joss.02066
https://doi.org/10.7717/peerj-cs.68
https://doi.org/10.1016/j.advwatres.2017.09.008
https://doi.org/10.1145/2968452
https://doi.org/10.1016/s0734-189x(84)80011-0
https://doi.org/10.1016/s0734-189x(84)80011-0
https://doi.org/10.1016/j.joi.2015.07.012


396 K. R. Barnhart et al.: Landlab 2.0

sciences The design of CSDMS, Comput. Geosci., 53, 3–12,
https://doi.org/10.1016/j.cageo.2012.04.002, 2013.

Pérez, F. and Granger, B. E.: IPython: A System for Inter-
active Scientific Computing, Comput. Sci. Eng., 9, 21–29,
https://doi.org/10.1109/mcse.2007.53, 2007.

Perron, J. T.: Numerical methods for nonlinear hills-
lope transport laws, J. Geophys. Res., 116, 23–13,
https://doi.org/10.1029/2010jf001801, 2011.

Perron, J. T. and Royden, L.: An integral approach to bedrock
river profile analysis, Earth Surf. Proc. Land., 38, 570–576,
https://doi.org/10.1002/esp.3302, 2012.

Poisot, T.: Best publishing practices to improve user confi-
dence in scientific software, Idea. Ecol. Evol., 8, 50–54,
https://doi.org/10.4033/iee.2015.8.8.f, 2015.

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T:
stochasticity and censoring in the two-parameter Weibull model,
Ecol. Model., 121, 79–102, https://doi.org/10.1016/s0304-
3800(99)00074-5, 1999.

Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J.,
Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P.,
Zoufaly, M., Raman, A., Liu, F., and Walker, D.: A sur-
vey of the practice of computational science, in: 2011 Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), Seattle, WA, USA, p. 1,
https://doi.org/10.1145/2063348.2063374, 2011.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The pre-
diction of hillslope flow paths for distributed hydrological mod-
elling using digital terrain models, Hydrol. Process., 5, 59–79,
https://doi.org/10.1002/hyp.3360050106, 1991.

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and
Hobley, D. E. J.: Model simulations of flood and debris flow tim-
ing in steep catchments after wildfire, Water Resour. Res., 52,
6041–6061, https://doi.org/10.1002/2015wr018176, 2016.

Rocklin, M.: Dask: Parallel Computation with Blocked algorithms
and Task Scheduling, edited by: Huff, K. and Bergstra, J., in:
Proceedings of the 14th Python in Science Conference, Austin,
TX, USA, 130–136, 2015.

Schlesinger, S., Crosbie, R. E., Gagné, R. E., Innis, G. S., Lalwani,
C. S., Loch, J., Sylvester, R. J., Wright, R. D., Kheir, N., and
Bartos, D.: Terminology for model credibility, Simulation, 32,
103–104, https://doi.org/10.1177/003754977903200304, 1979.

Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-
Espoz, J.-P.: Effect of changing vegetation and precipita-
tion on denudation – Part 2: Predicted landscape response
to transient climate and vegetation cover over millennial
to million-year timescales, Earth Surf. Dynam., 6, 859–881,
https://doi.org/10.5194/esurf-6-859-2018, 2018.

Seabold, S. and Perktold, J.: statsmodels: Econometric and statisti-
cal modeling with python, in: 9th Python in Science Conference,
Austin, TX, USA, 2010.

Sharman, G. R., Sylvester, Z., and Covault, J. A.: Con-
version of tectonic and climatic forcings into records of
sediment supply and provenance, Scient. Rep., 9, 1–7,
https://doi.org/10.1038/s41598-019-39754-6, 2019.

Shelef, E. and Hilley, G. E.: Impact of flow routing on catchment
area calculations, slope estimates, and numerical simulations
of landscape development, J. Geophys. Res.-Earth, 118, 2105–
2123, https://doi.org/10.1002/jgrf.20127, 2013.

Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0
model: a Landlab component for 2-D calculation of sediment
transport, bedrock erosion, and landscape evolution, Geosci.
Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-
4577-2017, 2017.

Singer, M. B., Michaelides, K., and Hobley, D. E. J.: STORM 1.0:
a simple, flexible, and parsimonious stochastic rainfall gen-
erator for simulating climate and climate change, Geosci.
Model Dev., 11, 3713–3726, https://doi.org/10.5194/gmd-11-
3713-2018, 2018.

Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C.,
Gasparini, N. M., and Tucker, G. E.: A hydroclimatological ap-
proach to predicting regional landslide probability using Land-
lab, Earth Surf. Dynam., 6, 49–75, https://doi.org/10.5194/esurf-
6-49-2018, 2018.

Tarboton, D. G.: A new method for the determination of flow direc-
tions and upslope areas in grid digital elevation models, Water
Resour. Res., 33, 309–319, https://doi.org/10.1029/96wr03137,
1997.

Taschuk, M. and Wilson, G.: Ten simple rules for making re-
search software more robust, PLoS Comput. Biol., 13, e1005412,
https://doi.org/10.1371/journal.pcbi.1005412, 2017.

Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L.: Sta-
tistical analysis of drainage density from digital terrain data,
Geomorphology, 36, 187–202, https://doi.org/10.1016/s0169-
555x(00)00056-8, 2001a.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R.
L.: The Channel-Hillslope Integrated Landscape Development
Model (CHILD), in: Landscape Erosion and Evolution Model-
ing, Springer US, Boston, MA, USA, 349–388, 2001b.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R.
L., and Rybarczyk, S. M.: An object-oriented framework for
distributed hydrologic and geomorphic modeling using trian-
gulated irregular networks, Comput. Geosci., 27, 959–973,
https://doi.org/10.1016/s0098-3004(00)00134-5, 2001c.

Tucker, G. E., Hobley, D. E. J., McCoy, S. W., and Stru-
ble, W. T.: Modeling the Shape and Evolution of Normal-
Fault Facets, J. Geophys. Res.-Earth, 125, e2019JF005305,
https://doi.org/10.1029/2019JF005305, 2020.

Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Hert-
erich, P., Higman, R., Krystalli, A., Morley, A., O’Reilly, M., and
Whitaker, K.: The Turing Way: A Handbook for Reproducible
Data Science, zenodo, https://doi.org/10.5281/zenodo.3233986,
2019.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Mill-
man, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W., Van-
der Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,
I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A.
H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0 – Fundamental Algorithms for Scientific Computing
in Python, arXiv e-prints, arXiv:1907.10121, 2019.

Whitaker, J., Khrulev, C., Huard, D., Paulik, C., Hoyer, S., Fil-
ipe, Pastewka, L., Mohr, A., Marquardt, C., Couwenberg, B.,
Taves, M., Whitaker, J., Cuntz, M., Bohnet, M., Brett, M.,
Hetland, R., Korenčiak, M., barronh, Onu, K., Helmus, J. J.,
Hamman, J., Barna, A., fredrik 1, Koziol, B., Kluyver, T.,

Earth Surf. Dynam., 8, 379–397, 2020 https://doi.org/10.5194/esurf-8-379-2020

https://doi.org/10.1016/j.cageo.2012.04.002
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1029/2010jf001801
https://doi.org/10.1002/esp.3302
https://doi.org/10.4033/iee.2015.8.8.f
https://doi.org/10.1016/s0304-3800(99)00074-5
https://doi.org/10.1016/s0304-3800(99)00074-5
https://doi.org/10.1145/2063348.2063374
https://doi.org/10.1002/hyp.3360050106
https://doi.org/10.1002/2015wr018176
https://doi.org/10.1177/003754977903200304
https://doi.org/10.5194/esurf-6-859-2018
https://doi.org/10.1038/s41598-019-39754-6
https://doi.org/10.1002/jgrf.20127
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.5194/gmd-11-3713-2018
https://doi.org/10.5194/gmd-11-3713-2018
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.1029/96wr03137
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1016/s0169-555x(00)00056-8
https://doi.org/10.1016/s0169-555x(00)00056-8
https://doi.org/10.1016/s0098-3004(00)00134-5
https://doi.org/10.1029/2019JF005305
https://doi.org/10.5281/zenodo.3233986


K. R. Barnhart et al.: Landlab 2.0 397

May, R., Smrekar, J., Barker, C., Gohlke, C., and Kinoshita,
B. P.: Unidata/netcdf4-python: Version 1.5.3 release, zenodo,
https://doi.org/10.5281/zenodo.3516272, 2019.

Wickert, A. D.: Open-source modular solutions for flexural
isostasy: gFlex v1.0, Geosci. Model Dev., 9, 997–1017,
https://doi.org/10.5194/gmd-9-997-2016, 2016.

Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I.:
A coupled channel network growth and hillslope evolu-
tion model, 1, Theory, Water Resour. Res., 27, 1671–1684,
https://doi.org/10.1029/91WR00935, 1991.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis,
M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,
Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best
Practices for Scientific Computing, PLoS Biol., 12, e1001745,
https://doi.org/10.1371/journal.pbio.1001745, 2014.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt,
L., and Teal, T. K.: Good enough practices in scien-
tific computing, PLOS Comput. Biol., 13, e1005510,
https://doi.org/10.1371/journal.pcbi.1005510, 2017.

Wobus, C., Whipple, K., Kirby, E., Snyder, N., Johnson, J., Spy-
ropolou, K., Crosby, B., and Sheehan, D.: Tectonics from to-
pography: Procedures, promise, and pitfalls, GSA Special Pa-
pers, Geological Society of America, Boulder, CO, USA, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006.

Zebari, M., Grützner, C., Navabpour, P., and Ustaszewski, K.: Rel-
ative timing of uplift along the Zagros Mountain Front Flexure
(Kurdistan Region of Iraq): Constrained by geomorphic indices
and landscape evolution modeling, Solid Earth, 10, 663–682,
https://doi.org/10.5194/se-10-663-2019, 2019.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohy-
drological role of aspect-controlled radiation on tree-grass-shrub
coexistence in a semiarid climate, Water Resour. Res., 49, 2872–
2895, https://doi.org/10.1002/wrcr.20259, 2013.

https://doi.org/10.5194/esurf-8-379-2020 Earth Surf. Dynam., 8, 379–397, 2020

https://doi.org/10.5281/zenodo.3516272
https://doi.org/10.5194/gmd-9-997-2016
https://doi.org/10.1029/91WR00935
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1130/2006.2398(04)
https://doi.org/10.5194/se-10-663-2019
https://doi.org/10.1002/wrcr.20259

	Abstract
	Introduction
	The three Landlab audiences
	Landlab core concepts
	Changes and new features added since Landlab v1.0
	Improvements to the Landlab model grids
	Grids inherit from graphs
	Improved treatment of diagonals
	Boundary condition flags

	Updates to the component standard interface
	Changes to the component __init__ method
	Changes to the component run method
	New component metadata standard
	Additional component content requirements and recommendations

	Removed or modified components and utilities
	Reorganization of the Landlab documentation
	Packages built to work with Landlab

	Citation of Landlab and parts of Landlab
	Lessons on geoscientific software development
	Value of testing
	Collaborative development of research software requires many skills
	Balancing the burden on developers and users

	How do I get started?
	Conclusions
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

