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Abstract—On large-scale high performance computing (HPC)
systems, applications are provisioned with aggregated resources
to meet their peak demands for brief periods. This results in
resource underutilization because application requirements vary
a lot during execution. This problem is particularly pronounced
for deep learning applications that are running on leadership
HPC systems with a large pool of burst buffers in the form of flash
or non-volatile memory (NVM) devices. In this paper, we examine
the I/0 patterns of deep neural networks and reveal their critical
need of loading many small samples randomly for successful
training. We have designed a specialized Deep Learning File
System (DLFS) that provides a thin set of APIs. Particularly, we
design the metadata management of DLFS through an in-memory
tree-based sample directory and its file services through the
user-level SPDK protocol that can disaggregate the capabilities
of NVM Express (NVMe) devices to parallel training tasks.
Our experimental results show that DLFS can dramatically
improve the throughput of training for deep neural networks
on NVMe over Fabric, compared with the kernel-based Ext4 file
system. Furthermore, DLFS achieves efficient user-level storage
disaggregation with very little CPU utilization.

I. INTRODUCTION

With the popularity of microprocessors and scale-out system
architectures, many large-scale high performance computing
(HPC) systems are built from a collection of compute servers,
with an identical set of resources such as CPU, memory and
storage. For improved performance, applications submitted to
these systems are provisioned to meet their peak demands.
Since the periods of peak demands can be short-lived, this
can result in significant resource underutilization [21] when a
diverse set of applications with varying requirements are run-
ning on a leadership computer system. Similar problems have
been observed in large-scale data centers hosted by HPE [34],
Intel [35], and Facebook [62]. Thus an emerging paradigm
for resource provisioning called resource disaggregation is
quickly gaining popularity. With resource aggregation, the
resources are physcially separated from the compute servers
and accessed remotely, which allows each resource technology
to evolve independently and supports increased configurability
of resources. In the context of HPC, several projects have
provided mechanisms for disaggregating GPU accelerators
[52], [50], [29].

As discussed above, resource provisioning can result in
inefficient resource utilization. This is particularly challenging
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for storage on leaderhip class HPC systems that utilize non-
volatile memory (NVM) devices, because the massive perfor-
mance of NVM devices with respect to low latency and high
bandwidth can be severely underutilized under heavy CPU
and memory workloads [39]. This problem is particularly pro-
nounced for deep learning (DL) applications that are running
on large scale leadership systems with a large pool of burst
buffers in the form of flash or non-volatile memory devices.
In this environment, the flash or NVMe storage devices are
capable of low-latency and high-bandwidth I/O services, but
such capabilities are significantly hampered by the complex
software stack for I/O processing in the kernel [60]. It is
hard to make a one-size-fit-all decision for different resource
demands.

In this paper, we explore the use of NVMe storage disag-
gregation for support of deep neural networks (DNNs), where
we utilize a collection of local and/or remote storage devices
to serve the DNN job for improved performance. Deep neural
networks such as AlexNet have demonstrated capabilities for
image classification, speech recognition and signal processing.
To leverage the computation power of large systems, stochastic
gradient descent (SGD) as a model optimizer usually requires
loading a batch of training samples for every iteration. Such
iterative loading of samples imposes nontrivial I/O pressure
on storage systems [10], [3]. In addition, to avoid overfitting
caused by predefined input patterns, each batch of sample files
must be selected randomly. This presents another challenge to
the conventional I/O services that are highly optimized for
large sequential 1/O.

Many studies have explored storage disaggregation to im-
prove storage resource utilization on large-scale data cen-
ters [41], [58], [43], [51], [49]. Burst buffers with NVM
and SSD devices have become an integral part of HPC
leadership facilities. The NVMe over Fabrics [9] protocol
supports the access of a remote NVMe SSD device, with only
a few microseconds of added latency, blurring the difference
between local and remote devices. However, to the best of
our knowledge, there has been no effort to leverage user-level
disaggregation for efficient I/O in deep learning applications
on large-scale HPC systems.

In view of the performance impedance caused by the kernel-
based file systems such as Ext4 to burst buffers, we have
undertaken an effort to develop a specialized user-level, read-
optimized file system for deep learning applications. Our



solution — Deep Learning File System (DLFS) — is designed as
a thin layer of file I/O services on top of an emerging industrial
standard, NVMe over Fabrics. DLFS provides efficient and
convenient I/O services for deep learning on HPC systems
with storage disaggregation. Our experimental results show
that DLFS can dramatically improve the throughput of training
samples for deep neural networks on NVMe over Fabric,
compared with the kernel-based file systems such as Ext4.

Specifically, we make the following contributions:

o We designed a specialized Deep Learning File System
(DLES) that supports user-level storage disaggregation
and provides a thin set of APIs for deep learning ap-
plications.

o We designed fast metadata management in DLFS through
an in-memory tree-based sample directory and its I/O
services through the SPDK protocol. To the best of
our knowledge, this is the first study on enabling DL
applications through user-level disaggregation of NVMe
devices.

« We introduced opportunistic optimizations that can batch
the movement of data at both the sample level and the
chunk level through cross-layer coordination.

« We conducted an extensive performance evaluation to
validate our design of DLFS. Our results show that DLFS
can achieve efficient user-level storage disaggregation
with very little CPU utilization.

II. BACKGROUND AND MOTIVATION

In this section, we review the background of resource
disaggregation (§II-A), discuss I/O patterns in deep learning
applications (§II-B), and then motivate storage disaggregation
for deep learning (§II-C).

A. Storage Disaggregation

Compute servers with aggregated resources (CPU, Memory
and storage) are the typical building blocks of warehouse-scale
computers (WSC) and HPC centers. Such aggregation can
result in inefficient resource utilization because it is difficult
to determine an exact amount of resources on every server to
meet different applications’ unique behaviors [21]. Many ef-
forts have been carried out recently on resource disaggregation
in both academia [20], [40], [28] and industry [7], [8], [11].
The goal of disaggregation is to decouple different resources
or disaggregate a large amount of a single resource so that fine-
grained allocations can be made to meet the dynamic demands
of applications at run-time.

The provisioning of storage resources can be particularly
hard because the actual demand may be a complex com-
bination of required capacity, throughput in terms of I/O
operations or files per second, bandwidth (bytes per second),
latency, etc. For example, leveraging PCle based flash devices
through a complex kernel-based I/O stack can incur various
software overheads due to memory allocation, data movement,
compression, scheduling, and network transmissions [39].
Such software overheads can saturate CPU cycles before the
PCle bus bandwidth, resulting in underutilization of flash

storage. Baidu reported that their storage system can only
achieve half of the raw device bandwidth [51]. Disaggregating
storage resources can help amortize the total system building
cost and maximize the performance-per-dollar of computing
infrastructure.

Disaggregation via NVMe over Fabrics: Recently, NVMe
SSD devices have been popular targets of storage disaggre-
gation for their powerful bandwidth and throughput capacity.
A number of research studies [42], [22], [69] have worked to
support storage disaggregation for NVMe SSD devices. NVMe
over Fabrics [9] is an emerging industrial standard supporting
disaggregation. It mounts a remote NVMe SSD device locally
and allows NVMe devices to be accessible in a fabric within
10 usec. However, the original NVMe over Fabrics solution
in the Linux kernel 4.8 or higher only supports an end-to-end
connection between two nodes, which limits the data sharing
between multiple nodes. A recent protocol developed by Intel
called SPDK (Storage Performance Development Kit) [71]
provides a user-level solution for NVMe over Fabrics [13],
[14]. We refer to the SPDK-based user-level NVMe over
Fabrics target as NVMe-oF Target. An NVMe-oF Target allows
data on an NVMe SSD device to be directly accessible to all
connected remote clients through remote direct memory access
(RDMA) [48]. Through the use of RDMA in the user-level
SPDK protocol, NVMe-oF clients and targets can perform
zero-copy data transfers in an OS-bypass manner.

B. I/O in Deep Neural Networks

Gradient descent is one of the most popular algorithms
to optimize parameters of the DNNs. Mini-batched gradient
descent, often referred to as SGD [1], is commonly used be-
cause of its fast training speed and low memory requirements.
However, there are a number of challenges for the effective
utilization of storage resources on large-scale HPC systems.
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Fig. 1: Sample size distribution for different dataset.

Increased mini-batch size: The popularity of SGD has led
to many recent optimizations to leverage increasing compute
power. For example, it is important to batch more input
samples, i.e., increasing the mini-batch size, in each training
iteration. Many studies[33], [30], [57], [19], [37], [47], [70]
have reported that they can finish the training of ResNet-
50 [33] with ImageNet [25] at fast speeds. In these studies,
the batch size has increased from 256 [33] to 80K [70] over
the past few years. Compared to the conventional demands on
high bandwidth and low latency, the increased mini-batch size



requires much higher throughput so that more samples can be
trained in each iteration.

Many small random samples: In deep learning training,
a large number of training samples are expected to arrive
in a random order to speed up the convergence speed and
reduce the training biases caused by fixed input sequences.
Many popular datasets contain small samples. As shown in
Fig. 1, the ImageNet dataset consists of many small samples
(every raw image file is an individual sample), about 75% of
samples are less than 147 KB. A similar trend is also shown
in [23]. In the case of the IMDB dataset, 75% of samples are
less than 1.6 KB. Working with these datasets result in many
random reads to the storage system. This is a challenging /O
pattern because it cannot benefit from the traditional storage
systems (e.g., a parallel file system) that are typically designed
for large sequential I/O patterns. Although we can preprocess
small samples into large batched files (e.g., TFRecord format
and CIFAR10 format) to avoid small random I/O, the existing
sample shuffling method cannot support global data shuffling,
and the size of shuffle buffer limits the shuffling result. For
example, when using TFRecord files in TensorFlow, every
TFRecord file is sequentially read in a fixed size shuffle
buffer. However, if the size of the shuffle buffer is not large
enough, the learner only obtains partially shuffled samples,
which reduces the training accuracy.

C. Storage Disaggregation for Deep Learning

In addition to the challenges discussed above, the dy-
namic workload exhibited by deep learning training leads
to underutilization of traditional storage resources on HPC
systems. For instance, (1) there are not enough CPU cycles for
storage processing in computation-intensive DNNSs; (2) due to
accuracy concerns, the storage capacity and the performance of
on-node storage devices on the nodes allocated to the training
job are not sufficient to store an entire dataset and match the
training speed, respectively. To address these challenges, we
developed a user level method to disaggregate storage devices
that matches the needs of training applications.

There have been storage disaggregation solutions to improve
storage resource utilization on large-scale data centers [41],
[58], [43], [51], [49]. These proposed solutions aim to solve
the problem at the system level. To the best of our knowledge,
there has been no effort to leverage user-level disaggregation
for efficient I/O in deep learning applications on large-scale
HPC systems at the user level. The SPDK-based NVMe over
Fabrics protocol can address the need of high throughput
and solve the challenges imposed by many small samples.
Thus we propose to leverage the SPDK protocol for storage
disaggregation of NVMe devices and develop a special user-
level read-optimized file system for deep learning applications.

ITI. DESIGN AND IMPLEMENTATION OF DLFS

Today, large-scale leadership computing facilities are
equipped with a pool of burst buffers composed of SSD
devices. On these systems, DL applications typically load the
training datasets into the burst buffers at the beginning of their

execution from the persistent file system. The overarching goal
of DLFS is to provide a temporary and efficient substrate for
DL applications to buffer and exchange the samples across the
NVMe SSD devices for efficient training.

While using DLFS, a set of NVMe devices is allocated to
DLFS in a job. Our design is flexible such that the allocated
NVMe devices may be local or remote with respect to the
compute nodes in the job. During initialization, DLFS builds
the connection between allocated NVMe devices, uploads the
training dataset from backend persistent file system to the
NVMe devices, and creates the in-memory sample directory
based on the uploaded datasets. When reading samples, DLFS
locates data through the in-memory sample directory and
directly accesses local/remote data via the SPDK protocol
in user-space. To support high throughput and low latency
for data access services, we have designed DLFS with three
layers, as shown in Fig. 2. The first frontend layer provides a
small set of API functions. This layer directly interacts with
DL applications to receive requests for services and deliver
metadata or data as a response. The middle layer hosts an in-
memory sample directory for metadata and a sample cache
for data retrieved from local or remote storage targets. The
backend layer is equipped with a complex set of data structures
created for queuing and scheduling the requests and then
dispatching them to the NVMe devices. This backend layer
leverages the SPDK protocol to access both local or remote
storage targets in an OS-bypass manner.
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Fig. 2: Architecture Comparison between DLFS and Generic
File System

To shed light on the benefits of DLFS, we provide a
comparison with a conventional I/O stack that accesses re-
mote network-attached storage. As shown to the right of
Fig. 2(b), file I/O requests have to travel through the user-
kernel boundary to reach the generic VES layer, the actual file
system layer for indexing and caching, the block layer such as
iSCSI, and the network layer before reaching remote storage
targets. Along this deep kernel-based stack, multiple context
switches and data copies are incurred for the I/O requests. In
contrast, DLFS serves storage resources to many clients in a
disaggregated manner without the involvement of the kernel.

A. DLFS API

To facilitate the integration of disaggregated storage to
various applications, we offer a set of functions for using
DLFS.

dlfs_mount: This API function takes a parameter specifying
the dataset(s) on the HPC parallel file system. Each process
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then loads its portion of the files to its local NVMe device.
This is similar to the convention of creating a file system
before I/0 services. However, in our case, the mount call
is a collective call from all processes in a DL application.
It initializes an in-memory sample directory that tracks the
location of all samples (§III-B). A DLFS instance, particularly
its sample directory, is alive only during the lifetime of an
application.

difs_open, difs_read, dlfs_close: Similar to the POSIX
APIs, we enable these conventional APIs for deep learning.
All open, read, close functions called on the training datasets
are redirected towards its DLFS counterpart. In turn, these
DLEFS functions locate the targeted file through the directory
initialized by dIfs_mount and access the data via the SPDK
protocol (§1II-C).

difs_sequence and dlfs_bread: To cater to the use of
mini-batches in SGD neural networks, we add two APIs,
dlfs_sequence and dlfs_bread, in our DLFS implementation
for efficient loading random samples. The former specifies a
random seed for DLFS to generate a global sample sequence
list, and the latter reads data for a mini-batch. These functions
are supported through our optimizations in §1II-D.

B. In-Memory Tree-Based Sample Directory

In a conventional file system, a file I/O request starts
with a lookup operation to retrieve metadata and validate the
access rights before the actual I/0. Metadata management is
a complex problem for distributed file systems. This is also
true for file systems across distributed burst buffers [56], [65],
[73]. While previous solutions for distributed burst buffers
have been designed for write-intensive I/O patterns such as
checkpoint and restart from scientific applications, DLFS is
designed to read many batches of small samples in gigantic
DL datasets. We will elaborate on the directory organization
and its construction.

1) Organization of a Sample Entry and the Directory Tree:
In mini-batch based DNNs, each batch is formed by random
samples from the training dataset. As mentioned in §II-B,
many random small samples present a challenging I/O pattern
to the burst buffers and parallel file system on HPC systems.
To speed up the lookup time for mini-batch creation, we
create an in-memory tree-based sample directory during the
initialization of DLFS.

As shown in Fig. 3(a), the entire directory is partitioned
into an array of balanced AVL trees, according to the file
name and the number of storage nodes. Each node creates an
AVL tree to hold the sample entries on the node, each with the

actual location of a sample. Allowing the index management
at sample-level helps us imposing full randomization with
opportunistic batching (§III-D) over different dataset formats.
For instance, we are able to have direct access to any samples
in a TFRecord file. Note that there is also an entry taking by
the batched file for file-oriented access.

Fig. 3(b) illustrates the composition of a sample entry. Each
entry is composed of 128 bits, divided into two 64-bit units.
The first unit contains a 16-bit Node ID (NID) and a 48-
bit key. The key is generated by hash value of a file/sample
name and other attributes such as its class. The second unit
contains a 40-bit offset field and a 23-bit length (len) field.
These two tuples together provide the actual location of a
sample on an NVMe device. Furthermore, the second unit
of a sample entry provides a V field of one bit, which is
used to track the presence of a data copy in local sample
cache. This partitioned directory draws its inspirations from
the directory protocols [24], [27] for cache coherence on
distributed memory systems. An important distinction is that
the training files in DL applications are read-only. Thus there
is no need to track any changes made by parallel tasks across
different NVMe devices. Together, this tree-based sample
directory not only maps the input data to their location in
distributed NVMe devices but also tracks the presence of data
in the local sample cache.

2) Construction and Aggregation of Sample Directory:
During the initialization, DLFS is designed to partition and
load the entire training set into distributed burst buffers. All
nodes in a DLFS instance will load their share of files into
the local NVMe device(s) from an HPC persistent file system.
This is realized as part of the functionalities in the dlfs_mount
call (§1II-A). Accordingly, each node creates an entry for each
sample according to the format described above and populates
its AVL tree.

After the construction of their local AVL tree, all nodes then
invoke a collective communication to gather all AVL trees,
forming an identical copy of in-memory sample directory at
every node. This distributed generation of AVL trees speeds
up the creation of the in-memory sample directory. With a
complete directory in memory for all samples in the training
dataset, DLFS prevents any bottleneck on a centralized meta-
data store and avoids cross-node communication for sample
lookup. Furthermore, this in-memory sample directory enables
local metadata retrieval for the NVMe clients and relieves
the NVMe-oF Targets of any metadata pressure from many
parallel training processes on large-scale HPC systems.

Memory Consumption: A legitimate concern is the mem-
ory consumption at each compute node. We provide a quick
calculation to show its negligible impact. For a training dataset
with 50 million samples, since we only need 16 bytes for
every sample entry, the memory consumption is only 0.8 GB
(50 x 16 MB), for the entire sample directory. For contem-
porary HPC systems with more than 100 GB per compute
node such as Sierra [12] (256 GB/node) and Summit [15]
(512 GB/node), this memory consumption is much less than
1% and quite affordable for the overall performance of DL



applications.

C. SPDK-Based User-Level Disaggregation

The SPDK protocol for NVMe over Fabrics offers a user-
level direct I/O technique without going through the kernel.
In addition, it supports disaggregation of storage resources
to both local and remote clients through multiple concurrent
I/0 queue pairs. However, the SPDK protocol does impose a
couple of restrictions because of its limitation on the acces-
sible memory areas, and its queuing and polling semantics.
DLFS must leverage SPDK powerful features and mitigate its
limitations for efficient disaggregation. We first describe our
design of user-level direct I/O and then balanced scheduling
and completion queues in DLFS.

1) DLFS User-Level I/O Operations on SPDK: With the
assistance of RDMA and the SPDK user-space driver, the
SPDK NVMe-oF Target offers the capability of accessing
remote SSD as if it were local. However, an NVMe device has
to be unbound from the kernel before direct memory-mapped
I/O operations are allowed for the current process [14]. In
addition, the SPDK protocol mandates that all /O requests
have their memory allocated on huge pages, which typically
fall outside of the memory area with application data.

We allocate the sample cache on huge pages to store the
data read from local/remote NVMe devices. This allows DLFS
to perform zero-copy data transfer between its sample cache
and the NVMe devices. For flexible management, the cache is
divided into many fixed-size chunks (256 KB by default but
configurable). A read request is associated with one or multiple
chunks. Upon the completion of reads, data are available at
specified chunks in the sample cache. We also create a pool of
copy threads to assist the data copying from the sample cache
to the general application buffers.

As shown in Fig. 4(a), in a DLFS read operation, we have
four stages: prep, post, poll, and copy. As mentioned earlier,
each sample entry tracks the presence of a local copy in the
sample cache. When a difs_read operation is received at the
DLFS, we first check the sample entry and return the data if
the V field is on. If a local copy is not present, we prepare
and schedule this read operation to the targeted NVMe device
in the prep stage. By default, each sample will be converted
into one SPDK request and be allocated with one data chunk
to receive data. A data request larger than a chunk will be
disassembled into multiple requests and allocated with more
chunks. In the post stage, each SPDK request will be posted to
the SPDK I/O queue pair (I/O QPair), which will be delivered
to the correct NVMe-oF target. In the third poll stage, the
completion of a SPDK request will be detected by polling the
completion queue (CQ) associated with the I/O QPair. At the
completion of all outstanding chunks for the current request,
we set the V field in its sample entry to mark the presence of
a local copy. In the final copy stage, we copy the data in the
cache to the destination memory in the application.

2) Balanced Scheduling and Completion Queues: The
SPDK protocol supports lightweight concurrent I/O queue
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Fig. 4: Design of User-Level I/O Disaggregation in DLFS

pairs (QPair) with a predefined queue depth, i.e., the thresh-
old of outstanding SPDK commands per QPair. Each QPair
consists of a submission queue for posting block requests to
the NVMe target and a completion queue for the notification
of request completion. To allow the capabilities of an NVMe
device to be fully disaggregated, we allocate a request posting
queue (RPQ) in DLFS for every NVMe SSD device. Each
RPQ is associated with a submission queue of an I/O QPair
as shown in Fig. 4(b). When a read request is received from a
RPQ, DLFS analyzes and prepares one or more SPDK requests
to the targeted NVMe device accordingly.

In contrast, we allocate a shared completion queue (SCQ)
in DLFS to poll the completion queues of all I/O QPairs.
Since SPDK currently supports only busy polling, an SCQ
helps balance the progress management across all QPairs and
consolidate the amount of computation required.

When a SPDK request is completed, we add it to the SCQ in
DLEFES from SPDK completion queue for moving arrived data
on sample cache to application buffer. To deal with this CPU-
intensive movement, we use the pool of copy threads to pro-
cess all completed requests in the SCQ. The copy threads are
shown in Fig. 4(a). Even though each completed request may
carry a different amount of data, a shared queue helps balance
the workload distribution to all copying threads. Note that,
due to the additional copy step, the current implementation of
data transfers in DLFS is not zero-copy from the NVMe target
to the application. True zero-copy transfers would require the
application buffers to be mapped on the huge pages, which
we plan to investigate in future studies.

D. Opportunistic Batching Optimizations

In the basic design of DLFS I/O flow (§III-C) an application
has to synchronously wait for the completion of its dlfs_read
operation. We have noticed that the basic design cannot fully
exploit the bandwidth and throughput potential of NVMe
devices. Therefore, we introduce a couple of opportunistic op-
timizations that can batch more data transfers together through
the coordination of frontend and backend layers inside DLFS.
Accordingly, two functions, dIfs_sequence and dlfs_bread, are
introduced in the DLFS API to allow a set of samples to be
read together, and mitigate the detrimental performance impact
caused by individual synchronous dlfs_read operations.

1) Frontend Sample-Level Batching: As mentioned
in §II-B, in SGD DNNs, the input data are grouped in
batches and trained in iterations. Each batch is divided among
the training tasks. Since the accuracy of DL applications



A global list of samples for mini-batch 7

L 1
O O I

iSubset i

sample cache

data chunk [ DG, | DG, |
t {

buffer T

read out sample

L L J

¥ 1/0 batch edge sample 1o —]
patter 5 L[5 | onumed sampie
No ; - Ni
; \ [~ e [ - Trg ISSD‘
SSD edge sample

(a) Frontend sample-level batching (b) Backend chunk-level batching

Fig. 5: Design of Opportunistic Batching

is improved with a fully randomized sequence of training
samples, it does not matter how and where the sample
sequence is generated as long as the sequence does not lead
to an accuracy degradation. Thus we grant DLFS the liberty
to determine the sample sequence for each iteration.

In sample-level batching, the frontend layer of DLEFS de-
termines the sample sequences in mini-batches. To ensure
consistency across all training tasks, we use the same seed to
generate a global random sample sequence when the frontend
layer receives a dlfs_sequence call as shown in Fig. 5(a).
This reduces the inter-node overhead for synchronization and
communication for an agreement on the global list. While
accessing samples, every node only reads its assigned portion
on the list for current mini-batch. As also shown in Fig. 5(a),
an individual node, Ny or N;, only reads its own subset of
sample from the global list. With multiple samples batched for
reading, the DLFS frontend can then submit as many requests
as allowed by the queue depth of SPDK I/O QPairs. Such
sample-level batching can maintain a high utilization of the
NVMe devices, thereby avoiding the performance impact of
synchronous dlfs_read operations.

2) Backend Chunk-Level Batching: While sample-level
batching can overlap the transfer of many samples, the pro-
cessing overhead is largely determined by the number of
samples. If the sample size happens to be small, the processing
overhead can dominate over the cost of transferring.

To optimize the performance of small samples, we introduce
backend chunk-level batching by aggregating the small sample
in to a data chunk (DC) as shown in Fig. 5(b). In this opti-
mization, DLFS still determines the sample access sequence.
Different from the sample-level batching, the backend layer
aggregates small samples and accesses them in large chunks.

For chunk-level batching, we divide a dataset into multiple
fixed-size data chunks during DLFS initialization. Every data
chunk contains multiple samples. There are also some samples
crossing the boundary of data chunks. We refer those samples
to as edge samples. For example, Sy in Fig. 5(b) crosses the
boundary between DC; and the chunk before DC;. DLFS also
constructs a data chunk access list and an edge sample access
list to assist the sample lookup and access. The data chunk
access list holds the chunk IDs and the corresponding key of
the first complete sample in the chunks.

Upon a dlIfs_bread call, the backend layer in DLFS fetches
data chunks and edge samples into the sample cache accord-
ing to the two lists. The copy threads then select samples
randomly from the sample cache to application buffer. As
shown in Fig. 5(b), a copy thread randomly picks DC; in

the sample cache and reads the first valid sample inside DC;
to the application buffer. The next valid sample inside DC;
then becomes the candidate for the next selection. Similarly,
reading an edge sample will leave the next edge sample to
be a candidate. DLFS repeats this selection until a sufficient
number of samples have been identified for a dIfs_bread call.
The copy threads at the frontend layer then copy the sample
content to the application buffer.

The key strength of chunk-level batching is to avoid frequent
SPDK read requests for many small samples. Depending on
how many times the chunk size (256 KB by default) is greater
than the average sample size, conceptually it can reduce the
processing overhead by the same amount. While randomness
is important for DL applications, there have been earlier
efforts in adjusting the randomization of input samples for
performance purposes [17], [2], [75]. We also emphasize the
efficacy of randomization in our batching optimizations. We
have evaluated our training accuracy in Section IV-E.

IV. EXPERIMENTAL EVALUATION

As the SPDK library requires root privileges for configura-
tion, all our experiments are conducted on an in-house cluster.
Each node is equipped with 10 dual-socket Intel Xeon(R) CPU
E5-2650 cores and 64 GB memory, and connected through
FDR InfiniBand switch via ConnectX-3 adaptors. We have
one 480 GB Intel Optane NVMe SSD device on one of the
nodes. We compare the performance of DLFS against the Ext4
file system and Octopus [45].

Ext4: Ext4 is a kernel-based local file system. It is com-
monly used over SSDs to store datasets for compute nodes in
parallel training [30], [37]. We use it in both single node and
multi-node tests. In single node tests, we mount Ext4 over
an NVMe SSD device. Due to limited NVMe SSD devices
on our system, we can only run real tests on one SSD device.
For multi-node tests, we leverage RAMdisk to emulate NVMe
SSD devices by adding a delay when accessing the data,
similar to other studies [45], [36], [68].

Octopus: Octopus is an RDMA-enabled distributed persis-
tent memory file system. Although there are a few burst buffer
file systems (§V), to best of our knowledge, they are not
open-sourced or do not support NVMe over Fabrics for data
transfer. Also, due to limited NVMe devices on our system,
Crail[59], a storage middleware for resource disaggregation, is
not able to be directly configured for testing. Since Octopus
has proven its capability over Crail, we use Octopus with
memory emulating backend NVMe devices as a comparison
target. In the emulation, we add a delay when reading data
from remote memory via RDMA, which is similar to the Ext4
test case. In addition, we do not include Octopus in single node
tests since it is designed for distributed systems.

DLFS: We conduct two groups of tests, single-node and
multi-node tests, to evaluate DLFS. The single-node tests are
on the node with an Intel NVMe SSD device. We run multi-
node tests from 2 to 16 nodes through memory-based NVMe-
oF Targets. In memory-based NVMe-oF Targets, we introduce
delays when accessing data to emulate using NVMe devices.



To measure the read performance of Octopus, Ext4, and
DLFS, we use a dummy dataset with random values as
the sample content. As random reads are the most common
data read pattern in deep learning applications, we introduce
our micro-benchmarks for measuring the sample throughput.
When not specified otherwise, the number of batched samples
is 32, and all our results are reported as an average from five
measurements.

A. Performance of Local NVMe Device
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Fig. 6: Random read sample throughput on single node

1) Sample Throughput with Different Sample Sizes: We first
measure the throughput of Ext4 and DLFS for random samples
access on a real NVMe device. Octopus is not included for its
requirement on multiple NVMe devices. In our experiments,
we vary the sample size from 512 B to 1 MB. As shown in
Fig. 6, for Ext4 tests, we denote the baseline case (one thread
on one core) as Ext4-Base and the optimized case (multiple
threads with multiple cores) as Ext4-MC. We also denote the
baseline performance of DLFS as DLFS-Base and the perfor-
mance with batching optimizations as DLFS. For small sample
sizes (i.e., less than 16 KB), Ext4-Base is much lower than
DLFS-Base and DLFS. DLFS-Base outperforms Ext4-base by
at least 1.82x when the sample size is less than or equal to 4
KB. Although Ext4-MC outperforms DLFS-Base, it requires
the use of more threads and more CPU cores. Nonetheless,
its performance is 3.35x lower than DLFS for small sample
sizes. The performance improvement of DLFS comes from our
techniques such as fast metadata management, SPDK-based
direct 1/O, and opportunistic batching optimizations. Unlike
the metadata management scheme in Ext4, our in-memory
sample directory enables efficient metadata management. The
SPDK-based direct I/O bypasses OS kernel and avoids the
associated overhead of context switches and multiple memory
copies. Our cross-layer opportunistic batching overlaps the
transfer of multiple small samples.

When the sample size increases to more than 16 KB, the
performance of Ext4-Base comes close to that of DLFS-Base.
However, the sample throughput of Ext4-Base is still 43.8%
lower than DLFS.

2) CPU Utilization: We also measure the impact of CPU
resources in DLFS and Ext4. We have used a varying number
of cores with one thread per core to read samples. Fig. 7(a)
shows the total bandwidth with different sample sizes and
core counts. DLFS saturates the peak NVMe bandwidth for all
sample sizes with as few as only one core. In contrast, Ext4
needs three or more cores to reach the peak bandwidth. These
results suggest that DL applications can benefit much more
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from DLFS for small samples. In addition, using more 1/O
threads on multiple cores may add to the contention, which
leads to a slight performance drop both in Ext4 and DLFS at
high core counts. Since DLFS requires very little CPU cycles,
contention from more cores can interfere more on the peak
performance of DLFS compared to Ext4.

In light of the reduced requirements from DLFS on CPU
cores, we have also devised a test to measure the poten-
tial overlap of I/O and computation. Note that the current
SPDK protocol mandates the use of busy polling for progress
checking and completion notification of I/O requests. Thus
we measure the amount of CPU computation that can be
added to the polling loop without affecting the performance
of DLFS. We also convert the CPU cycles to time. Several
different sample sizes are used in this test. As shown in
Fig. 7(b), for samples of 128 KB, the performance of DLS
stays unaffected until the added computation time is close
to 2 ms. Since the DLFS I/O thread polls the completion
for a batch of samples, this means that DLFS on SPDK
can overlap the progress of 32 128KB samples with up to 2
ms of concurrent computation. As shown by the performance
curve of 16 KB samples, for smaller samples, the amount of
computation that can be overlapped reduces because of their
fast completion. For very small samples such as 512 B, the
amount of overlapped computation is similar to that of 128 KB
samples, due to the batching optimizations in DLFS for small
samples. The actual I/O requests we issue to the SPDK’s /O
QPair are mostly the chunk size, which is 256 KB by default.
Thus it allows more computation and I/O overlap.

B. Throughput of Networked NVMe Devices

We measure the sample throughput with DLFS, Octopus,
and Ext4. DLFS is designed for loading data to NVMe SSD
based burst buffers on large-scale systems. Ext4 is commonly
used when DL training applications read datasets from local
file systems on top of burst buffers. DLFS and Octopus can
read data from remote NVMe devices, but Ext4 reads data
locally. Due to the performance difference between DLFS-base
and DLFS showed in Fig. 6, we do not include DLFS-base
in the rest of the section. Besides, according to our results
in §IV-A2 and the fact that DL applications are computation-
intensive, we use only a single core for issuing I/O requests
in DLFS and Ext4 in this test and the rest of performance
evaluation.

1) Sample Throughput with Different Sample Sizes: We run
the throughput tests with different sample sizes over 16 nodes,
each with one emulated NVMe SSD device. Fig. 8 shows the
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aggregated throughput for reading random samples. Clearly,
DLFS outperforms Octopus and Ext4 in all cases.

For small samples (< 4KB), the throughput of DLES is
9.72x and 6.05x higher than that of Ext4 and Octopus,
respectively. For samples greater than or equal to 16 KB,
DLFS outperforms Ext4 and Octopus, respectively, by 1.31x
and 1.12x on average. The performance advantages of DLFS
demonstrate that our techniques such as fast metadata man-
agement, user-level direct I/O and opportunistic batching
optimizations are effective. Compared to DLFS, Octopus is
designed as a general file system and leverages RDMA, but it
does not offer any optimizations specialized for random small
samples. Its use of RDMA seems to help reduce the number
of memory copies, thus it outperforms Ext4 for small samples.
But compared to DLFS, Octopus suffers from frequent inter-
node communication for sample lookup. In the case of Ext4, its
kernel implementation causes additional memory copies across
different layers of I/O stack and frequent context switches for
small samples.
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Fig. 9: Aggregated throughput on networked NVMe devices

2) Scalability: We measure the scalability of DLFS across
a varying number of nodes, each with an emulated NVMe
device, and compare its performance to Ext4 and Octopus.
Fig. 9 shows the aggregated sample throughput across 2 to
16 NVMe SSD devices. We use 128 KB and 512 B as the
representative sample sizes.

With very small samples of 512 B, DLFS delivers the best
performance among the three cases as shown in Fig. 9(a). Its
sample throughput is 28.45x higher than that of Ext4 and
104.38 x higher than that of Octopus, on average. In addition,
we can observe a linearly increasing curve for DLFS with an
increasing number of NVMe devices.

Based on the throughput measurement in Fig. 9(b), DLFS
can outperform Ext4 by 65.1% on average while leveraging
the disaggregated throughput from multiple NVMe devices.
The throughput of Octopus is about 1.37x lower than that
of DLFS. This is mostly due to its distributed metadata
management and its lack of specialized optimizations for

random small samples. As shown in Fig.9(a), we also achieve
near-linear scalability for small samples with an increasing
number of NVMe devices.

C. Sample Lookup Time

We further measure the sample lookup time of DLFS
to evaluate the performance of our in-memory tree-based
metadata management.
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We conduct a test to evaluate the performance of metadata
management for 1 million samples on a different number of
nodes. We have chosen 512 B and 128 KB as the representative
sample sizes. For DLFS and Octopus, we measure the sample
lookup time directly due to their user-level implementations.
In the case of Ext4, we measure the file open time as
an equivalent of the lookup time to evaluate its metadata
management. Fig. 10(a) shows the sample lookup time for
the 512 B sample test. Due to its complex inode and block
management, the sample lookup time of Ext4 is higher than
DLFES by two orders of magnitude. Therefore, Octopus has
the longest sample lookup time among three as shown in
Fig. 10(a).

Moreover, only DLFS’s sample lookup time decreases
linearly with the increasing number of nodes, since every
participating node reads fewer amount samples. However, with
an increasing number of nodes, Octopus’ and Ext4’s sample
lookup times do not decrease linearly. As mentioned previ-
ously, Octopus is limited by its cross node communication, and
Ext4 is restricted by its complex inode and block management.
Both of them cannot fully benefit from the parallelism when
having more nodes. We also observe the same trend when
testing with 128 KB samples shown in Fig. 10(b) These
results demonstrate that our in-memory tree-based metadata
management delivers the best sample lookup time. Note that,
based on our measurements, the lookup time for 128-KB
samples in DLFS takes only 1% of the sample reading time.

D. Effectiveness in Utilizing Disaggregated NVMe Devices

We have devised two tests to evaluate the effectiveness of
DLFS in utilizing the storage capabilities from disaggregated
NVMe devices. In the first test, we measure the sample
throughput of DLFS running on one compute node while
accessing storage from an increasing number of disaggregated
NVMe devices. Its performance is shown by the curve DLF'S-
I1C in Fig. 11. In the second test, we measure the sample
throughput from 16 DLFS clients when accessing storage



from disaggregated NVMe devices. This case is similar to the
scalability test shown in Fig. 9(b). In both tests, the sample
size is 128 KB. The performance is shown by the curve DLFS-
16C in Fig. 11. We include it here to analyze the effectiveness
of storage access from many DLES clients to an increasing
number of disaggregated NVMe devices.

For a comparative analysis, we calculate the ideal sample
throughput of an increasing number of NVMe devices with
one or 16 DLFS clients. The results are included in Fig. 11
as two additional curves: NVMe-1C and NVMe-16C. The
throughput of NVMe-1C is calculated as the quotient of the
total NVMe bandwidth from all devices divided by the sample
size, when the number of NVMe devices is < 2. For more
than two NVMe devices, the network bandwidth to the single
client is smaller than the aggregated device bandwidth and
becomes the bottleneck. Thus we use the network bandwidth
to calculate the ideal throughput for more than 2 NVMe
devices. With 16 clients, the network bandwidth is no longer
the bottleneck. So the throughput numbers for NVMe-16C are
directly calculated based on the aggregated bandwidth from
the actual number of NVMe devices.
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Fig. 11: Effective throughput on disaggregated NVMe Devices

As shown in Fig. 11, compared to NVMe, one DLFS client
is very effective to leverage the capabilities of NVMe devices.
Despite the bottleneck imposed by a single client’s network
bandwidth, DLFS achieves 93.4% of the ideal throughput
allowed by a pool of disaggregated NVMe devices. On the
other hand, with 16 DLFS clients, the sample throughput of
DLEFS increases linearly with an increasing number of NVMe
devices. These DLFS clients can achieve up to 88% of the
sample throughput that is theoretically possible from a pool
of disaggregated NVMe devices. Taken together, these results
demonstrate that DLFS clients can leverage storage resources
effectively from a pool of disaggregated NVMe devices.

E. Performance of DLFS for DNNs

To evaluate the performance of DLFS for DNNs, we have
enabled TensorFlow on top of DLFS, Octopus and Ext4
by designing a customized TensorFlow API [16]. A similar
API can also be deployed to other training DNN training
frameworks based on their dataset importing features. In our
test, we then train AlexNet with the ImageNet dataset, and
compare the validation accuracy between fully randomized
sequences and the DLFS determined sequences.

1) Sample Throughput with TensorFlow: Fig. 12 shows
the data importing performance of TensorFlow on top of
Octopus, Ext4, and DLFS across a varying number of compute
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nodes (referred to as Ext4-TF, Octopus-TF, and DLFS-TF).
Similar to the tests in Section IV-B2, we use two representative
sample sizes: 512 B and 128 KB. The performance trend in
Fig. 12 is similar to the trend in Fig. 9. DLFS-TF outper-
forms Octopus-TF and Ext4-TF by 29.93x and 102.07x on
average for 512-B samples as shown in Fig. 12(a). Fig. 12(b)
shows the data importing performance of TensorFlow for 128-
KB samples. DLFS-TF delivers the highest throughput. Its
throughput is 1.25x and 61.4% higher than Octopus-TF and
Ext4-TF, respectively. These performance results demonstrate
the performance strength of DLFS for deep learning workloads
with TensorFlow.

2) Training Accuracy with AlexNet: In our opportunistic
batching optimizations, DLFS is allowed to determine the
sequence of input samples for DL applications. We need to
evaluate how such delegation of randomization may affect the
training accuracy of DL applications. We train AlexNet with
the ImageNet dataset over 100 epochs with different sample
sequence decision mechanisms. In the case of application-
driven full randomization (Full_Rand), we completely shuffle
the sample names in AlexNet and let the AlexNet model
access samples based on the shuffled order. In the case of
DLFS-based randomization (DLFS), we call DLFS_bread and
let DLFS determine the sequence of samples. The accuracy
results from these tests are shown in Fig. 13. Clearly, there
are no observable differences in the training accuracy between
the application-drive randomization and the DLFS-based ran-
domization. These tests demonstrate that, with opportunistic
batching optimizations, DLFS is effective to achieve high-
performance disaggregation without affecting the training ac-
curacy.
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Fig. 13: AlexNet training accuracy with the CIFAR10 dataset.

V. RELATED WORK

Storage disaggregation: Since we focus on disaggregating
SSD (especially NVMe SSD) from computation resources,



we compare DLFS with a few SSD-based storage disag-
gregation studies. Kilmovic et al. [41] discuss a few fine-
grained system tuning methods for improving the remote SSD
access performance via iSCSI and provide insights about how
flash disaggregation leads to resource utilization. Different
from this work, our work focuses on storage disaggregation
at application-level and leverages the emerging NVMe over
Fabrics technique. Guz et al. [31], [32] evaluate the cost of
using different protocols (DAS, NVMe-oF, iSCSI) for access-
ing SSD and the performance of applying these protocols
on disaggregated database. Besides leveraging NVMe over
Fabrics for storage disaggregation, DLFS is designed as a
user-level file system that makes use of disaggregated NVMe
devices on large-scale systems for efficient resource utilization.
Crail [59] also supports resource disaggregation over NVMe
over Fabrics. Contrary to Crail’s centralized metadata man-
agement, DLFS maintains metadata locally which reduces the
potential bottlneck during sample lookup. Also, DLFS offers
specialized sample access pattern which is introduced based
on the features of DL workloads. Methods to share the use
of remote SSD devices have been attempted in ReFlex[42]
and Flexdriver[46]. These methods do integrate NVMe over
Fabrics in their design and are applicable for storage disaggre-
gation. However, their design is at the block level compared
to DLFS’s file level disaggregation. Overall, compared to the
prior studies, our work provides the first user-level file system
that enables storage disaggregation for large-scale DL training.

Burst Buffer File Systems: Burst buffer has shown its
importance by its inclusion on many supercomputers. Many
works have been done on studying the potential benefits of
different burst buffer architectures. DataWarp[4], IME[6] and
aBBa[5] are software packages that only support remote burst
buffers. IBIO[55], Burstmem[67], and [44] are efforts that also
explore different aspects of remote burst buffer support. Also,
many works have been done on node-local burst buffers (e.g.,
BurstFS[66], DataElevator[26], GekkoFS[64], [61]). Different
from all these works that only focus on either remote or
local burst buffer, we propose DLFS as a user-level storage
disaggregation solution which can be applied to both remote
and node-local burst buffers. Also, we leverage the Intel SPDK
library and the emerging technique of NVMe over Fabrics in
our design to explore the full performance of NVMe SSDs
and match the system need of deep learning workloads. In
addition, the optimizations in those works are introduced based
on I/O features of scientific applications, which is different
from the read-only feature in data importing procedures of
deep learning workloads. In the metadata management, we
propose the in-memory sample directory to avoid inter-node
communication. In the data management, we allow direct
data access to remote/local NVMe devices while batching and
relaxing the data access order to accelerate the data importing
speed for deep learning workloads.

1/0 for Deep Learning Applications: Deep learning frame-
works (e.g., TensorFlow [18], Caffe [38], LBANN [63])
contain their own input methods. For example, TensorFlow
introduces Dataset API for importing dataset from different

formats. However, their data reading performance depends on
underlying conventional file systems (e.g., standard POSIX
file system) that are designed for general usage instead of
being optimized for large-scale training. Contrary to the con-
ventional file systems, DLFS considers deep learning’s dataset
importing features and provides a very lightweight metadata
and data stack. Besides improving the sample throughput at
file system level, other efforts have been taken to improve
dataset importing speed. Zhang et al. [72] build a user-level
file system over a native file system on node-local storage
for deep learning with the assistance of MPI send/receive.
Contrasting from their design, DLFS completely bypasses
the OS kernel and works with the emerging NVMe over
Fabrics technique. Zhu et al. [75], [74] proposed DeeplO to
preload data into a fixed-size memory, which does not support
storage disaggregation for remote clients. Its performance is
also limited by the total available memory. DLFS provides
a fast in-memory metadata management scheme and enables
flexible disaggregated storage access across compute nodes.
Pumma et al. [54], [53] study the performance bottleneck when
using Caffe with LMDB on multi-node training. However, the
proposed solution is only applicable when using LMDB with
Caffe. DLFS is designed as a more general data importing file
system and can be incorporated in any training frameworks
for deep learning.

VI. CONCLUSION

In this work, we present the design and implementation
of DLFS, a user-level, read-optimized file system for deep
learning applications which require a large number of small
random reads during training. DLFS is designed on top of
NVMe over Fabrics [9], including a set of techniques to
enable storage disaggregation as efficient and convenient I/O
services. Specifically, we have designed an in-memory tree-
based sample directory for fast metadata management and its
SPDK-based user-level direct I/0, along with opportunistic
batching optimizations. Our performance evaluation demon-
strates that DLFS can achieve efficient user-level storage
disaggregation across a pool of NVMe devices with very little
CPU utilization.
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