
Efficient User-Level Storage Disaggregation for
Deep Learning

Yue Zhu† Weikuan Yu† Bing Jiao† Kathryn Mohror‡ Adam Moody‡ Fahim Chowdhury†

†Florida State University ‡Lawrence Livermore National Laboratory
{yzhu, yuw, jiao, fchowdhu}@cs.fsu.edu {kathryn, moody20}@llnl.gov

Abstract—On large-scale high performance computing (HPC)
systems, applications are provisioned with aggregated resources
to meet their peak demands for brief periods. This results in
resource underutilization because application requirements vary
a lot during execution. This problem is particularly pronounced
for deep learning applications that are running on leadership
HPC systems with a large pool of burst buffers in the form of flash
or non-volatile memory (NVM) devices. In this paper, we examine
the I/O patterns of deep neural networks and reveal their critical
need of loading many small samples randomly for successful
training. We have designed a specialized Deep Learning File
System (DLFS) that provides a thin set of APIs. Particularly, we
design the metadata management of DLFS through an in-memory
tree-based sample directory and its file services through the
user-level SPDK protocol that can disaggregate the capabilities
of NVM Express (NVMe) devices to parallel training tasks.
Our experimental results show that DLFS can dramatically
improve the throughput of training for deep neural networks
on NVMe over Fabric, compared with the kernel-based Ext4 file
system. Furthermore, DLFS achieves efficient user-level storage
disaggregation with very little CPU utilization.

I. INTRODUCTION

With the popularity of microprocessors and scale-out system
architectures, many large-scale high performance computing
(HPC) systems are built from a collection of compute servers,
with an identical set of resources such as CPU, memory and
storage. For improved performance, applications submitted to
these systems are provisioned to meet their peak demands.
Since the periods of peak demands can be short-lived, this
can result in significant resource underutilization [21] when a
diverse set of applications with varying requirements are run-
ning on a leadership computer system. Similar problems have
been observed in large-scale data centers hosted by HPE [34],
Intel [35], and Facebook [62]. Thus an emerging paradigm
for resource provisioning called resource disaggregation is
quickly gaining popularity. With resource aggregation, the
resources are physcially separated from the compute servers
and accessed remotely, which allows each resource technology
to evolve independently and supports increased configurability
of resources. In the context of HPC, several projects have
provided mechanisms for disaggregating GPU accelerators
[52], [50], [29].

As discussed above, resource provisioning can result in
inefficient resource utilization. This is particularly challenging

for storage on leaderhip class HPC systems that utilize non-
volatile memory (NVM) devices, because the massive perfor-
mance of NVM devices with respect to low latency and high
bandwidth can be severely underutilized under heavy CPU
and memory workloads [39]. This problem is particularly pro-
nounced for deep learning (DL) applications that are running
on large scale leadership systems with a large pool of burst
buffers in the form of flash or non-volatile memory devices.
In this environment, the flash or NVMe storage devices are
capable of low-latency and high-bandwidth I/O services, but
such capabilities are significantly hampered by the complex
software stack for I/O processing in the kernel [60]. It is
hard to make a one-size-fit-all decision for different resource
demands.

In this paper, we explore the use of NVMe storage disag-
gregation for support of deep neural networks (DNNs), where
we utilize a collection of local and/or remote storage devices
to serve the DNN job for improved performance. Deep neural
networks such as AlexNet have demonstrated capabilities for
image classification, speech recognition and signal processing.
To leverage the computation power of large systems, stochastic
gradient descent (SGD) as a model optimizer usually requires
loading a batch of training samples for every iteration. Such
iterative loading of samples imposes nontrivial I/O pressure
on storage systems [10], [3]. In addition, to avoid overfitting
caused by predefined input patterns, each batch of sample files
must be selected randomly. This presents another challenge to
the conventional I/O services that are highly optimized for
large sequential I/O.

Many studies have explored storage disaggregation to im-
prove storage resource utilization on large-scale data cen-
ters [41], [58], [43], [51], [49]. Burst buffers with NVM
and SSD devices have become an integral part of HPC
leadership facilities. The NVMe over Fabrics [9] protocol
supports the access of a remote NVMe SSD device, with only
a few microseconds of added latency, blurring the difference
between local and remote devices. However, to the best of
our knowledge, there has been no effort to leverage user-level
disaggregation for efficient I/O in deep learning applications
on large-scale HPC systems.

In view of the performance impedance caused by the kernel-
based file systems such as Ext4 to burst buffers, we have
undertaken an effort to develop a specialized user-level, read-
optimized file system for deep learning applications. Our978-1-7281-4734-5/19/$31.00 c©2019 IEEE

solution – Deep Learning File System (DLFS) – is designed as

a thin layer of file I/O services on top of an emerging industrial

standard, NVMe over Fabrics. DLFS provides efficient and

convenient I/O services for deep learning on HPC systems

with storage disaggregation. Our experimental results show

that DLFS can dramatically improve the throughput of training

samples for deep neural networks on NVMe over Fabric,

compared with the kernel-based file systems such as Ext4.

Specifically, we make the following contributions:

• We designed a specialized Deep Learning File System

(DLFS) that supports user-level storage disaggregation

and provides a thin set of APIs for deep learning ap-

plications.

• We designed fast metadata management in DLFS through

an in-memory tree-based sample directory and its I/O

services through the SPDK protocol. To the best of

our knowledge, this is the first study on enabling DL

applications through user-level disaggregation of NVMe

devices.

• We introduced opportunistic optimizations that can batch

the movement of data at both the sample level and the

chunk level through cross-layer coordination.

• We conducted an extensive performance evaluation to

validate our design of DLFS. Our results show that DLFS

can achieve efficient user-level storage disaggregation

with very little CPU utilization.

II. BACKGROUND AND MOTIVATION

In this section, we review the background of resource

disaggregation (§II-A), discuss I/O patterns in deep learning

applications (§II-B), and then motivate storage disaggregation

for deep learning (§II-C).

A. Storage Disaggregation

Compute servers with aggregated resources (CPU, Memory

and storage) are the typical building blocks of warehouse-scale

computers (WSC) and HPC centers. Such aggregation can

result in inefficient resource utilization because it is difficult

to determine an exact amount of resources on every server to

meet different applications’ unique behaviors [21]. Many ef-

forts have been carried out recently on resource disaggregation
in both academia [20], [40], [28] and industry [7], [8], [11].

The goal of disaggregation is to decouple different resources

or disaggregate a large amount of a single resource so that fine-

grained allocations can be made to meet the dynamic demands

of applications at run-time.

The provisioning of storage resources can be particularly

hard because the actual demand may be a complex com-

bination of required capacity, throughput in terms of I/O

operations or files per second, bandwidth (bytes per second),

latency, etc. For example, leveraging PCIe based flash devices

through a complex kernel-based I/O stack can incur various

software overheads due to memory allocation, data movement,

compression, scheduling, and network transmissions [39].

Such software overheads can saturate CPU cycles before the

PCIe bus bandwidth, resulting in underutilization of flash

storage. Baidu reported that their storage system can only

achieve half of the raw device bandwidth [51]. Disaggregating

storage resources can help amortize the total system building

cost and maximize the performance-per-dollar of computing

infrastructure.

Disaggregation via NVMe over Fabrics: Recently, NVMe

SSD devices have been popular targets of storage disaggre-

gation for their powerful bandwidth and throughput capacity.

A number of research studies [42], [22], [69] have worked to

support storage disaggregation for NVMe SSD devices. NVMe

over Fabrics [9] is an emerging industrial standard supporting

disaggregation. It mounts a remote NVMe SSD device locally

and allows NVMe devices to be accessible in a fabric within

10 μsec. However, the original NVMe over Fabrics solution

in the Linux kernel 4.8 or higher only supports an end-to-end

connection between two nodes, which limits the data sharing

between multiple nodes. A recent protocol developed by Intel

called SPDK (Storage Performance Development Kit) [71]

provides a user-level solution for NVMe over Fabrics [13],

[14]. We refer to the SPDK-based user-level NVMe over

Fabrics target as NVMe-oF Target. An NVMe-oF Target allows

data on an NVMe SSD device to be directly accessible to all

connected remote clients through remote direct memory access

(RDMA) [48]. Through the use of RDMA in the user-level

SPDK protocol, NVMe-oF clients and targets can perform

zero-copy data transfers in an OS-bypass manner.

B. I/O in Deep Neural Networks

Gradient descent is one of the most popular algorithms

to optimize parameters of the DNNs. Mini-batched gradient

descent, often referred to as SGD [1], is commonly used be-

cause of its fast training speed and low memory requirements.

However, there are a number of challenges for the effective

utilization of storage resources on large-scale HPC systems.

(a) ImageNet dataset (b) IMDB movie review dataset

Fig. 1: Sample size distribution for different dataset.

Increased mini-batch size: The popularity of SGD has led

to many recent optimizations to leverage increasing compute

power. For example, it is important to batch more input

samples, i.e., increasing the mini-batch size, in each training

iteration. Many studies[33], [30], [57], [19], [37], [47], [70]

have reported that they can finish the training of ResNet-

50 [33] with ImageNet [25] at fast speeds. In these studies,

the batch size has increased from 256 [33] to 80K [70] over

the past few years. Compared to the conventional demands on

high bandwidth and low latency, the increased mini-batch size

requires much higher throughput so that more samples can be

trained in each iteration.

Many small random samples: In deep learning training,

a large number of training samples are expected to arrive

in a random order to speed up the convergence speed and

reduce the training biases caused by fixed input sequences.

Many popular datasets contain small samples. As shown in

Fig. 1, the ImageNet dataset consists of many small samples

(every raw image file is an individual sample), about 75% of

samples are less than 147 KB. A similar trend is also shown

in [23]. In the case of the IMDB dataset, 75% of samples are

less than 1.6 KB. Working with these datasets result in many

random reads to the storage system. This is a challenging I/O

pattern because it cannot benefit from the traditional storage

systems (e.g., a parallel file system) that are typically designed

for large sequential I/O patterns. Although we can preprocess

small samples into large batched files (e.g., TFRecord format

and CIFAR10 format) to avoid small random I/O, the existing

sample shuffling method cannot support global data shuffling,

and the size of shuffle buffer limits the shuffling result. For

example, when using TFRecord files in TensorFlow, every

TFRecord file is sequentially read in a fixed size shuffle

buffer. However, if the size of the shuffle buffer is not large

enough, the learner only obtains partially shuffled samples,

which reduces the training accuracy.

C. Storage Disaggregation for Deep Learning

In addition to the challenges discussed above, the dy-

namic workload exhibited by deep learning training leads

to underutilization of traditional storage resources on HPC

systems. For instance, (1) there are not enough CPU cycles for

storage processing in computation-intensive DNNs; (2) due to

accuracy concerns, the storage capacity and the performance of

on-node storage devices on the nodes allocated to the training

job are not sufficient to store an entire dataset and match the

training speed, respectively. To address these challenges, we

developed a user level method to disaggregate storage devices

that matches the needs of training applications.

There have been storage disaggregation solutions to improve

storage resource utilization on large-scale data centers [41],

[58], [43], [51], [49]. These proposed solutions aim to solve

the problem at the system level. To the best of our knowledge,

there has been no effort to leverage user-level disaggregation

for efficient I/O in deep learning applications on large-scale

HPC systems at the user level. The SPDK-based NVMe over

Fabrics protocol can address the need of high throughput

and solve the challenges imposed by many small samples.

Thus we propose to leverage the SPDK protocol for storage

disaggregation of NVMe devices and develop a special user-

level read-optimized file system for deep learning applications.

III. DESIGN AND IMPLEMENTATION OF DLFS

Today, large-scale leadership computing facilities are

equipped with a pool of burst buffers composed of SSD

devices. On these systems, DL applications typically load the

training datasets into the burst buffers at the beginning of their

execution from the persistent file system. The overarching goal

of DLFS is to provide a temporary and efficient substrate for

DL applications to buffer and exchange the samples across the

NVMe SSD devices for efficient training.
While using DLFS, a set of NVMe devices is allocated to

DLFS in a job. Our design is flexible such that the allocated

NVMe devices may be local or remote with respect to the

compute nodes in the job. During initialization, DLFS builds

the connection between allocated NVMe devices, uploads the

training dataset from backend persistent file system to the

NVMe devices, and creates the in-memory sample directory

based on the uploaded datasets. When reading samples, DLFS

locates data through the in-memory sample directory and

directly accesses local/remote data via the SPDK protocol

in user-space. To support high throughput and low latency

for data access services, we have designed DLFS with three

layers, as shown in Fig. 2. The first frontend layer provides a

small set of API functions. This layer directly interacts with

DL applications to receive requests for services and deliver

metadata or data as a response. The middle layer hosts an in-

memory sample directory for metadata and a sample cache

for data retrieved from local or remote storage targets. The

backend layer is equipped with a complex set of data structures

created for queuing and scheduling the requests and then

dispatching them to the NVMe devices. This backend layer

leverages the SPDK protocol to access both local or remote

storage targets in an OS-bypass manner.

DLFS API

DL Applications

Sample Directory Sample Cache

Scheduling SPDK I/O

Frontend

Backend

Middle

U
se
r-
L
ev
el

NVMe over Fabrics

(a) DLFS I/O Stack

VFS
File System Layer (EXT4)

Block Layer (iSCSI)
Network Layer

NVMe over Fabrics

K
er
ne
l

DL Applications

(b) Conventional I/O Stack

Fig. 2: Architecture Comparison between DLFS and Generic

File System

To shed light on the benefits of DLFS, we provide a

comparison with a conventional I/O stack that accesses re-

mote network-attached storage. As shown to the right of

Fig. 2(b), file I/O requests have to travel through the user-

kernel boundary to reach the generic VFS layer, the actual file

system layer for indexing and caching, the block layer such as

iSCSI, and the network layer before reaching remote storage

targets. Along this deep kernel-based stack, multiple context

switches and data copies are incurred for the I/O requests. In

contrast, DLFS serves storage resources to many clients in a

disaggregated manner without the involvement of the kernel.

A. DLFS API
To facilitate the integration of disaggregated storage to

various applications, we offer a set of functions for using

DLFS.
dlfs mount: This API function takes a parameter specifying

the dataset(s) on the HPC parallel file system. Each process

N0 N1

(a) Partitioned Directory

NID
48 47 063

key
offset len V

23 1 063 24

{Sample name, Class}
hash

(b) Sample Entry

Fig. 3: Design of In-Memory Sample Directory

then loads its portion of the files to its local NVMe device.

This is similar to the convention of creating a file system

before I/O services. However, in our case, the mount call

is a collective call from all processes in a DL application.

It initializes an in-memory sample directory that tracks the

location of all samples (§III-B). A DLFS instance, particularly

its sample directory, is alive only during the lifetime of an

application.

dlfs open, dlfs read, dlfs close: Similar to the POSIX

APIs, we enable these conventional APIs for deep learning.

All open, read, close functions called on the training datasets

are redirected towards its DLFS counterpart. In turn, these

DLFS functions locate the targeted file through the directory

initialized by dlfs mount and access the data via the SPDK

protocol (§III-C).

dlfs sequence and dlfs bread: To cater to the use of

mini-batches in SGD neural networks, we add two APIs,

dlfs sequence and dlfs bread, in our DLFS implementation

for efficient loading random samples. The former specifies a

random seed for DLFS to generate a global sample sequence

list, and the latter reads data for a mini-batch. These functions

are supported through our optimizations in §III-D.

B. In-Memory Tree-Based Sample Directory

In a conventional file system, a file I/O request starts

with a lookup operation to retrieve metadata and validate the

access rights before the actual I/O. Metadata management is

a complex problem for distributed file systems. This is also

true for file systems across distributed burst buffers [56], [65],

[73]. While previous solutions for distributed burst buffers

have been designed for write-intensive I/O patterns such as

checkpoint and restart from scientific applications, DLFS is

designed to read many batches of small samples in gigantic

DL datasets. We will elaborate on the directory organization

and its construction.

1) Organization of a Sample Entry and the Directory Tree:
In mini-batch based DNNs, each batch is formed by random

samples from the training dataset. As mentioned in §II-B,

many random small samples present a challenging I/O pattern

to the burst buffers and parallel file system on HPC systems.

To speed up the lookup time for mini-batch creation, we

create an in-memory tree-based sample directory during the

initialization of DLFS.

As shown in Fig. 3(a), the entire directory is partitioned

into an array of balanced AVL trees, according to the file

name and the number of storage nodes. Each node creates an

AVL tree to hold the sample entries on the node, each with the

actual location of a sample. Allowing the index management

at sample-level helps us imposing full randomization with

opportunistic batching (§III-D) over different dataset formats.

For instance, we are able to have direct access to any samples

in a TFRecord file. Note that there is also an entry taking by

the batched file for file-oriented access.

Fig. 3(b) illustrates the composition of a sample entry. Each

entry is composed of 128 bits, divided into two 64-bit units.

The first unit contains a 16-bit Node ID (NID) and a 48-

bit key. The key is generated by hash value of a file/sample

name and other attributes such as its class. The second unit

contains a 40-bit offset field and a 23-bit length (len) field.

These two tuples together provide the actual location of a

sample on an NVMe device. Furthermore, the second unit

of a sample entry provides a V field of one bit, which is

used to track the presence of a data copy in local sample

cache. This partitioned directory draws its inspirations from

the directory protocols [24], [27] for cache coherence on

distributed memory systems. An important distinction is that

the training files in DL applications are read-only. Thus there

is no need to track any changes made by parallel tasks across

different NVMe devices. Together, this tree-based sample

directory not only maps the input data to their location in

distributed NVMe devices but also tracks the presence of data

in the local sample cache.

2) Construction and Aggregation of Sample Directory:
During the initialization, DLFS is designed to partition and

load the entire training set into distributed burst buffers. All

nodes in a DLFS instance will load their share of files into

the local NVMe device(s) from an HPC persistent file system.

This is realized as part of the functionalities in the dlfs mount
call (§III-A). Accordingly, each node creates an entry for each

sample according to the format described above and populates

its AVL tree.

After the construction of their local AVL tree, all nodes then

invoke a collective communication to gather all AVL trees,

forming an identical copy of in-memory sample directory at

every node. This distributed generation of AVL trees speeds

up the creation of the in-memory sample directory. With a

complete directory in memory for all samples in the training

dataset, DLFS prevents any bottleneck on a centralized meta-

data store and avoids cross-node communication for sample

lookup. Furthermore, this in-memory sample directory enables

local metadata retrieval for the NVMe clients and relieves

the NVMe-oF Targets of any metadata pressure from many

parallel training processes on large-scale HPC systems.

Memory Consumption: A legitimate concern is the mem-

ory consumption at each compute node. We provide a quick

calculation to show its negligible impact. For a training dataset

with 50 million samples, since we only need 16 bytes for

every sample entry, the memory consumption is only 0.8 GB

(50× 16 MB), for the entire sample directory. For contem-

porary HPC systems with more than 100 GB per compute

node such as Sierra [12] (256 GB/node) and Summit [15]

(512 GB/node), this memory consumption is much less than

1% and quite affordable for the overall performance of DL

applications.

C. SPDK-Based User-Level Disaggregation

The SPDK protocol for NVMe over Fabrics offers a user-

level direct I/O technique without going through the kernel.

In addition, it supports disaggregation of storage resources

to both local and remote clients through multiple concurrent

I/O queue pairs. However, the SPDK protocol does impose a

couple of restrictions because of its limitation on the acces-

sible memory areas, and its queuing and polling semantics.

DLFS must leverage SPDK powerful features and mitigate its

limitations for efficient disaggregation. We first describe our

design of user-level direct I/O and then balanced scheduling

and completion queues in DLFS.

1) DLFS User-Level I/O Operations on SPDK: With the

assistance of RDMA and the SPDK user-space driver, the

SPDK NVMe-oF Target offers the capability of accessing

remote SSD as if it were local. However, an NVMe device has

to be unbound from the kernel before direct memory-mapped

I/O operations are allowed for the current process [14]. In

addition, the SPDK protocol mandates that all I/O requests

have their memory allocated on huge pages, which typically

fall outside of the memory area with application data.

We allocate the sample cache on huge pages to store the

data read from local/remote NVMe devices. This allows DLFS

to perform zero-copy data transfer between its sample cache

and the NVMe devices. For flexible management, the cache is

divided into many fixed-size chunks (256 KB by default but

configurable). A read request is associated with one or multiple

chunks. Upon the completion of reads, data are available at

specified chunks in the sample cache. We also create a pool of

copy threads to assist the data copying from the sample cache

to the general application buffers.

As shown in Fig. 4(a), in a DLFS read operation, we have

four stages: prep, post, poll, and copy. As mentioned earlier,

each sample entry tracks the presence of a local copy in the

sample cache. When a dlfs read operation is received at the

DLFS, we first check the sample entry and return the data if

the V field is on. If a local copy is not present, we prepare

and schedule this read operation to the targeted NVMe device

in the prep stage. By default, each sample will be converted

into one SPDK request and be allocated with one data chunk

to receive data. A data request larger than a chunk will be

disassembled into multiple requests and allocated with more

chunks. In the post stage, each SPDK request will be posted to

the SPDK I/O queue pair (I/O QPair), which will be delivered

to the correct NVMe-oF target. In the third poll stage, the

completion of a SPDK request will be detected by polling the

completion queue (CQ) associated with the I/O QPair. At the

completion of all outstanding chunks for the current request,

we set the V field in its sample entry to mark the presence of

a local copy. In the final copy stage, we copy the data in the

cache to the destination memory in the application.

2) Balanced Scheduling and Completion Queues: The

SPDK protocol supports lightweight concurrent I/O queue

DLFS

NVMe-oF
Target

begin
2-Post

4-Copy

App SPDK

dl
fs

_r
ea

d

end

3-Poll

SPL. Cache

spdk
read

1-Prep

(a) Flow of a DLFS Request (b) Management Queues

Fig. 4: Design of User-Level I/O Disaggregation in DLFS

pairs (QPair) with a predefined queue depth, i.e., the thresh-

old of outstanding SPDK commands per QPair. Each QPair

consists of a submission queue for posting block requests to

the NVMe target and a completion queue for the notification

of request completion. To allow the capabilities of an NVMe

device to be fully disaggregated, we allocate a request posting

queue (RPQ) in DLFS for every NVMe SSD device. Each

RPQ is associated with a submission queue of an I/O QPair

as shown in Fig. 4(b). When a read request is received from a

RPQ, DLFS analyzes and prepares one or more SPDK requests

to the targeted NVMe device accordingly.

In contrast, we allocate a shared completion queue (SCQ)

in DLFS to poll the completion queues of all I/O QPairs.

Since SPDK currently supports only busy polling, an SCQ

helps balance the progress management across all QPairs and

consolidate the amount of computation required.

When a SPDK request is completed, we add it to the SCQ in

DLFS from SPDK completion queue for moving arrived data

on sample cache to application buffer. To deal with this CPU-

intensive movement, we use the pool of copy threads to pro-

cess all completed requests in the SCQ. The copy threads are

shown in Fig. 4(a). Even though each completed request may

carry a different amount of data, a shared queue helps balance

the workload distribution to all copying threads. Note that,

due to the additional copy step, the current implementation of

data transfers in DLFS is not zero-copy from the NVMe target

to the application. True zero-copy transfers would require the

application buffers to be mapped on the huge pages, which

we plan to investigate in future studies.

D. Opportunistic Batching Optimizations

In the basic design of DLFS I/O flow (§III-C) an application

has to synchronously wait for the completion of its dlfs read
operation. We have noticed that the basic design cannot fully

exploit the bandwidth and throughput potential of NVMe

devices. Therefore, we introduce a couple of opportunistic op-

timizations that can batch more data transfers together through

the coordination of frontend and backend layers inside DLFS.

Accordingly, two functions, dlfs sequence and dlfs bread, are

introduced in the DLFS API to allow a set of samples to be

read together, and mitigate the detrimental performance impact

caused by individual synchronous dlfs read operations.

1) Frontend Sample-Level Batching: As mentioned

in §II-B, in SGD DNNs, the input data are grouped in

batches and trained in iterations. Each batch is divided among

the training tasks. Since the accuracy of DL applications

SSD

A global list of samples for mini-batch i

N0
Ni

Subset 0 Subset i

SSD

I/O batch I/O batch

(a) Frontend sample-level batching

sample cache

data chunk
buffer

edge sample
buffer

… SSDDCi … DCj

DCi DCj

Sk Sm

Sk

DCj

consumed sample

read out sample

edge sample

(b) Backend chunk-level batching

Fig. 5: Design of Opportunistic Batching

is improved with a fully randomized sequence of training

samples, it does not matter how and where the sample

sequence is generated as long as the sequence does not lead

to an accuracy degradation. Thus we grant DLFS the liberty

to determine the sample sequence for each iteration.

In sample-level batching, the frontend layer of DLFS de-

termines the sample sequences in mini-batches. To ensure

consistency across all training tasks, we use the same seed to

generate a global random sample sequence when the frontend

layer receives a dlfs sequence call as shown in Fig. 5(a).

This reduces the inter-node overhead for synchronization and

communication for an agreement on the global list. While

accessing samples, every node only reads its assigned portion

on the list for current mini-batch. As also shown in Fig. 5(a),

an individual node, N0 or Ni, only reads its own subset of

sample from the global list. With multiple samples batched for

reading, the DLFS frontend can then submit as many requests

as allowed by the queue depth of SPDK I/O QPairs. Such

sample-level batching can maintain a high utilization of the

NVMe devices, thereby avoiding the performance impact of

synchronous dlfs read operations.

2) Backend Chunk-Level Batching: While sample-level

batching can overlap the transfer of many samples, the pro-

cessing overhead is largely determined by the number of

samples. If the sample size happens to be small, the processing

overhead can dominate over the cost of transferring.

To optimize the performance of small samples, we introduce

backend chunk-level batching by aggregating the small sample

in to a data chunk (DC) as shown in Fig. 5(b). In this opti-

mization, DLFS still determines the sample access sequence.

Different from the sample-level batching, the backend layer

aggregates small samples and accesses them in large chunks.

For chunk-level batching, we divide a dataset into multiple

fixed-size data chunks during DLFS initialization. Every data

chunk contains multiple samples. There are also some samples

crossing the boundary of data chunks. We refer those samples

to as edge samples. For example, Sk in Fig. 5(b) crosses the

boundary between DCi and the chunk before DCi. DLFS also

constructs a data chunk access list and an edge sample access

list to assist the sample lookup and access. The data chunk

access list holds the chunk IDs and the corresponding key of

the first complete sample in the chunks.

Upon a dlfs bread call, the backend layer in DLFS fetches

data chunks and edge samples into the sample cache accord-

ing to the two lists. The copy threads then select samples

randomly from the sample cache to application buffer. As

shown in Fig. 5(b), a copy thread randomly picks DCj in

the sample cache and reads the first valid sample inside DCj
to the application buffer. The next valid sample inside DCj
then becomes the candidate for the next selection. Similarly,

reading an edge sample will leave the next edge sample to

be a candidate. DLFS repeats this selection until a sufficient

number of samples have been identified for a dlfs bread call.

The copy threads at the frontend layer then copy the sample

content to the application buffer.

The key strength of chunk-level batching is to avoid frequent

SPDK read requests for many small samples. Depending on

how many times the chunk size (256 KB by default) is greater

than the average sample size, conceptually it can reduce the

processing overhead by the same amount. While randomness

is important for DL applications, there have been earlier

efforts in adjusting the randomization of input samples for

performance purposes [17], [2], [75]. We also emphasize the

efficacy of randomization in our batching optimizations. We

have evaluated our training accuracy in Section IV-E.

IV. EXPERIMENTAL EVALUATION

As the SPDK library requires root privileges for configura-

tion, all our experiments are conducted on an in-house cluster.

Each node is equipped with 10 dual-socket Intel Xeon(R) CPU

E5-2650 cores and 64 GB memory, and connected through

FDR InfiniBand switch via ConnectX-3 adaptors. We have

one 480 GB Intel Optane NVMe SSD device on one of the

nodes. We compare the performance of DLFS against the Ext4

file system and Octopus [45].

Ext4: Ext4 is a kernel-based local file system. It is com-

monly used over SSDs to store datasets for compute nodes in

parallel training [30], [37]. We use it in both single node and

multi-node tests. In single node tests, we mount Ext4 over

an NVMe SSD device. Due to limited NVMe SSD devices

on our system, we can only run real tests on one SSD device.

For multi-node tests, we leverage RAMdisk to emulate NVMe

SSD devices by adding a delay when accessing the data,

similar to other studies [45], [36], [68].

Octopus: Octopus is an RDMA-enabled distributed persis-

tent memory file system. Although there are a few burst buffer

file systems (§V), to best of our knowledge, they are not

open-sourced or do not support NVMe over Fabrics for data

transfer. Also, due to limited NVMe devices on our system,

Crail[59], a storage middleware for resource disaggregation, is

not able to be directly configured for testing. Since Octopus

has proven its capability over Crail, we use Octopus with

memory emulating backend NVMe devices as a comparison

target. In the emulation, we add a delay when reading data

from remote memory via RDMA, which is similar to the Ext4

test case. In addition, we do not include Octopus in single node

tests since it is designed for distributed systems.

DLFS: We conduct two groups of tests, single-node and

multi-node tests, to evaluate DLFS. The single-node tests are

on the node with an Intel NVMe SSD device. We run multi-

node tests from 2 to 16 nodes through memory-based NVMe-

oF Targets. In memory-based NVMe-oF Targets, we introduce

delays when accessing data to emulate using NVMe devices.

To measure the read performance of Octopus, Ext4, and

DLFS, we use a dummy dataset with random values as

the sample content. As random reads are the most common

data read pattern in deep learning applications, we introduce

our micro-benchmarks for measuring the sample throughput.

When not specified otherwise, the number of batched samples

is 32, and all our results are reported as an average from five

measurements.

A. Performance of Local NVMe Device

1

10

100

1000

10000

0.5 1 2 4 16 64 256 1024T
hr
ou
gh
pu
t(
kS
am
pl
es
/s
)

Sample Size (KB)

Ext4-Base Ext4-MC DLFS-Base DLFS

Fig. 6: Random read sample throughput on single node

1) Sample Throughput with Different Sample Sizes: We first

measure the throughput of Ext4 and DLFS for random samples

access on a real NVMe device. Octopus is not included for its

requirement on multiple NVMe devices. In our experiments,

we vary the sample size from 512 B to 1 MB. As shown in

Fig. 6, for Ext4 tests, we denote the baseline case (one thread

on one core) as Ext4-Base and the optimized case (multiple

threads with multiple cores) as Ext4-MC. We also denote the

baseline performance of DLFS as DLFS-Base and the perfor-

mance with batching optimizations as DLFS. For small sample

sizes (i.e., less than 16 KB), Ext4-Base is much lower than

DLFS-Base and DLFS. DLFS-Base outperforms Ext4-base by

at least 1.82× when the sample size is less than or equal to 4

KB. Although Ext4-MC outperforms DLFS-Base, it requires

the use of more threads and more CPU cores. Nonetheless,

its performance is 3.35× lower than DLFS for small sample

sizes. The performance improvement of DLFS comes from our

techniques such as fast metadata management, SPDK-based

direct I/O, and opportunistic batching optimizations. Unlike

the metadata management scheme in Ext4, our in-memory

sample directory enables efficient metadata management. The

SPDK-based direct I/O bypasses OS kernel and avoids the

associated overhead of context switches and multiple memory

copies. Our cross-layer opportunistic batching overlaps the

transfer of multiple small samples.

When the sample size increases to more than 16 KB, the

performance of Ext4-Base comes close to that of DLFS-Base.

However, the sample throughput of Ext4-Base is still 43.8%

lower than DLFS.
2) CPU Utilization: We also measure the impact of CPU

resources in DLFS and Ext4. We have used a varying number

of cores with one thread per core to read samples. Fig. 7(a)

shows the total bandwidth with different sample sizes and

core counts. DLFS saturates the peak NVMe bandwidth for all

sample sizes with as few as only one core. In contrast, Ext4

needs three or more cores to reach the peak bandwidth. These

results suggest that DL applications can benefit much more

0

0.5

1

1.5

2

2.5

3

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

Core Count

Ext4-512B DLFS-512B Ext4-16KB
DLFS-16KB Ext4-128KB DLFS-128KB

Peak Bandwidth

(a) Core count to saturate SSD band-
width

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

N
or

m
oa

liz
ed

 P
er

fo
rm

an
ce

Added Computation Time (us)

512 B 16 KB 128 KB

(b) CPU intensity

Fig. 7: DLFS CPU Utilization

from DLFS for small samples. In addition, using more I/O

threads on multiple cores may add to the contention, which

leads to a slight performance drop both in Ext4 and DLFS at

high core counts. Since DLFS requires very little CPU cycles,

contention from more cores can interfere more on the peak

performance of DLFS compared to Ext4.

In light of the reduced requirements from DLFS on CPU

cores, we have also devised a test to measure the poten-

tial overlap of I/O and computation. Note that the current

SPDK protocol mandates the use of busy polling for progress

checking and completion notification of I/O requests. Thus

we measure the amount of CPU computation that can be

added to the polling loop without affecting the performance

of DLFS. We also convert the CPU cycles to time. Several

different sample sizes are used in this test. As shown in

Fig. 7(b), for samples of 128 KB, the performance of DLS

stays unaffected until the added computation time is close

to 2 ms. Since the DLFS I/O thread polls the completion

for a batch of samples, this means that DLFS on SPDK

can overlap the progress of 32 128KB samples with up to 2

ms of concurrent computation. As shown by the performance

curve of 16 KB samples, for smaller samples, the amount of

computation that can be overlapped reduces because of their

fast completion. For very small samples such as 512 B, the

amount of overlapped computation is similar to that of 128 KB

samples, due to the batching optimizations in DLFS for small

samples. The actual I/O requests we issue to the SPDK’s I/O

QPair are mostly the chunk size, which is 256 KB by default.

Thus it allows more computation and I/O overlap.

B. Throughput of Networked NVMe Devices

We measure the sample throughput with DLFS, Octopus,

and Ext4. DLFS is designed for loading data to NVMe SSD

based burst buffers on large-scale systems. Ext4 is commonly

used when DL training applications read datasets from local

file systems on top of burst buffers. DLFS and Octopus can

read data from remote NVMe devices, but Ext4 reads data

locally. Due to the performance difference between DLFS-base

and DLFS showed in Fig. 6, we do not include DLFS-base

in the rest of the section. Besides, according to our results

in §IV-A2 and the fact that DL applications are computation-

intensive, we use only a single core for issuing I/O requests

in DLFS and Ext4 in this test and the rest of performance

evaluation.

1) Sample Throughput with Different Sample Sizes: We run

the throughput tests with different sample sizes over 16 nodes,

each with one emulated NVMe SSD device. Fig. 8 shows the

1

10

100

1000

10000

100000

0.5 1 2 4 16 64 256 1024Th
ro
ug
hp
ut
(k
Sa
m
pl
es
/s
)

Sample Size (KB)

Ext4 Octopus DLFS

Fig. 8: Aggregated read throughput over 16 nodes

aggregated throughput for reading random samples. Clearly,

DLFS outperforms Octopus and Ext4 in all cases.

For small samples (≤ 4KB), the throughput of DLFS is

9.72× and 6.05× higher than that of Ext4 and Octopus,

respectively. For samples greater than or equal to 16 KB,

DLFS outperforms Ext4 and Octopus, respectively, by 1.31×
and 1.12× on average. The performance advantages of DLFS

demonstrate that our techniques such as fast metadata man-

agement, user-level direct I/O and opportunistic batching

optimizations are effective. Compared to DLFS, Octopus is

designed as a general file system and leverages RDMA, but it

does not offer any optimizations specialized for random small

samples. Its use of RDMA seems to help reduce the number

of memory copies, thus it outperforms Ext4 for small samples.

But compared to DLFS, Octopus suffers from frequent inter-

node communication for sample lookup. In the case of Ext4, its

kernel implementation causes additional memory copies across

different layers of I/O stack and frequent context switches for

small samples.

1

10

100

1000

10000

100000

2 4 8 12 16

T
hr
ou
gh
pu
t(
kS
am
pl
es
/s
)

Node Count

Octopus Ext4 DLFS

(a) Sample Size = 512 Byte

0

50

100

150

200

250

300

350

2 4 8 12 16

T
hr

ou
gh

pu
t (

kS
am

pl
es

/s
)

Node Count

Octopus Ext4 DLFS

(b) Sample Size = 128 KB

Fig. 9: Aggregated throughput on networked NVMe devices

2) Scalability: We measure the scalability of DLFS across

a varying number of nodes, each with an emulated NVMe

device, and compare its performance to Ext4 and Octopus.

Fig. 9 shows the aggregated sample throughput across 2 to

16 NVMe SSD devices. We use 128 KB and 512 B as the

representative sample sizes.

With very small samples of 512 B, DLFS delivers the best

performance among the three cases as shown in Fig. 9(a). Its

sample throughput is 28.45× higher than that of Ext4 and

104.38× higher than that of Octopus, on average. In addition,

we can observe a linearly increasing curve for DLFS with an

increasing number of NVMe devices.

Based on the throughput measurement in Fig. 9(b), DLFS

can outperform Ext4 by 65.1% on average while leveraging

the disaggregated throughput from multiple NVMe devices.

The throughput of Octopus is about 1.37× lower than that

of DLFS. This is mostly due to its distributed metadata

management and its lack of specialized optimizations for

random small samples. As shown in Fig.9(a), we also achieve

near-linear scalability for small samples with an increasing

number of NVMe devices.

C. Sample Lookup Time

We further measure the sample lookup time of DLFS

to evaluate the performance of our in-memory tree-based

metadata management.

0.01

0.1

1

10

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

2 4 8 12 16

T
im

e
(s

)

Node Count

(a) Sample Size = 512 B

0.01

0.1

1

10

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

O
ct

op
us

E
xt

4
D

L
FS

2 4 8 12 16

T
im

e
(s

)

Node Count

(b) Sample Size = 128 KB

Fig. 10: Sample lookup time of DLFS on NVMe devices.

We conduct a test to evaluate the performance of metadata

management for 1 million samples on a different number of

nodes. We have chosen 512 B and 128 KB as the representative

sample sizes. For DLFS and Octopus, we measure the sample

lookup time directly due to their user-level implementations.

In the case of Ext4, we measure the file open time as

an equivalent of the lookup time to evaluate its metadata

management. Fig. 10(a) shows the sample lookup time for

the 512 B sample test. Due to its complex inode and block

management, the sample lookup time of Ext4 is higher than

DLFS by two orders of magnitude. Therefore, Octopus has

the longest sample lookup time among three as shown in

Fig. 10(a).

Moreover, only DLFS’s sample lookup time decreases

linearly with the increasing number of nodes, since every

participating node reads fewer amount samples. However, with

an increasing number of nodes, Octopus’ and Ext4’s sample

lookup times do not decrease linearly. As mentioned previ-

ously, Octopus is limited by its cross node communication, and

Ext4 is restricted by its complex inode and block management.

Both of them cannot fully benefit from the parallelism when

having more nodes. We also observe the same trend when

testing with 128 KB samples shown in Fig. 10(b) These

results demonstrate that our in-memory tree-based metadata

management delivers the best sample lookup time. Note that,

based on our measurements, the lookup time for 128-KB

samples in DLFS takes only 1% of the sample reading time.

D. Effectiveness in Utilizing Disaggregated NVMe Devices

We have devised two tests to evaluate the effectiveness of

DLFS in utilizing the storage capabilities from disaggregated

NVMe devices. In the first test, we measure the sample

throughput of DLFS running on one compute node while

accessing storage from an increasing number of disaggregated

NVMe devices. Its performance is shown by the curve DLFS-
1C in Fig. 11. In the second test, we measure the sample

throughput from 16 DLFS clients when accessing storage

from disaggregated NVMe devices. This case is similar to the

scalability test shown in Fig. 9(b). In both tests, the sample

size is 128 KB. The performance is shown by the curve DLFS-
16C in Fig. 11. We include it here to analyze the effectiveness

of storage access from many DLFS clients to an increasing

number of disaggregated NVMe devices.

For a comparative analysis, we calculate the ideal sample

throughput of an increasing number of NVMe devices with

one or 16 DLFS clients. The results are included in Fig. 11

as two additional curves: NVMe-1C and NVMe-16C. The

throughput of NVMe-1C is calculated as the quotient of the

total NVMe bandwidth from all devices divided by the sample

size, when the number of NVMe devices is ≤ 2. For more

than two NVMe devices, the network bandwidth to the single

client is smaller than the aggregated device bandwidth and

becomes the bottleneck. Thus we use the network bandwidth

to calculate the ideal throughput for more than 2 NVMe

devices. With 16 clients, the network bandwidth is no longer

the bottleneck. So the throughput numbers for NVMe-16C are

directly calculated based on the aggregated bandwidth from

the actual number of NVMe devices.

22

26

0

40

80

120

160

200

1 2 4 8 12 16

T
hr

ou
gh

pu
t (

kS
am

pl
es

/s
)

No. of NVMe Devices

DLFS-1C NVMe-1C
DLFS-16C NVMe-16C

Fig. 11: Effective throughput on disaggregated NVMe Devices

As shown in Fig. 11, compared to NVMe, one DLFS client

is very effective to leverage the capabilities of NVMe devices.

Despite the bottleneck imposed by a single client’s network

bandwidth, DLFS achieves 93.4% of the ideal throughput

allowed by a pool of disaggregated NVMe devices. On the

other hand, with 16 DLFS clients, the sample throughput of

DLFS increases linearly with an increasing number of NVMe

devices. These DLFS clients can achieve up to 88% of the

sample throughput that is theoretically possible from a pool

of disaggregated NVMe devices. Taken together, these results

demonstrate that DLFS clients can leverage storage resources

effectively from a pool of disaggregated NVMe devices.

E. Performance of DLFS for DNNs

To evaluate the performance of DLFS for DNNs, we have

enabled TensorFlow on top of DLFS, Octopus and Ext4

by designing a customized TensorFlow API [16]. A similar

API can also be deployed to other training DNN training

frameworks based on their dataset importing features. In our

test, we then train AlexNet with the ImageNet dataset, and

compare the validation accuracy between fully randomized

sequences and the DLFS determined sequences.

1) Sample Throughput with TensorFlow: Fig. 12 shows

the data importing performance of TensorFlow on top of

Octopus, Ext4, and DLFS across a varying number of compute

1

10

100

1000

10000

100000

2 4 8 12 16

T
hr
ou
gh
pu
t(
kS
am
pl
es
/s
)

Node Count

Octopus-TF Ext4-TF DLFS-TF

(a) Sample Size = 512 B

0

50

100

150

200

250

300

350

2 4 8 12 16

T
hr
ou
gh
pu
t(
kS
am
pl
es
/s
)

Node Count

Octopus-TF Ext4-TF DLFS-TF

(b) Sample Size = 128 KB

Fig. 12: Aggregated throughput for TensorFlow on top of

DLFS

nodes (referred to as Ext4-TF, Octopus-TF, and DLFS-TF).

Similar to the tests in Section IV-B2, we use two representative

sample sizes: 512 B and 128 KB. The performance trend in

Fig. 12 is similar to the trend in Fig. 9. DLFS-TF outper-

forms Octopus-TF and Ext4-TF by 29.93× and 102.07× on

average for 512-B samples as shown in Fig. 12(a). Fig. 12(b)

shows the data importing performance of TensorFlow for 128-

KB samples. DLFS-TF delivers the highest throughput. Its

throughput is 1.25× and 61.4% higher than Octopus-TF and

Ext4-TF, respectively. These performance results demonstrate

the performance strength of DLFS for deep learning workloads

with TensorFlow.

2) Training Accuracy with AlexNet: In our opportunistic

batching optimizations, DLFS is allowed to determine the

sequence of input samples for DL applications. We need to

evaluate how such delegation of randomization may affect the

training accuracy of DL applications. We train AlexNet with

the ImageNet dataset over 100 epochs with different sample

sequence decision mechanisms. In the case of application-

driven full randomization (Full Rand), we completely shuffle

the sample names in AlexNet and let the AlexNet model

access samples based on the shuffled order. In the case of

DLFS-based randomization (DLFS), we call DLFS bread and

let DLFS determine the sequence of samples. The accuracy

results from these tests are shown in Fig. 13. Clearly, there

are no observable differences in the training accuracy between

the application-drive randomization and the DLFS-based ran-

domization. These tests demonstrate that, with opportunistic

batching optimizations, DLFS is effective to achieve high-

performance disaggregation without affecting the training ac-

curacy.

0

20

40

60

80

100

0 20 40 60 80 100

A
cc

ur
ac

y
(%

)

Epoch

Full_Rand DLFS

Fig. 13: AlexNet training accuracy with the CIFAR10 dataset.

V. RELATED WORK

Storage disaggregation: Since we focus on disaggregating

SSD (especially NVMe SSD) from computation resources,

we compare DLFS with a few SSD-based storage disag-
gregation studies. Kilmovic et al. [41] discuss a few fine-
grained system tuning methods for improving the remote SSD
access performance via iSCSI and provide insights about how
flash disaggregation leads to resource utilization. Different
from this work, our work focuses on storage disaggregation
at application-level and leverages the emerging NVMe over
Fabrics technique. Guz et al. [31], [32] evaluate the cost of
using different protocols (DAS, NVMe-oF, iSCSI) for access-
ing SSD and the performance of applying these protocols
on disaggregated database. Besides leveraging NVMe over
Fabrics for storage disaggregation, DLFS is designed as a
user-level file system that makes use of disaggregated NVMe
devices on large-scale systems for efficient resource utilization.
Crail [59] also supports resource disaggregation over NVMe
over Fabrics. Contrary to Crail’s centralized metadata man-
agement, DLFS maintains metadata locally which reduces the
potential bottlneck during sample lookup. Also, DLFS offers
specialized sample access pattern which is introduced based
on the features of DL workloads. Methods to share the use
of remote SSD devices have been attempted in ReFlex[42]
and Flexdriver[46]. These methods do integrate NVMe over
Fabrics in their design and are applicable for storage disaggre-
gation. However, their design is at the block level compared
to DLFS’s file level disaggregation. Overall, compared to the
prior studies, our work provides the first user-level file system
that enables storage disaggregation for large-scale DL training.

Burst Buffer File Systems: Burst buffer has shown its
importance by its inclusion on many supercomputers. Many
works have been done on studying the potential benefits of
different burst buffer architectures. DataWarp[4], IME[6] and
aBBa[5] are software packages that only support remote burst
buffers. IBIO[55], Burstmem[67], and [44] are efforts that also
explore different aspects of remote burst buffer support. Also,
many works have been done on node-local burst buffers (e.g.,
BurstFS[66], DataElevator[26], GekkoFS[64], [61]). Different
from all these works that only focus on either remote or
local burst buffer, we propose DLFS as a user-level storage
disaggregation solution which can be applied to both remote
and node-local burst buffers. Also, we leverage the Intel SPDK
library and the emerging technique of NVMe over Fabrics in
our design to explore the full performance of NVMe SSDs
and match the system need of deep learning workloads. In
addition, the optimizations in those works are introduced based
on I/O features of scientific applications, which is different
from the read-only feature in data importing procedures of
deep learning workloads. In the metadata management, we
propose the in-memory sample directory to avoid inter-node
communication. In the data management, we allow direct
data access to remote/local NVMe devices while batching and
relaxing the data access order to accelerate the data importing
speed for deep learning workloads.

I/O for Deep Learning Applications: Deep learning frame-
works (e.g., TensorFlow [18], Caffe [38], LBANN [63])
contain their own input methods. For example, TensorFlow
introduces Dataset API for importing dataset from different

formats. However, their data reading performance depends on
underlying conventional file systems (e.g., standard POSIX
file system) that are designed for general usage instead of
being optimized for large-scale training. Contrary to the con-
ventional file systems, DLFS considers deep learning’s dataset
importing features and provides a very lightweight metadata
and data stack. Besides improving the sample throughput at
file system level, other efforts have been taken to improve
dataset importing speed. Zhang et al. [72] build a user-level
file system over a native file system on node-local storage
for deep learning with the assistance of MPI send/receive.
Contrasting from their design, DLFS completely bypasses
the OS kernel and works with the emerging NVMe over
Fabrics technique. Zhu et al. [75], [74] proposed DeepIO to
preload data into a fixed-size memory, which does not support
storage disaggregation for remote clients. Its performance is
also limited by the total available memory. DLFS provides
a fast in-memory metadata management scheme and enables
flexible disaggregated storage access across compute nodes.
Pumma et al. [54], [53] study the performance bottleneck when
using Caffe with LMDB on multi-node training. However, the
proposed solution is only applicable when using LMDB with
Caffe. DLFS is designed as a more general data importing file
system and can be incorporated in any training frameworks
for deep learning.

VI. CONCLUSION

In this work, we present the design and implementation
of DLFS, a user-level, read-optimized file system for deep
learning applications which require a large number of small
random reads during training. DLFS is designed on top of
NVMe over Fabrics [9], including a set of techniques to
enable storage disaggregation as efficient and convenient I/O
services. Specifically, we have designed an in-memory tree-
based sample directory for fast metadata management and its
SPDK-based user-level direct I/O, along with opportunistic
batching optimizations. Our performance evaluation demon-
strates that DLFS can achieve efficient user-level storage
disaggregation across a pool of NVMe devices with very little
CPU utilization.

Acknowledgment

This work is performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-CONF-
771643. This work is also supported in part by the National
Science Foundation awards 1561041, 1564647, 1744336,
1763547, and 1822737. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation. 1.

1This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall
not be used for advertising or product endorsement purposes.

REFERENCES

[1] An Overview of Gradient Descent Optimization Al-
gorithms. http://ruder.io/optimizing-gradient-descent/
index.html#minibatchgradientdescent.

[2] Caffe Database Layer. http://caffe.berkeleyvision.org/tutorial/layers/
data.html.

[3] Data Storage Keeping Pace for AI and Deep Learning.
https://medium.com/predict/data-storage-keeping-pace-for-ai-and-
deep-learning-ad3e75e1c67a.

[4] Datawarp. https://www.cray.com/products/storage/datawarp.
[5] EMC: ABBA. https://www.theregister.co.uk/2012/09/21/emc abba/.
[6] Infinite Memory Engine (IME). https://www.ddn.com/products/.
[7] Intel Rack Scale Design. https://www.intel.com/content/www/us/en/

architecture-and-technology/rack-scale-design-overview.html.
[8] Introducing Data Center Fabric, The Next-Generation Facebook

Data Center Network. https://code.fb.com/production-engineering/
introducing-data-center-fabric-the-next-generation-facebook-data-
center-network/.

[9] NVMe over Fabrics. https://nvmexpress.org/wp-content/uploads/
NVMe Over Fabrics.pdf.

[10] Removing The Storage Bottleneck for AI. https:
//www.nextplatform.com/2018/03/29/removing-the-storage-bottleneck-
for-ai/.

[11] SeaMicro SM10000 System Overview. https://www.tiger-optics.ru/
download/seamicro/SM TO02 v1.4.pdf.

[12] Sierra. https://computation.llnl.gov/computers/sierra.
[13] SPDK: NVMe over Fabrics Target. https://spdk.io/doc/nvmf.html.
[14] SPDK: User Space Drivers. https://spdk.io/doc/userspace.html.
[15] Summit. https://www.olcf.ornl.gov/summit/.
[16] TensorFlow: Adding a New Op. https://www.tensorflow.org/versions/

master/extend/adding an op.
[17] TensorFlow Dataset API: tf.data.FixedLengthRecordDataset.shuffle().

https://www.tensorflow.org/api docs/python/tf/data/
FixedLengthRecordDataset#shuffle.

[18] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

[19] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely Large
Minibatch SGD: Training Resnet-50 on Imagenet in 15 Minutes. arXiv
preprint arXiv:1711.04325, 2017.

[20] Krste Asanovic and David Patterson. Firebox: A Hardware Building
Block for 2020 Warehouse-Scale Computers. In USENIX FAST, vol-
ume 13, 2014.

[21] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The atacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines.
Synthesis lectures on computer architecture, 8(3):1–154, 2013.

[22] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song
Zheng, Yuhui Wang, and Guoqing Ma. PolarFS: an Ultra-Low Latency
and Failure Resilient Distributed File System for Shared Storage Cloud
Database. Proceedings of the VLDB Endowment, 11(12):1849–1862,
2018.

[23] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody,
Robin Goldstone, Kathryn Mohror, and Weikuan Yu. I/O Characteri-
zation and Performance Evaluation of BeeGFS for Deep Learning. In
Proceedings of the 48th International Conference on Parallel Process-
ing, page 80. ACM, 2019.

[24] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann, 1st edition,
1998. The Morgan Kaufmann Series in Computer Architecture and
Design.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A Large-scale Hierarchical Image Database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. IEEE, 2009.

[26] Bin Dong, Suren Byna, Kesheng Wu, Hans Johansen, Jeffrey N Johnson,
Noel Keen, et al. Data Elevator: Low-Contention Data Movement
in Hierarchical Storage System. In 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC), pages 152–161.
IEEE, 2016.

[27] Huansong Fu, Manjunath Gorentla Venkata, Ahana Roy Choudhury,
Neena Imam, and Weikuan Yu. High-performance key-value store
on openshmem. In Proceedings of the 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 559–568.
IEEE Press, 2017.

[28] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network Requirements for Resource Disaggregation. In OSDI, vol-
ume 16, pages 249–264, 2016.

[29] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe
Coviello. A GPGPU Transparent Virtualization Component for High
Performance Computing Clouds. In European Conference on Parallel
Processing, pages 379–391. Springer, 2010.

[30] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, Large Minibatch SGD: Training Imagenet in 1 Hour.
arXiv preprint arXiv:1706.02677, 2017.

[31] Zvika Guz, Harry Huan Li, Anahita Shayesteh, and Vijay Balakrishnan.
NVMe-Over-Fabrics Performance Characterization and the Path to Low-
Overhead Flash Disaggregation. In Proceedings of the 10th ACM
International Systems and Storage Conference, page 16. ACM, 2017.

[32] Zvika Guz, Harry Huan Li, Anahita Shayesteh, and Vijay Balakrishnan.
Performance Characterization of NVMe-over-Fabrics Storage Disaggre-
gation. ACM Transactions on Storage (TOS), 14(4):31, 2018.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[34] HP. Moonshot System: The Worlds First Software-Defined Servers.
http://h10032.www1.hp.com/ctg/Manual/c03728406.pdf.

[35] Intel. Intel RSA. https://www.intel.com/content/www/us/en/architecture-
and-technology/rack-scale-design-overview.html.

[36] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. High Performance Design for HDFS with Byte-
Addressability of NVM and RDMA. In Proceedings of the 2016
International Conference on Supercomputing, page 8. ACM, 2016.

[37] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,
Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al.
Highly Scalable Deep Learning Training System with Mixed-Precision:
Training Imagenet in Four Minutes. arXiv preprint arXiv:1807.11205,
2018.

[38] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding. In Proceedings
of the 22nd ACM International Conference on Multimedia, pages 675–
678. ACM, 2014.

[39] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
Warehouse-Scale Computer. In ACM SIGARCH Computer Architecture
News, volume 43, pages 158–169. ACM, 2015.

[40] Kostas Katrinis, Dimitris Syrivelis, D Pnevmatikatos, Georgios Zervas,
Dimitris Theodoropoulos, Iordanis Koutsopoulos, K Hasharoni, Daniel
Raho, Christian Pinto, F Espina, et al. Rack-Scale Disaggregated Cloud
Data Centers: The dReDBox Project Vision. In Proceedings of the 2016
Conference on Design, Automation & Test in Europe, pages 690–695.
EDA Consortium, 2016.

[41] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and
Sanjeev Kumar. Flash Storage Disaggregation. In Proceedings of the
Eleventh European Conference on Computer Systems, page 29. ACM,
2016.

[42] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Re-
mote Flash Local Flash. ACM SIGOPS Operating Systems Review,
51(2):345–359, 2017.

[43] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly,
Richard Black, Andrew Douglas, Nathanaël Cheriere, Daniel Fryer,
Kai Mast, Angela Demke Brown, et al. Understanding Rack-Scale
Disaggregated Storage. In 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17), Santa Clara, CA, 2017.

[44] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross,
Gary Grider, Adam Crume, and Carlos Maltzahn. On the Role of
Burst Buffers in Leadership-Class Storage Systems. In 012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), pages
1–11. IEEE, 2012.

[45] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an RDMA-
enabled Distributed Persistent Memory File System. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 773–785, 2017.

[46] Krishna T Malladi, Manu Awasthi, and Hongzhong Zheng. Flexdrive:
a Framework to Explore NVMe Storage Solutions. In 2016 IEEE
18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 1115–1122. IEEE, 2016.

[47] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi
Kageyama, et al. ImageNet/ResNet-50 Training in 224 Seconds.
arXiv preprint arXiv:1811.05233, 2018.

[48] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting net-
work support for rdma. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’18,
pages 313–326, New York, NY, USA, 2018. ACM.

[49] Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel: Isolation
and Sharing in Disaggregated Rack-Scale Storage. In NSDI, pages 17–
33, 2017.

[50] Minoru Oikawa, Atsushi Kawai, Kentaro Nomura, Kenji Yasuoka,
Kazuyuki Yoshikawa, and Tetsu Narumi. DS-CUDA: A Middleware
to Use Many GPUs in the Cloud Environment. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 1207–1214. IEEE, 2012.

[51] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. SDF: Software-Defined Flash for Web-Scale Internet
Storage Systems. In ACM SIGARCH Computer Architecture News,
volume 42, pages 471–484. ACM, 2014.

[52] Antonio J Peña, Carlos Reaño, Federico Silla, Rafael Mayo, Enrique S
Quintana-Ortı́, and José Duato. A Complete and Efficient CUDA-
Sharing Solution for HPC Clusters. Parallel Computing, 40(10):574–
588, 2014.

[53] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Parallel
I/O Optimizations for Scalable Deep Learning. In 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS),
pages 720–729. IEEE, 2017.

[54] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Towards
Scalable Deep Learning via I/O Analysis and Optimization. In 2017
IEEE 19th International Conference on High Performance Computing
and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 223–230. IEEE, 2017.

[55] Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R
De Supinski, Naoya Maruyama, and Satoshi Matsuoka. A User-
Level InfiniBand-Based File System and Checkpoint Strategy for Burst
Buffers. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pages 21–30. IEEE, 2014.

[56] Xuanhua Shi, Ming Li, Wei Liu, Hai Jin, Chen Yu, and Yong Chen.
Ssdup: a Traffic-Aware SSD Burst Buffer for Hpc Systems. In Pro-
ceedings of the International Conference on Supercomputing, page 27.
ACM, 2017.

[57] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le.
Don’t Decay the Learning Rate, Increase the Batch Size. arXiv preprint
arXiv:1711.00489, 2017.

[58] Murray Stokely, Amaan Mehrabian, Christoph Albrecht, Francois La-
belle, and Arif Merchant. Projecting Disk Usage Based on Historical
Trends in a Cloud Environment. In Proceedings of the 3rd workshop
on Scientific Cloud Computing, pages 63–70. ACM, 2012.

[59] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard
Metzler, Nikolas Ioannou, and Ioannis Koltsidas. Crail: A High-
Performance I/O Architecture for Distributed Data Processing. IEEE
Data Eng. Bull., 40(1):38–49, 2017.

[60] S. Swanson and A. M. Caulfield. Refactor, Reduce, Recycle: Restruc-
turing the I/O Stack for the Future of Storage. Computer, 46(8):52–59,
August 2013.

[61] Kun Tang, Ping Huang, Xubin He, Tao Lu, Sudharshan S Vazhkudai,
and Devesh Tiwari. Toward Managing HPC Burst Buffers Effectively:
Draining Strategy to Regulate Bursty I/O Behavior. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 87–
98. IEEE, 2017.

[62] J. Taylor. Facebook’s data center infrastructure: Open compute, dis-
aggregated rack, and beyond. In 2015 Optical Fiber Communications
Conference and Exhibition (OFC), pages 1–1, March 2015.

[63] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry
Chen. LBANN: Livermore Big Artificial Neural Network HPC Toolkit.

In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, page 5. ACM, 2015.

[64] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon
Nou, Alberto Miranda, Toni Cortes, and André Brinkmann. Gekkofs-a
temporary distributed file system for hpc applications. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER), pages
319–324. IEEE, 2018.

[65] T. Wang, A. Moody, Y. Zhu, K. Mohror, K. Sato, T. Islam, and W. Yu.
MetaKV: A Key-Value Store for Metadata Management of Distributed
Burst Buffers. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1174–1183, May 2017.

[66] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan
Yu. An Ephemeral Burst-Buffer File System for Scientific Applications.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 69. IEEE Press,
2016.

[67] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott Atchley,
and Weikuan Yu. Burstmem: A High-Performance Burst Buffer System
for Scientific Applications. In 2014 IEEE International Conference on
Big Data (Big Data), pages 71–79. IEEE, 2014.

[68] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime Data Man-
agementon Non-Volatile Memory-Based Heterogeneous Main Memory.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 58. ACM, 2017.

[69] Qiumin Xu, Manu Awasthi, Krishna T Malladi, Janki Bhimani, Jingpei
Yang, and Murali Annavaram. Performance Analysis of Containerized
Applications on Local and Remote Storage. In Proc. of MSST, 2017.

[70] Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda,
Masahiro Miwa, Naoto Fukumoto, Tsuguchika Tabaru, Atsushi Ike, and
Kohta Nakashima. Yet Another Accelerated SGD: ResNet-50 Training
on ImageNet in 74.7 seconds. arXiv preprint arXiv:1903.12650, 2019.

[71] Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and
Luse E Paul. SPDK: A Development Kit to Build High Performance
Storage Applications. In 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 154–161. IEEE,
2017.

[72] Zhao Zhang, Lei Huang, Uri Manor, Linjing Fang, Gabriele Merlo,
Craig Michoski, John Cazes, and Niall Gaffney. FanStore: Enabling
Efficient and Scalable I/O for Distributed Deep Learning. arXiv preprint
arXiv:1809.10799, 2018.

[73] Qing Zheng, Kai Ren, Garth Gibson, Bradley W Settlemyer, and Gary
Grider. DeltaFS: Exascale File Systems Scale Better Without Dedicated
Servers. In Proceedings of the 10th Parallel Data Storage Workshop,
pages 1–6. ACM, 2015.

[74] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn
Mohror, Kento Sato, and Weikuan Yu. Multi-Client DeepIO for Large-
Scale Deep Learning on HPC Systems.

[75] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn
Mohror, Kento Sato, and Weikuan Yu. Entropy-Aware I/O Pipelining
for Large-Scale Deep Learning on HPC Systems. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 145–156.
IEEE, 2018.

