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1. Introduction

We consider the Cauchy problem for the defocusing cubic nonlinear Schrödinger equa-

tion (NLS) in four space dimensions

{
(i∂t + Δ)u = |u|2u on R × R

4,

u(0) = f ∈ Hs
x(R4).

(1.1)

The equation (1.1) is invariant under the scaling

u(t, x) �→ λu(λ2t, λx) for λ > 0, (1.2)

and the scaling critical regularity sc = 1 is, by definition, such that the corresponding 

homogeneous Sobolev norms of the initial data are left invariant by the scaling transfor-

mation (1.2). Sufficiently smooth solutions to (1.1) conserve the energy

E(u) =

∫

R4

1

2
|∇u|2 +

1

4
|u|4 dx.

Since this energy functional is also invariant under the scaling (1.2), the Cauchy problem 

for (1.1) is referred to as energy-critical.

The goal of this work is to investigate the local-in-time as well as the asymptotic 

behavior of solutions to (1.1) for random initial data below the scaling critical regularity. 

Our main results establish almost sure local well-posedness and conditional almost sure 

scattering of solutions to (1.1) with respect to a randomization of initial data in Hs
x(R4)

with 1
3 < s < 1 that is based on a unit-scale decomposition of frequency space. Moreover, 

we prove that the unit-scale randomization of radially symmetric initial data in Hs
x(R4)

with 1
2 < s < 1 almost surely leads to global-in-time scattering solutions to (1.1).

The energy-critical defocusing nonlinear Schrödinger equation has been studied exten-

sively over the past decades. Correspondingly, in what follows we only mention the most 

relevant results for this paper. For initial data above or at the scaling critical regular-

ity, local solutions may be constructed using fixed point arguments based on Strichartz 

estimates, see for instance [31,19,20,18]. In particular, these results imply that any fi-

nite energy initial datum leads to a unique local solution to (1.1), and they also yield 

small data global well-posedness and scattering. Finite energy global well-posedness and 

scattering for the energy-critical defocusing NLS on R3 was established by Colliander–

Keel–Staffilani–Takaoka–Tao [24], building upon the work of Bourgain [11] in the radial 

case, while the analogous result for the defocusing cubic NLS (1.1) on R4 was obtained 

by Ryckman–Visan [60] and Visan [69].

Even though the nonlinear Schrödinger equation (1.1) is ill-posed below the scaling 

critical regularity sc = 1, see for instance Christ–Colliander–Tao [21], it is sometimes pos-

sible to construct unique local and even global solutions for suitably randomized initial 
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data, and thereby conclude that large sets of initial data of scaling super-critical regular-

ity do indeed lead to global solutions. This approach was initiated by Bourgain [8,9] for 

the periodic nonlinear Schrödinger equation in one and two space dimensions, building 

upon the constructions of invariant measures by Glimm–Jaffe [32] and Lebowitz–Rose–

Speer [45], and by Burq–Tzvetkov [15,16] in the context of the cubic nonlinear wave 

equation on a three-dimensional compact Riemannian manifold. There has since been a 

vast and fascinating body of research, using probabilistic tools to study many nonlinear 

dispersive or hyperbolic equations in scaling super-critical regimes, see for example [66,

25,49,28,17,27,50,51,47,12,7,6,56,29] and references therein.

In the following we restrict our overview to prior related probabilistic well-posedness 

results for the nonlinear Schrödinger equation for initial data randomized according to a 

unit-scale decomposition of frequency space as in (1.5) below. We emphasize though that 

the nonlinear Schrödinger equation on Euclidean space has also been considered in many 

other works relying on different randomizations, see for instance [14,28,65,58,57,59,48]. 

In [6,7], Bényi–Oh–Pocovnicu studied the probabilistic local well-posedness and condi-

tional global well-posedness for the cubic NLS on Rd, d ≥ 3, below the scaling critical 

regularity. They established almost sure local well-posedness and conditional almost sure 

global well-posedness results, where the latter in particular rely on an a priori hypothesis 

that a scaling critical Sobolev norm of the nonlinear component of the solutions does 

not blow up in finite time. We also refer to Brereton [13] for analogous results for the 

defocusing quintic NLS. In the context of the cubic NLS on R3, Bényi–Oh–Pocovnicu [5]

recently introduced an iterative procedure based on a partial power series expansion in 

terms of the free evolution of the random data, which allows to lower the regularity 

threshold for almost sure local well-posedness obtained in their previous work [6].

Although in some of the aforementioned results on the nonlinear Schrödinger equation 

on Euclidean space, one obtains scattering with positive probability as a consequence of 

the probabilistic local theory, establishing almost sure scattering requires a more delicate 

argument, especially for energy-critical equations. The first almost sure scattering result 

for an energy-critical dispersive or hyperbolic equation with scaling super-critical random 

initial data was obtained recently by the authors in [30] for the defocusing cubic nonlinear 

wave equation on R4 for randomized radially symmetric data. The proof in [30] is based 

on the introduction of an approximate Morawetz estimate to the random data setting 

and new almost sure bounds for the free wave evolution of randomized radially symmetric 

data. The methods from [30] as well as from [6,56,53] were subsequently further developed 

by Killip–Murphy–Visan [44] to obtain an analogous almost sure scattering result for 

the defocusing cubic NLS on R4 for randomized radially symmetric initial data. Finally, 

we mention the recent work of Oh–Okamoto–Pocovnicu [52] establishing almost sure 

global well-posedness (without scattering) for the energy-critical defocusing NLS on Rd, 

d = 5, 6.
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1.1. Randomization procedure

Before providing the precise statements of our main results, we introduce our ran-

domization procedure for the initial data, which is based on a unit-scale decomposition 

of frequency space [71,47,6,7].

Let ψ ∈ C∞
c (R4) be an even, non-negative bump function with supp (ψ) ⊆ B(0, 1)

and such that

∑

k∈Z4

ψ(ξ − k) = 1 for all ξ ∈ R
4.

Let s ∈ R and let f ∈ Hs
x(R4). For every k ∈ Z4, we define the function Pkf : R4 → C

by

(Pkf)(x) = F−1
(
ψ(ξ − k)f̂(ξ)

)
(x) for x ∈ R

4. (1.3)

We exploit that these Fourier projections satisfy a unit-scale Bernstein inequality, namely 

for all 1 ≤ r1 ≤ r2 ≤ ∞ and for all k ∈ Z4 we have that

‖Pkf‖L
r2
x (R4) ≤ C(r1, r2)‖Pkf‖L

r1
x (R4) (1.4)

with a constant that is independent of k ∈ Z4.

We let {gk}k∈Z4 be a sequence of zero-mean, complex-valued Gaussian random vari-

ables on a probability space (Ω, A, P). Given a complex-valued function f ∈ Hs
x(R4) for 

some s ∈ R, we define its randomization by

fω :=
∑

k∈Z4

gk(ω)Pkf. (1.5)

This quantity is understood as a Cauchy limit in L2
ω

(
Ω; Hs

x(R4)
)
, and in the sequel, we 

will restrict ourselves to a subset Σ ⊂ Ω with P(Σ) = 1 such that fω ∈ Hs
x(R4) for every 

ω ∈ Σ.

Importantly, the randomization (1.5) almost surely does not regularize at the level of 

Sobolev spaces, see for instance [15, Lemma B.1]. However, the free Schrödinger evolution 

eitΔfω of the random data does enjoy various types of significantly improved space–time 

integrability properties, see Section 5, which crucially enter the proofs of our main results. 

This phenomenon is akin to the classical results of Paley and Zygmund [55] on the 

improved integrability of random Fourier series.

Remark 1.1. One could also randomize with respect to a more general sequence of random 

variables {gk}k∈Z4 satisfying the following condition: there exists c > 0 so that the joint 

distributions {μk}k∈Z4 of the real and imaginary parts of the random variables {gk}k∈Z4

fulfill
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∣∣∣∣∣∣

+∞∫

−∞

eγx dμk(x)

∣∣∣∣∣∣
≤ ecγ2

for all γ ∈ R and for all k ∈ Z
4. (1.6)

The assumption (1.6) is satisfied, for example, by standard Gaussian random variables, 

standard Bernoulli random variables, or any random variables with compactly supported 

distributions.

Remark 1.2. In Theorem 1.9 we randomize radially symmetric functions. However, it 

should be noted that the unit-scale randomization (1.5) of a radially symmetric function 

is not radially symmetric.

1.2. Main results

We are now ready to state our first main theorem on the almost sure local well-

posedness of the cubic NLS in four space dimensions for scaling super-critical random 

data.

Theorem 1.3. Let 1
3 < s < 1. Let f ∈ Hs

x(R4) and denote by fω the randomization of f

as defined in (1.5). Then for almost every ω ∈ Ω there exists an open interval I � 0 and 

a unique solution

u(t) ∈ eitΔfω + C
(
I; Ḣ1

x(R4)
)

to the cubic nonlinear Schrödinger equation

{
(i∂t + Δ)u = ±|u|2u on I × R

4,

u(0) = fω.
(1.7)

Remark 1.4. In the statement of Theorem 1.3, uniqueness holds in the sense that upon 

writing

u(t) = eitΔfω + v(t),

there exists a unique local solution

v ∈ C
(
I; Ḣ1

x(R4)
)

∩ X(I)

to the forced cubic nonlinear Schrödinger equation

{
(i∂t + Δ)v = ±|eitΔfω + v|2(eitΔfω + v) on I × R

4,

v(0) = 0,

where the function space X(I) is defined in Section 3.
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Remark 1.5. The length of the time interval I in the statement of Theorem 1.3 depends 

on the profile of the free evolution eitΔfω of the random data in the sense that the time 

interval I has to satisfy ‖eitΔfω‖Y (I) ≤ δ for some small absolute constant 0 < δ � 1, 

where the function space Y (I) is defined in Section 3.

We emphasize that prior to this work, almost sure local well-posedness for the cubic 

NLS (1.7) in four space dimensions had been established by Bényi–Oh–Pocovnicu [6,7]

for random initial data in Hs
x(R4) for the more restrictive range of regularities 3

5 < s < 1. 

The main tools in [6,7] are the improved almost sure space–time integrability of the free 

evolution of the random data and a bilinear refinement of the Strichartz estimate by 

Bourgain [10] and Ozawa–Tsutsumi [54].

The proof of Theorem 1.3 proceeds by writing the solution to (1.7) as a superposition 

of the free evolution of the random initial data and a nonlinear component

u(t) = eitΔfω + v(t).

Then the nonlinear component v(t) has to satisfy the following forced cubic NLS, where 

the forcing term inside the cubic nonlinearity is given by the free evolution of the (low-

regularity) random initial data,

(i∂t + Δ)v = ±|eitΔfω + v|2(eitΔfω + v)

with zero initial data v(0) = 0. Establishing local existence of solutions to this forced 

cubic NLS at energy regularity then has certain features in common with proving local 

well-posedness for a derivative nonlinear Schrödinger equation. In this spirit the main 

idea of our almost sure local well-posedness result in Theorem 1.3 is to set up a suitable 

functional framework, whose precise definition is given in Section 3, based on Strichartz 

estimates and variants of the strong local smoothing L∞,2
e , inhomogeneous local smooth-

ing L1,2
e , and maximal function estimates L2,∞

e for the free Schrödinger evolution that 

have for instance played a key role in the study of the Schrödinger maps problem in [34,

36,2,3]. The main benefit of this new functional framework is that whenever the (low-

regularity) free evolution eitΔfω of the random data appears at highest frequency in 

the forced cubic nonlinearity, the local smoothing space component along with the inho-

mogeneous local smoothing and maximal function space components enable us to gain 

some derivatives. Instead, if the deterministic solution v appears at highest frequency, 

the Strichartz components suffice for the nonlinear estimates. See the discussion before 

Proposition 4.1 for more details. Beyond the improved almost sure space–time integra-

bility of the free evolution of the random data, the key ingredient for this scheme to work 

is an improved maximal function estimate for the free evolution of unit-scale frequency 

localized data, see Lemma 5.4, which implies an improved almost sure maximal function 

type estimate for the free evolution of the random initial data. We also refer to [39,46,

41–43,33,35,1,4,23] and references therein for the many other uses of local smoothing esti-
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mates in the study of local and global well-posedness of derivative nonlinear Schrödinger 

and related equations.

Remark 1.6. From the proof of Theorem 1.3, it is clear that our methods easily generalize 

to other space dimensions d ≥ 3 and to other power-type nonlinearities. We also expect 

that our functional framework is compatible with the iterative procedure put forth in [5]

and that these ideas can be combined to further lower the regularity threshold.

Remark 1.7. We note that the main idea in our proof of Theorem 1.3 does not apply to 

the periodic setting since there is no local smoothing effect for the Schrödinger equation 

on a compact domain such as the torus. The methods used to prove analogous almost 

sure local well-posedness results on the torus usually rely on random initial data with a 

specific form inspired by a typical element in the support of a certain Gibbs measure, and 

multilinear estimates which exploit properties of products of Gaussian random variables. 

For probabilistic well-posedness results for power-type NLS on the torus, we refer to [8,

9,25,51,70] and references therein.

Next we turn to the study of the long-time dynamics of solutions to the defocusing 

cubic NLS (1.1) for scaling super-critical random initial data and establish a conditional 

scattering result for the associated forced defocusing cubic NLS

{
(i∂t + Δ)v = |F + v|2(F + v) on R × R

4,

v(0) = v0 ∈ Ḣ1
x(R4)

(1.8)

for forcing terms F : R × R4 → C satisfying ‖F‖Y (R) < ∞, where the precise definition 

of the function space Y (R) is postponed to Section 3. Note that we will establish in 

Proposition 5.3 that ‖eitΔfω‖Y (R) < ∞ almost surely for any f ∈ Hs
x(R4) with 1

3 <

s < 1. The next theorem asserts that if the maximal lifespan solution to (1.8) satisfies a 

uniform-in-time a priori energy bound, then it must exist globally in time and scatter.

Theorem 1.8. Let v0 ∈ Ḣ1
x(R4) and let F ∈ Y (R). Let v(t) be a solution to (1.8) defined 

on its maximal time interval of existence I∗. Suppose in addition that

M := sup
t∈I∗

E(v(t)) < ∞, (1.9)

where

E(v(t)) =

∫

R4

1

2
|∇v(t)|2 +

1

4
|v(t)|4 dx.

Then I∗ = R, that is v(t) is globally defined, and it holds that

‖v‖X(R) ≤ C
(
M, ‖F‖Y (R)

)
, (1.10)
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where the function spaces X(R) and Y (R) are defined in Section 3. In particular, the 

solution v(t) scatters in the sense that there exist states v± ∈ Ḣ1
x(R4) such that

lim
t→±∞

∥∥v(t) − eitΔv±
∥∥

Ḣ1
x(R4)

= 0.

The proof of Theorem 1.8 follows the idea of the proof of an analogous conditional scat-

tering result by the authors [30, Theorem 1.3] for the forced defocusing cubic nonlinear 

wave equation. The main ingredients are the a priori bounds for the “usual” defocusing 

cubic NLS on R4 from the work of Ryckman–Visan [60] and Visan [69] as well as the 

development of a suitable perturbation theory within our functional framework for the 

forced defocusing cubic NLS (1.8), see Lemma 7.3.

Furthermore, we establish the following almost sure scattering result for the defocusing 

cubic NLS (1.1) for randomized radially symmetric initial data.

Theorem 1.9. Let 1
2 < s < 1 and let f ∈ Hs

x(R4) be radially symmetric. Let fω be the 

randomized initial data defined in (1.5). Then for almost every ω ∈ Ω, there exists a 

unique global solution

u(t) ∈ eitΔfω + C
(
R; Ḣ1

x(R4)
)

(1.11)

to the defocusing cubic nonlinear Schrödinger equation

{
(i∂t + Δ)u = |u|2u on R × R

4,

u(0) = fω,
(1.12)

which scatters as t → ±∞ in the sense that there exist states v± ∈ Ḣ1
x(R4) such that

lim
t→±∞

∥∥u(t) − eitΔ(fω + v±)
∥∥

Ḣ1
x(R4)

= 0.

Remark 1.10. Analogously to Remark 1.4, uniqueness in Theorem 1.9 holds in the sense 

that upon writing

u(t) = eitΔfω + v(t),

there exists a unique global solution

v ∈ C
(
R; Ḣ1

x(R4)
)

∩ X(R)

to the forced defocusing cubic nonlinear Schrödinger equation

{
(i∂t + Δ)v = |eitΔfω + v|2(eitΔfω + v) on R × R

4,

v(0) = 0,

where the function space X(I) is defined in Section 3.
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We emphasize that prior to this work almost sure scattering for the defocusing cubic 

NLS (1.12) in four space dimensions had been established by Killip–Murphy–Visan [44]

for randomized radially symmetric initial data in Hs
x(R4) for the more restrictive range 

of regularities 5
6 < s < 1.

In view of Theorem 1.3 and Theorem 1.8, the proof of Theorem 1.9 reduces to prov-

ing the uniform-in-time energy bound (1.9) for the nonlinear component of the solution. 

To this end we follow quite closely the scheme introduced by the authors [30] of com-

bining energy growth estimates with suitable approximate Morawetz estimates for the 

forced cubic equation, as well as incorporating further developments by Killip–Murphy–

Visan [44]. The main novelty of our proof in comparison with [44] is the introduction 

of new almost sure bounds for weighted L2
t L∞

x (R × R4) norms of the derivative of the 

free evolution of the randomized radially symmetric initial data in Proposition 5.12. The 

proof of these almost sure bounds hinges on a delicate combination of local smoothing 

estimates for the Schrödinger evolution and a “radialish” Sobolev type estimate for the 

square-function associated with the unit-scale frequency projections of a radially sym-

metric function from Lemma 5.7. These improved almost sure bounds ultimately allow 

us to reach lower regularities for the random initial data and enable us to use the stan-

dard Lin–Strauss Morawetz weight a(x) := |x| for our approximate Morawetz estimate 

in contrast to the weight a(x) := 〈x〉 used in [44].

Finally, as a byproduct of our proof of Theorem 1.9, we obtain an improvement 

of our almost sure scattering result for the defocusing cubic nonlinear wave equation 

in four space dimensions [30, Theorem 1.9]. In a very similar manner to the proof of 

Proposition 5.12, we can combine local energy decay estimates for the wave equation and 

the aforementioned “radialish” Sobolev type estimate to establish almost sure bounds 

for weighted L2
t L∞

x (R × R4) norms of the free wave evolution of randomized radially 

symmetric data. These almost sure bounds for the free wave evolution are an important 

improvement over the authors’ related almost sure bounds [30, Proposition 5.4], and lead 

to a significant strengthening, in the form of a lower regularity threshold, of the almost 

sure scattering result for the defocusing energy-critical nonlinear wave equation in four 

space dimensions for randomized radially symmetric data from [30, Theorem 1.9].

To state the precise result, we first have to recall the randomization of a pair of 

real-valued functions (f0, f1) ∈ Hs
x(R4) × Hs−1

x (R4) as in [30]. Specifically, we let 

{(gk, hk)}k∈Z4 be a sequence of zero-mean, complex-valued Gaussian random variables on 

a probability space (Ω, A, P) with the symmetry condition g−k = gk and h−k = hk for all 

k ∈ Z4. We assume that {g0, Re(gk), Im(gk)}k∈I are independent, zero-mean, real-valued 

random variables, where I ⊂ Z4 is such that we have a disjoint union Z4 = I∪(−I) ∪{0}, 

and similarly for the hk. Then we set

(fω
0 , fω

1 ) :=

( ∑

k∈Z4

gk(ω)Pkf0,
∑

k∈Z4

hk(ω)Pkf1

)
, (1.13)
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which we note is real-valued due to the imposed symmetry conditions on the Gaus-

sian random variables. We denote the free wave evolution of a random initial data pair 

(fω
0 , fω

1 ) by

S(t)(fω
0 , fω

1 ) = cos(t|∇|)fω
0 +

sin(t|∇|)
|∇| fω

1 .

Then we obtain the following almost sure scattering result for the defocusing energy-

critical nonlinear wave equation in four space dimensions for randomized radially sym-

metric data whose proof is sketched in the appendix. The (much lower) regularity 

threshold should be compared with the regularity restriction 1
2 < s < 1 from the authors’ 

previous work [30, Theorem 1.9].

Theorem 1.11. Let 0 < s < 1. For real-valued radially symmetric (f0, f1) ∈ Hs
x(R4) ×

Hs−1
x (R4), let (fω

0 , fω
1 ) be the randomized initial data defined in (1.13). Then for almost 

every ω ∈ Ω, there exists a unique global solution

(u, ∂tu) ∈
(
S(t)(fω

0 , fω
1 ), ∂tS(t)(fω

0 , fω
1 )

)
+ C

(
R; Ḣ1

x(R4) × L2
x(R4)

)
(1.14)

to the energy-critical defocusing nonlinear wave equation

{
−∂2

t u + Δu = u3 on R × R
4,

(u, ∂tu)|t=0 = (fω
0 , fω

1 ),
(1.15)

which scatters to free waves as t → ±∞ in the sense that there exist states (v±
0 , v±

1 ) ∈
Ḣ1

x(R4) × L2
x(R4) such that

lim
t→±∞

∥∥∇t,x

(
u(t) − S(t)(fω

0 + v±
0 , fω

1 + v±
1 )

)∥∥
L2

x(R4)
= 0.

Remark 1.12. In the statement of Theorem 1.11 uniqueness holds in the following sense: 

Writing

(u, ∂tu) =
(
S(t)(P>4fω

0 , P>4fω
1 ), ∂tS(t)(P>4fω

0 , P>4fω
1 )

)
+ (v, ∂tv),

there exists a unique global solution

(v, ∂tv) ∈ C
(
R; Ḣ1

x(R3)
)

∩ L3
t,locL6

x(R × R
4) × C

(
R; L2

x(R4)
)

to the forced cubic nonlinear wave equation

{
−∂2

t v + Δv =
(
S(t)(P>4fω

0 , P>4fω
1 ) + v

)3
on R × R

4,

(v, ∂tv)|t=0 = (P≤4fω
0 , P≤4fω

1 ),
(1.16)
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where P≤4 and P>4 are the usual dyadic Littlewood–Paley projections defined in Sec-

tion 2.

Organization of the paper. In Section 2 we set up some notation used throughout this 

paper. In Section 3 we introduce the functional framework for the proofs of the almost 

sure local well-posedness result of Theorem 1.3 and of the conditional scattering result 

of Theorem 1.8. In Section 4 we develop the key trilinear estimates to handle all possible 

interactions in the forced cubic nonlinearity within this functional framework. In Sec-

tion 5 we establish various almost sure bounds on the free evolution of the random data. 

Finally, we provide the proofs of Theorem 1.3 in Section 6, of Theorem 1.8 in Section 7, 

and of Theorem 1.9 in Section 8.

2. Notation and preliminaries

We denote by C > 0 an absolute constant which only depends on fixed parameters and 

whose value may change from line to line. We write X � Y to indicate that X ≤ CY

and we use the notation X ∼ Y if X � Y � X. Moreover, we write X �ν Y to 

indicate that the implicit constant depends on a parameter ν and we write X � Y if the 

implicit constant should be regarded as small. We also use the notation 〈∇〉 := (1 −Δ)
1
2 , 

〈x〉 := (1 + |x|2)
1
2 as well as 〈N〉 := (1 + N2)

1
2 .

Apart from the unit-scale frequency projections Pk, k ∈ Z4, defined in (1.3), we will 

also make frequent use of the usual dyadic Littlewood–Paley projections PN , N ∈ 2Z, 

which we introduce next. Let ϕ ∈ C∞
c (R4) be a smooth bump function such that ϕ(ξ) = 1

for |ξ| ≤ 1 and ϕ(ξ) = 0 for |ξ| > 2. Then we define for every dyadic integer N ∈ 2Z,

P̂N f(ξ) :=
(
ϕ(ξ/N) − ϕ(2ξ/N)

)
f̂(ξ).

In addition, for each dyadic integer N ∈ 2Z we set

P̂≤N f(ξ) := ϕ(ξ/N)f̂(ξ), P̂>N f(ξ) :=
(
1 − ϕ(ξ/N)

)
f̂(ξ).

We denote by P̃N := P≤8N − P≤N/8 fattened Littlewood–Paley projections with the 

property that PN = PN P̃N . Moreover, we recall the following Bernstein estimates for 

the dyadic Littlewood–Paley projections.

Lemma 2.1. Let N ∈ 2Z. For any 1 ≤ r1 ≤ r2 ≤ ∞ and any s ≥ 0, it holds that

∥∥PN f
∥∥

L
r2
x (R4)

� N
4

r1
− 4

r2

∥∥PN f
∥∥

L
r1
x (R4)

,

∥∥P≤N f
∥∥

L
r2
x (R4)

� N
4

r1
− 4

r2

∥∥P≤N f
∥∥

L
r1
x (R4)

,
∥∥|∇|±sPN f

∥∥
L

r1
x (R4)

∼ N±s‖PN f‖L
r1
x (R4).
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We let {e1, e2, e3, e4} be an orthonormal basis of R4 and henceforth fix our coordinate 

system accordingly. To formulate certain local smoothing estimates for the Schrödinger 

evolution, we will use smooth frequency projections that localize the frequency variable 

in the direction of an element of the orthonormal basis {e1, e2, e3, e4}. To this end let 

φ ∈ C∞
c (R) be a smooth bump function supported around ∼ 1. For every dyadic integer 

N ∈ 2Z and for every � = 1, . . . , 4, we define

P̂N,e�
f(ξ) := φ

(
|ξ · e�|/N

)
f̂(ξ).

We may assume that the bump function φ is chosen so that for all dyadic integers N ∈ 2Z, 

the frequency projections satisfy

(1 − PN,e1
)(1 − PN,e2

)(1 − PN,e3
)(1 − PN,e4

) PN = 0. (2.1)

In the proof of a weighted almost sure bound in Proposition 5.12 we will have to de-

compose physical space dyadically. To this end we introduce the spatial cut-off functions

χ0(x) := ϕ(x)

and for every integer j ≥ 1,

χj(x) := ϕ(2−jx) − ϕ(2−(j−1)x),

where ϕ ∈ C∞
c (R4) is the smooth bump function introduced further above. Moreover, 

for any integer j ≥ 0 we define

χ≤j(x) := ϕ(2−jx), χ>j(x) := 1 − ϕ(2−jx).

We denote by χ̃j(x) slightly fattened cut-offs satisfying χj(x) = χj(x)χ̃j(x) for any 

integer j ≥ 0.

3. Functional framework

In this section we introduce the precise functional framework that we will use in the 

proofs of the almost sure local well-posedness result of Theorem 1.3 and the conditional 

scattering result of Theorem 1.8.

We begin by recalling the usual Strichartz estimates for the Schrödinger propagator 

in four space dimensions. An exponent pair (q, r) is called admissible if 2 ≤ q, r ≤ ∞
and the following scaling condition is satisfied

2

q
+

4

r
= 2.
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Proposition 3.1. (Strichartz estimates; [64,31,38]) Let I ⊂ R be a time interval and let 

(q, r), (q̃, ̃r) be admissible pairs. Then we have

∥∥eitΔf
∥∥

Lq
t Lr

x(I×R4)
� ‖f‖L2

x(R4), (3.1)
∥∥∥∥
∫

I

e−isΔh(s, ·) ds

∥∥∥∥
L2

x(R4)

� ‖h‖
Lq′

t Lr′
x (I×R4)

. (3.2)

Assuming that 0 ∈ I we also have

∥∥∥∥
t∫

0

ei(t−s)Δh(s, ·) ds

∥∥∥∥
Lq

t Lr
x(I×R4)

� ‖h‖
Lq̃′

t Lr̃′
x (I×R4)

. (3.3)

Next we introduce the lateral spaces Lp,q
e�

where we recall that {e1, e2, e3, e4} is a 

fixed orthonormal basis of R4. Given a time interval I ⊂ R, we define the lateral spaces 

Lp,q
e�

(I × R4) for � = 1 with norms

‖h‖Lp,q
e1 (I×R4) :=

( ∫

Rx1

( ∫

I

∫

R3
x′

|h(t, x1, x′)|q dx′ dt

) p
q

dx1

) 1
p

with analogous definitions for � = 2, 3, 4 and the usual modifications when p = ∞ or 

q = ∞. The most important members of this family of spaces are the local smooth-

ing space L∞,2
e�

and the inhomogeneous local smoothing space L1,2
e�

, which allow us to 

gain derivatives. In nonlinear estimates these are used along with the maximal function 

space L2,∞
e�

. The next proposition summarizes the estimates satisfied by the Schrödinger 

propagator in four space dimensions in the lateral spaces. These estimates follow from 

the local smoothing and maximal function estimates that were established by Ionescu–

Kenig [34,36].

Proposition 3.2. Let I ⊂ R be a time interval. Let 2 ≤ p, q ≤ ∞ with 1
p + 1

q = 1
2 , N ∈ 2Z

any dyadic integer and � ∈ {1, 2, 3, 4}. Then it holds that

∥∥eitΔPN f
∥∥

Lp,q
e�

(I×R4)
� N

4
p

− 1
2 ‖f‖L2

x(R4), p ≤ q, (3.4)

∥∥eitΔPN,e�
PN f

∥∥
Lp,q

e�
(I×R4)

� N
4
p

− 1
2 ‖f‖L2

x(R4), p ≥ q. (3.5)

By duality we also have that

∥∥∥∥
∫

I

e−isΔPN h(s, ·) ds

∥∥∥∥
L2

x(R4)

� N
4
p

− 1
2 ‖h‖

Lp′,q′
e�

(I×R4)
, p ≤ q, (3.6)

∥∥∥∥
∫

I

e−isΔPN,e�
PN h(s, ·) ds

∥∥∥∥
L2

x(R4)

� N
4
p

− 1
2 ‖h‖

Lp′,q′
e�

(I×R4)
, p ≥ q. (3.7)
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Proof. We begin with the proof of (3.4). The maximal function estimate from Ionescu–

Kenig [34,36] asserts that

∥∥eitΔPN f
∥∥

L2,∞
e�

(I×R4)
� N

3
2 ‖f‖L2

x(R4),

while an application of Fubini’s theorem, Bernstein estimates and the Strichartz esti-

mate (3.1) yields

∥∥eitΔPN f
∥∥

L4,4
e�

(I×R4)
=

∥∥eitΔPN f
∥∥

L4
t L4

x(I×R4)
� N

1
2

∥∥eitΔPN f
∥∥

L4
t L

8
3
x (I×R4)

� N
1
2 ‖f‖L2

x(R4).

The estimate (3.4) then follows by interpolation. Analogously, (3.5) is a consequence of 

the following local smoothing estimate from Ionescu–Kenig [34,36]

∥∥eitΔPN PN,e�
f

∥∥
L∞,2

e�
(I×R4)

� N− 1
2 ‖f‖L2

x(R4)

and interpolation. �

To ensure that our function spaces have certain time-divisibility properties, and in 

order to carry out certain large deviation estimates, we rely in our work on slight variants 

of the local smoothing, inhomogeneous local smoothing, and maximal function spaces, 

namely L∞−,2+
e�

, L1+,2−
e�

, and L2+,∞−
e�

respectively. We emphasize that the lateral space 

norms ‖h‖Lp,q
e�

(I×R4) are continuous as functions of the endpoints of the time interval I

and for p, q < ∞ have the following time-divisibility property

∥∥∥
{

‖h‖Lp,q
e�

(Ij×R4)

}J

j=1

∥∥∥
�

max{p,q}
j

≤ ‖h‖Lp,q
e�

(I×R4) (3.8)

for any partition of a time interval I into consecutive intervals Ij , j = 1, . . . , J , with 

disjoint interiors. The estimate (3.8) is a consequence of Minkowski’s inequality and the 

embedding properties of the sequence spaces �r. For p, q < ∞, (3.8) allows to partition 

the time interval I into a controlled number of subintervals on each of which the restricted 

norm is arbitrarily small.

Finally, we are ready to give the precise definition of the space X(I) to hold the 

solutions to the forced cubic NLS on a given time interval I ⊂ R. It is built from dyadic 

pieces in the sense that

‖v‖X(I) :=

( ∑

N∈2Z

‖PN v‖2
XN (I)

) 1
2

.

The dyadic subspace XN (I) scales at Ḣ1
x(R4)-regularity and consists of several Strichartz 

components and a maximal function type component. To provide its precise definition 

we introduce a fixed, sufficiently small, absolute constant 0 < ε � 1. Throughout this 
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work it will always be implicitly understood that ε is chosen sufficiently small so that 
1
3 + 3ε ≤ s, where 1

3 < s < 1 refers to the Sobolev regularity assumption for the random 

data in the statement of Theorem 1.3. For every dyadic integer N ∈ 2Z we then set

‖PN v‖XN (I) := N‖PN v‖L2
t L4

x(I×R4) + N‖PN v‖L3
t L3

x(I×R4) + N‖PN v‖
L6

t L
12
5

x (I×R4)

+

4∑

�=1

N− 1
2 +ε‖PN v‖

L
4

2−ε
, 4

ε
e�

(I×R4)
.

We will estimate the forced cubic nonlinearity in the space G(I) which is also built from 

dyadic pieces

‖h‖G(I) :=

( ∑

N∈2Z

‖PN h‖2
GN (I)

) 1
2

and whose dyadic subspaces are defined as

‖PN h‖GN (I) := inf
PN h=h

(1)
N +h

(2)
N

{
N‖h

(1)
N ‖L1

t L2
x(I×R4) +

4∑

�=1

N
1
2 +ε‖h

(2)
N ‖

L
4

4−ε
, 4

2+ε
e�

(I×R4)

}
.

It will be convenient to introduce a space Y (I), in which we will place the forcing term F . 

As usual, it is built from dyadic pieces in the sense that

‖F‖Y (I) :=

( ∑

N∈2Z

‖PN F‖2
YN (I)

) 1
2

,

where we set

‖PN F‖YN (I) := 〈N〉 1
3 +3ε‖PN F‖L3

t L6
x(I×R4) + 〈N〉 1

3 +3ε‖PN F‖L6
t L6

x(I×R4)

+

4∑

�=1

〈N〉 1
3 +3εN

1
2 −ε‖PN,e�

PN F‖
L

4
ε

, 4
2−ε

e�
(I×R4)

+

4∑

�=1

N− 1
6 ‖PN F‖

L
4

2−ε
, 4

ε
e�

(I×R4)
.

We will later establish in Proposition 5.3 that for 1
3 < s < 1 and 0 < ε < 1

3 (s − 1
3 ), we 

have ‖eitΔfω‖Y (R) < ∞ almost surely for the free evolution of the random data fω as 

defined in (1.5) for any f ∈ Hs
x(R4).

In the next lemma we collect continuity and time-divisibility properties of the X(I)

and Y (I) norms that we will repeatedly make use of.

Lemma 3.3.

(i) Let I ⊂ R be a closed interval. Assume that ‖v‖X(I) < ∞ and ‖F‖Y (I) < ∞. Then 

the mappings
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I � t �→ ‖v‖X([inf I,t]), I � t �→ ‖F‖Y ([inf I,t])

and

I � t �→ ‖v‖X([t,sup I]), I � t �→ ‖F‖Y ([t,sup I])

are continuous with analogous statements for half-open and open intervals.

(ii) Let I ⊂ R be an interval and let v ∈ X(I), F ∈ Y (I). For any partition of the 

interval I into consecutive intervals Ij, j = 1, . . . , J , with disjoint interiors it holds 

that

∥∥∥
{

‖v‖X(Ij)

}J

j=1

∥∥∥
�

4
ε
j

≤ ‖v‖X(I),
∥∥∥
{

‖F‖Y (Ij)

}J

j=1

∥∥∥
�

4
ε
j

≤ ‖F‖Y (I). (3.9)

Proof. The first part (i) follows from the dominated convergence theorem and the defi-

nition of the spaces X(I) and Y (I). For the second part (ii) we note that 4
ε is the largest 

exponent in the definition of the Strichartz Lq
t Lr

x and Lp,q
e�

components of the spaces X(I)

and Y (I). Then the time divisibility properties (3.9) follow from Minkowski’s inequality, 

the embedding �r1 ↪→ �r2 for any 1 ≤ r1 ≤ r2 ≤ ∞ for the �r sequence spaces and the 

definitions of X(I) and Y (I). �

The spaces X(I) and G(I) are connected by the following key linear estimate.

Proposition 3.4 (Main linear estimate). Let I ⊂ R be a time interval with t0 ∈ I and let 

v0 ∈ Ḣ1
x(R4). Assume that v : I × R4 → C is a solution to

{
(i∂t + Δ)v = h on I × R

4,

v(t0) = v0.
(3.10)

Then we have for any dyadic integer N ∈ 2Z that

N‖PN v‖L∞
t L2

x(I×R4) + ‖PN v‖XN (I) � N‖PN v0‖L2
x(R4) + ‖PN h‖GN (I). (3.11)

Consequently, it holds that

‖v‖L∞
t Ḣ1

x(I×R4) + ‖v‖X(I) � ‖v0‖Ḣ1
x(R4) + ‖h‖G(I). (3.12)

Before we can turn to the proof of Proposition 3.4, we first need two auxiliary lemmas.

Lemma 3.5. Let J, I ⊂ R be time intervals with sup J ≤ inf I and let N ∈ 2Z be any 

dyadic integer. Then we have for any admissible Strichartz pair (q, r) that

N

∥∥∥∥
∫

J

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lq

t Lr
x(I×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(J×R4)
. (3.13)



B. Dodson et al. / Advances in Mathematics 347 (2019) 619–676 635

Furthermore, it holds that

4∑

�=1

N− 1
2 +ε

∥∥∥∥
∫

J

ei(t−s)ΔPN h(s) ds

∥∥∥∥
L

4
2−ε

, 4
ε

e�
(I×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(J×R4)
.

(3.14)

Proof. The left-hand sides of (3.13) and (3.14) are both bounded by

N

∥∥∥∥
∫

J

e−isΔPN h(s) ds

∥∥∥∥
L2

x(R4)

(3.15)

by the Strichartz estimate (3.1) and by the estimate (3.4) for the lateral spaces, respec-

tively. Relying on the identity (2.1), we now further frequency decompose PNh into

PN h = PN,e1
PN h + PN,e2

(1 − PN,e1
)PN h + PN,e3

(1 − PN,e2
)(1 − PN,e1

)PN h

+ PN,e4
(1 − PN,e3

)(1 − PN,e2
)(1 − PN,e1

)PN h.

Using the boundedness of the projections (1 − PN,e�
) on L2

x(R4), we can then esti-

mate (3.15) by

4∑

�=1

N

∥∥∥∥
∫

J

e−isΔPN,e�
PN h(s) ds

∥∥∥∥
L2

x(R4)

.

Finally, by the dual estimate (3.7) for the lateral spaces we conclude the desired bound

4∑

�=1

N

∥∥∥∥
∫

J

e−isΔPN,e�
PN h(s) ds

∥∥∥∥
L2

x(R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(J×R4)
. �

Lemma 3.6. Let I ⊂ R be a time interval with 0 = inf I and let N ∈ 2Z be any dyadic 

integer. Then we have for any admissible Strichartz pair (q, r) that

N

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lq

t Lr
x(I×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(I×R4)
. (3.16)

Furthermore, it holds that

4∑

�=1

N− 1
2 +ε

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
L

4
2−ε

, 4
ε

e�
(I×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(I×R4)
.

(3.17)
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Proof. Our argument is a modified version of the Christ–Kiselev lemma [22]. We only 

prove (3.17) in detail because the proof of (3.16) is similar. Normalizing we may assume 

that

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(I×R4)
= 1.

In order to prove (3.17) it now suffices to verify that

N− 1
2 +ε

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
L

4
2−ε

, 4
ε

e1 (I×R4)

� 1. (3.18)

Using the time divisibility property (3.8) of the lateral spaces, we can proceed inductively 

to construct for every n ∈ N a partition {In
j }j=1,...,2n of the interval I into consecutive 

intervals with disjoint interiors such that for j = 1, . . . , 2n,

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(In
j ×R4)

≤ 2−( 1
2 + ε

4 )n. (3.19)

We then perform a Whitney type decomposition of the interval I and obtain that for 

almost every t1, t2 ∈ I with t1 < t2, there exist unique n ∈ N and j ∈ {1, . . . , 2n} such 

that t1 ∈ In
j and t2 ∈ In

j+1. Correspondingly, we may write

t∫

0

ei(t−s)ΔPN h(s) ds =
∑

n∈N

2n∑

j=1

χIn
j+1

(t)

∫

In
j

ei(t−s)ΔPN h(s) ds

with the understanding that In
2n+1 = ∅ and where χIn

j+1
(t) denotes a sharp cut-off func-

tion to the interval In
j+1. To somewhat ease the notation in the following, we shall write 

(p, q) = ( 4
2−ε , 4ε ). Note that by Lemma 3.5 and by (3.19), we have for any n ∈ N and 

j ∈ {1, . . . , 2n} the bound

N− 1
2 +ε

∥∥∥∥
∫

In
j

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lp,q

e1 (In
j+1×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(In
j ×R4)

� 2−( 1
2 + ε

4 )n.

Hence, using also that p
q ≤ 1, we compute that

N− 1
2 +ε

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lp,q

e1 (I×R4)
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≤ N− 1
2 +ε

∑

n∈N

∥∥∥∥
2n∑

j=1

χIn
j+1

∫

In
j

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lp,q

e1 (I×R4)

= N− 1
2 +ε

∑

n∈N

( ∫

Rx1

( 2n∑

j=1

∫

In
j+1

∫

R3
x′

∣∣∣∣
∫

In
j

ei(t−s)ΔPN h(s) ds

∣∣∣∣
q

dx′ dt

) p
q

dx1

) 1
p

≤
∑

n∈N

(
2n∑

j=1

(
N− 1

2 +ε

∥∥∥∥
∫

In
j

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lp,q

e1 (In
j+1×R4)

)p
) 1

p

�
∑

n∈N

2
n
p 2−( 1

2 + ε
4 )n

�
∑

n∈N

2− ε
2 n

� 1.

This yields (3.18) and therefore finishes the proof of Lemma 3.6. �

Proof of Proposition 3.4. Without loss of generality we may assume that 0 = t0 =

inf I. By Duhamel’s formula for the solution to the inhomogeneous Schrödinger equa-

tion (3.10), we have for any dyadic integer N ∈ 2Z that

PN v(t) = eitΔPN v0 − i

t∫

0

ei(t−s)ΔPN h(s) ds. (3.20)

By Proposition 3.1 and Proposition 3.2 it then holds that

N
∥∥eitΔPN v0

∥∥
L∞

t L2
x(I×R4)

+
∥∥eitΔPN v0

∥∥
XN (I)

� N‖PN v0‖L2
x(R4).

In order to complete the proof of (3.11), it remains to verify that the Duhamel term in 

(3.20) satisfies for any admissible Strichartz pair (q, r) that

N

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lq

t Lr
x(I×R4)

+
4∑

�=1

N− 1
2 +ε

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
L

4
2−ε

, 4
ε

e�
(I×R4)

� N‖PN h‖L1
t L2

x(I×R4)

(3.21)

as well as
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N

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
Lq

t Lr
x(I×R4)

+
4∑

�=1

N− 1
2 +ε

∥∥∥∥
t∫

0

ei(t−s)ΔPN h(s) ds

∥∥∥∥
L

4
2−ε

, 4
ε

e�
(I×R4)

�

4∑

�=1

N
1
2 +ε‖PN h‖

L
4

4−ε
, 4

2+ε
e�

(I×R4)
.

(3.22)

The proof of (3.21) is standard and therefore omitted, while the estimate (3.22) is pro-

vided by Lemma 3.6. �

4. Trilinear estimates

In this section we systematically develop the trilinear estimates to handle all possible 

interaction terms that arise in the forced cubic nonlinearity within the functional frame-

work laid out in the previous section. To this end, we frequency localize all inputs and 

order the inputs by the size of their frequency supports. There are then two main types 

of estimates. The first is when a deterministic solution v appears at highest frequency. 

In this case, we place the associated trilinear term into the L1
t L2

x component of the G(I)

space and estimate it using just a combination of Bernstein estimates and Strichartz 

components of the X(I) and Y (I) spaces. Another, more delicate, type of estimate is 

required if instead the (random, low-regularity) forcing term F appears at highest fre-

quency. Here we place the associated trilinear term into the L1+,2−
e�

component of the 

G(I) space, which results in a gain of 1
2− derivatives. The forcing term F appearing 

at highest frequency is then put into the local smoothing type L∞−,2+
e�

component of 

the Y (I) space, which gains another 1
2− derivative. For the remaining lower frequency 

terms we use a mixture of Strichartz components and maximal function type L2+,∞−
e�

components of the X(I) and Y (I) spaces, in particular we crucially rely on our improved 

maximal function estimate for unit-scaled frequency localized data, see Lemma 5.4 and 

Proposition 5.3. It is here where we have to pay back some of the gained derivatives. It is 

important to observe that the most severe trilinear term is the |F |2F term, see the proof 

of (4.5) in Proposition 4.1, which ultimately leads to the regularity restriction s > 1
3 in 

the statement of Theorem 1.3.

The next proposition establishes the key, frequency localized, trilinear estimates of 

this work.

Proposition 4.1 (Main trilinear estimates). Let N1 � N and N1 ≥ N2 ≥ N3 be dyadic 
integers. Let e ∈ {e1, . . . , e4} and let I ⊂ R be a time interval. Then the following 
trilinear estimates hold where all space–time norms are taken over I × R4.

N
∥∥PN

(
PN1

v1 PN2
v2 PN3

v3

)∥∥
L1

t L2
x

�

(
N

N1

)(
N3

N2

) 2
3

‖PN1
v1‖XN1

‖PN2
v2‖XN2

‖PN3
v3‖XN3

(4.1)
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N
∥∥PN

(
PN1

v1 PN2
F2 PN3

v3

)∥∥
L1

t L2
x

�

(
N

N1

)(
N3

N2

) 1
3

‖PN1
v1‖XN1

‖PN2
F2‖YN2

‖PN3
v3‖XN3

(4.2)

N
∥∥PN

(
PN1

v1 PN2
v2 PN3

F3

)∥∥
L1

t L2
x

�

(
N

N1

)(
N3

N2

) 2
3

‖PN1
v1‖XN1

‖PN2
v2‖XN2

‖PN3
F3‖YN3

(4.3)

N
∥∥PN

(
PN1

v1 PN2
F2 PN3

F3

)∥∥
L1

t L2
x

�

(
N

N1

)(
N3

N2

) 1
3

‖PN1
v1‖XN1

‖PN2
F2‖YN2

‖PN3
F3‖YN3

(4.4)

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
F2 PN3

F3

)∥∥
L

4
4−ε

, 4
2+ε

e

�

(
N

N1

) 1
2 +ε(

N3

N1

) 1
6

‖PN1
F1‖YN1

‖PN2
F2‖YN2

‖PN3
F3‖YN3

(4.5)

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2 PN3

v3

)∥∥
L

4
4−ε

, 4
2+ε

e

�

(
N

N1

) 1
2 +ε(

N3

N2

) 1
2 −ε

‖PN1
F1‖YN1

‖PN2
v2‖XN2

‖PN3
v3‖XN3

(4.6)

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
F2 PN3

v3

)∥∥
L

4
4−ε

, 4
2+ε

e

�

(
N

N1

) 1
2 +ε(

N3

N1

)( 5
6 −ε)ε

‖PN1
F1‖YN1

‖PN2
F2‖YN2

‖PN3
v3‖XN3

(4.7)

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2 PN3

F3

)∥∥
L

4
4−ε

, 4
2+ε

e

�

(
N

N1

) 1
2 +ε(

N3

N1

) 1
6 − 2

3 ε

‖PN1
F1‖YN1

‖PN2
F2‖YN2

‖PN3
v3‖XN3

(4.8)

Proof. In the following all space–time norms are taken over I × R4. We begin with 

the derivation of the estimates (4.1)–(4.4) where a deterministic solution v appears at 

highest frequency. The proofs are simple applications of Hölder’s inequality and Bernstein 

estimates.

Proof of (4.1): v1v2v3 case.

N
∥∥PN

(
PN1

v1 PN2
v2 PN3

v3

)∥∥
L1

t L2
x

� N‖PN1
v1‖L2

t L4
x
‖PN2

v2‖L3
t L4

x
‖PN3

v3‖L6
t L∞

x

� N‖PN1
v1‖L2

t L4
x
N

1
3

2 ‖PN2
v2‖L3

t L3
x
N

5
3

3 ‖PN3
v3‖

L6
t L

12
5

x

�
(

N

N1

)(
N3

N2

) 2
3

N1‖PN1
v1‖L2

t L4
x
N2‖PN2

v2‖L3
t L3

x
N3‖PN3

v3‖
L6

t L
12
5

x
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�

(
N

N1

)(
N3

N2

) 2
3

‖PN1
v1‖XN1

‖PN2
v2‖XN2

‖PN3
v3‖XN3

Proof of (4.2): v1F2v3 case.

N
∥∥PN

(
PN1

v1 PN2
F2 PN3

v3

)∥∥
L1

t L2
x

� N‖PN1
v1‖L2

t L4
x
‖PN2

F2‖L3
t L6

x
‖PN3

v3‖L6
t L12

x

�

(
N

N1

)(
N3

N2

) 1
3

N1‖PN1
v1‖L2

t L4
x
N

1
3

2 ‖PN2
F2‖L3

t L6
x
N3‖PN3

v3‖
L6

t L
12
5

x

�

(
N

N1

)(
N3

N2

) 1
3

‖PN1
v1‖XN1

‖PN2
F2‖YN2

‖PN3
v3‖XN3

Proof of (4.3): v1v2F3 case.

N
∥∥PN

(
PN1

v1 PN2
v2 PN3

F3

)∥∥
L1

t L2
x

� N‖PN1
v1‖L2

t L4
x
‖PN2

v2‖L3
t L4

x
‖PN3

F3‖L6
t L∞

x

�

(
N

N1

)(
N3

N2

) 2
3

N1‖PN1
v1‖L2

t L4
x
N2‖PN2

v2‖L3
t L3

x
‖PN3

F3‖L6
t L6

x

�

(
N

N1

)(
N3

N2

) 2
3

‖PN1
v1‖XN1

‖PN2
v2‖XN2

‖PN3
F3‖YN3

Proof of (4.4): v1F2F3 case.

N
∥∥PN

(
PN1

v1 PN2
F2 PN3

F3

)∥∥
L1

t L2
x

� N‖PN1
v1‖L2

t L4
x
‖PN2

F2‖L3
t L6

x
‖PN3

F3‖L6
t L12

x

�

(
N

N1

)(
N3

N2

) 1
3

N1‖PN1
v1‖L2

t L4
x
N

1
3

2 ‖PN2
F2‖L3

t L6
x
‖PN3

F3‖L6
t L6

x

�

(
N

N1

)(
N3

N2

) 1
3

‖PN1
v1‖XN1

‖PN2
F2‖YN2

‖PN3
F3‖YN3

We now turn to the proofs of the more delicate trilinear estimates (4.5)–(4.8) where 

a (random, low-regularity) forcing term F appears at highest frequency.

Proof of (4.5): F1F2F3 case. We first use Hölder’s inequality to place the PN3
F3 piece 

into L
4

2−ε
, 4

ε
e ,

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
F2 PN3

F3

)∥∥
L

4
4−ε

, 4
2+ε

e

� N
1
2 +ε

∥∥PN1
F1 PN2

F2

∥∥
L2,2

e

‖PN3
F3‖

L
4

2−ε
, 4

ε
e

.

(4.9)
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Relying on the identity (2.1) we further decompose the highest frequency piece PN1
F1

into

PN1
F1 = PN1,e1

PN1
F1 + PN1,e2

(1 − PN1,e1
)PN1

F1

+ PN1,e3
(1 − PN1,e2

)(1 − PN1,e1
)PN1

F1

+ PN1,e4
(1 − PN1,e3

)(1 − PN1,e2
)(1 − PN1,e1

)PN1
F1.

We note that the operators (1 − PN1,e�
)P̃N1

are disposable since their kernels are uni-

formly bounded in L1
x. Using this disposability and the fact that L2,2

e = L2,2
e�

for 

� = 1, . . . , 4 by Fubini’s theorem, we may now use Hölder’s inequality to bound (4.9) by

N
1
2 +ε

∥∥PN1
F1 PN2

F2

∥∥
L2,2

e

‖PN3
F3‖

L
4

2−ε
, 4

ε
e

� N
1
2 +ε

4∑

�=1

‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

‖PN2
F2‖

L
4

2−ε
, 4

ε
e�

‖PN3
F3‖

L
4

2−ε
, 4

ε
e

�
(

N

N1

) 1
2 +ε(

N2

N1

) 1
6
(

N3

N1

) 1
6

4∑

�=1

N
5
6 +ε

1 ‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

× N
− 1

6
2 ‖PN2

F2‖
L

4
2−ε

, 4
ε

e�

N
− 1

6
3 ‖PN3

F3‖
L

4
2−ε

, 4
ε

e

�

(
N

N1

) 1
2 +ε(

N3

N1

) 1
6

‖PN1
F1‖YN1

‖PN2
F2‖YN2

‖PN3
F3‖YN3

.

Proof of (4.6): F1v2v3 case. We begin by placing the PN3
v3 piece into L

4
2−ε

, 4
ε

e ,

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2 PN3

v3

)∥∥
L

4
4−ε

, 4
2+ε

e

� N
1
2 +ε

∥∥PN1
F1 PN2

v2

∥∥
L2,2

e

‖PN3
v3‖

L
4

2−ε
, 4

ε
e

.

(4.10)

On the one hand we may proceed as in the proof of (4.5) to estimate the term ∥∥PN1
F1 PN2

v2

∥∥
L2,2

e

by

∥∥PN1
F1 PN2

v2

∥∥
L2,2

e

�

( 4∑

�=1

‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

)( 4∑

�=1

‖PN2
v2‖

L
4

2−ε
, 4

ε
e�

)
,

while on the other hand we may use that L2,2
e = L2

t L2
x to bound the term by

∥∥PN1
F1 PN2

v2

∥∥
L2,2

e

� ‖PN1
F1‖L6

t L6
x
‖PN2

v2‖L3
t L3

x
.

Interpolating between the two cases we now estimate (4.10) by
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N
1
2 +ε

∥∥PN1
F1 PN2

v2

∥∥
L2,2

e

‖PN3
v3‖

L
4

2−ε
, 4

ε
e

� N
1
2 +ε

( 4∑

�=1

‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

) 1
3 + 8ε

9−6ε
(

‖PN1
F1‖L6

t L6
x

) 2
3 − 8ε

9−6ε

×

×
( 4∑

�=1

‖PN2
v2‖

L
4

2−ε
, 4

ε
e�

) 1
3 + 8ε

9−6ε
(

‖PN2
v2‖L3

t L3
x

) 2
3 − 8ε

9−6ε

‖PN3
v3‖

L
4

2−ε
, 4

ε
e

�
(

N

N1

) 1
2 +ε(

N3

N2

) 1
2 −ε

×

×
( 4∑

�=1

N
5
6 +(1− 4

9−6ε
)ε

1 ‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

) 1
3 + 8ε

9−6ε

×

×
(

N
1
3 +(1− 4

9−6ε
)ε

1 ‖PN1
F1‖L6

t L6
x

) 2
3 − 8ε

9−6ε

×

×
( 4∑

�=1

N
− 1

2 +ε
2 ‖PN2

v2‖
L

4
2−ε

, 4
ε

e�

) 1
3 + 8ε

9−6ε
(

N2‖PN2
v2‖L3

t L3
x

) 2
3 − 8ε

9−6ε

×

× N
− 1

2 +ε
3 ‖PN3

v3‖
L

4
2−ε

, 4
ε

e

�

(
N

N1

) 1
2 +ε(

N3

N2

) 1
2 −ε

‖PN1
F1‖YN1

‖PN2
v2‖XN2

‖PN3
v3‖XN3

.

Proof of (4.7): F1F2v3 case. Here we first place the PN2
F2 piece into L

4
2−ε

, 4
ε

e ,

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
F2 PN3

v3

)∥∥
L

4
4−ε

, 4
2+ε

e

� N
1
2 +ε

∥∥PN1
F1 PN3

v3

∥∥
L2,2

e

‖PN2
F2‖

L
4

2−ε
, 4

ε
e

.

Then interpolating as in the proof of (4.6), we bound this by

N
1
2 +ε

∥∥PN1
F1 PN3

v3

∥∥
L2,2

e

‖PN2
F2‖

L
4

2−ε
, 4

ε
e

� N
1
2 +ε

( 4∑

�=1

‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

) 2
3 +ε(

‖PN1
F1‖L6

t L6
x

) 1
3 −ε

×

× ‖PN2
F2‖

L
4

2−ε
, 4

ε
e

( 4∑

�=1

‖PN3
v3‖

L
4

2−ε
, 4

ε
e�

) 2
3 +ε(

‖PN3
v3‖L3

t L3
x

) 1
3 −ε

�
(

N

N1

) 1
2 +ε(

N2

N1

) 1
6
(

N3

N1

)( 5
6 −ε)ε

×

×
( 4∑

�=1

N
5
6 +( 4

3 −ε)ε
1 ‖PN1,e�

PN1
F1‖

L
4
ε

, 4
2−ε

e�

) 2
3 +ε(

N
1
3 +( 4

3 −ε)ε
1 ‖PN1

F1‖L6
t L6

x

) 1
3 −ε

×
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× N
− 1

6
2 ‖PN2

F2‖
L

4
2−ε

, 4
ε

e

( 4∑

�=1

N
− 1

2 +ε
3 ‖PN3

v3‖
L

4
2−ε

, 4
ε

e�

) 2
3 +ε(

N3‖PN3
v3‖L3

t L3
x

) 1
3 −ε

�

(
N

N1

) 1
2 +ε(

N3

N1

)( 5
6 −ε)ε

‖PN1
F1‖YN1

‖PN2
F2‖YN2

‖PN3
v3‖XN3

.

Proof of (4.8): F1v2F3 case. As usual we first place the random piece PN3
F3 into L

4
2−ε

, 4
ε

e ,

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2 PN3

F3

)∥∥
L

4
4−ε

, 4
2+ε

e

� N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2

∥∥
L2,2

e

‖PN3
F3‖

L
4

2−ε
, 4

ε
e

.

Then, analogously to the previous two cases, we interpolate to obtain

N
1
2 +ε

∥∥PN

(
PN1

F1 PN2
v2

∥∥
L2,2

e

‖PN3
F3‖

L
4

2−ε
, 4

ε
e

� N
1
2 +ε

( 4∑
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‖PN1,e�
PN1

F1‖
L

4
ε

, 4
2−ε

e�

) 2
3
(

‖PN1
F1‖L6

t L6
x
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3

×

×
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L
4

2−ε
, 4

ε
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x
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‖PN3
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2−ε
, 4

ε
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(
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N1

) 1
2 +ε(

N3

N2

) 2
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N1

) 1
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×

×
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N
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ε
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3
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3 ε
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t L6

x

) 1
3

×

×
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2 +ε
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2−ε

, 4
ε

e�
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3
(

N2‖PN2
v2‖L3

t L3
x

) 1
3

N
− 1

6
3 ‖PN3

F3‖
L

4
2−ε

, 4
ε

e

�

(
N

N1

) 1
2 +ε(

N3

N1
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‖PN1
F1‖YN1
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. �

The frequency localized, trilinear estimates (4.1)–(4.8) imply an important set of non-

linear estimates that we will need for the proofs of the almost sure local well-posedness re-

sult of Theorem 1.3 and the conditional scattering result of Theorem 1.8. More precisely, 

given any time interval I, any forcing term F ∈ Y (I), and any v, v1, v2, u, w ∈ X(I), it is 

an easy consequence of the exponential gains in the frequency differences in the trilinear 

estimates (4.1)–(4.8) to conclude that

∥∥|F + v|2(F + v)
∥∥

G(I)
� ‖v‖3

X(I) + ‖v‖2
X(I)‖F‖Y (I) + ‖v‖X(I)‖F‖2

Y (I) + ‖F‖3
Y (I)

� ‖F‖3
Y (I) + ‖v‖3

X(I)

(4.11)
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as well as

∥∥|F + v1|2(F + v1) − |F + v2|2(F + v2)
∥∥

G(I)

� ‖v1 − v2‖X(I)

(
‖F‖2

Y (I) + ‖v1‖2
X(I) + ‖v2‖3

X(I)

)
.

(4.12)

Moreover, using that

|F + u + w|2(F + u + w) − |u|2u = |F |2F + |w|2w + O
(
F 2u

)
+ O

(
F 2w

)
+ O

(
Fu2

)

+ O
(
Fuw

)
+ O

(
Fw2

)
+ O

(
u2w

)
+ O

(
uw2

)
,

we may also infer that

∥∥|F + u + w|2(F + u + w) − |u|2u
∥∥

G(I)

� ‖F‖3
Y (I) + ‖w‖3

X(I) + ‖F‖Y (I)‖u‖2
X(I) + ‖u‖2

X(I)‖w‖X(I).
(4.13)

5. Almost sure bounds for the free evolution

In this section we establish various almost sure bounds for the free evolution of the 

random data. In Subsection 5.1 we recall some probabilistic preliminaries. Then Subsec-

tion 5.2 is dedicated to the proof that the Y (R) norm of eitΔfω is almost surely finite 

for any f ∈ Hs
x(R4) with 1

3 < s < 1, while in Subsection 5.3 we establish further almost 

sure bounds that enter the proof of Theorem 1.9 and mostly crucially rely on a radial 

symmetry assumption.

5.1. Probabilistic preliminaries

We first recall the following large deviation estimate.

Lemma 5.1 ([15, Lemma 3.1]). Let {gn}∞
n=1 be a sequence of real-valued, independent, 

zero-mean random variables with associated distributions {μn}∞
n=1 on a probability space 

(Ω, A, P). Assume that the distributions satisfy the property that there exists c > 0 such 

that

∣∣∣∣
+∞∫

−∞

eγxdμn(x)

∣∣∣∣ ≤ ecγ2

for all γ ∈ R and for all n ∈ N.

Then there exists α > 0 such that for every λ > 0 and every sequence {cn}∞
n=1 ∈ �2(N; C)

of complex numbers,

P

({
ω :

∣∣
∞∑

n=1

cngn(ω)
∣∣ > λ

})
≤ 2 exp

(
−α

λ2

∑
n |cn|2

)
.
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As a consequence there exists C > 0 such that for every 2 ≤ p < ∞ and every {cn}∞
n=1 ∈

�2(N; C),

∥∥∥
∞∑

n=1

cngn(ω)
∥∥∥

Lp
ω(Ω)

≤ C
√

p
( ∞∑

n=1

|cn|2
)1/2

.

We also present a lemma that will be used to estimate the probability of certain 

events. Its proof is an adaptation of the proof of Lemma 4.5 in [67].

Lemma 5.2. Let F be a real-valued measurable function on a probability space (Ω, A, P). 

Suppose that there exist C0 > 0, K > 0 and p0 ≥ 1 such that for every p ≥ p0 we have

‖F‖Lp
ω(Ω) ≤ √

p C0K.

Then there exist c > 0 and C1 > 0, depending on C0 and p0 but independent of K, such 

that for every λ > 0,

P
({

ω ∈ Ω : |F (ω)| > λ
})

≤ C1e−cλ2/K2

.

In particular, it follows that

P
({

ω ∈ Ω : |F (ω)| < ∞
})

= 1.

5.2. Almost sure bounds for the Y (R) norm

The purpose of this subsection is to establish the following almost sure bound for the 

Y (R) norm of the free evolution of the random data.

Proposition 5.3. Let 1
3 < s < 1 and let 0 < ε < 1

3 (s − 1
3 ). Let f ∈ Hs

x(R4) and denote by 

fω the randomization of f as defined in (1.5). Then there exist absolute constants C > 0

and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥eitΔfω
∥∥

Y (R)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (5.1)

In particular, we have for almost every ω ∈ Ω that

∥∥eitΔfω
∥∥

Y (R)
< ∞. (5.2)

Before we turn to the proof of Proposition 5.3, we first present a key improvement 

of the maximal function estimate for unit-scale frequency localized data. Its proof is an 

adaptation of the proof of Lemma 4.1 in Ionescu–Kenig [36].
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Lemma 5.4 (Unit-scale maximal function estimate). There exists an absolute constant 

C ≥ 1 such that for all k ∈ Z4 with |k| ≥ 10 and for each � = 1, . . . , 4, it holds that

∥∥eitΔPkf
∥∥

L2,∞
e�

(R×R4)
≤ C|k| 1

2 ‖Pkf‖L2
x(R4). (5.3)

Proof. It suffices to consider the case � = 1. Let k ∈ Z4 with |k| ≥ 10 be fixed. We 

use the notation x′ = (x2, x3, x4) and we denote by ξ′ the associated Fourier variable 

coordinates. Now let ϕk ∈ C∞
c (R) and ηk ∈ C∞

c (R3) be bump functions with unit-sized 

support and uniformly bounded derivatives such that

ψ(ξ − k) = ψ(ξ − k)ϕk(ξ1)ηk(ξ′) for all ξ = (ξ1, ξ′) ∈ R
4.

In particular, we have that |supp(ϕk)| � 1 and |supp(ηk)| � 1.

By a TT ∗-argument the proof of (5.3) reduces to establishing the estimate

∥∥∥∥
∫

Rξ1

∫

R3
ξ′

eix1ξ1eix′·ξ′

e−it(ξ2
1+|ξ′|2)ϕk(ξ1)ηk(ξ′) dξ′ dξ1

∥∥∥∥
L1

x1
L∞

t,x′

� |k|. (5.4)

Since ηk(·) has unit-sized support, a stationary phase argument yields

sup
x′∈R3, t∈R

∣∣∣∣
∫

R3
ξ′

eix′·ξ′

e−it|ξ′|2

ηk(ξ′) dξ′

∣∣∣∣ � min
{

1, |t|− 3
2

}
. (5.5)

Analogously, by the unit-sized support of ϕk(·) and by stationary phase we have

sup
x1∈R, t∈R

∣∣∣∣
∫

Rξ1

eix1ξ1e−itξ2
1 ϕk(ξ1) dξ1

∣∣∣∣ � min
{

1, |t|− 1
2

}
. (5.6)

Moreover, if |x1| ≥ 1000|k||t|, then integrating by parts twice, we find that

∣∣∣∣
∫

Rξ1

eix1ξ1e−itξ2
1 ϕk(ξ1) dξ1

∣∣∣∣ �
1

1 + |x1|2 , (5.7)

using that in the regime |x1| ≥ 1000|k||t|, we have

∣∣∣∣
1

x1 − 2tξ1

∣∣∣∣ �
1

|x1| and

∣∣∣∣
∂j

∂ξj
1

(
1

x1 − 2tξ1

)∣∣∣∣ �
1

|x1| for j = 1, 2.

The latter bounds follow from the observation that if |x1| ≥ 1000|k||t|, then we have 

|x1 − 2tξ1| ≥ c|x1| for some small absolute constant 0 < c � 1 since also |ξ1| ≤ 10|k|. 
Additionally, note that in this regime we may also bound

|t| � |x1|
|k| � |x1|.
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Thus, using (5.5), (5.6) and (5.7), we obtain uniformly for all x1 ∈ R that

∥∥∥∥
∫

Rξ1

∫

R3
ξ′

eix1ξ1eix′·ξ′

e−it(ξ2
1+|ξ′|2)ϕk(ξ1)ηk(ξ′) dξ′ dξ1

∥∥∥∥
L∞

t,x′

� χ[0,|k|](|x1|) + χ[|k|,∞)(|x1|)
( |k|

|x1|

)2

+
1

1 + |x1|2 ,

(5.8)

where χ[0,|k|](·) and χ[|k|,∞)(·) are sharp cut-off functions to the intervals [0, |k|] and 

[|k|, ∞), respectively. Integrating in x1 over (5.8), we obtain the desired bound (5.4). �

Remark 5.5. We emphasize that the proof of Lemma 5.4 generalizes to all space dimen-

sions d ≥ 3 and the same half derivative cost |k| 1
2 occurs in all space dimensions d ≥ 3. 

The cost of only half a derivative in (5.3) should be compared with the three halves 

derivative cost of the usual maximal function estimate (3.4) for dyadically frequency 

localized data.

We are now prepared to prove Proposition 5.3.

Proof of Proposition 5.3. For any p ≥ 4
ε we have by Minkowski’s inequality that

∥∥∥
∥∥eitΔfω

∥∥
Y (R)

∥∥∥
Lp

ω

≤
( ∑

N∈2Z

∥∥∥
∥∥PN eitΔfω

∥∥
YN (R)

∥∥∥
2

Lp
ω

) 1
2

.

We consider the components of the YN(R) norm separately. In the sequel, we will re-

peatedly use that the free evolution and the frequency projections commute. We first 

treat the component coming from the Strichartz spaces. By Lemma 5.1, the unit-scale 

Bernstein estimate (1.4), and the Strichartz estimates (3.1), we have

〈N〉 1
3 +3ε

∥∥‖PN eitΔfω‖L3
t L6

x∩L6
t L6

x(R×R4)

∥∥
Lp

ω

≤ 〈N〉 1
3 +3ε

∥∥∥∥
∥∥∥

∑

|k|∼N

gk(ω)eitΔPkf
∥∥∥

Lp
ω

∥∥∥∥
L3

t L6
x∩L6

t L6
x(R×R4)

�
√

p 〈N〉 1
3 +3ε

( ∑

|k|∼N

∥∥eitΔPkf
∥∥2

L3
t L6

x∩L6
t L6

x(R×R4)

) 1
2

�
√

p 〈N〉 1
3 +3ε

( ∑

|k|∼N

∥∥eitΔPkf
∥∥2

L3
t L3

x∩L6
t L

12
5

x (R×R4)

) 1
2

�
√

p 〈N〉 1
3 +3ε

( ∑

|k|∼N

‖Pkf‖2
L2

x(R4)

) 1
2

� √
p 〈N〉 1

3 +3ε‖PN f‖L2
x(R4).
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Next, we estimate the local smoothing type component of the YN(R) component. Here 

we first apply the local smoothing type estimate (3.5) for the lateral spaces and then use 

the large deviation estimate from Lemma 5.1 to obtain that

∥∥∥∥
4∑

�=1

〈N〉 1
3 +3εN

1
2 −ε

∥∥eitΔPN,e�
PN fω

∥∥
L

4
ε

, 4
2−ε

e�
(R×R4)

∥∥∥∥
Lp

ω

�

∥∥∥∥〈N〉 1
3 +3ε‖PN fω‖L2

x(R4)

∥∥∥∥
Lp

ω

�
√

p 〈N〉 1
3 +3ε

( ∑

|k|∼N

‖Pkf‖2
L2

x(R4)

) 1
2

�
√

p 〈N〉 1
3 +3ε‖PN f‖L2

x(R4).

Finally, we turn to the maximal function type component of the YN (R) norm, where we 

distinguish the large frequency regime N � 1 and the small frequency regime N � 1. For 

large frequencies N � 1 we first use the large deviation estimate from Lemma 5.1 and 

then interpolate between the improved maximal function estimate (5.3) for unit-scale 

frequency localized data and an estimate of the L4
t L4

x(R ×R4) norm of the free evolution 

of unit-scale frequency localized data (based on the unit-scale Bernstein estimate (1.4)

and Strichartz estimates (3.1)) to conclude that

∥∥∥∥
4∑

�=1

N− 1
6

∥∥eitΔPN fω
∥∥

L
4

2−ε
, 4

ε
e�

(R×R4)

∥∥∥∥
Lp

ω

�
√

p
4∑

�=1

N− 1
6

( ∑

|k|∼N

∥∥eitΔPkf
∥∥2

L
4

2−ε
, 4

ε
e�

(R×R4)

) 1
2

�
√

p N− 1
6 N

1
2

( ∑

|k|∼N

‖Pkf‖2
L2

x(R4)

) 1
2

�
√

p 〈N〉 1
3 ‖PN f‖L2

x(R4).

For small frequencies N � 1, we directly apply the usual maximal function type esti-

mate (3.4), trivially bounding the resulting frequency factors, and then use the large 

deviation estimate to infer that in this case

∥∥∥∥
4∑

�=1

N− 1
6

∥∥eitΔPN fω
∥∥

L
4

2−ε
, 4

ε
e�

(R×R4)

∥∥∥∥
Lp

ω

� N− 1
6 N

3
2 −ε

∥∥∥
∥∥PN fω

∥∥
L2

x(R4)

∥∥∥
Lp

ω

�
√

p ‖PN f‖L2
x(R4).

Putting all of the above estimates together, we find that

∥∥∥
∥∥eitΔfω

∥∥
Y (R)

∥∥∥
Lp

ω

�
√

p

( ∑

N∈2Z

(
〈N〉 1

3 +3ε‖PN f‖L2
x(R4)

)2
) 1

2

�
√

p ‖f‖Hs
x(R4),

from which the assertion follows by Lemma 5.2. �
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5.3. Almost sure bounds for the proof of Theorem 1.9

We first collect several harmonic analysis estimates that will play an important role 

in establishing the additional almost sure bounds for the free evolution of randomized 

radial data for the proof of Theorem 1.9. We will crucially rely on the following local 

smoothing estimate for the Schrödinger evolution.

Proposition 5.6 (Local smoothing estimate; [26,61,68]). For any δ > 0 it holds that

∥∥〈x〉− 1
2 −δeitΔf

∥∥
L2

t L2
x(R×Rd)

�δ

∥∥|∇|− 1
2 f

∥∥
L2

x(Rd)
. (5.9)

Furthermore, by scaling, we have

sup
R>0

R− 1
2

∥∥eitΔf
∥∥

L2
t L2

x(R×{|x|≤R})
�

∥∥|∇|− 1
2 f

∥∥
L2

x(Rd)
. (5.10)

Moreover, we recall the following “radialish” Sobolev type estimate for the square-

function associated with the unit-scale projections of a radial function that was estab-

lished by the authors [30]. It will be a key ingredient in the proofs of several almost sure 

bounds in this subsection.

Lemma 5.7 (“Radialish” Sobolev estimate; [30, Lemma 2.2]). For any δ > 0 there exists 

Cδ > 0 such that for all radially symmetric f : R4 → C it holds that

∥∥∥∥|x| 3
2

( ∑

k∈Z4

∣∣Pkf
∣∣2

) 1
2

∥∥∥∥
L∞

x (R4)

≤ Cδ‖f‖Hδ
x(R4). (5.11)

We also state a simple corollary of the above “radialish” Sobolev estimate.

Lemma 5.8. Let 2 ≤ r ≤ ∞ and δ > 0. Then there exists Cδ > 0 such that we have for 

all radially symmetric functions f : R4 → C and for all dyadic integers N ≥ 1 that

∥∥∥∥|x| 3
2 (1− 2

r
)
( ∑

k∈Z4

∣∣PkfN

∣∣2
) 1

2

∥∥∥∥
Lr

x(R4)

≤ CδN δ
∥∥fN

∥∥
L2

x(R4)
. (5.12)

Proof. The estimate follows by interpolation between the radialish Sobolev estimate 

from Lemma 5.7 and the trivial estimate

∥∥∥∥
( ∑

k∈Z4

∣∣PkfN

∣∣2
) 1

2

∥∥∥∥
L2

x(R4)

�
∥∥fN

∥∥
L2

x(R4)
. �

We borrow the following useful technical lemma from [44, Lemma 2.3].
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Lemma 5.9. For 0 ≤ α ≤ 1 and 4 < r < ∞, we have

∥∥〈x〉αu
∥∥

L∞
x (R4)

�
∥∥〈x〉αP≤1u

∥∥
Lr

x(R4)
+

∑

N≥2

N
4
r

∥∥〈x〉αPN u
∥∥

Lr
x(R4)

.

Moreover, we will require the next two technical lemmas on certain operator norm 

bounds.

Lemma 5.10. Let 2 ≤ r ≤ ∞. For any k ∈ Z4, any integers j, � > 0 with � > j + 5 and 

any integer M > 0, it holds that

∥∥χjPkχ�

∥∥
L2

x(R4)→Lr
x(R4)

≤ CM 2−M�. (5.13)

Proof. We have that

χj(x)
(
Pkχ�f

)
(x) ∼ χj(x)

∫

R4

eik(x−y)ψ̌(x − y)χ�(y)f(y) dy

∼ χj(x)

∫

R4

eik(x−y)ϕ̃(2−�(x − y))ψ̌(x − y)χ�(y)f(y) dy,

where we could freely introduce a suitable bump function ϕ̃(·) with ϕ̃(z) = 1 for |z| ∼ 1, 

because |x − y| ∼ 2� thanks to |x| ∼ 2j , |y| ∼ 2� and � > j + 5. Thus, we obtain from 

Young’s inequality and the rapid decay of ψ̌(·) that for any integer M > 0,

∥∥χjPkχ�f
∥∥

Lr
x(R4)

�
∥∥ϕ̃(2−�·)ψ̌(·)

∥∥
L

2r
r+2
x (R4)

‖f‖L2
x(R4) � CM 2−M�‖f‖L2

x(R4). �

Lemma 5.11. For any integer � ≥ 0, any k, m ∈ Z4 with |k − m| ≥ 100, any 2 ≤ r ≤ ∞, 

and any integer M > 0 we have

∥∥Pkχ�Pm

∥∥
L2

x(R4)→Lr
x(R4)

≤ CM 2−M�|k − m|−M . (5.14)

Proof. By repeated integration by parts we find that the Fourier transform of χ� satisfies 

for any ξ �= 0 that

∣∣χ̂�(ξ)
∣∣ ≤ CM 2−M�|ξ|−M 2d�

∣∣(∇̂M
x χ)(2�ξ)

∣∣. (5.15)

Thus, from the unit-scale Bernstein estimate (1.4) we obtain for any function g ∈ L2
x(R4)

that

∥∥Pkχ�Pmg
∥∥

Lr
x(R4)

�
∥∥Pkχ�Pmg

∥∥
L2

x(R4)
.

Using Plancherel’s theorem, it then follows that
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∥∥Pkχ�Pmg
∥∥

L2
x(R4)

=
∥∥F

(
Pkχ�Pmg

)∥∥
L2

ξ(R4)

∼
∥∥∥∥ψ(ξ − k)

∫

R4

χ̂�(ξ − η)ψ(η − m)ĝ(η) dη

∥∥∥∥
L2

ξ(R4)

∼
∥∥∥∥ψ(ξ − k)

∫

R4

ϕ̃
(
|k − m|−1(ξ − η)

)
χ̂�(ξ − η)ψ(η − m)ĝ(η) dη

∥∥∥∥
L2

ξ(R4)

,

where in the last step we have exploited that we may freely introduce a suitable bump 

function ϕ̃(·) with ϕ̃(z) = 1 near |z| ∼ 1 due to the frequency support properties of 

ψ(· − k) and ψ(· − m). We then use Young’s inequality as well as the bound (5.15) on 

the Fourier transform of χ� to obtain

∥∥Pkχ�Pmg
∥∥

L2
x(R4)

�
∥∥ϕ̃

(
|k − m|−1·

)
χ̂�(·)

∥∥
L1

ξ(R4)
‖ĝ‖L2

ξ(R4) � 2−M�|k − m|−M ‖g‖L2
x(R4),

which concludes the proof. �

We are now prepared to establish a key weighted L2
t L∞

x (R × R4) almost sure bound 

for the derivative of the free evolution of randomized radial data. The proof combines 

the large deviation estimate from Lemma 5.1, the local smoothing estimate from Propo-

sition 5.6 and the “radialish” Sobolev estimate from Lemma 5.7.

Proposition 5.12. Let 1
2 < s < 1 and 0 ≤ α < 1. Let f ∈ Hs

x(R4) be radially symmetric 

and denote by fω the randomization of f as defined in (1.5). Then there exist absolute 

constants C > 0 and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥〈x〉α∇eitΔfω
∥∥

L2
t L∞

x (R×R4)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (5.16)

In particular, we have for almost every ω ∈ Ω that

∥∥〈x〉α∇eitΔfω
∥∥

L2
t L∞

x (R×R4)
< ∞. (5.17)

Proof. In the following all space–time norms are taken over R × R4. We denote by 

δ > 0 a constant which will be chosen sufficiently small at the end of the proof. For any 

4 < r < ∞ we have by Lemma 5.9 that

∥∥〈x〉α∇eitΔfω
∥∥

Lp
ωL2

t L∞
x

�
∥∥〈x〉α∇eitΔP≤1fω

∥∥
Lp

ωL2
t Lr

x

+
∑

N≥2

N
4
r

∥∥〈x〉α∇eitΔPN fω
∥∥

Lp
ωL2

t Lr
x

. (5.18)

We now estimate the high-frequency terms in the sum on the right-hand side of (5.18). 

For each dyadic integer N ≥ 2 we decompose physical space dyadically to write
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∥∥〈x〉α∇eitΔPN fω
∥∥

Lp
ωL2

t Lr
x

≤
∑

j≥0

∥∥χj〈x〉α∇eitΔPN fω
∥∥

Lp
ωL2

t Lr
x

�
∑

j≥0

2αj
∥∥χj∇eitΔPN fω

∥∥
Lp

ωL2
t Lr

x

.

Applying the large deviation estimate from Lemma 5.1 and using the shorthand notation 

fN ≡ PN f , we find for any p ≥ r that

∑

j≥0

2αj
∥∥χj∇eitΔPN fω

∥∥
Lp

ωL2
t Lr

x

�
√

p
∑

j≥0

2αj

∥∥∥∥
( ∑

|k|∼N

∣∣χjPk∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x

�
√

p
∑

j≥0

2αj

∥∥∥∥
( ∑

|k|∼N

∣∣χjPkχ≤j+5∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x

+
√

p
∑

j≥0

2αj

∥∥∥∥
( ∑

|k|∼N

∣∣χjPkχ>j+5∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x

≡ √
p(I + II).

We first estimate the main term I. For j = 0 we just use the unit-scale Bernstein 

estimate (1.4) and the local smoothing estimate (5.10) for the free Schrödinger evolution

∥∥∥∥
( ∑

|k|∼N

∣∣χ0Pkχ≤5∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x

�

( ∑

|k|∼N

∥∥Pkχ≤5∇eitΔfN

∥∥2

L2
t Lr

x

) 1
2

�

( ∑

|k|∼N

∥∥Pkχ≤5∇eitΔfN

∥∥2

L2
t L2

x

) 1
2

�
∥∥χ≤5∇eitΔfN

∥∥
L2

t L2
x

�
∥∥|∇|+ 1

2 fN

∥∥
L2

x

.

Then the most delicate case is to estimate the sum over all j ≥ 1 in term I. Here we 

use a combination of the “radialish” Sobolev estimate (5.12) and the local smoothing 

estimate (5.10) to obtain for all sufficiently large r < ∞ with α + 3
r < 1 that

∑

j≥1

2αj

∥∥∥∥
( ∑

|k|∼N

∣∣χjPkχ≤j+5∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x

�
∑

j≥1

2αj2− 3
2 (1− 2

r
)j

∥∥∥∥|x| 3
2 (1− 2

r
)

( ∑

|k|∼N

∣∣Pkχ≤j+5∇eitΔfN

∣∣2
) 1

2
∥∥∥∥

L2
t Lr

x
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�
∑

j≥1

2αj2− 3
2 (1− 2

r
)jN δ

∥∥χ≤j+5∇eitΔfN

∥∥
L2

t L2
x

�
∑

j≥1

2αj2− 3
2 (1− 2

r
)jN δ2

1
2 j

∥∥|∇|+ 1
2 fN

∥∥
L2

x

� N δ
∥∥|∇|+ 1

2 fN

∥∥
L2

x

.

Next we turn to estimating the remainder term II. To this end we introduce the short-

hand notation gN ≡ ∇eitΔfN . Then we have

II �
∑

j≥0

2αj

( ∑

|k|∼N

∥∥χjPkχ>j+5gN

∥∥2

L2
t Lr

x

) 1
2

�
∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∥∥χjPkχ�χ̃�gN

∥∥
L2

t Lr
x

)2
) 1

2

.

Now we further decompose χ̃�gN in frequency space at unit-scale and obtain that the 

previous line is bounded by

∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∑

m∈Z4

∥∥χjPkχ�Pmχ̃�gN

∥∥
L2

t Lr
x

)2
) 1

2

�
∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∑

|m−k|≤100

∥∥χjPkχ�Pmχ̃�gN

∥∥
L2

t Lr
x

)2
) 1

2

+
∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∑

|m−k|>100

∥∥χjPkχ�Pmχ̃�gN

∥∥
L2

t Lr
x

)2
) 1

2

≡ IIA + IIB.

Then we can easily estimate the term IIA using the operator norm bound (5.13) and 

the local smoothing estimate (5.10) to find that

IIA �
∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∑

|m−k|≤100

2−10�
∥∥Pmχ̃�gN

∥∥
L2

t L2
x

)2
) 1

2

�
∑

j≥0

2αj

( ∑

|k|∼N

∑

�>j+5
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|m−k|≤100
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t L2

x

) 1
2

�
∑

j≥0

2αj

( ∑

�>j+5

2−10�
∥∥χ̃�gN
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L2
t L2

x
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�
∑

j≥0

2αj

( ∑

�>j+5

2−10�2�
∥∥|∇|+ 1

2 fN

∥∥2

L2
x

) 1
2

�
∥∥|∇|+ 1

2 fN

∥∥
L2

x

.

Next we use the operator norm bound (5.14) to estimate the term IIB by

IIB �
∑

j≥0

2αj

( ∑

|k|∼N

( ∑

�>j+5

∑

|m−k|>100

∥∥Pkχ�PmP̃mχ̃�gN

∥∥
L2

t Lr
x

)2
) 1

2

�
∑

j≥0

2αj

( ∑

k∈Z4

( ∑

|m−k|>100

∑

�>j+5

|k − m|−102−10�
∥∥P̃mχ̃�gN

∥∥
L2

t L2
x

)2
) 1

2

,

where we denote by P̃m a slight fattening of the unit-scale projection Pm, m ∈ Z4, 

with the property that Pm = PmP̃m. Using Young’s inequality (for the convolution of 

k, m ∈ Z4) and then Cauchy–Schwarz (for the sum over �) the previous line can be 

estimated by

∑

j≥0

2αj

( ∑

k∈Z4,|k|>100

|k|−10

)( ∑

m∈Z4

( ∑

�>j+5

2−10�
∥∥P̃mχ̃�gN

∥∥
L2

t L2
x

)2
) 1

2

�
∑

j≥0

2αj

( ∑

m∈Z4

∑

�>j+5

2−10�
∥∥P̃mχ̃�gN

∥∥2

L2
t L2

x

) 1
2

�
∑

j≥0

2αj

( ∑

�>j+5

2−10�
∑

m∈Z4

∥∥P̃mχ̃�gN

∥∥2

L2
t L2

x

) 1
2

.

Finally, we use that the projections P̃m, m ∈ Z4, are just slight fattenings of the unit-scale 

projections Pm, which constitute a finitely overlapping partition of unity of frequency 

space, and invoke the local smoothing estimate (5.10) to obtain that the last line is 

bounded by

∑

j≥0

2αj

( ∑

�>j+5

2−M�
∥∥χ̃�gN

∥∥2

L2
t L2

x

) 1
2

�
∑

j≥0

2αj

( ∑

�>j+5

2−M�2�
∥∥|∇|+ 1

2 fN

∥∥2

L2
x

) 1
2

�
∥∥|∇|+ 1

2 fN

∥∥
L2

x

.

This finishes the treatment of the high-frequency terms on the right-hand side 

of (5.18). The first low-frequency term on the right-hand side of (5.18) can be esti-

mated analogously and the details are left to the reader, we obtain for all sufficiently 

large p < ∞ that
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∥∥〈x〉α∇eitΔP≤1fω
∥∥

Lp
ωL2

t Lr
x

�
√

p
∥∥|∇|+ 1

2 P≤1f
∥∥

L2
x

.

Thus, putting all of the above estimates together, we conclude that

∥∥〈x〉α∇eitΔfω
∥∥

Lp
ωL2

t L∞
x

�
√

p
∥∥〈x〉α∇eitΔP≤1fω

∥∥
Lp

ωL2
t Lr

x

+
√

p
∑

N≥2

N
4
r N δ

∥∥|∇|+ 1
2 PN f

∥∥
L2

x

�
√

p
∥∥f

∥∥
Hs

x

(5.19)

for all p ≥ r for some sufficiently large r < ∞ and for some sufficiently small δ > 0 (such 

that α + 3
r < 1 and 4

r + δ < s). The claim now follows from Lemma 5.2. �

The next almost sure bound is an immediate consequence of the previous Proposi-

tion 5.12 and the local smoothing estimate from Proposition 5.6.

Proposition 5.13. Let 1
2 < s < 1. Let f ∈ Hs

x(R4) be radially symmetric and denote by 

fω the randomization of f as defined in (1.5). Then there exist absolute constants C > 0

and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥∇eitΔfω
∥∥

L2
t L4

x(R×R4)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (5.20)

In particular, we have for almost every ω ∈ Ω that

∥∥∇eitΔfω
∥∥

L2
t L4

x(R×R4)
< ∞. (5.21)

Proof. In the following all space–time norms are taken over R ×R4. By Hölder’s inequality 

we have for any p ≥ 1 that

∥∥∇eitΔfω
∥∥

Lp
ωL2

t L4
x

≤
∥∥〈x〉− 3

4 ∇eitΔfω
∥∥ 1

2

Lp
ωL2

t L2
x

∥∥〈x〉 3
4 ∇eitΔfω

∥∥ 1
2

Lp
ωL2

t L∞
x

. (5.22)

Then the local smoothing estimate (5.9) and the large deviation estimate from Lemma 5.1

imply for all p ≥ 2 that

∥∥〈x〉− 3
4 ∇eitΔfω

∥∥
Lp

ωL2
t L2

x

�
∥∥|∇| 1

2 fω
∥∥

Lp
ωL2

x

�
√

p
∥∥|∇| 1

2 f
∥∥

L2
x

�
√

p ‖f‖Hs
x
. (5.23)

Moreover, the estimate (5.19) from the proof of Proposition 5.12 yields for all sufficiently 

large p < ∞ that

∥∥〈x〉 3
4 ∇eitΔfω

∥∥
Lp

ωL2
t L∞

x

�
√

p ‖f‖Hs
x
. (5.24)
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Combining (5.22)–(5.24) we obtain for all sufficiently large p < ∞ that

∥∥∇eitΔfω
∥∥

Lp
ωL2

t L4
x

�
√

p ‖f‖Hs
x

and the assertion follows from Lemma 5.2. �

We will also need almost sure bounds on weighted L2
t L∞

x (R × R4) norms of the free 

evolution of randomized radial data. The proof combines Strichartz estimates (3.1) and 

the “radialish” Sobolev estimate from Lemma 5.7.

Proposition 5.14. Let 0 < s < 1 and let 0 ≤ α < 3
4 . Let f ∈ Hs

x(R4) be radially symmetric 

and denote by fω the randomization of f as defined in (1.5). Then there exist absolute 

constants C > 0 and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥〈x〉αeitΔfω
∥∥

L2
t L∞

x (R×R4)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (5.25)

In particular, we have for almost every ω ∈ Ω that

∥∥〈x〉αeitΔfω
∥∥

L2
t L∞

x (R×R4)
< ∞. (5.26)

Proof. As usual, in the following all space–time norms are taken over R × R4. For any 

4 < r < ∞ we have by Lemma 5.9 and the elementary estimate 〈x〉α �α 1 + |x|α that

∥∥〈x〉αeitΔfω
∥∥

Lp
ωL2

t L∞
x

�
∥∥eitΔP≤1fω
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Lp

ωL2
t Lr
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+
∑

N≥2
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4
r

∥∥eitΔPN fω
∥∥

Lp
ωL2

t Lr
x

+
∥∥|x|αeitΔP≤1fω

∥∥
Lp

ωL2
t Lr

x

+
∑

N≥2

N
4
r

∥∥|x|αeitΔPN fω
∥∥

Lp
ωL2

t Lr
x

.

(5.27)

In what follows we only estimate the weighted high-frequency terms on the second line of 

the right-hand side of (5.27). The weighted low-frequency term on the second line of the 

right-hand side of (5.27) can be treated analogously and the large deviation estimates 

for the space–time norms in the first line of the right-hand side of (5.27) are standard 

and left to the reader.

For any dyadic integer N ≥ 2 we have by the large deviation estimate from Lemma 5.1

for any r ≤ p < ∞ that

∥∥|x|αeitΔPN fω
∥∥

Lp
ωL2

t Lr
x

�
√

p

∥∥∥∥|x|α
( ∑

k∈Z4

∣∣eitΔPkPN f
∣∣2

) 1
2
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L2
t Lr

x

. (5.28)

Now let 0 < δ � 1 be an absolute constant whose size will be fixed sufficiently small 

further below. Interpolating the “radialish” Sobolev estimate (5.11)
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with the trivial bound
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yields that

∥∥∥∥|x|α
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∣∣eitΔPkPN f
∣∣2
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3r
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x

) 1
2

. (5.29)

Since by assumption 0 ≤ α < 3
4 , we have for all sufficiently large r < ∞ that 3r

3+αr ≥ 4. 

Hence, we may combine the unit-scale Bernstein estimate (1.4) and the Strichartz esti-

mates (3.1) to bound the right-hand side of (5.29) by

N δ

( ∑

k∈Z4

∥∥eitΔPkPN f
∥∥2

L2
t L4

x

) 1
2

� N δ

( ∑
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∥∥PkPN f
∥∥2

L2
x

) 1
2

� N δ‖PN f‖L2
x
.

Thus, choosing 1 � r < ∞ sufficiently large and 0 < δ � 1 sufficiently small so that 
4
r + δ < s, we conclude that the second line of the right-hand side of (5.27) is bounded 

by

√
p ‖P≤1f‖L2

x
+

√
p

∑

N≥2

N
4
r N δ‖PN f‖L2

x
�

√
p ‖f‖Hs

x
.

The assertion then follows from Lemma 5.2. �

Finally, we will require several almost sure bounds on space–time norms of the free 

evolution whose proofs are standard.

Lemma 5.15. Let s > 0 and let f ∈ Hs
x(R4). Denote by fω the randomization of f as 

defined in (1.5). Then we have for almost every ω ∈ Ω that

∥∥eitΔfω
∥∥

L∞
t L4

x(R×R4)
+

∥∥eitΔfω
∥∥

L∞
t L2

x(R×R4)
+

∥∥eitΔfω
∥∥

L3
t L6

x(R×R4)
< ∞. (5.30)

Proof. In order to establish the L∞
t L4

x(R ×R4) almost sure bound on the free evolution, 

we first apply Sobolev embedding in time. Let 0 < δ � 1 with 0 < δ < s
2 and let 

2 ≤ q < ∞ sufficiently large such that δ > 1
q , then we have

∥∥eitΔfω
∥∥

L∞
t L4

x(R×R4)
�

∥∥〈∂t〉δeitΔfω
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Lq
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�
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∥∥

Lq
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.
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It is now standard to use the large deviation estimate from Lemma 5.1, the unit-scale 

Bernstein estimate (1.4) and the Strichartz estimate (3.1) to infer for all p ≥ q that

∥∥‖eitΔfω‖L∞
t L4

x(R×R4)

∥∥
Lp

ω
�

√
p ‖f‖Hs

x(R4),

which implies the desired almost sure bound by Lemma 5.2. The proofs of the 

L∞
t L2

x(R × R4) and of the L3
t L6

x(R × R4) almost sure bounds are left to the reader. �

6. Almost sure local well-posedness for the cubic NLS on R4

In this section we establish local well-posedness for the forced cubic NLS

{
(i∂t + Δ)v = ±|F + v|2(F + v)

v(t0) = v0 ∈ Ḣ1
x(R4)

(6.1)

for forcing terms F : R ×R4 → C satisfying ‖F‖Y (R) < ∞. Recall that by Proposition 5.3

we have ‖eitΔfω‖Y (R) < ∞ almost surely for any f ∈ Hs
x(R4) with 1

3 < s < 1. The proof 

of the almost sure local well-posedness result of Theorem 1.3 for the cubic NLS (1.7) is 

then an immediate consequence of the following local well-posedness result for the forced 

cubic NLS (6.1).

Proposition 6.1. Let t0 ∈ R and let I be an open time interval containing t0. Let F ∈
Y (R) and let v0 ∈ Ḣ1

x(R4). There exists 0 < δ � 1 such that if

‖ei(t−t0)Δv0‖X(I) + ‖F‖Y (I) ≤ δ, (6.2)

then there exists a unique solution

v ∈ C
(
I; Ḣ1

x(R4)
)

∩ X(I)

to (6.1) on I ×R4. Moreover, the solution extends to a unique solution v : I∗ ×R4 → C to 

the Cauchy problem (6.1) with maximal time interval of existence I∗ � t0, and we have 

the finite time blowup criterion

sup I∗ < ∞ ⇒ ‖v‖X([t0,sup I∗)) = +∞

with an analogous statement in the negative time direction. Finally, a global solution v(t)

to (6.1) satisfying ‖v‖X(R) < ∞ scatters as t → ±∞ in the sense that there exist states 

v± ∈ Ḣ1
x(R4) such that

lim
t→±∞

∥∥v(t) − eitΔv±
∥∥

Ḣ1
x(R4)

= 0.
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Proof. Without loss of generality we may assume that t0 = 0. Let I � 0 be an open 

time interval for which (6.2) holds. Note that the existence of such an interval follows 

from Lemma 3.3(i) and the assumption that ‖F‖Y (R) < ∞. We construct the desired 

local solution via a standard contraction mapping argument. Let δ > 0 be an absolute 

constant whose size will be chosen sufficiently small further below. We define the ball

B :=
{

v ∈ X(I) : ‖v‖X(I) ≤ 2δ
}

and the map

Φ(v)(t) := eitΔv0 ∓ i

t∫

0

ei(t−s)Δ|F + v|2(F + v)(s) ds.

From our main linear estimate (3.12) and the nonlinear estimates (4.11)–(4.12), upon 

choosing δ := (18C)− 1
2 , we obtain for any v, v1, v2 ∈ B that

‖Φ(v)‖X(I) ≤ ‖eitΔv0‖X(I) +

∥∥∥∥
t∫

0

ei(t−s)Δ|F + v|2(F + v)(s) ds

∥∥∥∥
X(I)

≤ ‖eitΔv0‖X(I) + C
∥∥|F + v|2(F + v)

∥∥
G(I)

≤ ‖eitΔv0‖X(T ) + C
(
‖v‖3

X(I) + ‖F‖3
Y (I)

)

≤ 2δ

and

‖Φ(v1) − Φ(v2)‖X(I) ≤ C
∥∥|F + v1|2(F + v1) − |F + v2|2(F + v2)

∥∥
G(I)

≤ C‖v1 − v2‖X(I)

(
‖v1‖2

X(I) + ‖v2‖2
X(I) + ‖F‖2

Y (I)

)

≤ 1

2
‖v1 − v2‖X(I).

It follows that the map Φ: B → B is a contraction with respect to the X(I) norm and 

we infer the existence of a unique solution v ∈ C(I; Ḣ1
x(R4)) ∩ X(I) to (6.1).

By iterating this local well-posedness argument we conclude that the solution extends 

to a unique solution v : I∗ × R4 → C to (6.1) with maximal time interval of existence 

I∗ � 0. We now prove the finite time blowup criterion via a contradiction argument. 

Let T+ := sup I∗ < ∞ and suppose that ‖v‖X([0,T+)) < ∞. We want to find a time 

0 < t1 < T+ such that

∥∥ei(t−t1)Δv(t1)
∥∥

X([t1,T+))
+ ‖F‖Y ([t1,T+)) ≤ δ

2
. (6.3)
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Since ‖F‖Y (R) < ∞ and ‖ei(t−t1)Δv(t1)‖X([t1,∞)) < ∞, Lemma 3.3(i) then implies that 

there exists η > 0 such that

∥∥ei(t−t1)Δv(t1)
∥∥

X([t1,T++η))
+ ‖F‖Y ([t1,T++η)) ≤ δ.

But then the above local well-posedness result implies that the solution v(t) extends 

beyond time T+ = sup I∗, which is a contradiction. Now to prove (6.3) we use the 

Duhamel formula for the solution v(t) to write

ei(t−t1)Δv(t1) = v(t) ± i

t∫

t1

ei(t−s)Δ|F + v|2(F + v)(s) ds.

Then our main linear estimate (3.12) together with (4.11) imply that

∥∥ei(t−t1)Δv(t1)
∥∥

X([t1,T+)
≤ ‖v‖X([t1,T+)) +

∥∥∥∥
t∫

t1

ei(t−s)Δ|F + v|2(F + v)(s) ds

∥∥∥∥
X([t1,T+))

≤ ‖v‖X([t1,T+)) + C
(
‖F‖3

Y ([t1,T+)) + ‖v‖3
X([t1,T+))

)
.

Using Lemma 3.3(i) as well as the assumptions ‖v‖X([0,T+)) < ∞ and ‖F‖Y (R) < ∞, we 

may conclude that ‖v‖X([t1,T+)) → 0 and ‖F‖Y ([t1,T+)) → 0 as t1 ↗ T+, which yields 

(6.3).

Finally we turn to the proof of the scattering statement for a global solution v(t) to 

(6.1) satisfying ‖v‖X(R) < ∞. By similar arguments as above we infer that the scattering 

state in the positive time direction

v+ := v0 ∓ i

∞∫

0

e−isΔ|F + v|2(F + v)(s) ds

belongs to Ḣ1
x(R4) and satisfies ‖v(t) − eitΔv+‖Ḣ1

x(R4) → 0 as t → ∞. An analogous 

argument holds for the negative time direction. �

The proof of Theorem 1.3 is now an immediate consequence of the local well-posedness 

result from Proposition 6.1 for the forced cubic nonlinear Schrödinger equation (6.1) and 

the almost sure bounds on the Y (R) norm of the free evolution eitΔfω of the random 

data established in Proposition 5.3.

Proof of Theorem 1.3. We seek a solution to the cubic NLS (1.7) of the form

u(t) = eitΔfω + v(t).
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To this end the nonlinear component v(t) must be a solution to the following forced 

cubic NLS

(i∂t + Δ)v = ±|eitΔfω + v|2(eitΔfω + v) (6.4)

with zero initial data v(0) = 0. By Proposition 5.3 we have ‖eitΔfω‖Y (R) < ∞ for almost 

every ω ∈ Ω. Thus, by Lemma 3.3(i), for almost every ω ∈ Ω there exists an interval 

Iω such that ‖eitΔfω‖Y (Iω) ≤ δ, where 0 < δ � 1 is the small absolute constant from 

the statement of Proposition 6.1. Consequently, by Proposition 6.1 there exists a unique 

solution v ∈ C(Iω; Ḣ1
x(R4)) ∩ X(Iω) to (6.4) for almost every ω ∈ Ω. This concludes the 

proof of Theorem 1.3. �

7. Conditional scattering for the forced defocusing cubic NLS on R4

In this section we prove the conditional scattering result of Theorem 1.8 for the forced 

defocusing cubic NLS (1.8). The proof relies on a suitable perturbation theory to compare 

solutions to the forced defocusing cubic NLS

{
(i∂t + Δ)v = |F + v|2(F + v)

v(t0) = v0 ∈ Ḣ1
x(R4)

(7.1)

with solutions to the “usual” defocusing cubic NLS

{
(i∂t + Δ)u = |u|2u

u(t0) = u0 ∈ Ḣ1
x(R4).

(7.2)

We begin with an a priori estimate on the X(R) norm of global solutions to the defocusing 

cubic NLS (7.2).

Lemma 7.1. There exists a non-decreasing function K : [0, ∞) → [0, ∞) with the following 

property. Let u0 ∈ Ḣ1
x(R4) and t0 ∈ R. Then there exists a unique global solution u ∈

C
(
R; Ḣ1

x(R4)
)

to the defocusing cubic NLS (7.2) satisfying the a priori bound

‖u‖X(R) ≤ K(E(u0)),

where

E(u0) :=

∫

R4

1

2
|∇u0|2 +

1

4
|u0|4 dx.

Proof. It follows from the work of Ryckman–Visan [60] and Visan [69] that there exists a 

non-decreasing function L : [0, ∞) → [0, ∞) such that for any u0 ∈ Ḣ1
x(R4), there exists 
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a unique global solution u ∈ C
(
R; Ḣ1

x(R4)
)

to the defocusing cubic NLS (7.2) with initial 

data u(t0) = u0 satisfying the a priori bound

‖∇u‖L3
t L3

x(R×R4) ≤ L(E(u0)).

Using the linear estimate (3.12) we then find that

‖u‖X(R) � ‖u0‖Ḣ1
x(R4) +

∥∥|u|2u
∥∥

G(R)

� E(u0)
1
2 +

( ∑

N∈2Z

N2
∥∥PN

(
|u|2u

)∥∥2

L1
t L2

x(R×R4)

) 1
2

� E(u0)
1
2 +

∥∥∇
(
|u|2u

)∥∥
L1

t L2
x(R×R4)

� E(u0)
1
2 + ‖∇u‖L3

t L3
x(R×R4)‖u‖2

L3
t L12

x (R×R4)

� E(u0)
1
2 + ‖∇u‖3

L3
t L3

x(R×R4)

� E(u0)
1
2 + L(E(u0))3,

which implies the assertion. �

Next we develop a suitable perturbation theory to compare solutions to the forced 

defocusing cubic NLS (7.1) with solutions to the defocusing cubic NLS (7.2). The proof 

proceeds along pre-existing lines using the linear estimate (3.12), the nonlinear esti-

mate (4.13) and the time divisibility properties (3.9) of the X(I) and Y (I) spaces as key 

ingredients.

Lemma 7.2 (Short-time perturbations). Let I ⊂ R be a time interval with t0 ∈ I and let 

v0, u0 ∈ Ḣ1
x(R4). There exist small absolute constants 0 < δ � 1 and 0 < η0 � 1 with 

the following properties. Let u : I × R4 → C be the solution to (7.2) with initial data 

u(t0) = u0 satisfying

‖u‖X(I) ≤ δ (7.3)

and let F : I × R4 → C be a forcing term such that

‖F‖Y (I) ≤ η (7.4)

for some 0 < η ≤ η0. Suppose also that

‖v0 − u0‖Ḣ1
x(R4) ≤ η0. (7.5)

Then there exists a unique solution v : I × R4 → C to (7.1) with initial data v(t0) = v0

and we have
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‖v − u‖L∞
t Ḣ1

x(I×R4) + ‖v − u‖X(I) ≤ C0

(
‖v0 − u0‖Ḣ1

x(R4) + η
)

(7.6)

for some absolute constant C0 ≥ 1.

Proof. In view of the local existence theory from Proposition 6.1 it suffices to estab-

lish (7.6) as an a priori estimate. We define w := v − u and observe that w is a solution 

to the difference equation

{
(i∂t + Δ)w = |F + u + w|2(F + u + w) − |u|2u on I × R

4,

w(t0) = v0 − u0.

By the linear estimate (3.12) and the nonlinear estimate (4.13), we find that

‖w‖L∞
t Ḣ1

x(I×R4) + ‖w‖X(I)

� ‖v0 − u0‖Ḣ1
x(R4) + ‖F‖3

Y (I) + ‖w‖3
X(I) + ‖u‖2

X(I)‖F‖Y (I) + ‖u‖2
X(I)‖w‖X(I)

� ‖v0 − u0‖Ḣ1
x(R4) + η3 + ‖w‖3

X(I) + δ2η + δ2‖w‖X(I).

The assertion now follows from a standard continuity argument. �

Lemma 7.3 (Long-time perturbations). Let I ⊂ R be a time interval with t0 ∈ I and let 

v0 ∈ Ḣ1
x(R4). Let u : I × R4 → C be the solution to (7.2) with initial data u(t0) = v0

satisfying

‖u‖X(I) ≤ K. (7.7)

Then there exists 0 < η1(K) � 1 such that for any forcing term F : I×R4 → C satisfying

‖F‖Y (I) ≤ η (7.8)

for some 0 < η ≤ η1(K), there exists a unique solution v : I × R4 → C to (7.1) with 

initial data v(t0) = v0 and it holds that

‖v − u‖L∞
t Ḣ1

x(I×R4) + ‖v − u‖X(I) � exp
(
C1K

4
ε

)
η (7.9)

for some absolute constant C1 � 1. In particular, it holds that

‖v − u‖L∞
t Ḣ1

x(I×R4) + ‖v − u‖X(I) � 1. (7.10)

Proof. We may assume without loss of generality that t0 = inf I. Moreover, it again 

suffices to establish (7.9) as an a priori estimate in view of the local existence theory 

from Proposition 6.1. We first use the time divisibility property of the X(I) norm, 

see Lemma 3.3, to partition the interval I into J ≡ J(K) consecutive intervals Ij , 

j = 1, . . . , J , with disjoint interiors such that
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‖u‖X(Ij) ≤ δ

for j = 1, . . . , J , where 0 < δ � 1 is the absolute constant from the statement of 

Lemma 7.2. Note that by (3.9) we have that

J ∼
‖u‖

4
ε

X(I)

δ
4
ε

� K
4
ε . (7.11)

In the following we denote tj−1 := inf Ij for j = 1, . . . , J . We would like to apply 

Lemma 7.2 on each interval Ij to infer bounds on the X(Ij) norm of v − u. To this end 

we have to make sure that for j = 1, . . . , J it holds that

‖F‖Y (Ij) ≤ η0 (7.12)

and

‖v(tj−1) − u(tj−1)‖Ḣ1
x(R4) ≤ η0, (7.13)

where 0 < η0 � 1 is the absolute constant from the statement of Lemma 7.2. Below we 

will in particular choose 0 < η1(K) ≤ η0 which takes care of (7.12). To ensure (7.13) we 

now prove by induction that we have

‖v − u‖L∞
t Ḣ1

x(Ij×R4) + ‖v − u‖X(Ij) ≤ (2C0)jη (7.14)

for j = 1, . . . , J , if we choose 0 < η1(K) � 1 sufficiently small depending on the size 

of K. Note that since (7.13) trivially holds for j = 1, we obtain (7.14) for the case j = 1

from an application of (7.6). Now suppose that (7.14) holds for all 1 ≤ i ≤ j − 1 and 

suppose that

(2C0)j−1η ≤ η0, (7.15)

then we can prove that (7.14) also holds for j. By the inductive hypothesis we can 

apply (7.6) on the interval Ij and obtain that

‖v − u‖L∞
t Ḣ1

x(Ij×R4) + ‖v − u‖X(Ij) ≤ C0

(
‖v(tj−1) − u(tj−1)‖Ḣ1

x(R4) + η
)

≤ C0

(
(2C0)j−1η + η

)

≤ (2C0)jη,

which yields (7.14) for j. In order to complete the induction, we observe that in view 

of (7.11) it suffices to fix

η1(K) := exp
(
−C1K

4
ε

)
η0
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for some large absolute constant C1 � 1 to guarantee that (7.15) holds for j = 1, . . . , J .

Finally, we sum up the bounds (7.14) to infer that

‖v − u‖L∞
t Ḣ1

x(I×R4) + ‖v − u‖X(I) ≤
J∑

j=1

‖v − u‖L∞
t Ḣ1

x(Ij×R4) + ‖v − u‖X(Ij)

≤
J∑

j=1

(2C0)jη

� (2C0)Jη

� exp
(
C1K

4
ε

)
η.

This establishes (7.9) and then (7.10) follows from the choice of η1(K). �

We are now in a position to give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let v(t) be the unique solution to the forced cubic NLS (1.8)

defined on its maximal time interval of existence I∗ = (T−, T+) satisfying the a priori 

energy bound (1.9), namely

M := sup
t∈I∗

E(v(t)) < ∞.

By Proposition 6.1 it suffices to prove that ‖v‖X(I∗) < ∞ in order to infer that v(t)

exists globally in time and scatters as t → ±∞. Moreover, by time reversal symmetry it 

is enough to argue forward in time.

To this end we partition the maximal forward interval of existence [0, T+) into J ≡
J(M, ‖F‖Y (R)) consecutive intervals Ij with disjoint interiors such that

‖F‖Y (Ij) = η1(K(M)),

where η1(K(M)) is the small constant from the statement of Lemma 7.3 and K(·) is the 

non-decreasing function from the statement of Lemma 7.1. Note that by Lemma 3.3(ii), 

the necessary number J of such intervals Ij is bounded from above by

J �
‖F‖

4
ε

Y (R)

η1(K(M))
4
ε

.

In the following we use the notation tj−1 := inf Ij for j = 1, . . . , J . On each interval Ij

we compare the solution v(t) to the forced cubic NLS (1.8) with the solution u(t) to the 

usual defocusing cubic NLS (7.2) with initial data u(tj−1) = v(tj−1). By Lemma 7.1 and 

the a priori energy hypothesis (1.9), u(t) in fact exists globally in time and satisfies

‖u‖X(Ij) ≤ ‖u‖X(R) ≤ K(M).
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By the above choice of η1(K(M)) we are thus in the position to apply the long-time 

perturbation estimate (7.10) from Lemma 7.3 to infer that

‖v‖X(Ij) ≤ ‖u‖X(Ij) + ‖v − u‖X(Ij) � K(M) + 1.

Summing up these estimates we obtain the desired bound

‖v‖X([0,T+)) ≤
J∑

j=1

‖v‖X(Ij) � J · (K(M) + 1) ≤ C
(
M, ‖F‖Y (R)

)
.

This finishes the proof of Theorem 1.8. �

8. Almost sure scattering for the defocusing cubic NLS on R4 for radial data

The main result of this section is the following uniform-in-time energy bound for 

solutions to the forced defocusing cubic NLS

{
(i∂t + Δ)v = |F + v|2(F + v),

v(0) = v0 ∈ H1
x(R4)

(8.1)

with a forcing term F that is a solution to the linear Schrödinger equation (i∂t+Δ)F = 0

and satisfies a collection of suitable space–time estimates.

Proposition 8.1. Let v0 ∈ H1
x(R4). Assume that F is a solution to the linear Schrödinger 

equation (i∂t + Δ)F = 0 and satisfies

F ∈ Y (R), F ∈
(
L∞

t L2
x ∩ L∞

t L4
x ∩ L3

t L6
x

)
(R × R

4),

〈x〉 1
2 〈∇〉F ∈ L2

t L∞
x (R × R

4),∇F ∈ L2
t L4

x(R × R
4).

(8.2)

Let v(t) be the solution to the forced defocusing cubic NLS (8.1) with maximal time 

interval of existence I∗. Then we have

sup
t∈I∗

E(v(t))

≤ C exp
(

C
(
‖F‖3

L3
t L6

x(R×R4) +
∥∥〈x〉 1

2 〈∇〉F
∥∥2

L2
t L∞

x (R×R4)
+ ‖∇F‖2

L2
t L4

x(R×R4)

))
×

×
(
E(v0) + 1 + ‖v0‖2

L2
x(R4) + ‖F‖2

L∞
t L2

x(R×R4) + ‖F‖4
L∞

t L4
x(R×R4)

)

for some absolute constant C ≥ 1, where

E(v(t)) :=

∫

R4

1

2
|∇v(t)|2 +

1

4
|v(t)|4 dx.
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Before we turn to the proof of Proposition 8.1, we first note that by combining this 

uniform-in-time energy bound with the conditional scattering result from Theorem 1.8

and with the almost sure bounds for the free Schrödinger evolution from Section 5, we 

immediately obtain a proof of Theorem 1.9.

Proof of Theorem 1.9. We seek a global scattering solution u(t) to (1.12) of the form

u(t) = eitΔfω + v(t).

To this end the nonlinear component v(t) must be a solution to the following forced 

cubic NLS

(i∂t + Δ)v = |eitΔfω + v|2(eitΔfω + v) (8.3)

with zero initial data v(0) = 0. By the assumptions on the function f ∈ Hs
x(R4) and 

the almost sure bounds from Section 5, the forcing term eitΔfω in (8.3) satisfies the 

space–time bounds (8.2) for almost every ω ∈ Ω. Thus, by the local existence result 

from Proposition 6.1 and by Proposition 8.1, for almost every ω ∈ Ω the forced cubic 

NLS (8.3) has a solution whose energy is uniformly bounded on its maximal interval of 

existence and hence, by Theorem 1.8, exists globally in time and scatters. This finishes 

the proof of Theorem 1.9. �

An important ingredient for the proof of the uniform-in-time energy estimate from 

Proposition 8.1 is the following approximate Morawetz estimate for the forced defocusing 

cubic NLS (8.1).

Proposition 8.2. Let v : I ×R4 → C be a solution to the forced defocusing cubic NLS (8.1)

on a time interval I. Then we have

∫

I

∫

R4

|v|4
|x| dx dt � ‖v‖L∞

t Ḣ1
x(I×R4)‖v‖L∞

t L2
x(I×R4)

+ ‖v‖L∞
t Ḣ1

x(I×R4)

∥∥|F + v|2(F + v) − |v|2v
∥∥

L1
t L2

x(I×R4)
.

(8.4)

Proof. We write the forced defocusing cubic NLS (8.1) as

(i∂t + Δ)v = |v|2v + H, where H := |F + v|2(F + v) − |v|2v.

Given a weight a = a(x), the Morawetz action

m(t) := 2 Im

∫

R4

∂ka(x)∂kv(t, x)v̄(t, x) dx

satisfies
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∂tm(t) =

∫

R4

{
− ΔΔa|v|2 + 4Re ∂j∂ka∂j v̄∂kv + Δa|v|4 + 4∂ka Re

(
H∂kv

)

+ 2Δa Re
(
v̄H

)}
dx,

where we are tacitly summing over repeated indices. Using the standard Lin–Strauss 

Morawetz weight a(x) := |x| with

∂ka =
xk

|x| , ∂j∂ka =
δjk

|x| − xjxk

|x|3 , Δa =
3

|x| , ΔΔa = − 1

|x|3 ,

the Morawetz estimate (8.4) follows from applying the fundamental theorem of calculus, 

the Cauchy–Schwarz inequality and Hardy’s inequality. �

We are now in a position to establish the proof of Proposition 8.1.

Proof of Proposition 8.1. Let v(t) be the solution to the forced defocusing cubic 

NLS (8.1) with maximal time interval of existence I∗ provided by Proposition 6.1. 

Noting that the initial data v0 ∈ H1
x(R4) is also assumed to have finite mass, we first 

infer a uniform-in-time bound on the mass of v(t). Since the forcing term F is a solution 

to the linear Schrödinger equation, (F + v) is a solution to the standard cubic NLS. We 

therefore have conservation of mass for (F +v) and thus find for any time interval I that

‖v‖L∞
t L2

x(I×R4) ≤ ‖F + v‖L∞
t L2

x(I×R4) + ‖F‖L∞
t L2

x(I×R4)

= ‖F (0) + v(0)‖L2
x(R4) + ‖F‖L∞

t L2
x(I×R4)

� ‖F‖L∞
t L2

x(I×R4) + ‖v0‖L2
x(R4).

(8.5)

Now we define for T > 0 with T ∈ I∗ the quantities

A(T ) := sup
t∈[0,T ]

E(v(t)),

B(T ) :=

T∫

0

∫

R4

|v(t, x)|4
|x| dx dt,

and compute that

∂tE(v(t)) = Re

∫

R4

∂tv
(
−Δv + |v|2v

)
dx = −Re

∫

R4

∂tv
(
|F + v|2(F + v) − |v|2v

)
dx.

Reallocating the time derivative we find

∂tE(v(t)) = − 1

4
∂t

∫

R4

(
|F + v|4 − |F |4 − |v|4

)
dx

+ Re

∫

R4

(
|F + v|2(F + v) − |F |2F

)
∂tF dx.
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Since F is a solution to the linear Schrödinger equation, we may insert ∂tF = iΔF in 

the last term on the right-hand side of the previous line and obtain upon integrating by 

parts that

∂tE(v(t)) = − 1

4
∂t

∫

R4

(
|F + v|4 − |F |4 − |v|4

)
dx

− Im

∫

R4

∇
(
|F + v|2(F + v) − |F |2F

)
· ∇F dx.

By the fundamental theorem of calculus we then conclude that

T∫

0

|∂tE(v(t))| dt �
∥∥|F + v|4 − |F |4 − |v|4

∥∥
L∞

t L1
x([0,T ]×R4)

+
∥∥∇

(
|F + v|2(F + v) − |F |2F

)
· ∇F

∥∥
L1

t L1
x([0,T ]×R4)

.

(8.6)

By Young’s inequality, for any δ > 0 the first term on the right-hand side of (8.6) can 

be estimated by

∥∥|F + v|4 − |F |4 − |v|4
∥∥

L∞
t L1

x([0,T ]×R4)
≤ δ‖v‖4

L∞
t L4

x([0,T ]×R4) + Cδ‖F‖4
L∞

t L4
x([0,T ]×R4)

≤ δA(T ) + Cδ‖F‖4
L∞

t L4
x([0,T ]×R4),

(8.7)

while by Hölder’s inequality the second term on the right-hand side of (8.6) is bounded 

by the sum of the following five schematic terms (where the space–time norms are taken 

over [0, T ] × R4)

∥∥(∇v)F 2(∇F )
∥∥

L1
t L1

x

≤ ‖∇v‖L∞
t L2

x
‖F‖L∞

t L4
x
‖F‖L2

t L∞
x

‖∇F‖L2
t L4

x

� A(T )
1
2 ‖F‖L∞

t L4
x
‖F‖L2

t L∞
x

‖∇F‖L2
t L4

x
,

∥∥vF (∇F )2
∥∥

L1
t L1

x

≤ ‖v‖L∞
t L4

x
‖F‖L∞

t L4
x
‖∇F‖2

L2
t L4

x

� A(T )
1
4 ‖F‖L∞

t L4
x
‖∇F‖2

L2
t L4

x
,

∥∥(∇v)vF (∇F )
∥∥

L1
t L1

x

≤ ‖∇v‖L∞
t L2

x
‖v‖L∞

t L4
x
‖F‖L2

t L∞
x

‖∇F‖L2
t L4

x

� A(T )
3
4 ‖F‖L2

t L∞
x

‖∇F‖L2
t L4

x
,

∥∥v2(∇F )2
∥∥

L1
t L1

x

≤ ‖v‖2
L∞

t L4
x
‖∇F‖2

L2
t L4

x

� A(T )
1
2 ‖∇F‖L2

t L4
x
,

∥∥v2∇v∇F
∥∥

L1
t L1

x

≤
∥∥|x|− 1

2 v2
∥∥

L2
t L2

x

‖∇v‖L∞
t L2

x

∥∥|x|+ 1
2 ∇F

∥∥
L2

t L∞
x

� B(T )
1
2 A(T )

1
2

∥∥|x|+ 1
2 ∇F

∥∥
L2

t L∞
x

.

(8.8)
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Moreover, from the Morawetz estimate (8.4) and the mass bound (8.5) we obtain that

B(T ) � ‖v‖L∞
t Ḣ1

x([0,T ]×R4)‖v‖L∞
t L2

x([0,T ]×R4)

+ ‖v‖L∞
t Ḣ1

x([0,T ]×R4)

∥∥|F |3 + |v|2|F |
∥∥

L1
t L2

x([0,T ]×R4)

� A(T ) + ‖v‖2
L∞

t L2
x([0,T ]×R4) + A(T )

1
2 ‖F‖3

L3
t L6

x([0,T ]×R4)

+ A(T )
1
2

∥∥|x|− 1
2 |v|2

∥∥
L2

t L2
x([0,T ]×R4)

∥∥|x| 1
2 F

∥∥
L2

t L∞
x ([0,T ]×R4)

� A(T ) + ‖v0‖2
L2

x(R4) + ‖F‖2
L∞

t L2
x(R×R4) + A(T )

1
2 ‖F‖3

L3
t L6

x([0,T ]×R4)

+ A(T )
1
2 B(T )

1
2

∥∥|x| 1
2 F

∥∥
L2

t L∞
x ([0,T ]×R4)

.

(8.9)

We collect all divisible space–time norms of the forcing term F that have appeared in 

the previous estimates in the following norm

‖F‖Z([0,T ]) := ‖F‖L3
t L6

x([0,T ]×R4) +
∥∥〈x〉 1

2 〈∇〉F
∥∥

L2
t L∞

x ([0,T ]×R4)
+ ‖∇F‖L2

t L4
x([0,T ]×R4).

By the fundamental theorem of calculus we have that

A(T ) ≤ E(v(0)) +

T∫

0

|∂tE(v(t))| dt,

hence we may infer from (8.6)–(8.8) that for sufficiently small δ > 0,

A(T ) � E(v(0)) + ‖F‖4
L∞

t L4
x(R×R4) + A(T )

1
2 ‖F‖L∞

t L4
x(R×R4)‖F‖2

Z([0,T ])

+ A(T )
1
4 ‖F‖L∞

t L4
x(R×R4)‖F‖2

Z([0,T ]) + A(T )
3
4 ‖F‖2

Z([0,T ])

+ A(T )
1
2 ‖F‖Z([0,T ]) + A(T )

1
2 B(T )

1
2 ‖F‖Z([0,T ]).

Moreover, from the estimate (8.9) we have

B(T ) � A(T ) + ‖v0‖2
L2

x(R4) + ‖F‖2
L∞

t L2
x(R×R4) + A(T )

1
2 ‖F‖3

Z([0,T ])

+ A(T )
1
2 B(T )

1
2 ‖F‖Z([0,T ]).

Thus, by a continuity argument we may now conclude that there exists a sufficiently 

small absolute constant 0 < η � 1 such that if

‖F‖Z([0,T ]) ≤ η,

then it holds that

A(T ) � E(v(0)) + 1 + ‖v0‖2
L2

x(R4) + ‖F‖2
L∞

t L2
x(R×R4) + ‖F‖4

L∞
t L4

x(R×R4).
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By divisibility of the Z(R) norm and by time-reversibility, we iterate this argument 

finitely many times to conclude the desired uniform-in-time energy bound

sup
t∈I∗

E(v(t))

≤ C exp
(

C
(
‖F‖3

L3
t L6

x(R×R4) +
∥∥〈x〉 1

2 〈∇〉F
∥∥2

L2
t L∞

x (R×R4)
+ ‖∇F‖2

L2
t L4

x(R×R4)

))
×

×
(
E(v0) + 1 + ‖v0‖2

L2
x(R4) + ‖F‖2

L∞
t L2

x(R×R4) + ‖F‖4
L∞

t L4
x(R×R4)

)

for some absolute constant C ≥ 1. �

Appendix A. Proof of Theorem 1.11

Here we sketch the proof of Theorem 1.11 for the defocusing energy-critical nonlinear 

wave equation in four space dimensions

{
−∂2

t u + Δu = u3 on R × R
4,

(u, ∂tu)|t=0 = (fω
0 , fω

1 ) ∈ Hs
x(R4) × Hs−1

x (R4).
(A.1)

We seek a global, scattering solution to (A.1) of the form

u(t) = S(t)(fω
0 , fω

1 ) + v(t).

To this end we pass to the study of the more general forced cubic wave equation for the 

nonlinear component v(t), namely

{
−∂2

t v + Δv = (F + v)3 on R × R
4,

(v, ∂tv)|t=0 = (v0, v1) ∈ Ḣ1
x(R4) × L2

x(R4)
(A.2)

for forcing terms F : R ×R4 → R satisfying suitable space–time integrability properties. 

The proof of Theorem 1.11 will follow from new, improved almost sure bounds for the 

free wave evolution of randomized radially symmetric data. Indeed, we recall statements 

of two of the main theorems from the authors’ previous work [30].

Theorem A.1 (Theorem 1.1, [30]). There exists a non-decreasing function K : [0, ∞) →
[0, ∞) with the following property. Let (v0, v1) ∈ Ḣ1

x(R4) ×L2
x(R4) and F ∈ L3

t L6
x(R ×R4). 

Let v(t) be a solution to (A.2) defined on its maximal time interval of existence I∗. 

Suppose in addition that

M := sup
t∈I∗

E(v(t)) < ∞, (A.3)

where
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E(v(t)) =

∫

R4

1

2
|∇xv(t)|2 +

1

2
|∂tv(t)|2 +

1

4
|v(t)|4 dx.

Then I∗ = R, that is v(t) is globally defined, and it holds that

‖v‖L3
t L6

x(R×R4) ≤ C‖F‖L3
t L6

x(R×R4)

(
K(M) + 1

)
exp

(
C K(M)3

)
(A.4)

for some absolute constant C > 0. In particular, the solution v(t) scatters to free waves 

as t → ±∞ in the sense that there exist states (v±
0 , v±

1 ) ∈ Ḣ1
x(R4) × L2

x(R4) such that

lim
t→±∞

∥∥∇t,x

(
v(t) − S(t)(v±

0 , v±
1 )

)∥∥
L2

x(R4)
= 0.

Theorem A.2 (Theorem 1.2, [30]). Let (v0, v1) ∈ Ḣ1
x(R4) × L2

x(R4). Assume that

F ∈ L3
t L6

x(R × R
4) and |x| 1

2 F ∈ L2
t L∞

x (R × R
4). (A.5)

Let v(t) be a solution to (A.2) defined on its maximal time interval of existence I∗. Then 

we have

sup
t∈I∗

E(v(t)) ≤ C exp
(

C
(
‖F‖3

L3
t L6

x(R×R4) +
∥∥|x| 1

2 F
∥∥2

L2
t L∞

x (R×R4)

))
(E(v(0)) + 1)

for some absolute constant C > 0. It therefore holds that I∗ = R, that is v(t) exists 

globally in time, and the solution v(t) scatters to free waves as t → ±∞.

Thus, in light of Theorem A.1 and Theorem A.2, the proof of Theorem 1.11 reduces 

to proving that for any 0 < s < 1 and any radially symmetric f ∈ Hs
x(R4) we have that 

almost surely,

∥∥e±it|∇|fω
∥∥3

L3
t L6

x(R×R4)
+

∥∥|x| 1
2 e±it|∇|fω

∥∥
L2

t L∞
x (R×R4)

< ∞. (A.6)

These two almost sure bounds are established in the next two propositions.

Proposition A.3. Let 0 < s < 1 and 0 ≤ α < 1. Let f ∈ Hs
x(R4) be radially symmetric 

and denote by fω the randomization of f as defined in (1.13). Then there exist absolute 

constants C > 0 and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥〈x〉αe±it|∇|fω
∥∥

L2
t L∞

x (R×R4)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (A.7)

In particular, we have for almost every ω ∈ Ω that

∥∥〈x〉αe±it|∇|fω
∥∥

L2
t L∞

x (R×R4)
< ∞. (A.8)
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The proof of Proposition A.3 is essentially a verbatim copy of the proof of the weighted 

global-in-time L2
t L∞

x almost sure bound for the derivative of the Schrödinger evolution of 

randomized radial data from Proposition 5.12, the only difference being that we employ 

local energy decay estimates for the free wave evolution instead of the related local 

smoothing estimates for the Schrödinger evolution. We recall the precise local energy 

decay estimates that we use in the next lemma and correspondingly leave the details of 

the proof of Proposition A.3 to the reader.

Lemma A.4 (Local energy decay; [40, (2.16)], [62], [37], [63, Appendix]). Let f ∈ L2
x(R4). 

Then it holds that

sup
R>0

R− 1
2

∥∥e±it|∇|f
∥∥

L2
t L2

x(R×{|x|≤R})
� ‖f‖L2

x(R4). (A.9)

Proposition A.5. Let 0 < s < 1. Let f ∈ Hs
x(R4) be radially symmetric and denote by fω

the randomization of f as defined in (1.13). Then there exist absolute constants C > 0

and c > 0 such that for any λ > 0 it holds that

P

({
ω ∈ Ω :

∥∥e±it|∇|fω
∥∥

L3
t L6

x(R×R4)
> λ

})
≤ C exp

(
−cλ2‖f‖−2

Hs
x(R4)

)
. (A.10)

In particular, we have for almost every ω ∈ Ω that

∥∥e±it|∇|fω
∥∥

L3
t L6

x(R×R4)
< ∞. (A.11)

Proof. In what follows, all space–time norms are taken over R ×R4. By Hölder’s inequal-

ity we have

∥∥e±it|∇|fω
∥∥

L3
t L6

x

≤
∥∥e±it|∇|fω

∥∥ 1
3

L∞
t L2

x

∥∥e±it|∇|fω
∥∥ 2

3

L2
t L∞

x

=
∥∥fω

∥∥ 1
3

L2
x

∥∥e±it|∇|fω
∥∥ 2

3

L2
t L∞

x

.

A simple application of Minkowski’s inequality and of the large deviation estimate from 

Lemma 5.1 yields for any p ≥ 2 that

∥∥e±it|∇|fω
∥∥

Lp
ωL2

x

�
√

p ‖f‖L2
x
,

while in the proof of Proposition A.3 we establish for all sufficiently large p < ∞ that

∥∥e±it|∇|fω
∥∥

Lp
ωL2

t L∞
x

�
√

p ‖f‖Hs
x
.

Thus, we conclude for all sufficiently large p < ∞ that

∥∥e±it|∇|fω
∥∥

Lp
ωL3

t L6
x

�
√

p ‖f‖Hs
x

and the claim follows from Lemma 5.2. �
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