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1. Introduction

We consider the Cauchy problem for the defocusing cubic nonlinear Schrédinger equa-
tion (NLS) in four space dimensions

(i0; + A)u = |ul*u on R x R*,
(1.1)

u(0) = f € H3(RY).
The equation (1.1) is invariant under the scaling
u(t, ) — Mu(\%t, Az) for A >0, (1.2)

and the scaling critical regularity s, = 1 is, by definition, such that the corresponding
homogeneous Sobolev norms of the initial data are left invariant by the scaling transfor-
mation (1.2). Sufficiently smooth solutions to (1.1) conserve the energy

1 1
E(u) :/§|Vu|2+1|u\4da:.
]RAL

Since this energy functional is also invariant under the scaling (1.2), the Cauchy problem
for (1.1) is referred to as energy-critical.

The goal of this work is to investigate the local-in-time as well as the asymptotic
behavior of solutions to (1.1) for random initial data below the scaling critical regularity.
Our main results establish almost sure local well-posedness and conditional almost sure
scattering of solutions to (1.1) with respect to a randomization of initial data in H2(R*)
with % < s < 1 that is based on a unit-scale decomposition of frequency space. Moreover,
we prove that the unit-scale randomization of radially symmetric initial data in H3(R*)
with % < s < 1 almost surely leads to global-in-time scattering solutions to (1.1).

The energy-critical defocusing nonlinear Schrodinger equation has been studied exten-
sively over the past decades. Correspondingly, in what follows we only mention the most
relevant results for this paper. For initial data above or at the scaling critical regular-
ity, local solutions may be constructed using fixed point arguments based on Strichartz
estimates, see for instance [31,19,20,18]. In particular, these results imply that any fi-
nite energy initial datum leads to a unique local solution to (1.1), and they also yield
small data global well-posedness and scattering. Finite energy global well-posedness and
scattering for the energy-critical defocusing NLS on R? was established by Colliander—
Keel-Staffilani-Takaoka—Tao [24], building upon the work of Bourgain [11] in the radial
case, while the analogous result for the defocusing cubic NLS (1.1) on R* was obtained
by Ryckman—Visan [60] and Visan [69].

Even though the nonlinear Schrédinger equation (1.1) is ill-posed below the scaling
critical regularity s. = 1, see for instance Christ—Colliander—Tao [21], it is sometimes pos-
sible to construct unique local and even global solutions for suitably randomized initial



B. Dodson et al. / Advances in Mathematics 347 (2019) 619-676 621

data, and thereby conclude that large sets of initial data of scaling super-critical regular-
ity do indeed lead to global solutions. This approach was initiated by Bourgain [8,9] for
the periodic nonlinear Schréodinger equation in one and two space dimensions, building
upon the constructions of invariant measures by Glimm—Jaffe [32] and Lebowitz—Rose—
Speer [45], and by Burq—Tzvetkov [15,16] in the context of the cubic nonlinear wave
equation on a three-dimensional compact Riemannian manifold. There has since been a
vast and fascinating body of research, using probabilistic tools to study many nonlinear
dispersive or hyperbolic equations in scaling super-critical regimes, see for example [66,
25,49,28,17,27,50,51,47,12,7,6,56,29] and references therein.

In the following we restrict our overview to prior related probabilistic well-posedness
results for the nonlinear Schrodinger equation for initial data randomized according to a
unit-scale decomposition of frequency space as in (1.5) below. We emphasize though that
the nonlinear Schrédinger equation on Euclidean space has also been considered in many
other works relying on different randomizations, see for instance [14,28,65,58,57,59,48].
In [6,7], Bényi-Oh—Pocovnicu studied the probabilistic local well-posedness and condi-
tional global well-posedness for the cubic NLS on R?, d > 3, below the scaling critical
regularity. They established almost sure local well-posedness and conditional almost sure
global well-posedness results, where the latter in particular rely on an a priori hypothesis
that a scaling critical Sobolev norm of the nonlinear component of the solutions does
not blow up in finite time. We also refer to Brereton [13] for analogous results for the
defocusing quintic NLS. In the context of the cubic NLS on R?, Bényi-Oh-Pocovnicu [5]
recently introduced an iterative procedure based on a partial power series expansion in
terms of the free evolution of the random data, which allows to lower the regularity
threshold for almost sure local well-posedness obtained in their previous work [6].

Although in some of the aforementioned results on the nonlinear Schrédinger equation
on Euclidean space, one obtains scattering with positive probability as a consequence of
the probabilistic local theory, establishing almost sure scattering requires a more delicate
argument, especially for energy-critical equations. The first almost sure scattering result
for an energy-critical dispersive or hyperbolic equation with scaling super-critical random
initial data was obtained recently by the authors in [30] for the defocusing cubic nonlinear
wave equation on R* for randomized radially symmetric data. The proof in [30] is based
on the introduction of an approximate Morawetz estimate to the random data setting
and new almost sure bounds for the free wave evolution of randomized radially symmetric
data. The methods from [30] as well as from [6,56,53] were subsequently further developed
by Killip-Murphy—Visan [44] to obtain an analogous almost sure scattering result for
the defocusing cubic NLS on R* for randomized radially symmetric initial data. Finally,
we mention the recent work of Oh—Okamoto—Pocovnicu [52] establishing almost sure
global well-posedness (without scattering) for the energy-critical defocusing NLS on R¢,
d=25,6.
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1.1. Randomization procedure

Before providing the precise statements of our main results, we introduce our ran-
domization procedure for the initial data, which is based on a unit-scale decomposition
of frequency space [71,47,6,7].

Let ¢ € C°(R*) be an even, non-negative bump function with supp (v») € B(0,1)
and such that

Y (¢ —k) =1 forall € €R"

kezZ4

Let s € R and let f € H3(R*). For every k € Z*, we define the function P f: R* — C
by

(Pef)(z) = FH(w(€ — k) f(€))(z) for z € R™. (1.3)

We exploit that these Fourier projections satisfy a unit-scale Bernstein inequality, namely
for all 1 <7 < 79 < 0o and for all k € Z* we have that

1P fllz2 may < Clros ra) | Befll g (roy (1.4)

with a constant that is independent of k € Z*.

We let {gr}reze be a sequence of zero-mean, complex-valued Gaussian random vari-
ables on a probability space (€2, A, P). Given a complex-valued function f € H3(R?*) for
some s € R, we define its randomization by

£ =) gr(w)Pef. (1.5)

kezZ*

This quantity is understood as a Cauchy limit in L2 (Q; H;(R‘l)), and in the sequel, we
will restrict ourselves to a subset ¥ C Q with P(X) = 1 such that f* € HZ(R?) for every
wE X.

Importantly, the randomization (1.5) almost surely does not regularize at the level of
Sobolev spaces, see for instance [15, Lemma B.1]. However, the free Schrodinger evolution
e*A f of the random data does enjoy various types of significantly improved space-time
integrability properties, see Section 5, which crucially enter the proofs of our main results.
This phenomenon is akin to the classical results of Paley and Zygmund [55] on the
improved integrability of random Fourier series.

Remark 1.1. One could also randomize with respect to a more general sequence of random
variables {gx }reza satisfying the following condition: there exists ¢ > 0 so that the joint
distributions {ux }rezs of the real and imaginary parts of the random variables {gj }reza
fulfill
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+oo
/ e duy(z)| < e’ for all v € R and for all k € Z*. (1.6)

oo

The assumption (1.6) is satisfied, for example, by standard Gaussian random variables,
standard Bernoulli random variables, or any random variables with compactly supported
distributions.

Remark 1.2. In Theorem 1.9 we randomize radially symmetric functions. However, it
should be noted that the unit-scale randomization (1.5) of a radially symmetric function
is not radially symmetric.

1.2. Main results

We are now ready to state our first main theorem on the almost sure local well-
posedness of the cubic NLS in four space dimensions for scaling super-critical random
data.

Theorem 1.3. Let % <s< 1. Let f € H:(R*) and denote by f* the randomization of f
as defined in (1.5). Then for almost every w € Q) there exists an open interval I > 0 and
a unique solution

u(t) € e*A e + C(1; H;(R‘l))
to the cubic nonlinear Schrodinger equation

(i0y + A)u = %|ul*u on I x R,
(1.7)

u(0) = f*.

Remark 1.4. In the statement of Theorem 1.3, uniqueness holds in the sense that upon
writing

u(t) = "2 f< + (1),
there exists a unique local solution
ve O(L; HARY) N X (1)
to the forced cubic nonlinear Schrédinger equation

(10 + A)v = £|e"B f« + v2 (e f¥ + v) on I x RY,
v(0) =0,

where the function space X (I) is defined in Section 3.
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Remark 1.5. The length of the time interval I in the statement of Theorem 1.3 depends

on the profile of the free evolution €™ f* of the random data in the sense that the time

interval I has to satisfy [|e”2 f*||y;y < & for some small absolute constant 0 < ¢ < 1,

where the function space Y (I) is defined in Section 3.

We emphasize that prior to this work, almost sure local well-posedness for the cubic
NLS (1.7) in four space dimensions had been established by Bényi-Oh—Pocovnicu [6,7]
for random initial data in HZ(R*) for the more restrictive range of regularities % <s< 1.
The main tools in [6,7] are the improved almost sure space-time integrability of the free
evolution of the random data and a bilinear refinement of the Strichartz estimate by
Bourgain [10] and Ozawa—Tsutsumi [54].

The proof of Theorem 1.3 proceeds by writing the solution to (1.7) as a superposition
of the free evolution of the random initial data and a nonlinear component

u(t) = e fY +u(t).

Then the nonlinear component v(t) has to satisfy the following forced cubic NLS, where
the forcing term inside the cubic nonlinearity is given by the free evolution of the (low-
regularity) random initial data,

(10, + Ao = £[e*2 2 + o (75 4 + )

with zero initial data v(0) = 0. Establishing local existence of solutions to this forced
cubic NLS at energy regularity then has certain features in common with proving local
well-posedness for a derivative nonlinear Schrédinger equation. In this spirit the main
idea of our almost sure local well-posedness result in Theorem 1.3 is to set up a suitable
functional framework, whose precise definition is given in Section 3, based on Strichartz
estimates and variants of the strong local smoothing Lg° 2, inhomogeneous local smooth-
ing L,la’Q, and maximal function estimates L2 for the free Schrédinger evolution that
have for instance played a key role in the study of the Schrodinger maps problem in [34,
36,2,3]. The main benefit of this new functional framework is that whenever the (low-
regularity) free evolution e®? f¥ of the random data appears at highest frequency in
the forced cubic nonlinearity, the local smoothing space component along with the inho-
mogeneous local smoothing and maximal function space components enable us to gain
some derivatives. Instead, if the deterministic solution v appears at highest frequency,
the Strichartz components suffice for the nonlinear estimates. See the discussion before
Proposition 4.1 for more details. Beyond the improved almost sure space-time integra-
bility of the free evolution of the random data, the key ingredient for this scheme to work
is an improved maximal function estimate for the free evolution of unit-scale frequency
localized data, see Lemma 5.4, which implies an improved almost sure maximal function
type estimate for the free evolution of the random initial data. We also refer to [39,46,

41-43,33,35,1,4,23] and references therein for the many other uses of local smoothing esti-
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mates in the study of local and global well-posedness of derivative nonlinear Schrédinger
and related equations.

Remark 1.6. From the proof of Theorem 1.3, it is clear that our methods easily generalize
to other space dimensions d > 3 and to other power-type nonlinearities. We also expect
that our functional framework is compatible with the iterative procedure put forth in [5]
and that these ideas can be combined to further lower the regularity threshold.

Remark 1.7. We note that the main idea in our proof of Theorem 1.3 does not apply to
the periodic setting since there is no local smoothing effect for the Schrodinger equation
on a compact domain such as the torus. The methods used to prove analogous almost
sure local well-posedness results on the torus usually rely on random initial data with a
specific form inspired by a typical element in the support of a certain Gibbs measure, and
multilinear estimates which exploit properties of products of Gaussian random variables.
For probabilistic well-posedness results for power-type NLS on the torus, we refer to [8,
9,25,51,70] and references therein.

Next we turn to the study of the long-time dynamics of solutions to the defocusing
cubic NLS (1.1) for scaling super-critical random initial data and establish a conditional
scattering result for the associated forced defocusing cubic NLS

{(i@t—i—A)v: |F 4+ v|*(F +v) on R x R*, 18)

v(0) = vy € HE(RY)

for forcing terms F: R x R* — C satisfying | Flly @) < oo, where the precise definition
of the function space Y (R) is postponed to Section 3. Note that we will establish in
HA flly gy < oo almost surely for any f € Hi(R*) with § <
s < 1. The next theorem asserts that if the maximal lifespan solution to (1.8) satisfies a

Proposition 5.3 that |le

uniform-in-time a priori energy bound, then it must exist globally in time and scatter.

Theorem 1.8. Let vg € H(R*) and let F € Y (R). Let v(t) be a solution to (1.8) defined
on its maximal time interval of existence I,.. Suppose in addition that

M = tsglp E(v(t)) < oo, (1.9)

where

B(u(t) = [ 5ITo@F + Pl do
R4

Then I, =R, that is v(t) is globally defined, and it holds that

[ollx@ < C(M,|IFlly®)), (1.10)
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where the function spaces X(R) and Y (R) are defined in Section 3. In particular, the
solution v(t) scatters in the sense that there exist states vt € HL(R*) such that

0.

lim Hv(t) — eitAvi||H;(R4) =

t—+oo

The proof of Theorem 1.8 follows the idea of the proof of an analogous conditional scat-
tering result by the authors [30, Theorem 1.3] for the forced defocusing cubic nonlinear
wave equation. The main ingredients are the a priori bounds for the “usual” defocusing
cubic NLS on R* from the work of Ryckman—Visan [60] and Visan [69] as well as the
development of a suitable perturbation theory within our functional framework for the
forced defocusing cubic NLS (1.8), see Lemma 7.3.

Furthermore, we establish the following almost sure scattering result for the defocusing
cubic NLS (1.1) for randomized radially symmetric initial data.

Theorem 1.9. Let 3+ < s < 1 and let f € H5(R*) be radially symmetric. Let f* be the
randomized initial data defined in (1.5). Then for almost every w € ), there exists a
unique global solution

u(t) € e ¥ + O(R; HA(RY)) (1.11)
to the defocusing cubic nonlinear Schrodinger equation

(0 + A)u = |ul*u on R x R?,
(1.12)

u(0) = f*,
which scatters as t — +00 in the sense that there exist states v* € H%(]R‘l) such that

lim |lu(t) — ™2 (f* + Ui)”ﬂ;(u@‘l) =0

t—+oo

Remark 1.10. Analogously to Remark 1.4, uniqueness in Theorem 1.9 holds in the sense
that upon writing

u(t) = "2 f +u(t),
there exists a unique global solution
ve C(RHLRY)) NX(R)
to the forced defocusing cubic nonlinear Schrédinger equation

(10 + A)v = |e"D f9 + 2 (e f¥ +v) on R x R?,
v(0) =0,

where the function space X (I) is defined in Section 3.
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We emphasize that prior to this work almost sure scattering for the defocusing cubic
NLS (1.12) in four space dimensions had been established by Killip~Murphy—Visan [44]
for randomized radially symmetric initial data in H3(R*) for the more restrictive range
of regularities % <s <1l

In view of Theorem 1.3 and Theorem 1.8, the proof of Theorem 1.9 reduces to prov-
ing the uniform-in-time energy bound (1.9) for the nonlinear component of the solution.
To this end we follow quite closely the scheme introduced by the authors [30] of com-
bining energy growth estimates with suitable approximate Morawetz estimates for the
forced cubic equation, as well as incorporating further developments by Killip-Murphy—
Visan [44]. The main novelty of our proof in comparison with [44] is the introduction
of new almost sure bounds for weighted L7?LS°(R x R*) norms of the derivative of the
free evolution of the randomized radially symmetric initial data in Proposition 5.12. The
proof of these almost sure bounds hinges on a delicate combination of local smoothing
estimates for the Schrédinger evolution and a “radialish” Sobolev type estimate for the
square-function associated with the unit-scale frequency projections of a radially sym-
metric function from Lemma 5.7. These improved almost sure bounds ultimately allow
us to reach lower regularities for the random initial data and enable us to use the stan-
dard Lin-Strauss Morawetz weight a(x) := |z| for our approximate Morawetz estimate
in contrast to the weight a(z) := (x) used in [44].

Finally, as a byproduct of our proof of Theorem 1.9, we obtain an improvement
of our almost sure scattering result for the defocusing cubic nonlinear wave equation
in four space dimensions [30, Theorem 1.9]. In a very similar manner to the proof of
Proposition 5.12, we can combine local energy decay estimates for the wave equation and
the aforementioned “radialish” Sobolev type estimate to establish almost sure bounds
for weighted L?L°(R x R*) norms of the free wave evolution of randomized radially
symmetric data. These almost sure bounds for the free wave evolution are an important
improvement over the authors’ related almost sure bounds [30, Proposition 5.4], and lead
to a significant strengthening, in the form of a lower regularity threshold, of the almost
sure scattering result for the defocusing energy-critical nonlinear wave equation in four
space dimensions for randomized radially symmetric data from [30, Theorem 1.9].

To state the precise result, we first have to recall the randomization of a pair of
real-valued functions (fo, f1) € H:(R?*) x HS1(R?*) as in [30]. Specifically, we let
{(gx, hi) }rezs be a sequence of zero-mean, complex-valued Gaussian random variables on
a probability space (£, A, P) with the symmetry condition g_ = gz and h_j = hy, for all
k € Z*. We assume that {go, Re(gx), Im(gx,) } ke are independent, zero-mean, real-valued
random variables, where Z C Z* is such that we have a disjoint union Z* = ZU(—Z)U{0},
and similarly for the hy. Then we set

Up 1) = (3 s Pudo, X miPin), (1.13)

kezZ4 kez*
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which we note is real-valued due to the imposed symmetry conditions on the Gaus-
sian random variables. We denote the free wave evolution of a random initial data pair

(f&', f1') by

S 1) = cos(t|V]) & + %f

Then we obtain the following almost sure scattering result for the defocusing energy-
critical nonlinear wave equation in four space dimensions for randomized radially sym-
metric data whose proof is sketched in the appendix. The (much lower) regularity
threshold should be compared with the regularity restriction % < s < 1 from the authors’
previous work [30, Theorem 1.9].

Theorem 1.11. Let 0 < s < 1. For real-valued radially symmetric (fo, f1) € H:(R?*) x
H:Y(RY), let (f&, f) be the randomized initial data defined in (1.13). Then for almost
every w € ), there exists a unique global solution

(u, Opu) € (S5, £1°), 0S5, 1)) + O (R; Hy(RY) x L(RY)) (1.14)

to the energy-critical defocusing nonlinear wave equation

—0%u+ Au=u? on R x RY,
(1.15)

(uvatu)‘tzo = (fg)a ff})’

which scatters to free waves as t — £oo in the sense that there exist states (voi,vli) €
HL(R*) x L2(R*) such that

lim ||V (u(t) = SO + 05, 1+ 01)) | 12 sy = 0

t—+oo

Remark 1.12. In the statement of Theorem 1.11 uniqueness holds in the following sense:
Writing

(u, Opu) = (SA)(Psafs, Poaft), 0uS(t)(Psafs's Psafi)) + (v, dpw),
there exists a unique global solution

(v,0v) € C(R; Hy(R*)) N L}, LS (R x RY) x C(R; L2(RY))

t,loc

to the forced cubic nonlinear wave equation

{ —0%0+ Av = (St)(PsafS, Poaf?) +v)° on R x R, L.16)

(v, 0p0)|t=0 = (P<af§, P<afy),
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where P<4 and P-4 are the usual dyadic Littlewood—Paley projections defined in Sec-
tion 2.

Organization of the paper. In Section 2 we set up some notation used throughout this
paper. In Section 3 we introduce the functional framework for the proofs of the almost
sure local well-posedness result of Theorem 1.3 and of the conditional scattering result
of Theorem 1.8. In Section 4 we develop the key trilinear estimates to handle all possible
interactions in the forced cubic nonlinearity within this functional framework. In Sec-
tion 5 we establish various almost sure bounds on the free evolution of the random data.
Finally, we provide the proofs of Theorem 1.3 in Section 6, of Theorem 1.8 in Section 7,
and of Theorem 1.9 in Section 8.

2. Notation and preliminaries

We denote by C' > 0 an absolute constant which only depends on fixed parameters and
whose value may change from line to line. We write X < Y to indicate that X < CY
and we use the notation X ~ Y if X <Y < X. Moreover, we write X <, Y to
indicate that the implicit constant depends on a parameter v and we write X < Y if the
implicit constant should be regarded as small. We also use the notation (V) := (1—A)z,
(z) == (14 |z|?)2 as well as (N) := (1+ N?)z.

Apart from the unit-scale frequency projections Py, k € Z*, defined in (1.3), we will
also make frequent use of the usual dyadic Littlewood-Paley projections Py, N € 2%,
which we introduce next. Let ¢ € C2°(R*) be a smooth bump function such that ¢(¢) = 1
for [£] <1 and p(¢) = 0 for |¢] > 2. Then we define for every dyadic integer N € 2%,

Pr f(€) = (9(&/N) — 9(26/N)) F(¢).

In addition, for each dyadic integer N € 2% we set

Pon1(6) = (&/N)f(), Pont(€) = (1—o(&/N))f(©).

We denote by Py = P<gn — P<pys fattened Littlewood—Paley projections with the
property that Py = Py Ppy. Moreover, we recall the following Bernstein estimates for
the dyadic Littlewood—Paley projections.

Lemma 2.1. Let N € 2Z. For any 1 < ri; <19 < 00 and any s > 0, it holds that

4 _ 4
||PNfHL;2(]R4) S/ N }PNf| LI (R4)
HPSNf‘ L;2(R4) S Nﬁi% ‘PSNf’ L;l(R4)7
[IV[** Py f] L7 (Rey ™ NPy fll 11 gay-
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We let {e1, e, €3, €4} be an orthonormal basis of R* and henceforth fix our coordinate
system accordingly. To formulate certain local smoothing estimates for the Schrédinger
evolution, we will use smooth frequency projections that localize the frequency variable
in the direction of an element of the orthonormal basis {e1, ez, e3,e4}. To this end let
¢ € C°(R) be a smooth bump function supported around ~ 1. For every dyadic integer
N € 27 and for every £ = 1,...,4, we define

Pro F(€) = 6(I€ - ed /N) F(©).

We may assume that the bump function ¢ is chosen so that for all dyadic integers N € 2%,
the frequency projections satisfy

(1 - Pne)(1 —Pney)(l—Pney)(l— Pne,) Py =0. (2.1)

In the proof of a weighted almost sure bound in Proposition 5.12 we will have to de-
compose physical space dyadically. To this end we introduce the spatial cut-off functions

Xo(z) = ()

and for every integer j > 1,

xj(@) = (277z) — (27U V),

where ¢ € C2°(R?*) is the smooth bump function introduced further above. Moreover,
for any integer j > 0 we define

x<i(@) = 9(2772), x5j(2) =1-p(27x).

We denote by x;(z) slightly fattened cut-offs satisfying x;(z) = x;(x)x;(z) for any
integer 7 > 0.

3. Functional framework

In this section we introduce the precise functional framework that we will use in the
proofs of the almost sure local well-posedness result of Theorem 1.3 and the conditional
scattering result of Theorem 1.8.

We begin by recalling the usual Strichartz estimates for the Schrodinger propagator
in four space dimensions. An exponent pair (g,r) is called admissible if 2 < ¢,r < c©
and the following scaling condition is satisfied

4=
q T
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Proposition 3.1. (Strichartz estimates; [6/,31,38]) Let I C R be a time interval and let
(¢,7),(q,7) be admissible pairs. Then we have

||eitAfHL;1L;(IXR4) SJ ”fHLi(]R“)u (31)
|[esneaas] 1y (32
L3 (R) ’
1
Assuming that 0 € I we also have

t

H/ei(tS)Ah(s’.) ds 5 Hh||L?/LT"’(I><R4)' (33)
LILT (IxR*) @

0

Next we introduce the lateral spaces L5? where we recall that {e;,es,e3,e4} is a
fixed orthonormal basis of R*. Given a time interval I C R, we define the lateral spaces
LEA(I x R*) for £ = 1 with norms

lzggse = ([ ([ [ inteoranioatar)” an)
T RS,

x]

with analogous definitions for £ = 2,3,4 and the usual modifications when p = co or
q = o0o. The most important members of this family of spaces are the local smooth-
ing space Lo, 2 and the inhomogeneous local smoothing space Lé}?, which allow us to
gain derivatives. In nonlinear estimates these are used along with the maximal function
space L?;f". The next proposition summarizes the estimates satisfied by the Schrédinger
propagator in four space dimensions in the lateral spaces. These estimates follow from
the local smoothing and maximal function estimates that were established by Ionescu—
Kenig [34,36].

Proposition 3.2. Let I C R be a time interval. Let 2 < p,q < oo with % + % = %, N e 2%
any dyadic integer and £ € {1,2,3,4}. Then it holds that

; 41
lle SN 2| fllLzry), P<4q, (3.4)
4_1
H ZtAPN eZPNfHLP a IXR4) Np 2 ||fHLi(R4)a p 2 q. (35)
By duality we also have that
—isA Ni-t

e ""2Pnh(s,)ds SNe 2 bl o ypay PG (3.6)

Lz (R)

1

H/e_iSAPN)EZPNh(sf)ds < N57§Hh||Lp o (xmiy P24 (3.7

L3 (R*)
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Proof. We begin with the proof of (3.4). The maximal function estimate from Ionescu—
Kenig [34,36] asserts that

3

HeitAPNfHLgv;O(IxR‘l) < N=2 ||fHL§,(R4)a

while an application of Fubini’s theorem, Bernstein estimates and the Strichartz esti-
mate (3.1) yields

HeitAPNﬂ

LM (IxRY) — HeimPNfHLng(IxRél) SN HeitAPNfHL%LE(IXW)

S NE | f]l 2 ey

The estimate (3.4) then follows by interpolation. Analogously, (3.5) is a consequence of
the following local smoothing estimate from Ionescu—Kenig [34,36]

) 1
||eZtAPNPN7eef||Lg§v2(IXR4) SN 2||fHLi(R4)
and interpolation. O

To ensure that our function spaces have certain time-divisibility properties, and in
order to carry out certain large deviation estimates, we rely in our work on slight variants

of the local smoothing, inhomogeneous local smoothing, and maximal function spaces,

—24 pl4,2— 2+,00—
I Lez Lez

namely Le, , and respectively. We emphasize that the lateral space
norms ||| pza(rxre) are continuous as functions of the endpoints of the time interval

and for p, ¢ < oo have the following time-divisibility property

[y

e;nax{p,q} < ”h”Lgéq(lxR‘L) (3.8)

for any partition of a time interval I into consecutive intervals I;, j = 1,...,J, with
disjoint interiors. The estimate (3.8) is a consequence of Minkowski’s inequality and the
embedding properties of the sequence spaces £". For p,q < oo, (3.8) allows to partition
the time interval I into a controlled number of subintervals on each of which the restricted
norm is arbitrarily small.

Finally, we are ready to give the precise definition of the space X(I) to hold the
solutions to the forced cubic NLS on a given time interval I C R. It is built from dyadic
pieces in the sense that

1

2
lellxa = (Z ||PNv||?XN(1)) |

Ne2z

The dyadic subspace X (I) scales at H}(R*)-regularity and consists of several Strichartz
components and a maximal function type component. To provide its precise definition
we introduce a fixed, sufficiently small, absolute constant 0 < ¢ < 1. Throughout this



B. Dodson et al. / Advances in Mathematics 347 (2019) 619-676 633

work it will always be implicitly understood that € is chosen sufficiently small so that
% + 3¢ < s, where % < s < 1 refers to the Sobolev regularity assumption for the random
data in the statement of Theorem 1.3. For every dyadic integer N € 2% we then set

1Prvlcn = NIPxolznaonms) + NlPaollcizsain + NIPwl g s o

+ZN 2+E|\PNW||
=1

208 (Ixme)’

We will estimate the forced cubic nonlinearity in the space G(I) which is also built from
dyadic pieces

=

) ||PNh||éN<I>)

Ne2Z

Ihllea = (

and whose dyadic subspaces are defined as

Pyh —  inf Bl N#*e||R§)
IPyblon = E AN sz reme +; R

It will be convenient to introduce a space Y (I), in which we will place the forcing term F'.
As usual, it is built from dyadic pieces in the sense that

1

2
1Flly e = (Z |PNF||%/N<I>) ,

Ne2z

where we set
1 1
IPNFllyy ) i= (N)5 5| PN Fll 316 (rxma) + <N>3+3E||PNFHL6L§(I><]R4)

4
+ D (N)STENZTF| Py o, Py F| 4 +ZN || Py F|
{=1

5’2 € (IxR%) Le"’zf's(l ]R4)

We will later establish in Proposition 5.3 that for 3+ < s <1and 0 <e < (s — %), we

3
have [ ||y ®) < co almost surely for the free evolution of the random data f“ as
defined in (1.5) for any f € HS(R*).

In the next lemma we collect continuity and time-divisibility properties of the X (1)

and Y (I) norms that we will repeatedly make use of.

Lemma 3.3.

(i) Let I C R be a closed interval. Assume that ||v||x ) < oo and [|F||y )y < oo. Then
the mappings
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I'>t e [|vllx(inf 1.0)5 I3t = ||Flly (it 1.0
and
It v xtsup 1) It = ||Flly(t,sup )

are continuous with analogous statements for half-open and open intervals.
(i) Let I C R be an interval and let v € X(I),F € Y(I). For any partition of the

interval I into consecutive intervals I;, j = 1,...,J, with disjoint interiors it holds
that
J J
[{lxan s, e < lolxas [[UFIva L0 < 0Flva 39)
J J

Proof. The first part (i) follows from the dominated convergence theorem and the defi-
nition of the spaces X (I) and Y (I). For the second part (i) we note that 2 is the largest
exponent in the definition of the Strichartz L L" and L%’ components of the spaces X ()
and Y (I). Then the time divisibility properties (3.9) follow from Minkowski’s inequality,
the embedding ¢ — ¢ for any 1 < r; < ry < oo for the ¢" sequence spaces and the
definitions of X (I) and Y (I). O

The spaces X (I) and G(I) are connected by the following key linear estimate.

Proposition 3.4 (Main linear estimate). Let I C R be a time interval with to € I and let
vg € HY(R*). Assume that v: I x R* — C is a solution to

(i0; + A)v = h on I x R*,
(3.10)
v(tg) = vp.
Then we have for any dyadic integer N € 27 that
N PyvllLgerz (1xrey + 1PNVl xx 1) S NIIPNvollpz ey + [|PNBll Gy r)- (3.11)
Consequently, it holds that
[Vl oo prr(rxray + 10llx () S llvoll g1 sy + 1Pllc - (3.12)

Before we can turn to the proof of Proposition 3.4, we first need two auxiliary lemmas.

Lemma 3.5. Let J, I C R be time intervals with sup.J < infI and let N € 2% be any
dyadic integer. Then we have for any admissible Strichartz pair (q,r) that

<N Nite| Pyh . 3.13
Nez: H N ||L4;s‘2iE(JXR4) ( )

=1 €

NH/ei(t_S)APNh(s) ds
LIL7(IxRY)
b
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Furthermore, it holds that

4 4
1 1

N—zte / W(t=9)A Py h(s)ds <) N=FE| Pyh .

Z1 g Lﬁé%eé(lxﬂ@) ezzl 4 ° 2+E(J><]R4)
(3.14)

Proof. The left-hand sides of (3.13) and (3.14) are both bounded by
NH/e_iSAPNh(s) ds (3.15)
L2 (RY)

by the Strichartz estimate (3.1) and by the estimate (3.4) for the lateral spaces, respec-
tively. Relying on the identity (2.1), we now further frequency decompose Pyh into

Pnh = Pne,PNh+ Pney(1 — Py, )PNh+ Pney(1 — Pye,)(1 — Pn,e, ) Pnh
+ PN,e4(1 — PN,e3)(1 — PNVQQ)(l — PN,el)PNh-

Using the boundedness of the projections (1 — Pye,) on L2(R%), we can then esti-
mate (3.15) by

NH / e 2Py o, Pnh(s) ds

Li(W).

Finally, by the dual estimate (3.7) for the lateral spaces we conclude the desired bound

4
1
SO NEIPY . s,

N”/e_iSAPN)eZPNh(S> ds
LZ(RY) =1 Léy < HE (xR

Lemma 3.6. Let I C R be a time interval with 0 = inf I and let N € 27 be any dyadic
integer. Then we have for any admissible Strichartz pair (q,r) that

t 4
NH/ei(t_S)APNh(s) ds < ZN%+€||PNh|| ot . (3.16)
, LILT(IxRY) oy =74 (1xme)
Furthermore, it holds that

4 t 4
_1 i(t—s 1

> Nt /e(t VA Pyh(s)ds A §ZN2+E\|PNh|| zeats g

=1 0 Ley © S(IXRY) (IR

(3.17)
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Proof. Our argument is a modified version of the Christ-Kiselev lemma [22]. We only
prove (3.17) in detail because the proof of (3.16) is similar. Normalizing we may assume
that

4
> N Py
L

ets fpey
—1 er (I'xR%)
In order to prove (3.17) it now suffices to verify that
t
N-zte / DA Pyn(s)ds|| L, <1. (3.18)
L& ¢ (IxR4)

Using the time divisibility property (3.8) of the lateral spaces, we can proceed inductively

to construct for every n € N a partition {I]’?}j:l on of the interval I into consecutive

.....

intervals with disjoint interiors such that for j =1,...,2",

4
SN Py s <2 GHDn, (3.19)

P Lay @ PP (I xRy T

We then perform a Whitney type decomposition of the interval I and obtain that for
almost every tq,ty € I with ¢; < to, there exist unique n € N and j € {1,...,2"} such
that ¢4 € I} and ¢ € [}, ;. Correspondingly, we may write

t

on
/ei(tfs)APNh(s) ds = Z ZXI?H(U / =2 Py () ds

0 neN j=1 In
J

with the understanding that I3, = () and where x;r,, (t) denotes a sharp cut-off func-
tion to the interval I7, ;. To somewhat ease the notation in the following, we shall write
(p,q) = (3%,2). Note that by Lemma 3.5 and by (3.19), we have for any n € N and

j€{l1,...,2"} the bound

N*%Jrs

/ei(tfs)APNh(s) ds

n
I

<Y ONTFE PR s
)

T e
LEA(Ir, xRY)  yp Lo, = 7% (I} xRY)
< o= (3+5)n
s .

Hence, using also that % < 1, we compute that

t

N—i+e /e“t—S)APNh(s) ds

LE:(IxR4)
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< —§+EZ

len / =8Py h(s) ds

neN lj=1 qu(IXR4)
P 1
1 a q P
:N7§+EZ @/ ‘/ i(t— S)AP h )dS dﬁCldt) dl'l)
neN Jj= 1[7:. 3/ In
n 1
2 L ] P P
< Z (Z (N—2+e /el@—S)APNh(s) ds ) )
neN \j=1 T Lgiq(I;RIXR‘l)
Sy
neN
neN
<1

This yields (3.18) and therefore finishes the proof of Lemma 3.6. O

Proof of Proposition 3.4. Without loss of generality we may assume that 0 = ¢; =
inf I. By Duhamel’s formula for the solution to the inhomogeneous Schréodinger equa-
tion (3.10), we have for any dyadic integer N € 2% that

t
Pno(t) = €A Pyug — i / Wt=9)A Py h(s) ds. (3.20)
0

By Proposition 3.1 and Proposition 3.2 it then holds that

NHeitAPNUOHLchg(IxR‘l) + HeitAPNUOHXN(I) S NlPyvollzz es)-

In order to complete the proof of (3.11), it remains to verify that the Duhamel term in
(3.20) satisfies for any admissible Strichartz pair (g, r) that

t
NH/ =B Py h(s) ds
0

LILT (IXR4)

(3.21)
e "IAPyR(s)ds|| , S NIIPhlLizz (rxme)
L3 ° ¢ (IXR4)

+ 24:]\7—%+s

as well as
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t
NH/ e"t=3)A Py h(s) ds
0 LILT(IxR*4)

4 ¢
+ ZN_%"’g /ei(t_s)APNh(s) ds iy
(=1 0 Le, (IxR4

<SSONEE|Pyh| a4 .

e SN

(3.22)

The proof of (3.21) is standard and therefore omitted, while the estimate (3.22) is pro-
vided by Lemma 3.6. O

4. Trilinear estimates

In this section we systematically develop the trilinear estimates to handle all possible
interaction terms that arise in the forced cubic nonlinearity within the functional frame-
work laid out in the previous section. To this end, we frequency localize all inputs and
order the inputs by the size of their frequency supports. There are then two main types
of estimates. The first is when a deterministic solution v appears at highest frequency.
In this case, we place the associated trilinear term into the L} L2 component of the G(I)
space and estimate it using just a combination of Bernstein estimates and Strichartz
components of the X (I) and Y (I) spaces. Another, more delicate, type of estimate is
required if instead the (random, low-regularity) forcing term F appears at highest fre-

1+4,2—
L

quency. Here we place the associated trilinear term into the Lg component of the

G(I) space, which results in a gain of %— derivatives. The forcing term F' appearing

co—,2+
Le,

at highest frequency is then put into the local smoothing type component of

the Y (I) space, which gains another %— derivative. For the remaining lower frequency
terms we use a mixture of Strichartz components and maximal function type Lij""’*
components of the X (I) and Y (I) spaces, in particular we crucially rely on our improved
maximal function estimate for unit-scaled frequency localized data, see Lemma 5.4 and
Proposition 5.3. It is here where we have to pay back some of the gained derivatives. It is
important to observe that the most severe trilinear term is the |F|?F term, see the proof
of (4.5) in Proposition 4.1, which ultimately leads to the regularity restriction s > % in
the statement of Theorem 1.3.

The next proposition establishes the key, frequency localized, trilinear estimates of
this work.
Proposition 4.1 (Main trilinear estimates). Let Ny 2 N and N1 > Na > N3 be dyadic

~

integers. Let e € {e1,...,es} and let I C R be a time interval. Then the following
trilinear estimates hold where all space—time norms are taken over I x R*,

2

N N3\ 3
NPy (Pavos Pva Pen) [y 5 (5 ) (R2) IR0l 1Pvevalls, 1P ealc,
(4.1)
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1

N N3\ ?
NPy (Pavon P Prgen) 12 % (7 ) (32 ) 1P, 1P Pl [P,
(4.2)

2
N N3\ 3
NPy (Prvos v P )12 5 () (52) IPwols, I Prstal, [P Fall,

(4.3)
N\ [ Ns s
NHPN(Pval PN2F2 PNst)HL%Li 5 ﬁl _2 ||PN1U1||XN1||PN2F2||YN2||PN3F3||YN3
(4.4)
N%+EHPN(PN1F1PN2F2PN3F3) adtar
N N3
5<E> <N> 12w, Filly, |1 Pn Fall v, 1Py Fsllva, (4.5)
N Py (P, Py P P | s
N\ NG\ 2
S (Fl <E> ||PN1F1HYN1||PN2U2||XN2||PN3U3||XN3 (46)
1
N2+6HPN(PN1F1 Pr, Fy PN3v3)H erte
——s)s
( ( > HPNlF]_HYNl ||PN2F2HYN2 HPN3U3||XN3 (47)
N2+5HPN(PN1F1PN2”2PN3F3)HL§%€’$
1 L 2
N §+5 N3 87 3¢
S(x) (F) 1Bl IPwRlv Pole, @9

Proof. In the following all space-time norms are taken over I x R*. We begin with
the derivation of the estimates (4.1)—(4.4) where a deterministic solution v appears at
highest frequency. The proofs are simple applications of Holder’s inequality and Bernstein
estimates.

Proof of (4.1): vivavs case.

N|| Py (Py,v1 Pyve Pryvs) || 2

S NIPnyvilzzra [Py vl gl P vsll g Loe

1 5
S NIIPnyvil|p2pa NS (| Pryvallpeps N3 | Prgvs]l 1

LOLS

N N3
=~ (ﬁ) (E) NPy orl| s Nol| Prz vzl g o Ns [ Prsvsll 2

t



640 B. Dodson et al. / Advances in Mathematics 347 (2019) 619-676

2
N\ /Ns\?
< (N) (N) 1Pxyon . [Pyvellen, | Py vsl s,

Proof of (4.2): v1 Favs case.

NHPN(PNI'Ul PN2F2 PN3U3)||L%L?E

S NI Pwyvillzpa 1P, Fall pz ns | P vall Lo 12

1
N N3 3 1
N (_Nl) <_N2> NlHPNﬂ}lHL?Lf;NQSHPNQFQ”L?L?EN?)HPNE,’U?)”L?L;%

1
N\ /Ns\?®
< (3) (52) 1wl 12w Fal [P,

Proof of (4.3): viva F3 case.

NHPN (PN1U1 Pn,va PN3F3) HL}L%

S NIPnvyvillpzpa | Py vallpepa [P F3 | e pos

2
N N3\ 3
S )2 ) NillPavyoill2ps Nol| Payvall s s || P Fall o o

Nl N2 tHax tHax tHax

2
N\ /Ns\ 3
< (3) (52) 1Pmonlisw, IPsvalix, 1Px Pl

Proof of (4.4): v1 FyF3 case.

N||Px (P, v1 Py, Fa Py, Fs3) HL}Lg

S N Pyyvillzpall Py Follpp s || P F3l [ Lo 12

N\ [ N3\? .
S (52 ) NllPwvyorllzepa NS | Py Poll o s | Py Fll po s
N1 ) \ N2

N\ /N3\?
S <E> (E) 1P, V1| X, 128, Py, | P8 E5 [l v,

We now turn to the proofs of the more delicate trilinear estimates (4.5)—(4.8) where
a (random, low-regularity) forcing term F' appears at highest frequency.

Proof of (4.5): F1FyF3 case. We first use Holder’s inequality to place the Py, F3 piece
4

1
into Lg™°'°,

N%+s|‘PN(PN1F1 P, Fy PN3F3)HL4f5=2iE S N%+€’|PN1F1 PN2F2HL2*2||PN3F3”L2%55'

(4.9)




B. Dodson et al. / Advances in Mathematics 347 (2019) 619-676 641

Relying on the identity (2.1) we further decompose the highest frequency piece Py, F}
into
PNlFl = PN1791PN1F1 + PNl,ez(l - PNl,el)PNlFl
+ PN1793(1 - PN1,e2)(1 - PNhel)PNlFl
+ PN1764(1 - PN1793)(1 - PNhez)(l - PN1791)PN1F1'
We note that the operators (1 — PNl,el)ﬁNl are disposable since their kernels are uni-

formly bounded in Ll. Using this disposability and the fact that L¥? = Lg’f for
¢=1,...,4 by Fubini’s theorem, we may now use Holder’s inequality to bound (4.9) by

—e’¢

NPy, Fy P, | 2 HPN'“"F?’HL% :

NE

1
SNEY IPn e Pu P s s IPh Pl o s l1Pr Bl s s
L L

2
1 4 e[ e

N Ny N3 +
<N1> <N1> ( ) ZNG 8”PN192PN1F1” =

PN Bl s Ny P Bl s

~
MH |

¢

2 ss
%

A

1
N2t/ N, 5
(M> <N> 1Pxs Fi [y, [Py Follv, || P sy, -

mw:.

Proof of (4.6): Fyvavs case. We begin by placing the Py,vs piece into L2 <’

4 4.
e’e

(4.10)

N%J’_sHPN(PNlFl PN2U2PN3US) 4 4 SN + HPNIF]- PN2U2HL22||PNSU3||
7 L

4—e’ 24

On the one hand we may proceed as in the proof of (4.5) to estimate the term
HPNlFl PN2v2HL2’2 by

4
| Pn, Fy Py,vo| 22 S (Z |3 oc PV 3 )(Z | Pl )
=1 et

while on the other hand we may use that L2* = L2L2 to bound the term by
| Pry Fr Pryva| 22 S 1PNy Fall g e | Py vz | e s

Interpolating between the two cases we now estimate (4.10) by
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N%+E||PN1F1 Pr,va [ 22 HPN‘"’U?’HL%'%
e

8¢ 2 8¢

9—6¢ 3 9—6¢
<||PN1F1||L§L3> X

< wiee (Z |Prv.or Pas i )
=1 Le,

8¢ 2 8¢

4 %""9—65 37 9—6¢
. (} Py ) (uPszanm) 1 Payosll s
=1 Le, Le

N 3+e Ns %—EX
-\ Ny

4 54 (1— 4 e 3te%:
6 9-6
X Nl : HPNl,eePNlFlH .52 X
{=1

e’2—¢
Le,

o
0
o

9—6¢

1 __4 3
X <N13+(1 QGE)EHPNlFl”L?Lg) «

4 l+L 2_

_l_"_a 3 9—6¢ 3 9—6¢&
(NG Py ) (N2|PN2v2||L§Lg) ‘
= Ley

—

[N

-1+
x N3 €||PN3U3||Lﬁ,g

e

N ste N 3-€
S(-) (E) 1Pn, Er [y, (1PN, 02l X,y 1P 03 0 -

4

4 a
Proof of (4.7): Fy Fyvs case. Here we first place the Py, F» piece into La ¢,

Nz+¢|| Py (P, Fi Py, Fs P, v3)

HL&,QL §N%+EHPN1F1 PN3v3||L§,2HPN2F2||LﬁE
e e

Then interpolating as in the proof of (4.6), we bound this by

N%+E||PN1F1 PN3U3HL§‘2 1PN Fol| o s

L ®
) 4 24e 5—¢
v (D lPva Pl s ) (1Pl )
=1 et

1
3¢

4 24¢
3
<Pl s (S 1Pweal ot ) (IPxsnlis )
e =1 ey

(N (N N\
o Ny Ny N

4 24¢
54(4_ 3 1i(4_
(N Pl s ) (N IR )

2—¢
=1 et

ol
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1
3¢

4 2-‘,—5

1 -1y 3

NPl s (DN IRl s ) (Ml Pavaliges
=1 ¢

1 5
N 5+e Ny (g—e)e
S(x) (F) 7 1Bl IPv il Prvalc,

4

Proof of (4.8): FyvaF5 case. As usual we first place the random piece Py, F3 into Le °’

o

)

NE| Py (P, P P )|

4 4
Lefk—s 2+e

5N%+€HPN(PN1F1PN21)2HL2’2”PN3F3HL e

&
Then, analogously to the previous two cases, we interpolate to obtain

N%"‘EHPN(PNlFl PN2>U2HL§’2 ||PN3F3”Lﬁ’%

' !

1

S O R NP I (TR T
=1 et

2

4 3 3
x (Z||PN2v2|| ) (uPszgnL?Lg) 1Py, Fol o s
=1 Lez L¢

N E s+e & Ze & %*%EX
R Ny Ny
3

4 2

541 3 141
X ( E Nf’ 3€HPN1,e£PN1F1H 4,2f) <]V1'g SEHPNIF:[HL?LG) X
— Le.sZ 5 x

4 2
_l+ 3 3 _1
X <§ Ny 275 Py, v 244) <N2||PN2U2||L§L3> Ny °||PnyF|| s s
=1 Leg Le

N 3te N; 5—3e
S(x) () 1Bl Pyl PuFily, o

The frequency localized, trilinear estimates (4.1)—(4.8) imply an important set of non-
linear estimates that we will need for the proofs of the almost sure local well-posedness re-
sult of Theorem 1.3 and the conditional scattering result of Theorem 1.8. More precisely,
given any time interval I, any forcing term F' € Y (I), and any v, v1, v, u,w € X (I), it is
an easy consequence of the exponential gains in the frequency differences in the trilinear
estimates (4.1)—(4.8) to conclude that

[|F + o2 (F + U)HG(I) S ol + 101 IE vy + 1ollx o 1ENS oy + I1F ISy

S ||FH?1)/(1) + ||UH§((1)
(4.11)
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as well as

|1F +v1[*(F +v1) — |F+”2|2(F+”2)”G(1)

2 2 3 (4.12)
S v — U2||X(I)(||F||Y(1) + vl + ||U2||X(1))~

Moreover, using that

IF+u+w*(F+u+w) — [uPu=|F*F + |w]*w + O(F?*u) + O(F?w) + O(Fu?)
+ (’)(Fuw) + (’)(FwQ) + O(qu) + O(uwQ),

we may also infer that

|IF +u+w(F+u+w)— |u|2uHG(I) (413
4.13
SIFIS oy + lwll oy + 1F Iy llullie oy + el o llwllx -

5. Almost sure bounds for the free evolution

In this section we establish various almost sure bounds for the free evolution of the
random data. In Subsection 5.1 we recall some probabilistic preliminaries. Then Subsec-
tion 5.2 is dedicated to the proof that the Y (R) norm of e®2 f¢ is almost surely finite
for any f € H3(R*) with £ < s < 1, while in Subsection 5.3 we establish further almost
sure bounds that enter the proof of Theorem 1.9 and mostly crucially rely on a radial
symmetry assumption.

5.1. Probabilistic preliminaries

We first recall the following large deviation estimate.
Lemma 5.1 (/15, Lemma 3.1]). Let {g,}52, be a sequence of real-valued, independent,
zero-mean random variables with associated distributions {u, 152, on a probability space

(Q, A, P). Assume that the distributions satisfy the property that there exists ¢ > 0 such
that

< e for all v € R and for all n € N.

+oo
‘ / e’ dpn (z)

Then there exists o > 0 such that for every X\ > 0 and every sequence {c, }22; € ?(N;C)
of complex numbers,

nlcnl?

P({w : |§ cngn(w)’ > A}) < 2€Xp(—az)\72).
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As a consequence there exists C' > 0 such that for every 2 < p < 0o and every {c,}22, €
(N; €),

1/2

[$ el

n=1

LE(Q) = C\/]S(ni: |C”|2)

We also present a lemma that will be used to estimate the probability of certain
events. Its proof is an adaptation of the proof of Lemma 4.5 in [67].

Lemma 5.2. Let F' be a real-valued measurable function on a probability space (2, A,P).
Suppose that there exist Cy > 0, K > 0 and pg > 1 such that for every p > py we have

1F] 22 ) < vPCo K.

Then there exist ¢ > 0 and Cq > 0, depending on Cy and pg but independent of K, such
that for every A > 0,

P({weQ:|F(w)|>A}) < Cre=eN /K%
In particular, it follows that
P{weQ:|F(w)| <oo})=1.
5.2. Almost sure bounds for the Y(R) norm

The purpose of this subsection is to establish the following almost sure bound for the
Y (R) norm of the free evolution of the random data.

Proposition 5.3. Let 1 < s <1 and let 0 <e < 3(s—1). Let f € H3(R*) and denote by
f¢ the randomization of f as defined in (1.5). Then there exist absolute constants C' > 0
and ¢ > 0 such that for any X > 0 it holds that

P({w R R A}) < Cexp(fck2||f||E§(R4)>. (5.1)

In particular, we have for almost every w € Q) that

WA pw
[e*2f HY(]R) < 0. (5.2)
Before we turn to the proof of Proposition 5.3, we first present a key improvement
of the maximal function estimate for unit-scale frequency localized data. Its proof is an

adaptation of the proof of Lemma 4.1 in Ionescu—Kenig [36].
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Lemma 5.4 (Unit-scale mazimal function estimate). There exists an absolute constant
C > 1 such that for all k € Z* with |k| > 10 and for each £ =1,...,4, it holds that

1€ Pef || 2. amy < ORI Pefll 2z e (5.3)

Proof. It suffices to consider the case £ = 1. Let k € Z* with |k| > 10 be fixed. We
use the notation z’ = (z9,z3,24) and we denote by & the associated Fourier variable
coordinates. Now let ¢, € C°(R) and 1 € C2°(R?) be bump functions with unit-sized
support and uniformly bounded derivatives such that

W€ — k) = V(€ — k)ou(€)m(€)  forall € = (&,¢) € R,

In particular, we have that |supp(px)| < 1 and |supp(ne)| < 1.
By a TT*-argument the proof of (5.3) reduces to establishing the estimate

‘// w161 gia'-€ —itEHIE ) ) (£ Yy (€1) dE' dEy
Ll L

Re; R z1 7t @’
Since 71 (+) has unit-sized support, a stationary phase argument yields

ia’ & —itl|? /
ap | [ ety e)
2/ €R3, teR
&

< |kl. (5.4)

! §min{17|t|_%}. (5.5)

Analogously, by the unit-sized support of ¢ (-) and by stationary phase we have

sup < min{1, |t|_%}. (5.6)

z1ER, tER

/ e oy (&) dey

]Ril

Moreover, if |z1| > 1000|k||t|, then integrating by parts twice, we find that

1

136151 —it€} - -
‘/ Lop(&1)dé| < PP

using that in the regime |z1| > 1000|k||t|, we have

1 oI 1 1
— and |—|———F | S— forj=1,2.
|1 o0& \x1 — 2t& |21

The latter bounds follow from the observation that if |z1| > 1000|k||¢|, then we have
|x1 — 2t&1| > c|zq| for some small absolute constant 0 < ¢ < 1 since also |£1| < 10|k|.

1
xrp — 2t§1 ~

Additionally, note that in this regime we may also bound

lz1]
It < S |2l
k|
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Thus, using (5.5), (5.6) and (5.7), we obtain uniformly for all z; € R that

’ / / e ein € =it P (6 ) (€1) de’ dy
i

Rey R,

oo
Lt,:(:/

[k ) 1
5X[07kl](|$1|)+X[|k|,oo)(|$1|)<m—1|) +ma

where xio,x((-) and Xx[x|,c)(-) are sharp cut-off functions to the intervals [0, |k|] and
[|k|, 00), respectively. Integrating in 21 over (5.8), we obtain the desired bound (5.4). O

Remark 5.5. We emphasize that the proof of Lemma 5.4 generalizes to all space dimen-
sions d > 3 and the same half derivative cost |k|% occurs in all space dimensions d > 3.
The cost of only half a derivative in (5.3) should be compared with the three halves
derivative cost of the usual maximal function estimate (3.4) for dyadically frequency
localized data.

We are now prepared to prove Proposition 5.3.

Proof of Proposition 5.3. For any p > g we have by Minkowski’s inequality that

1
2 2
Lg) '

We consider the components of the Yx(R) norm separately. In the sequel, we will re-

HHeitAwaY(R)’

S (Z HHPNeitAwaYN(R)‘
¢ Ne2?

peatedly use that the free evolution and the frequency projections commute. We first
treat the component coming from the Strichartz spaces. By Lemma 5.1, the unit-scale
Bernstein estimate (1.4), and the Strichartz estimates (3.1), we have

. ,
(NY3+3|||| Pye™ [\l s ronrs e (rxra) HLE

| g P

k|~

< <N>%+36

»
LollLarennsns (Rxr4)

2

S \/13<N>%+38< Z HeitAPkaingmL?Lg(RxR‘*))

|k[~N

< \/]—7<N>§+36< Z HeitAPkaingmL?L;g(RXR4))

|k|~N

=

S \/23<N>§+38< > ||Pkf||2L§(JR4)>

|E[~N

1
~ /P (N)3T%| Py | L2 (re).-
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Next, we estimate the local smoothing type component of the Y (R) component. Here
we first apply the local smoothing type estimate (3.5) for the lateral spaces and then use
the large deviation estimate from Lemma 5.1 to obtain that

4

Z< +35N5—5HeztAPNeZPNf H
=1

LE'2 °(RxRY) || pp

< H<N>é+3€||PNfW||L§<R4>

L

< \/13<N>§+3E( 3 Pkf|ig<R4>)

BN
1
S VP N)ST Py fll L2 ey

Finally, we turn to the maximal function type component of the Y (R) norm, where we
distinguish the large frequency regime N 2 1 and the small frequency regime N < 1. For
large frequencies N = 1 we first use the large deviation estimate from Lemma 5.1 and
then interpolate between the improved maximal function estimate (5.3) for unit-scale
frequency localized data and an estimate of the L} L2 (R x R*) norm of the free evolution
of unit-scale frequency localized data (based on the unit-scale Bernstein estimate (1.4)
and Strichartz estimates (3.1)) to conclude that

4 )
SN (e
/=1

|k[~N

4

D NTH[|et A Py |

{=1

L2 e’ E(RxW) 1%

1
11 2
< VBN GNz(Z ||Pkf||ig<R4>)

k|~
1
S VP AN)# PN fllnz ray.-

For small frequencies N < 1, we directly apply the usual maximal function type esti-
mate (3.4), trivially bounding the resulting frequency factors, and then use the large
deviation estimate to infer that in this case

4
> NTE|e APy

{=1

S NTEN2* HPwaHLg(]R‘l)

L2 E’E(Rxw) L%
5 VPPN fllz2 ey

Putting all of the above estimates together, we find that

N

HHeimfw

Iyl

S (v >+35|PNf|Lg<R4))2) < B I sz,

Ne2Z

<

from which the assertion follows by Lemma 5.2. O
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5.8. Almost sure bounds for the proof of Theorem 1.9

We first collect several harmonic analysis estimates that will play an important role
in establishing the additional almost sure bounds for the free evolution of randomized
radial data for the proof of Theorem 1.9. We will crucially rely on the following local
smoothing estimate for the Schrodinger evolution.

Proposition 5.6 (Local smoothing estimate; [20,61,68]). For any 6 > 0 it holds that

||<‘T>7%766itAf||L§L§(R><Rd) Ss H|v‘7%f“L§(Rd)' (5.9)

Furthermore, by scaling, we have

Is%li% R HeitAfHLng(Rx{ng}) S H‘v|_%fHL§(Rd)' (5.10)

Moreover, we recall the following “radialish” Sobolev type estimate for the square-
function associated with the unit-scale projections of a radial function that was estab-
lished by the authors [30]. It will be a key ingredient in the proofs of several almost sure
bounds in this subsection.

Lemma 5.7 (“Radialish” Sobolev estimate; [30, Lemma 2.2]). For any § > 0 there exists
Cs > 0 such that for all radially symmetric f: R* — C it holds that

ot (X |Rs)

keZ*

< Csl fll s rey- (5.11)
L (R*)

We also state a simple corollary of the above “radialish” Sobolev estimate.

Lemma 5.8. Let 2 < 1 < oo and § > 0. Then there exists Cs > 0 such that we have for
all radially symmetric functions f: R* — C and for all dyadic integers N > 1 that

20-B (3 ;pka\2)2H < CoNO | o (5.12)
kezd Ly (R) ’

Proof. The estimate follows by interpolation between the radialish Sobolev estimate
from Lemma 5.7 and the trivial estimate

(S ipuwP)’

keza
We borrow the following useful technical lemma from [44, Lemma 2.3].

S HfN||Lg(R4)' =

L2(R4)
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Lemma 5.9. For 0 < a <1 and 4 <r < oo, we have

PN’U,’

H(l’>auHL;C(R4) < H<m>0‘P§1U‘ Lz (RY) + Lz (R4)"

N>2

Moreover, we will require the next two technical lemmas on certain operator norm
bounds.

Lemma 5.10. Let 2 < r < co. For any k € Z*, any integers j, £ > 0 with £ > j + 5 and
any integer M > 0, it holds that

||XijXéHL§(1R4)aL;(]R{4) < Cy27 M (5.13)
Proof. We have that
Xj (@) (Prxef)(x) ~ x;(z) /6““(””"”)15(36 —y)xe(y) f(y) dy
R4

~ X5(2) / DGz — ) — y)xe() f(y) dy.

R4

where we could freely introduce a suitable bump function @(-) with @g(z) =1 for |z| ~ 1,
because |z — y| ~ 2¢ thanks to |z| ~ 27, |y| ~ 2 and £ > j + 5. Thus, we obtain from
Young’s inequality and the rapid decay of ¢(-) that for any integer M > 0,

[[x; Pixef|

s S 82790 1£llz2 ey S Car2 M\ fllr2@sy. O

_2r_
LgT? (RY)

Lemma 5.11. For any integer £ > 0, any k,m € Z* with |k —m| > 100, any 2 < r < oo,
and any integer M > 0 we have

||PngPmHLg(R4)_>L;(R4) < Cy2 MYk —m| ™M, (5.14)

Proof. By repeated integration by parts we find that the Fourier transform of y, satisfies
for any £ # 0 that

IR6(6)| < Crr2~ Mg =M 2| (VM ) (24€) . (5.15)

Thus, from the unit-scale Bernstein estimate (1.4) we obtain for any function g € L2(R*)
that

1PixePngll sy S 1 PexePmgll 2 gy

Using Plancherel’s theorem, it then follows that
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1P Psl s ey = [ (B Pg) e

st B [ xele = )otn—m)aon) dn

R4

LZ(R%)

)
L2(RY)

- Hw@—k) [ Bk =l € = m)ate — myta — m)ato) d

R4

where in the last step we have exploited that we may freely introduce a suitable bump
function @(-) with @(z) = 1 near |z| ~ 1 due to the frequency support properties of
Y(- — k) and ¥(- — m). We then use Young’s inequality as well as the bound (5.15) on
the Fourier transform of x, to obtain

HPkXergHLQ(R‘l ~ H‘p(‘k ml ! ) HLI (R4) ||g||L2(]R4) ~ 2” Me‘k m‘ ”g”Li(R“)v
which concludes the proof. 0O

We are now prepared to establish a key weighted L7L°(R x R*) almost sure bound
for the derivative of the free evolution of randomized radial data. The proof combines
the large deviation estimate from Lemma 5.1, the local smoothing estimate from Propo-
sition 5.6 and the “radialish” Sobolev estimate from Lemma 5.7.

Proposition 5.12. Let l <s<land0<a<1. Let f € H:(R*) be radially symmetric
and denote by f¢ the mndomzzatzon of f as defined in (1.5). Then there exist absolute
constants C > 0 and ¢ > 0 such that for any A > 0 it holds that

IP’({UJ eN: ||(x)aVeitAf“’HL%Lgc(RXW) > )\}) < C’exp<fc/\2||fH;I§(R4)>. (5.16)

In particular, we have for almost every w € € that

H(x)"Ve“Af” ||L$L§,O(]R><R4) < 00. (5.17)
Proof. In the following all space-time norms are taken over R x R* We denote by
0 > 0 a constant which will be chosen sufficiently small at the end of the proof. For any

4 < r < oo we have by Lemma 5.9 that

||<x>aveimfw||LZL?Lz° N H<x>aveitAP§1waL£L2Li

z)* Ve S Py || (5.18)

LEL2LT"
N>2

We now estimate the high-frequency terms in the sum on the right-hand side of (5.18).
For each dyadic integer N > 2 we decompose physical space dyadically to write
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K2y Ve P Sl gy < D I (@) Ve P f]| g

Jj=0

S 2 Ve P Sy o
320

Applying the large deviation estimate from Lemma 5.1 and using the shorthand notation
fn = Py f, we find for any p > r that

Z 207 ||vaeitAPwaHL£’,L$LT
>0 -

SV 2

Jj=0

< Z |XijV€itAfN’2> i

|k[~N

( Z |XijX§j+5veitAfN|2>

[k[~N

< Z |XijX>j+5V€itAfN|2>

LiL;

SV 2

Jj=0

L?L7

+vpYy 2%

3>0 |k|~N LILy
= /p(I+1II).
We first estimate the main term I. For j = 0 we just use the unit-scale Bernstein

estimate (1.4) and the local smoothing estimate (5.10) for the free Schrédinger evolution

H< > |X0PkXS5V€“AfN|2>2

|k[~N

1
) 2
< ( > ||ka§5Ve”AfN||§w)
L3L7, “

|k[~N

1
) 2
< (X IPassves il

[k|~N
itA
< [[x<s Ve fNHL’;‘Lg
1
SVIFE x| -
Then the most delicate case is to estimate the sum over all j > 1 in term I. Here we

use a combination of the “radialish” Sobolev estimate (5.12) and the local smoothing
estimate (5.10) to obtain for all sufficiently large r < co with v+ 2 < 1 that

D2

1
, 3
( Z |XijX§j+5V6”AfN|2)

i>1 k|~N LILY
1
in—3(1—2)4 3(1-2 ; 2\ 2
<> 209270 g ")( > | Pex<js Ve il )
i>1 |k|~N LILY
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S E 209301 %)j”6HX<j+5Wit Illpare
tHx
j>1

< 2 2V H TN RO

Jj=1

SNNIVIE fxl e

Next we turn to estimating the remainder term I7. To this end we introduce the short-
hand notation gy = Ve'*® fy. Then we have

1
) 2
115329 3 [P saovlli, )

§>0 |k|~N
1
. 2 2
§22a3< Z < Z ||XijXeYe9NHL$Lr> ) :
320 [kI~N 2>j45 L

Now we further decompose Y¢gn in frequency space at unit-scale and obtain that the
previous line is bounded by

N
chw( 3 < > > |\ijk><me>?f9NHL%L;> )

3>0 |k|~N M>j+5 mezs
1
2 2
< g 2aa< E ( E g ||XijXer>zegN||LgLi> )
7>0 [k|~N M>j+5 |m—k| <100

1
2\ 2
+22aj< Z < Z Z HX]’PICXZP'HLYKQNHL?L;) >

3>0 |k|~N N> j+5 |m—k|>100 -
=[TA+1IB.

Then we can easily estimate the term ITA using the operator norm bound (5.13) and
the local smoothing estimate (5.10) to find that

Z(Z > 2_10£HPmiegNHLng>2>%

|k|~N N>545 |[m—k| <100

IIA§ZQ”‘j<

Jj=0

2

Yo (X XY o)

§>0 |k|~N €>§+5 [m—k|<100

=

3G oERTIIN

Jj=0 £>5+5
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1
2
<3 2‘“( > 2_10€2€|||V|+%fNHi%>

>0 £>545

1
Next we use the operator norm bound (5.14) to estimate the term IIB by

1
2

2
IIB S ZzaJ( > ( >y Hkaszﬁm%egNHLm) )

§>0 |k|~N Ne>5+5 [m—k|>100

2\ 3
(S X5 ke o))

§>0 kE€ZA Mm—Fk|>100 £>5+5

where we denote by P,, a slight fattening of the unit-scale projection P,,, m € Z*,
with the property that P,, = Pmlgm. Using Young’s inequality (for the convolution of
k,m € Z*) and then Cauchy-Schwarz (for the sum over ¢) the previous line can be
estimated by

2,2 '“10)(2(22—1°fuﬁm>agsz)2>2

§>0 k€Z4,|k|>100 meZA NM>j+5

%
sZW(Z > 2—1°f|\ﬁm>zegzvuim)

j=0 mezZA £>j+5

SIS oERD o L R

§>0 £>545 mezA

[N

Finally, we use that the projections ISm, m € Z*, are just slight fattenings of the unit-scale
projections P,,, which constitute a finitely overlapping partition of unity of frequency
space, and invoke the local smoothing estimate (5.10) to obtain that the last line is
bounded by

1 1
2 2
22aj< Z QMZHXKQNH;;’L?D) < ZQaJ( Z 2M625H|v+éfN||2Li>

j=0 £>5+5 j>0 £>5+5

S 91 gl

This finishes the treatment of the high-frequency terms on the right-hand side
of (5.18). The first low-frequency term on the right-hand side of (5.18) can be esti-
mated analogously and the details are left to the reader, we obtain for all sufficiently
large p < oo that
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; 1
H<x>av61mPS1fMHL5L§L; S VP H|V‘+2P§1fHLg'
Thus, putting all of the above estimates together, we conclude that

1) Ve g o e S VI VE P f? 1y 1,

+ By N%N5|||V|+%PNf||L3 (5.19)
N>2

SV

for all p > r for some sufficiently large r < oo and for some sufficiently small § > 0 (such
that o + % < 1 and % + 9 < s). The claim now follows from Lemma 5.2. O

The next almost sure bound is an immediate consequence of the previous Proposi-
tion 5.12 and the local smoothing estimate from Proposition 5.6.

Proposition 5.13. Let % < s < 1. Let f € H:(R") be radially symmetric and denote by

f¢ the randomization of f as defined in (1.5). Then there exist absolute constants C' > 0
and ¢ > 0 such that for any A > 0 it holds that

]P’({w eN: HVeitAwaL%Li(RXW) > )\}) < Cexp(—c)\2||f\|I;§(R4)). (5.20)

In particular, we have for almost every w € € that

HVe“Af“HL%Li(RxRQ < o0. (5.21)

Proof. In the following all space-time norms are taken over RxR*. By Hélder’s inequality
we have for any p > 1 that

||VeitAfw ||LZL§L§. < H <x>*%veitﬁfw ||%E,L§Li || <x>%veitﬁfw H[%,‘JL?LiC' (5.22)

Then the local smoothing estimate (5.9) and the large deviation estimate from Lemma 5.1
imply for all p > 2 that

@) =3V £ 1y pare SNVIZF N e SVRIIVIES e S VPNl (5.23)

Moreover, the estimate (5.19) from the proof of Proposition 5.12 yields for all sufficiently
large p < oo that

||<x>%veitAwaLgL%Lgc S Vo I fllas- (5.24)
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Combining (5.22)—(5.24) we obtain for all sufficiently large p < oo that

itA
[ve waLngLg S VIS llE:
and the assertion follows from Lemma 5.2. O

We will also need almost sure bounds on weighted L?L°(R x R*) norms of the free
evolution of randomized radial data. The proof combines Strichartz estimates (3.1) and
the “radialish” Sobolev estimate from Lemma 5.7.

Proposition 5.14. Let0 < s <1l andlet0 < a < % Let f € H:(R*) be radially symmetric
and denote by f“ the randomization of f as defined in (1.5). Then there exist absolute
constants C > 0 and ¢ > 0 such that for any A > 0 it holds that

]P’({w eN: H(x)o‘eimf”HL%L;o(RXW) > /\}) < Cexp(—cA2||f||I;§(R4)). (5.25)
In particular, we have for almost every w € Q) that
’|<.T>a€itAfw

HL%L;Q(RxW) < oo. (5.26)

Proof. As usual, in the following all space-time norms are taken over R x R%. For any
4 < r < oo we have by Lemma 5.9 and the elementary estimate (x)® <, 1+ |z|* that

eitA PN fw

[ el ppne S " Peafll gz, + 3 N7
N>2

+ ||l Pey £ o + D N7
N>2

HL&L%L;

|x|aeitAPwa ||L£L?L; )

(5.27)
In what follows we only estimate the weighted high-frequency terms on the second line of
the right-hand side of (5.27). The weighted low-frequency term on the second line of the
right-hand side of (5.27) can be treated analogously and the large deviation estimates
for the space-time norms in the first line of the right-hand side of (5.27) are standard
and left to the reader.
For any dyadic integer N > 2 we have by the large deviation estimate from Lemma 5.1
for any r < p < oo that

(5.28)

x|a<z {eitAPkPNf|2> 2

kez*

L?LT

Now let 0 < & < 1 be an absolute constant whose size will be fixed sufficiently small
further below. Interpolating the “radialish” Sobolev estimate (5.11)
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ol (Sl nns ) | s NE (Sl npa,)
Lge :

kezA kezA

with the trivial bound

1

A 3 ‘ 1
H (Z |€’LtAPkPNf|2> HL@?,Q)T < (kz4||eztAPkPNin;3—§a>r)

kez*

yields that

1
) 2
Sl rputll, ) 620
kez4 e

1
|x|a<z ‘eitAPkPNf|2> 2

kez*

gm(
L?Ly,

Since by assumption 0 < a < %, we have for all sufficiently large r < oo that BigT > 4.

Hence, we may combine the unit-scale Bernstein estimate (1.4) and the Strichartz esti-
mates (3.1) to bound the right-hand side of (5.29) by

1 1
) 3 3
V(PP ) SV SR ) £ NPl
kez4 ’ ket ’

Thus, choosing 1 < r < oo sufficiently large and 0 < § < 1 sufficiently small so that
4 4+ 6 < s, we conclude that the second line of the right-hand side of (5.27) is bounded
by

VPIP<ifle: + B > N*N°|[Pyfllrz < vpllflla:

N>2

The assertion then follows from Lemma 5.2. O

Finally, we will require several almost sure bounds on space—time norms of the free
evolution whose proofs are standard.

Lemma 5.15. Let s > 0 and let f € H(R*). Denote by f* the randomization of f as
defined in (1.5). Then we have for almost every w € Q) that

12 e+ 1 g 1€ pagans <0 G0

Proof. In order to establish the L{° L2 (R x R*) almost sure bound on the free evolution,
we first apply Sobolev embedding in time. Let 0 < § < 1 with 0 < § < 5 and let

2 < ¢ < oo sufficiently large such that § > %, then we have

1€ 2 o s cmay S 16O S Lo o sy S IV €S2 Ly g ey
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It is now standard to use the large deviation estimate from Lemma 5.1, the unit-scale
Bernstein estimate (1.4) and the Strichartz estimate (3.1) to infer for all p > ¢ that

172 £ oo 1.4 (RxcRA) HLZ SVP I fllas @y,

which implies the desired almost sure bound by Lemma 5.2. The proofs of the
L L2(R x RY) and of the LI LS (R x R*) almost sure bounds are left to the reader. 0O

6. Almost sure local well-posedness for the cubic NLS on R*

In this section we establish local well-posedness for the forced cubic NLS

{(i8t+A)v:j:|F+u| (F+v) 61)

U(to) =19 € H;(RLL)
for forcing terms F': R x R* — C satisfying | Flly®) < oo. Recall that by Proposition 5.3
we have |2 f|ly &) < oo almost surely for any f € H3(R*) with 1 < s < 1. The proof

of the almost sure local well-posedness result of Theorem 1.3 for the cubic NLS (1.7) is

then an immediate consequence of the following local well-posedness result for the forced
cubic NLS (6.1).

Proposition 6.1. Let tg € R and let I be an open time interval containing tg. Let F €
Y (R) and let vg € H:(R*). There exists 0 < § < 1 such that if

et 200 || x (1) + |Flly 1y < 6, (6.2)
then there exists a unique solution
ve C(I; Hy(RY) nX(I)
to (6.1) on I x R*. Moreover, the solution extends to a unique solution v: I, x R* — C to

the Cauchy problem (6.1) with mazimal time interval of existence I, 3 to, and we have
the finite time blowup criterion

sup [, <00 = |Jv x(te,sup 1.)) = T
with an analogous statement in the negative time direction. Finally, a global solution v(t)
to (6.1) satisfying ||v]|x®) < oo scalters as t — Foo in the sense that there exist states

vE € HY(RY) such that

i [lo(®) = €50y gy = 0.
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Proof. Without loss of generality we may assume that tp = 0. Let I > 0 be an open
time interval for which (6.2) holds. Note that the existence of such an interval follows
from Lemma 3.3(i) and the assumption that ||F'[|yg) < oo. We construct the desired
local solution via a standard contraction mapping argument. Let § > 0 be an absolute
constant whose size will be chosen sufficiently small further below. We define the ball

B = {v € X(I): |vllxy < 25}

and the map
t
B(0)(t) = By T i / =D F 4 p2(F 4 v)(s) ds.
0

From our main linear estimate (3.12) and the nonlinear estimates (4.11)—(4.12), upon
choosing § := (18C)_%, we obtain for any v, vy, vy € B that

t
20 xcn < I Bunlscn + | [ 4o+ o))
0

X(I)

< [le" ol x (1) +C|||F+”|2(F+“)HG(1)

< lle*2vollx¢ry + C(Ilol% () + 1 F I (1)
<29

and

||<I)(1}1) — (I)(UQ)HXU) S CH|F+’01|2(F+U1) — |F+U2|2<F+U2>HG(1)
< Cllor = vallx(ry (loa ey + o2y + I1F 1))

1
< §||U1 —v2|lx(1)-

It follows that the map ®: B — B is a contraction with respect to the X () norm and
we infer the existence of a unique solution v € C'(I; HX(R*)) N X (I) to (6.1).

By iterating this local well-posedness argument we conclude that the solution extends
to a unique solution v: I, x R* — C to (6.1) with maximal time interval of existence
I, 3 0. We now prove the finite time blowup criterion via a contradiction argument.
Let T := sup . < oo and suppose that |[[v|/xo,7,)) < co. We want to find a time
0 < t1 < T4 such that

) é
i(t—t1)A
[ v(tl)HX([tl,n)) Iy (1t 0)) < bR (6.3)
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Since || F|ly®) < oo and [|e?=t) 20 ()| x(j1,00)) < 00, Lemma 3.3(i) then implies that
there exists n > 0 such that

i(t—t1)A
[Jef=t) 00 s 2y ey FIF Y 01ty <6

But then the above local well-posedness result implies that the solution v(t) extends
beyond time Ty = sup I, which is a contradiction. Now to prove (6.3) we use the
Duhamel formula for the solution v(t) to write

t
ety (1) = u(t) £ i / A F 4 02 (F 4 v)(s) ds.

ty
Then our main linear estimate (3.12) together with (4.11) imply that

¢
Hei(t_tl)AU(tl)|‘X([t1,T+) < vl x (2.1, y) + H/ei(t—s)A|F + o2 (F 4 v)(s)ds

t1

X([t1,74))
< wllxqe ey + CUFIS ey + 101% e 70))-

Using Lemma 3.3(i) as well as the assumptions ||v||xjo,7,)) < o0 and [|F|y®) < oo, we
may conclude that |[v||x, 7)) — 0 and [[F[ly(,,7,)) — 0 as t; Ty, which yields

Finally we turn to the proof of the scattering statement for a global solution v(t) to
(6.1) satisfying [|v|| x &) < oo. By similar arguments as above we infer that the scattering
state in the positive time direction

o
vt =g $i/e_iSA|F+U|2(F+v)(s) ds
0

belongs to HL(R*) and satisfies ||v(t) — 0| gigay — 0 as t — oo. An analogous
argument holds for the negative time direction. 0O

The proof of Theorem 1.3 is now an immediate consequence of the local well-posedness
result from Proposition 6.1 for the forced cubic nonlinear Schrodinger equation (6.1) and
the almost sure bounds on the Y (R) norm of the free evolution €2 f of the random

data established in Proposition 5.3.

Proof of Theorem 1.3. We seek a solution to the cubic NLS (1.7) of the form

u(t) = e f¢ o(t).
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To this end the nonlinear component v(¢) must be a solution to the following forced
cubic NLS

(10, + A)v = £|e™ A f« + v} (2 f¥ + ) (6.4)

with zero initial data v(0) = 0. By Proposition 5.3 we have |[e”*® ||y () < oo for almost
every w € Q. Thus, by Lemma 3.3(i), for almost every w € € there exists an interval
I* such that [|e"® f“||y (o) < &, where 0 < § < 1 is the small absolute constant from
the statement of Proposition 6.1. Consequently, by Proposition 6.1 there exists a unique
solution v € C(I*; HX(R*)) N X (I*) to (6.4) for almost every w € Q. This concludes the
proof of Theorem 1.3. O

7. Conditional scattering for the forced defocusing cubic NLS on R*
In this section we prove the conditional scattering result of Theorem 1.8 for the forced

defocusing cubic NLS (1.8). The proof relies on a suitable perturbation theory to compare
solutions to the forced defocusing cubic NLS

(i0; + A)v = |F 4+ v|*(F +v) (7.1)
v(to) = vo € HE(RY) '
with solutions to the “usual” defocusing cubic NLS
10 + A)u = |ul*u
(10 + A)u = |u] . (7.2)
u(to) =Ug € H;(RLL)

We begin with an a priori estimate on the X (R) norm of global solutions to the defocusing
cubic NLS (7.2).

Lemma 7.1. There exists a non-decreasing function K : [0, 00) — [0, 00) with the following
property. Let ug € H;(R‘l) and tg € R. Then there exists a unique global solution u €
C(R; H! (R4)) to the defocusing cubic NLS (7.2) satisfying the a priori bound

ullx®) < K(E(uo)),
where
1 2 1oy
E(ug) := | =|Vuo|” + —|uo|" dz.
2 4
R4

Proof. It follows from the work of Ryckman—Visan [60] and Visan [69] that there exists a
non-decreasing function L: [0, 00) — [0, 00) such that for any ug € H!(R?), there exists
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a unique global solution u € C'(R; H! (R*)) to the defocusing cubic NLS (7.2) with initial
data u(ty) = wug satisfying the a priori bound

IVull g rs xrs) < L(E(uo))-
Using the linear estimate (3.12) we then find that

el xy S llwoll s gay + [llul*ul| g

1
2
< Bt + (X VP (Pl e
Ne2Z

S E(UO)% + Hv(|“|2“)HLng(RxR4)

S B(u0)? + [Vl yzs uzs) Ul fs 12 s
< E(ug)? + IVl 2308 @xcms

< B(uo)® + L(E(up))?,

which implies the assertion. O

Next we develop a suitable perturbation theory to compare solutions to the forced
defocusing cubic NLS (7.1) with solutions to the defocusing cubic NLS (7.2). The proof
proceeds along pre-existing lines using the linear estimate (3.12), the nonlinear esti-
mate (4.13) and the time divisibility properties (3.9) of the X (I) and Y (I) spaces as key
ingredients.

Lemma 7.2 (Short-time perturbations). Let I C R be a time interval with to € I and let
Vg, Uy € H; (R*). There exist small absolute constants 0 < § < 1 and 0 < g < 1 with
the following properties. Let u: I x R* — C be the solution to (7.2) with initial data
u(to) = wo satisfying

[ullxay <6 (7.3)
and let F: I x R* = C be a forcing term such that
IFllyay <n (7.4)
for some 0 < n < ny. Suppose also that
oo = ol 13 ey < o (75)

Then there exists a unique solution v: I x R* — C to (7.1) with initial data v(ty) = vo
and we have
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v = ull o 1 (rxray + llv —ullx @) < Co(Jlvo — ol g1 (ray + n) (7.6)
for some absolute constant Cy > 1.

Proof. In view of the local existence theory from Proposition 6.1 it suffices to estab-
lish (7.6) as an a priori estimate. We define w := v — u and observe that w is a solution
to the difference equation

{(i@tJrA)w |F +u+w*(F+u+w)—|u?uon I xR,

w(to) = Vo — Up-
By the linear estimate (3.12) and the nonlinear estimate (4.13), we find that
lwll e 1 1wy + lwllx

S llvo — uol| g1 (ray + ||FH3§/(1) + ||w||§((1) + HUH?X(I)”F”Y(I) + ||UH§((1)||’LU||X(1)

S Mlvo = woll gra sy +1° + 1wl X 1y + 0% + 6wl x (1)
The assertion now follows from a standard continuity argument. 0O

Lemma 7.3 (Long-time perturbations). Let I C R be a time interval with to € I and let
vg € HL(R*). Let u: I x R* — C be the solution to (7.2) with initial data u(ty) = vo
satisfying

ullx ) < K. (7.7)
Then there exists 0 < m1(K) < 1 such that for any forcing term F: I xR* — C satisfying
1 Fllyy <n (7.8)

for some 0 < n < n1(K), there exists a unique solution v: I x R* — C to (7.1) with
initial data v(tg) = vo and it holds that

4
[v— U||LgoH;(1xR4) + v —ullxm £ eXP(Cle)U (7.9)

for some absolute constant Cy > 1. In particular, it holds that
||U*u||L;>°H;(IxR4) + v —ullxa 1. (7.10)

Proof. We may assume without loss of generality that ¢ty = inf I. Moreover, it again
suffices to establish (7.9) as an a priori estimate in view of the local existence theory
from Proposition 6.1. We first use the time divisibility property of the X (I) norm,
see Lemma 3.3, to partition the interval I into J = J(K) consecutive intervals I,
j=1,...,J, with disjoint interiors such that
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ullx ) <6

for j = 1,...,J, where 0 < § <« 1 is the absolute constant from the statement of
Lemma 7.2. Note that by (3.9) we have that

4
|ul
J ~ I(L# <KE. (7.11)

€

In the following we denote t;_; := infl; for j = 1,...,J. We would like to apply
Lemma 7.2 on each interval I; to infer bounds on the X (I;) norm of v — u. To this end
we have to make sure that for j = 1,...,J it holds that

I1E']ly ;) < o (7.12)

and

[o(tj—1) — uti—)ll g1 ey < 0, (7.13)

where 0 < 9 < 1 is the absolute constant from the statement of Lemma 7.2. Below we
will in particular choose 0 < 1 (K) < 19 which takes care of (7.12). To ensure (7.13) we
now prove by induction that we have

Il = ull oo g1 1, ey + 0 = ullxry < (2Co)'n (7.14)

for j = 1,...,J, if we choose 0 < 1;(K) < 1 sufficiently small depending on the size
of K. Note that since (7.13) trivially holds for j = 1, we obtain (7.14) for the case j =1
from an application of (7.6). Now suppose that (7.14) holds for all 1 < ¢ < j — 1 and
suppose that

(2Co) " < o, (7.15)

then we can prove that (7.14) also holds for j. By the inductive hypothesis we can
apply (7.6) on the interval I; and obtain that

[v = ull oo 1 (1, xay + 10 = ullxr;y < Co(llv(ti—1) — ulti—1)ll g1 sy + 1)
< Co((2Co)’'n+n)

which yields (7.14) for j. In order to complete the induction, we observe that in view
of (7.11) it suffices to fix

m(K) := exp(—C’lKg)no
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for some large absolute constant C >> 1 to guarantee that (7.15) holds for j =1,...,J.
Finally, we sum up the bounds (7.14) to infer that

J
v uHLO@Hl(IxR4 +lv—ullxm < ZHU*U”L;”H;(Iij) + v —ullx )

s
< exp (C’1 )

This establishes (7.9) and then (7.10) follows from the choice of 7, (K). O
We are now in a position to give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let v(t) be the unique solution to the forced cubic NLS (1.8)
defined on its maximal time interval of existence I, = (T_,T) satisfying the a priori
energy bound (1.9), namely

M :=sup E(v(t)) < oo.

tel.

By Proposition 6.1 it suffices to prove that [[v|x(;,) < oo in order to infer that v(t)
exists globally in time and scatters as ¢ — £00. Moreover, by time reversal symmetry it
is enough to argue forward in time.

To this end we partition the maximal forward interval of existence [0,7}) into J =
J(M,||F|ly(®)) consecutive intervals I; with disjoint interiors such that

1 Flly (1) = m(K(M)),

where 11 (K (M)) is the small constant from the statement of Lemma 7.3 and K(-) is the
non-decreasing function from the statement of Lemma 7.1. Note that by Lemma 3.3(ii),
the necessary number J of such intervals I; is bounded from above by

4
o I
~ 4
m(K(M))=

In the following we use the notation ¢;_; :=infI; for j = 1,...,J. On each interval I;
we compare the solution v(t) to the forced cubic NLS (1.8) with the solution u(t) to the
usual defocusing cubic NLS (7.2) with initial data u(t;—1) = v(t;—1). By Lemma 7.1 and
the a priori energy hypothesis (1.9), u(t) in fact exists globally in time and satisfies

lullx ;) < lullx@ < K(M).
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By the above choice of 11 (K (M)) we are thus in the position to apply the long-time
perturbation estimate (7.10) from Lemma 7.3 to infer that

lvllx(r) < lullx) +llv—ullxe,) $KM)+1.
Summing up these estimates we obtain the desired bound
J
lollxqorsy < D Ivllxay) S 7 (K(M) +1) < C(M.[|Flly ®)-
j=1

This finishes the proof of Theorem 1.8. O
8. Almost sure scattering for the defocusing cubic NLS on R* for radial data

The main result of this section is the following uniform-in-time energy bound for
solutions to the forced defocusing cubic NLS

{ (10 + A)v = |F +v|*(F +v), ®.1)

v(0) = vg € HX(RY)

with a forcing term F' that is a solution to the linear Schrodinger equation (i0;+A)F =0
and satisfies a collection of suitable space—time estimates.

Proposition 8.1. Let vg € HL(R*). Assume that F is a solution to the linear Schrédinger
equation (i0; + A)F = 0 and satisfies

F e Y(R), Fe (LFPL2NLPL; NLILS) (R x RY), 62)
8.2
(x)2(V)F € L?L(R x RY),VF € L?LA(R x RY).

Let v(t) be the solution to the forced defocusing cubic NLS (8.1) with mazimal time
interval of existence I.. Then we have

sup E(v(t))
tel.

1 2
< CGXP(C(HFHing(RxRﬂ + {122V poe ey + HVFH%%L‘;(RxR“))) x

X (E(vo) + 14 [lvollZ2 gay + 1 Fl1 7o 12 mxray + 1F 1700 14 )

for some absolute constant C > 1, where

E(u(t)) ::/%|Vv(t)\2+ i|v(t)|4d:r,.
R4
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Before we turn to the proof of Proposition 8.1, we first note that by combining this
uniform-in-time energy bound with the conditional scattering result from Theorem 1.8
and with the almost sure bounds for the free Schrédinger evolution from Section 5, we
immediately obtain a proof of Theorem 1.9.

Proof of Theorem 1.9. We seek a global scattering solution u(t) to (1.12) of the form
u(t) = e fY +u(t).

To this end the nonlinear component v(¢) must be a solution to the following forced
cubic NLS

(10 + A)v = |e™B f@ +v2 (A f¥ + ) (8.3)

with zero initial data v(0) = 0. By the assumptions on the function f € H:(R*) and
the almost sure bounds from Section 5, the forcing term €™ f« in (8.3) satisfies the
space—time bounds (8.2) for almost every w € Q. Thus, by the local existence result
from Proposition 6.1 and by Proposition 8.1, for almost every w € Q the forced cubic
NLS (8.3) has a solution whose energy is uniformly bounded on its maximal interval of
existence and hence, by Theorem 1.8, exists globally in time and scatters. This finishes
the proof of Theorem 1.9. O

An important ingredient for the proof of the uniform-in-time energy estimate from
Proposition 8.1 is the following approximate Morawetz estimate for the forced defocusing
cubic NLS (8.1).

Proposition 8.2. Let v: I xR* — C be a solution to the forced defocusing cubic NLS (8.1)
on a time interval I. Then we have

v]*
//Vdmdt N ||U||L§0H;(1xm<4)||U||L§°L§(1xR4)
s, (8.4)

+ 110l Lo g1 (1 emy |||+ 0 (F +0) — |’U|2’U||Lng(1xR4)'
Proof. We write the forced defocusing cubic NLS (8.1) as
(i0; + A = |v[*v + H, where H := |F 4+ v[*(F 4+ v) — |[v[*v.
Given a weight a = a(z), the Morawetz action
m(t) = 2Im/8ka($)8kv(t7x)5(t,ac) dx
Ra

satisfies
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Om(t) = /{ — AAa|v]? + 4Re 0;0,ad? 50" + Aalv|* + 40ra Re (HO"v)

]R4
+ 2AaRe (EH) } dx,
where we are tacitly summing over repeated indices. Using the standard Lin—Strauss
Morawetz weight a(z) := |z| with
0; ; 3 1
Opa = £ ;0pa = 2% — z]xsk, Aa=—, AAa=——p0,
|| [z | |z| ||

the Morawetz estimate (8.4) follows from applying the fundamental theorem of calculus,

the Cauchy—Schwarz inequality and Hardy’s inequality. O

We are now in a position to establish the proof of Proposition 8.1.

Proof of Proposition 8.1. Let v(t) be the solution to the forced defocusing cubic

NLS (8.1) with maximal time interval of existence I, provided by Proposition 6.1.

Noting that the initial data vy € H!(R*) is also assumed to have finite mass, we first

infer a uniform-in-time bound on the mass of v(¢). Since the forcing term F is a solution

to the linear Schrédinger equation, (F + v) is a solution to the standard cubic NLS. We

therefore have conservation of mass for (F +v) and thus find for any time interval I that

lvllLeer2 (1xrty < 1F + vl Lo 2 (1xray + [ Fl| Lgo 22 (1xR4)
= [|[F(0) + v(0)[| 22 ey + [ F'l| Lgo £2 (1 xR4)
S Flpse L2 (1xray + [lvoll L2 ey
Now we define for T' > 0 with T" € I, the quantities

A(T) = tes[lépT] E(v(t)),

T

B(T) ;//”(TTT)Vdedt,
P

0

and compute that

(8.5)

OE(v(t)) = Re/aﬁ(—Av + |v[*v) dz = —Re/aﬁﬂF + 0> (F +v) — |v]*v) dz.
R4 R4

Reallocating the time derivative we find
1
HE(v(t)) =— Zat /(|F +o[* = |F|* = v|*) d
R4

+Re/(lf“er(Fﬂ) — |F|?F)9,F dx.

R4
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Since F' is a solution to the linear Schrédinger equation, we may insert 0;F = iAF in
the last term on the right-hand side of the previous line and obtain upon integrating by
parts that

1
HE(v(t)) =— Zat /(|F +o[* = |F|* = v|*) da
R4
—Im/V(|F+v|2(F+v) — |F|*F) - VF da.

R4

By the fundamental theorem of calculus we then conclude that

4
l HL;?L}C([O,T]X]R“)

T
/ 0 E(o(t))] dt < ||IF + o' — |FI*
0 (8.6)

+ ||V(IF + v]*(F +v) — |F|°F) - vFHL%Lé([O’T]XW).

By Young’s inequality, for any ¢ > 0 the first term on the right-hand side of (8.6) can
be estimated by

I+ o1 = 1F 1 = ol*] e 1y o 7ycmny < OV Lo L t0,71me) + Coll FllLoe L ro.71xme)

<JA(T) + Cé||FHi;?CLg([o,T]xR4)’

(8.7)
while by Holder’s inequality the second term on the right-hand side of (8.6) is bounded
by the sum of the following five schematic terms (where the space—time norms are taken
over [0,T] x R*)

H(VU)FQ(VF)HL%Lalc < |[IVvllzgerz || Fllrgere | Fllzzpe [V F L2 14

1
S A(T)? HFHL;’OLgHFHL%LgoHVFHLnga
||UF(VF)2HLgL; < HUHL;’QLiHFHL?QL;‘EHVF”ing

1
SAMD) | Fllpera[VF2p,

||(Vv)vF(VF)HL%Li < |IVollpgerz [vllpgea | Fllzpee [V E || L2124
3 (8.8)
S AT Fllzre IVF pzra,
||v2(VF)2||L%Li < HUH?L;fOLgHVF”%ELg

S AT |VF| g2,
HU2VUVF||LgL; < |||$‘7%”2||L3L5”v””L?"L.%H‘xﬁ%VFHLngO

< B(T)%A(T)% |"x|+%vF”L3L;°'
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Moreover, from the Morawetz estimate (8.4) and the mass bound (8.5) we obtain that

B(T) < [vll oo 11 po,rxry 10l 2o 12 (10,77 xR2)
+ ||U||L§°H;([0,T]xR4)|||F|3 + |”|2|F|HL}L§([0,T}XR4)
S A(T) + [0l e 12 0,77 xre) + A(T)? ”FHif’Lg([O,T]XR‘l)
+ A2 10 20,y |21 Fll o,y
SAT) + [volZa @ + I1F 12 L2 @ersy + AT I 2510 g0,r1me)
+A(T)%B(T)%H|x|%FHL‘;’L;O [0, xR4)"
We collect all divisible space-time norms of the forcing term F that have appeared in
the previous estimates in the following norm
I FN zqo.11) = 1l L3 s (jo,7) xr2) + ||<$>%<V>F||L3L;o([0,T]xR4) + IV F| 1214 0,17 xR4)-

By the fundamental theorem of calculus we have that

T

A(T) < B(w(0)) + / O E(o(t)] dt,

0

hence we may infer from (8.6)—(8.8) that for sufficiently small § > 0,

A(T) S E@(0) + IF |25 11 sy + A(T) 2 | Fll go La x| Fll % 0,7
1 3
+ A(T) 1 || Fl g pa@xrny | Fl 0,77y + AD) T Fl % 0,7

+ A(T)2(| Fllz(o7)) + AT)B(T) = |[Fl z(10.7-
Moreover, from the estimate (8.9) we have

1
B(T) < A(T) + ||U0H%5(R4) + ||F||%§°L§(R><R4) + A(T)> ||F||?2([0,T])
+ A(T)2 B(T)* | Fll 20,10

Thus, by a continuity argument we may now conclude that there exists a sufficiently
small absolute constant 0 < 7 < 1 such that if

1Fllzqo,m) <,

then it holds that

A(T) S E@(0) + 1+ llvoll 22 sy + IF 1 12 sy + 1F Lo 1t -
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By divisibility of the Z(R) norm and by time-reversibility, we iterate this argument
finitely many times to conclude the desired uniform-in-time energy bound

sup E(v(t))

< CGXP(C(”FH%E'LQ(RXR“) + H<x>%<V>FHing°(]R><R4) + HVFH%?L‘é(RxR“))) x

X (E(vo) + 1+ [[vollF2 ey + 1 Fl e 2 ey + 1 Fll 250 L1 (Rx))
for some absolute constant C' > 1. 0O

Appendix A. Proof of Theorem 1.11

Here we sketch the proof of Theorem 1.11 for the defocusing energy-critical nonlinear
wave equation in four space dimensions

—02u + Au = u® on R x R*,
(A.1)

(w, 0w)li—0 = (f5', fi') € HI(RY) x H;'(RY).

We seek a global, scattering solution to (A.1) of the form

u(t) = SO)(f5' [17) + v(t).
To this end we pass to the study of the more general forced cubic wave equation for the
nonlinear component v(t), namely

—0%v+ Av = (F 4+ v)> on R x RY,
(A.2)

(v, 0pv)|t=0 = (vo,v1) € H;(R4) X Li(R4)

for forcing terms F: R x R* — R satisfying suitable space-time integrability properties.
The proof of Theorem 1.11 will follow from new, improved almost sure bounds for the
free wave evolution of randomized radially symmetric data. Indeed, we recall statements
of two of the main theorems from the authors’ previous work [30].

Theorem A.1 (Theorem 1.1, [30]). There exists a non-decreasing function K : [0,00) —
[0, 00) with the following property. Let (v, v1) € HX(R*)x L2(R*) and F € L} LS (RxR*).
Let v(t) be a solution to (A.2) defined on its mazimal time interval of existence I,.
Suppose in addition that

M = tsglp E(v(t)) < o0, (A.3)

where
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1 1 1
B(u(t) = [ 51V.0(0 + 3100 + 71o(0)]* da.
RAL
Then I, =R, that is v(t) is globally defined, and it holds that

[0l 36 mxra) < ClIF| L3 1e mxra) (K (M) + 1) exp(C K (M)?) (A.4)

for some absolute constant C > 0. In particular, the solution v(t) scatters to free waves
as t — 00 in the sense that there exist states (vi,vE) € HL(RY) x L2(R*) such that

lim ||V (v(t) — SE) (v, vf

t—+oo

))HLg(W) =0.

Theorem A.2 (Theorem 1.2, [30]). Let (vo,v1) € HL(R*) x L2(R*). Assume that
FeL}SRxRY  and  |z[?F € L2L(R x RY). (A.5)

Let v(t) be a solution to (A.2) defined on its mazimal time interval of existence I.. Then
we have

102
tsél}) E(v(t)) < Cexp(C(HFHi?Lg(RXR‘l) + |||x|2F||L§L;°(R><R4))>(E(U(O>) +1)
for some absolute constant C > 0. It therefore holds that I, = R, that is v(t) ewists
globally in time, and the solution v(t) scatters to free waves as t — +oo.

Thus, in light of Theorem A.1 and Theorem A.2; the proof of Theorem 1.11 reduces
to proving that for any 0 < s < 1 and any radially symmetric f € H2(R*) we have that
almost surely,

Heiz‘t\wfw : + ||‘x|%6:|:it\V\fw

< 00. (A.6)

3
|’L§’L2(RXR4 HL%L;O(RX]R“)

These two almost sure bounds are established in the next two propositions.

Proposition A.3. Let 0 < s <1 and 0 < a < 1. Let f € H:(R*) be radially symmetric
and denote by [ the randomization of f as defined in (1.13). Then there exist absolute
constants C' > 0 and ¢ > 0 such that for any A > 0 it holds that

P({we: (@)X ¥ || oy opey > A}) < Coxp(=eXlf i) (AT)
In particular, we have for almost every w € Q) that

H<x>a€:|:it\V|fw 00. (AS)

HL%L;O(]RXR‘l) <
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The proof of Proposition A.3 is essentially a verbatim copy of the proof of the weighted
global-in-time L?L2° almost sure bound for the derivative of the Schrodinger evolution of
randomized radial data from Proposition 5.12; the only difference being that we employ
local energy decay estimates for the free wave evolution instead of the related local
smoothing estimates for the Schrodinger evolution. We recall the precise local energy
decay estimates that we use in the next lemma and correspondingly leave the details of
the proof of Proposition A.3 to the reader.

Lemma A.4 (Local energy decay; [40, (2.16)], [62], [37], [63, Appendiz]). Let f € L2(R%).
Then it holds that

-1 +it|V
2‘;% Rz [je* |f||L§Lg(Rx{|z|gR}) S I llzz ey (A.9)

Proposition A.5. Let 0 < s < 1. Let f € H3(R*) be radially symmetric and denote by f*
the randomization of f as defined in (1.13). Then there exist absolute constants C' > 0
and ¢ > 0 such that for any A > 0 it holds that

]P’({w cq- ||€ﬂt|v|fw||Lng(RxR4) > )\}) < CeXp<—c)\2|\f||;{§(R4)>. (A.10)
In particular, we have for almost every w € € that

||eimv‘f“H 0. (A.11)

L3LS (RxRY) <

Proof. In what follows, all space-time norms are taken over R x R%. By Holder’s inequal-
ity we have

. . 1 . 2 1 . 2
[ e 7 (o A [ i PPV Wi [P (s

A simple application of Minkowski’s inequality and of the large deviation estimate from
Lemma 5.1 yields for any p > 2 that

Heimv‘waLgL% S \/1_7||f||L3’

while in the proof of Proposition A.3 we establish for all sufficiently large p < oo that

[ 0 S VB ISl

Thus, we conclude for all sufficiently large p < oo that

||€iit|V\waL£L?Lg SVPIflle;

and the claim follows from Lemma 5.2. O
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