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Abstract

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts
during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November
to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for
generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as
progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal
GW170817, with p-values of <9.38×10−6 (modeled) and 3.1×10−4 (unmodeled). We do not find any
significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and
therefore we report lower bounds on the distance to each of these, assuming various source types and signal
morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary
neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z�1.
We estimate 0.07–1.80 joint detections with Fermi-GBM per year for the 2019–20 LIGO-Virgo observing run and
0.15–3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Gravitational wave sources (677);
LIGO (920); Gravitational waves (678); Gamma-ray bursts (629); Burst astrophysics (187); High energy
astrophysics (739)

1. Introduction

Gamma-ray bursts (GRBs) are high-energy astrophysical
transients originating throughout the universe that are observed
more than once per day on average. The prompt gamma-ray
emission is thought to emanate from highly relativistic jets
powered by matter interacting with a compact central object such
as an accreting black hole (BH) or a magnetar (Woosley 1993).
Broadly speaking, GRBs are divided into two subpopulations
based on duration and spectral hardness (Kouveliotou et al. 1993).

Long-soft bursts generally have durations 2 s. The favored
model is the core-collapse supernova (SN) of a rapidly rotating
massive star (Woosley & Bloom 2006; Mösta et al. 2015). This
connection was observationally supported by the presence of
SN1998bw within the error box of the long GRB980425
(Galama et al. 1998) and the later strong association of SN2003dh

with GRB030329 (Hjorth et al. 2003; Stanek et al. 2003). The
core-collapse process will produce some gravitational radiation
(Fryer & New 2011). Rotational instabilities may give rise to much
more significant gravitational-wave (GW) emission, however, and
could be observable from beyond the Milky Way (Davies et al.
2002; Fryer et al. 2002; Kobayashi & Meszaros 2003; Shibata
et al. 2003; Piro & Pfahl 2007; Corsi & Meszaros 2009; Romero
et al. 2010; Gossan et al. 2016).
Neutron star (NS) binaries have long been proposed as

the progenitors of short-hard GRBs (Blinnikov et al. 1984;
Paczynski 1986; Eichler et al. 1989; Narayan et al. 1992). The
detection of the GW transient GW170817, an NS binary merger
(Abbott et al. 2017a, 2017e, 2019b), in coincidence with the
short GRB170817A (Goldstein et al. 2017; Savchenko et al.
2017), confirmed that such mergers can produce short GRBs.
An optical detection of a counterpart (Coulter et al. 2017) was
followed by panchromatic observations identifying kilonova and
afterglow emission(see Abbott et al. 2017f, and references
therein).
The unusually low flux of GRB170817A and its light-curve

evolution suggested an off-axis GRB with a relativistic
structured jet or cocoon that either propagated into the universe

196 Deceased, 2018 July.
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successfully or was choked (Rossi et al. 2002; Hallinan et al.
2017; Kasliwal et al. 2017; Lamb & Kobayashi 2017; Troja
et al. 2017; Gottlieb et al. 2018; Lazzati et al. 2018; Zhang et al.
2018). Later, very long baseline interferometry observations
indicated a successfully launched relativistic jet (Mooley et al.
2018; Ghirlanda et al. 2019). The center of this jet appears to
have been directed at an angle of approximately 15°–30° from
the line of sight (Lazzati et al. 2018; Mooley et al. 2018).
Analysis of the first 10 yr of Fermi Gamma-ray Burst Monitor
(GBM) data suggests that GRB170817A may belong to a
population of local, low-luminosity short GRBs with similar
spectral features (von Kienlin et al. 2019). The multimessenger
observations of this event have proven to be extremely rich,
providing insights about the structure of NSs (Margalit &
Metzger 2017; Abbott et al. 2018; De et al. 2018; Most et al.
2018; Radice et al. 2018), the local cosmological expansion
rate (Abbott et al. 2017b, 2019b; Hotokezaka et al. 2019), and
heavy-element nucleosynthesis (Abbott et al. 2017d; Chornock
et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017;
Kasen et al. 2017; Smartt et al. 2017), to name a few.

In this paper we present targeted GW follow-up of GRBs—
long and short—reported during the second observing run of
Advanced LIGO and Advanced Virgo (O2). The observing
run spanned 2016 November 30 to 2017 August 25, with
Advanced Virgo commencing observations on 2017 August 1.
As a measure of their sensitivities, the Advanced LIGO
instruments had sky- and orientation-averaged binary neutron
star (BNS) ranges between 65 and 100Mpc throughout the run,
while for Advanced Virgo this range was approximately
25Mpc (Abbott et al. 2019a). In addition to GW170817, seven
binary BH mergers were previously identified during O2, with
a further three binary BHs observed during the first observing
run (Abbott et al. 2019a).

We discuss the population of GRBs included in our analyses
in Section 2 and summarize the methods used in Section 3. We
then present the results of a modeled binary merger analysis
targeting short-hard GRBs in Section 4 and an unmodeled
analysis targeting all GRBs in Section 5, followed by
discussion in Section 6 and concluding remarks in Section 7.

2. GRB Sample

The GRB sample contains events disseminated by the
Gamma-ray Coordinates Network (GCN),197 with additional
information gathered from the Swift BAT catalog198 (Lien et al.
2016), the online Swift GRB Archive,199 the Fermi GBM Burst
Catalog200 (Gruber et al. 2014; von Kienlin et al. 2014; Bhat
et al. 2016), and the Interplanetary Network (IPN; Hurley et al.
2003).201 An automated system called VALID (Coyne 2015)
cross-checks the time and localization parameters of the Swift
and Fermi events against the published catalog with automated
literature searches. In total, from 2016 November through 2017
August, there were 242 bursts detected in the combined Swift +
Fermi catalog. We received a total of 52 bursts localized by the
IPN, with many bursts appearing in both catalogs. GRBs that
were poorly localized were removed from our sample, as were

GRBs that did not occur during a period of stable, science-
quality data taken by the available GW detectors.
For the purposes of this work, GRBs are classified (as in

Abbott et al. 2017g) based on their T90 value—the period over
which 90% of the flux was observed—and its uncertainty δT90.
GRBs with a value of T90+δT90<2 s are short, and those
with T90+δT90>4 s are long. The remaining GRBs are
ambiguous.
As in Abbott et al. (2017g), a generic unmodeled GW

transient search (Sutton et al. 2010; Was et al. 2012) was
performed for all GRBs for which 660 s of coincident data was
available from two GW detectors, regardless of classification.
A modeled search for coalescing binary GW signals (Harry &
Fairhurst 2011; Williamson et al. 2014) was performed for all
short and ambiguous GRBs with at least 1664 s of data in one
or more detectors. This scheme resulted in 98 GRBs being
analyzed with our unmodeled method and 42 analyzed with our
modeled method.

3. Search Methods

To cover all possible GW emission mechanisms, we consider
two search methods: a modeled search for binary merger signals
from short or ambiguous GRBs, and an unmodeled search for
GWs from all GRBs. Neither of these methods has changed
since previous published results (Abbott et al. 2017a, 2017g), so
we provide summary overviews here.

3.1. Modeled Search for Binary Mergers

The modeled search is a coherent matched filtering pipeline
known as PyGRB (Harry & Fairhurst 2011; Williamson et al.
2014) and is contained within the PyCBC data analysis toolkit202

(Nitz et al. 2018). We analyze a 6 s on-source window
comprising [−5, +1) s around the arrival time of the GRB for a
GW candidate event and up to approximately 90 minutes of
adjacent data to characterize the background.
We use a bank of GW template waveforms for filtering

(Owen & Sathyaprakash 1999) that encompasses combinations
of masses and spins consistent with BNS and NS–BH systems
that may be electromagnetically bright, i.e., under conservative
assumptions about the NS equation of state, the evolution of
these systems toward merger could feasibly produce an
accretion disk via disruption of the NS that might be sufficient
to power a GRB (Pannarale & Ohme 2014). The templates are
restricted to orbital inclinations of 0° or 180°. This decision is
motivated by the expectation that short GRBs do not have jets
with angular sizes, and therefore inclinations, much greater
than 30° (e.g., Fong et al. 2015). The effect of a small
inclination angle on the relative amplitudes of the two GW
polarizations is minor enough that restricting the inclination
of templates to 0° or 180° can simultaneously reduce
computational cost and improve sensitivity to slightly inclined
systems by lowering the search background (Williamson et al.
2014). The templates are generated with an aligned-spin

model tuned to numerical simulations of binary BHs (Khan
et al. 2016). This model was chosen since it was found to
provide good levels of signal recovery with relatively low
computational cost, and all available models featuring matter
effects or generic spin orientations would significantly
increase the average computational cost per individual

197 GCN Circulars Archive:http://gcn.gsfc.nasa.gov/gcn3_archive.html.
198

Swift BAT Gamma-Ray Burst Catalog:http://swift.gsfc.nasa.gov/results/
batgrbcat/.
199

Swift GRB Archive:http://swift.gsfc.nasa.gov/archive/grb_table/.
200 FERMIGBRST—Fermi GBM Burst Catalog:https://heasarc.gsfc.nasa.
gov/W3Browse/fermi/fermigbrst.html.
201 Collected via private communication with Kevin Hurley.

202 https://pycbc.org/
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waveform generation and require a substantial increase in the
number of templates. Filtering is performed over frequencies
of 30–1000 Hz.

The detection statistic is a reweighted, coherent matched
filter signal-to-noise ratio (S/N; Harry & Fairhurst 2011;
Williamson et al. 2014). Candidate significance is evaluated by
comparing the most prominent trigger within the 6 s on-source,
if there is one, with the most prominent in each of the
numerous 6 s off-source trials to produce a p-value for the on-
source candidate. Extended background characterization is
achieved using time slides; additional off-source trials are
generated by combining data from GW detectors after
introducing time shifts longer than the light-travel time across
the network.

Search sensitivity is estimated by injecting simulated signals
into off-source data in software. We choose three distinct
astrophysical populations of simulated signals: BNS, NS–BH
with spins aligned with the orbital angular momentum, and
NS–BH with generically oriented spins. Signals are simulated
as having originated at a range of distances. The 90% exclusion
distance, D90, is the distance within which 90% of a simulated
population is recovered with a ranking statistic greater than the
most significant trigger in the on-source.

In all instances NS masses are drawn from a normal distribution
of mean 1.4 M☉ and standard deviation 0.2 M☉ (Kiziltan et al.
2013; Özel & Freire 2016), restricted to the range [1, 3] M☉,
where the upper limit is conservatively chosen based on
theoretical consideration (Kalogera & Baym 1996). NS spin
magnitudes are limited to �0.4 based on the fastest observed
pulsar spin (Hessels et al. 2006).

BH masses are drawn from a normal distribution of mean
10 M☉ and standard deviation 6 M☉, restricted to the range
[3, 15] M☉, with spin magnitudes restricted to �0.98, motivated
by X-ray binary observations (e.g., Özel et al. 2010; Kreidberg
et al. 2012; Miller & Miller 2014).

All simulations have binary orbital inclinations θJN, defined
as the angle between the total angular momentum and the line
of sight, drawn uniformly in sin JN , where θJN is restricted to
the ranges [0°, 30°] and [150°, 180°].

Additionally, the EM-bright condition is applied to simula-
tions, avoiding the inclusion of systems that could not feasibly
power a GRB (Pannarale & Ohme 2014).

For each of our three astrophysical populations we generate
simulations with three different waveform models so as to
account for modeling uncertainty. Specifically, the results
quoted in this paper are obtained for simulations with a point-
particle effective one body model tuned to numerical simula-
tions, which incorporates orbital precession effects due to
unaligned spins (Pan et al. 2014; Taracchini et al. 2014; Babak
et al. 2017).

3.2. Unmodeled Search for Generic Transients

We run an unmodeled search targeting all GRBs; long, short,
and ambiguous. This analysis is implemented within the X-

Pipeline software package (Sutton et al. 2010; Was et al.
2012). This is an unmodeled search since we do not know the
specific signal shape of GW emission from the core collapse of
massive stars, so we make minimal assumptions about the
signal morphology. We use the time interval around a GRB
trigger beginning 600 s before and ending either 60 s after or at
the T90 time (whichever is larger) as the on-source window.
This window is long enough to cover the time delay between

GW emission from a progenitor and the GRB (Koshut et al. 1995;
Aloy et al. 2000; MacFadyen et al. 2001; Zhang et al. 2003;
Lazzati 2005; Wang & Meszaros 2007; Burlon et al. 2008,
2009; Lazzati et al. 2009; Vedrenne & Atteia 2009). We restrict
the search to the most sensitive frequency band of the GW
detectors of 20–500Hz. At lower frequencies terrestrial noise
dominates, and at higher frequencies ( f300) the GW energy
necessary to produce a detectable signal scales as ∝f 4Hz (see,
e.g., Section2 of Abbott et al. 2017c).
Before analyzing detector data, we excise periods of poor-

quality data from the data stream. These periods include non-
Gaussian noise transients, or glitches, that can be traced to
environmental or instrumental causes (Berger 2018; Nuttall
2018). Including a detector data stream with low sensitivity and
many glitches can reduce overall search sensitivity. Particular
care was taken to ensure that periods of poor-quality data from
the Virgo detector, which was significantly less sensitive than
both LIGO detectors during O2, did not degrade the unmodeled
search performance. For GRBs for which we have data from
three interferometers, methods for flagging and removing poor-
quality data were tuned on off-source Virgo data; however,
ultimately Virgo data were only included in the final analysis if
the sensitivity of the search was improved by their inclusion.
The analysis pipeline generates time–frequency maps of the

GW data stream after coherently combining data from all
detectors. These maps are scanned for clusters of pixels with
excess energy, referred to as events, which are ranked
according to a detection statistic based on energy. Coherent
consistency tests are applied to reject events associated with
noise transients based on correlations between data in different
detectors. The surviving event with the largest ranking statistic
is taken to be the best candidate for a GW detection, and we
evaluate its significance in the same way as the modeled
analysis except with 660 s long off-source trials.
As in the modeled search, we estimate the sensitivity of the

unmodeled search by injecting simulated signals into off-
source data in software. Here we report results using signals
from a stellar collapse model represented by circular sine-
Gaussian (CSG) waveforms(see Equation (1) and Section 3.2
of Abbott et al. 2017g), with an optimistic total radiated energy
EGW=10−2 M☉ c2 and fixed Q factor of 9. We construct four
sets of such waveforms with central frequencies of 70, 100,
150, and 300 Hz. For an optimistic example of longer-duration
GW emission detectable by the unmodeled search, we also
report results for five accretion disk instability (ADI) wave-
forms (van Putten 2001; van Putten et al. 2014). In ADI
models, GWs are emitted when instabilities form in a
magnetically suspended torus around a rapidly spinning BH.
The model specifics and parameters used to generate these ADI
models are the same as in both Table 1 and Section3.2 of
Abbott et al. (2017g).

4. Modeled Search Results

We analyzed 42 short and ambiguous GRBs with the
modeled search during O2. As previously reported, the analysis
identifies GW170817 in association with GRB170817A
(Abbott et al. 2017e) in a manner consistent with other GW
analyses (Abbott et al. 2017a, 2019b). In our analysis of
GRB170817A reported here, where improved data calibration
and noise subtraction have been incorporated, this signal was
seen with a measured p-value of <9.38×10−6 and a coherent
S/N of 31.26, far in excess of the loudest background.
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We detected no GW signals with significant p-values in
association with any of the other GRBs. The p-value distribution
for the 41 GRBs other than GRB170817A is shown in Figure 1.
For GRBs without any associated on-source trigger we plot an
upper limit on the p-value of 1 and a lower limit given by
counting the background trials that similarly had no trigger. The
expected distribution under the no-signal hypothesis is shown by
the dashed black line, with dotted lines denoting a 2σ deviation
about the no-signal distribution. To quantify population
consistency with the no-signal hypothesis, we use the weighted
binomial test outlined in Abadie et al. (2012b). This test
considers the lowest 5% of p-values in the population, weighted
by the prior probability of detection based on the detector
network sensitivity at the time and in the direction of the GRB.
We do not include GW170817, as it is a definite GW detection.
This results in a p-value of 0.30; thus, we did not find significant
evidence for a population of unidentified subthreshold signals
with this test.

In addition to GRB170817A, there were six instances of on-
source candidates with p-values less than 0.1. The second most
significant p-value was 0.0068, associated with GRB170125102
from the Fermi GBM burst catalog. These six candidates were the
subjects of further data quality checks to assess whether they
could be caused by known instrumental noise sources. After
careful scrutiny of the data, there were no clear noise artifacts
identified as being responsible for any of these candidates. We
also ran Bayesian parameter estimation analyses using LALIn-

ference (Veitch et al. 2015) to quantify the evidence for the
presence of a coherent subthreshold NS binary merger signal in
the data versus incoherent or Gaussian instrumental noise (Isi et al.
2018). The results of these studies are summarized in more detail
in Table 2. In particular, we quote Bayes factors (BFs) to quantify
the support for a coherent signal over incoherent or Gaussian
noise, where a value less than 1 favors noise over signal and
values greater than ∼3 are generally required before considering
support to be substantial (Kass & Raftery 1995). Some studies
have previously looked at the distributions of these BFs in the
presence of weak signals and instrumental noise (Veitch &
Vecchio 2008; Isi et al. 2018), although in somewhat different
contexts to the low-mass targeted coherent search reported here.
An in-depth study tailored to this analysis is beyond the scope of
this work. However, given that these candidates were initially
identified by our coherent matched filter analysis with low S/N,

we might expect the BFs to indicate the presence of some degree
of coherent power. Our follow-up results reflect this expectation
and appear consistent with the search results, with neither
significant evidence in favor of incoherent or purely Gaussian
noise nor significant evidence in favor of the presence of signals in
addition to GW170817 (i.e., BF 3

1

3
in all cases). The

largest BF was 2.08 in the case of 170726249 (p-value=
0.0262). We also note that, in the absence of a signal with
moderate S/N, inferred posterior probability distributions will be
prior dominated, and in the presence of non-Gaussian noise
fluctuations parameter estimation methods may return broad
posteriors with multiple peaks, even for typically well-constrained
parameters such as the chirp mass (Huang et al. 2018). We
observe these posterior features in our follow-up analyses as noted
in Table 2.
GRB170817A is known to have originated at a distance of

∼43Mpc in the galaxy NGC4993 (Abbott et al. 2017e). We
have plotted the cumulative 90% exclusion distances for the
remaining short and ambiguous GRBs in Figure 2. For each of
our three simulated signal classes we quote the median of the
41D90 results in Table 1.

5. Unmodeled Search Results

A total of 98 GRBs were analyzed using the generic transient
method, and no significant events were found except for
GRB170817A. The generic method recovered a signal for
GRB170817A consistent with the previously reported signal
GW170817 at a p-value of 3.1×10−4. This value differs
slightly from that reported in Abbott et al. (2017e), which can
be explained by various changes in the configuration of X-

Pipeline. First, the clustering of pixels in time–frequency
maps was previously done over a 7×7 pixel grid, whereas in

Table 1

Median 90% Confidence Level Exclusion Distances, D90, for the Searches
during O2

Modeled Search NS–BH NS–BH
(Short GRBs) BNS Generic Spins Aligned Spins

D90 (Mpc) 80 105 144

Unmodeled Search CSG CSG CSG CSG
(All GRBs) 70 Hz 100 Hz 150 Hz 300 Hz

D90 (Mpc) 112 113 81 38

Unmodeled Search ADI ADI ADI ADI ADI
(All GRBs) A B C D E

D90 (Mpc) 32 104 40 15 36

Note. Modeled search results are shown for three classes of NS binary
progenitor model, and unmodeled search results are shown for CSG (Abbott
et al. 2017g) and ADI (van Putten 2001; van Putten et al. 2014) models.

Figure 1. Cumulative distribution of event p-values for the NS binary search in
O2. If the search reports no trigger in the on-source, we plot an upper limit on
the p-value of 1 and a lower limit equal to the number of off-source trials that
contained no trigger. The dashed line indicates the expected distribution of
p-values under the no-signal hypothesis, with the corresponding 2σ envelope
marked by dotted lines.
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the analysis reported here all clustering is done in a 3×3 grid.
Second, in the case of GRB170817A the coherent veto tests
were tuned (as described in Section III of Sutton et al. 2010) to
maximize the sensitivity of the search to injections of BNS
waveforms on the 99.99999th percentile loudest data segment.
Here, we go back to the coherent veto tuning used in previous
searches that uses the background data segment containing the
95th percentile loudest background event to all injected
waveform families.

For the population of results we have compared the
distribution of p-values against the expected distribution under
the no-signal hypothesis, shown in Figure 3. We find a
combined p-value of 0.75 (0.75 in O1) looking at the most
significant 5% of events from the unmodeled search using the
weighted binomial test from Abadie et al. (2012a).

For GRBs other than GRB170817A we place 90% confidence
level lower limits on the distance D90 assuming various emission

Table 2

Results of Follow-up Studies of PyGRB Candidates with p<0.1

GRB Name p-value BF ˆ Comment

161210524 0.0933 1.45 6.51 Weak Bayesian evidence in favor
of a coherent signal over noise.
Chirp mass posterior is broad
with multiple peaks.

170125102 0.0068 0.88 6.23 Weak Bayesian evidence in favor
of noise over a coherent signal.
Posteriors show no significant
information gain over priors.
Chirp mass posterior is broad and
multimodal.

170206453 0.0418 0.94 6.89 Weak Bayesian evidence in favor
of noise over a coherent signal.
Chirp mass posterior is broad
with multiple peaks.

170219002 0.0307 0.88 5.96 Weak Bayesian evidence in favor
of noise over a coherent signal.
Posteriors show minimal infor-
mation gain over priors. Chirp
mass posterior is broad with
multiple peaks.

170614505 0.0856 0.46 6.43 Weak Bayesian evidence in favor
of noise over a coherent signal.
Posteriors show no significant
information gain over priors.
Chirp mass posterior is broad
with multiple peaks.

170726249 0.0262 2.08 6.91 Weak Bayesian evidence in favor
of a coherent signal over noise.
Chirp mass posterior is broad
with a single peak.

Note. Bayes factors (BFs) quantify the Bayesian odds ratio between the
hypothesis that there is a coherent NS binary merger signal in the data and the
hypothesis that the data contain only instrumental noise, which may be purely
Gaussian or include incoherent non-Gaussianities(see Equation (1) and
accompanying discussion in Isi et al. 2018). At low S/N, inferred posterior
probability distributions tend to be prior dominated and, in the presence of non-
Gaussian noise fluctuations, may exhibit multiple peaks, even for typically
well-constrained parameters such as the chirp mass (Huang et al. 2018). We
report here ˆ , the network matched filter S/N corresponding to the maximum
of the likelihood as estimated by LALInference.

Figure 2. Cumulative histograms of the 90% confidence exclusion distances, D90,
for the BNS (blue) and generically spinning NS–BH (orange) signal models,
shown for the sample of 41 short and ambiguous GRBs that did not have an
identified GW counterpart. For a given GRB and signal model, D90 is the distance
within which 90% of simulated signals inserted into off-source data are recovered
with greater significance than the most significant on-source trigger. These
simulated signals have orbital inclinations θJN—the angle between the total angular
momentum and the line of sight—drawn uniformly in sin JN with θJN restricted to
within the ranges [0°, 30°] and [150°, 180°].

Figure 3. Cumulative distribution of p-values from the unmodeled search for
transient GWs associated with 97 GRBs. The dashed line represents the expected
distribution under the no-signal hypothesis, with dotted lines indicating a 2σ
deviation from this distribution. These results are consistent with the no-signal
hypothesis and have a combined p-value of 0.75 as calculated by a weighted
binomial test (Abadie et al. 2012a).
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models. The distribution of these lower limits for two models,
ADI model A (van Putten 2001; van Putten et al. 2014) and a
circular sine-Gaussian with central frequency of 150Hz (Abbott
et al. 2017g), is shown in Figure 4. These limits depend on
detector sensitivity, which changes over time and sky location;
systematic errors due to mismatch of a true GW signal and the
waveforms used in simulations; and amplitude and phase errors
from detector calibration. In Table 1 we provide population
median exclusion limits for each model used, which vary from 15
to 113 Mpc. Some of these limits differ by an order of magnitude
owing to our limited knowledge of burst-type source emission
models. The median D90 values compare favorably with those
from the first observing run, either increasing or staying the same
depending on the specific signal model.

6. Discussion

Aside from GW170817, no GWs associated with GRBs
were detected in O2. The median D90 values for each class of
signal/source type provide an estimate of roughly how
sensitive the searches were to such signals over the course of
the entirety of O2, and these are given in Table 1. In Table 3 we
provide information on each GRB that was analyzed, including
selected D90 results where relevant.

The nondetection of GW counterparts for 41 short and
ambiguous GRBs analyzed by PyGRB can be combined with
observed GRBs and the observation of GW170817 to obtain
bounds on the short GRB-BNS rate as a function of redshift.

To evaluate this rate given the uncertainty in the jet structure
profile of the short-GRB population, we model the GRB luminosity
function as a broken power law following Wanderman & Piran
(2015), but extended at low luminosities with a second break with

an associated free parameter γL, as in Abbott et al. (2017e). This
extension at low luminosity is an effective model of the short-GRB
jet structure that yields low luminosities for mergers seen at a wide
angle from their rotation axis:
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where Li is the isotropic equivalent energy and the parameters
L
å
;2×1052 erg s−1, L

åå
;5×1049 erg s−1, αL;1, and

βL;2 were used to fit the observed short-GRB redshift
distribution. We assume a threshold value for detectability in
Fermi-GBM of 2 photons cm−2 s−1 for the 64 ms peak photon
flux in the 50–300 keV band. Furthermore, we model the short-
GRB spectrum using a Band function (Band et al. 1993)
with Epeak=800 keV, αBand=−0.5, and βBand=−2.25.
This yields an observed redshift distribution normalized by a
total Fermi-GBM detection rate of 40 short GRBs per year.
In order to constrain the free parameter γL, we start with an

uninformative prior on γL, which yields a flat prior on the
logarithm of the local rate density. Using the redshift
distribution for a given γL, we use Monte Carlo sampling to
compute the probability of obtaining the O2 results presented
here (41 nondetections and a single detection). This yields a
posterior on γL with 90% confidence bounds of [0.04, 0.98].
The corresponding rates as a function of redshift are shown in
Figure 5 in magenta.
These bounds can be compared to other measurements

and models of the short-GRB redshift distribution. For
instance, the sample of observed short-GRB redshifts without
GRB170817A is shown in Figure 5 by the brown lines
(Abbott et al. 2017e, and references therein). We also show
the cumulative Fermi detection rate as a function of redshift in
green, calculated following the framework in Howell et al.
(2019). This assumes that all short GRBs are associated with
BNS mergers and estimates the Fermi-GBM detection rate by
scaling the BNS source rate evolution with redshift by the
Fermi-GBM detection efficiency. Finally, the current estimate
of the local BNS merger rate of 1210 1040

3230 Gpc−3 yr−1 (Abbott
et al. 2019a) is shown in black for reference. We find that the
posterior bounds from the modeled O2 GRB analysis overlap
with the BNS merger rate and Fermi-GBM-detected short-
GRB rate at low redshift. At high redshift there is agreement
with the observed short-GRB redshift distribution and the
Fermi-GBM detection rate.
For the 2019–2020 LIGO-Virgo observing run we expect to

see 1–30 BNS coalescences, while at design sensitivity LIGO-
Virgo could detect 4–97 BNS mergers per year. Using the
framework provided in Howell et al. (2019), we estimate joint
GW-GRB detection rates with Fermi-GBM of 0.07–1.80 per
year for the 2019–2020 LIGO-Virgo observing run and
0.15–3.90 per year at design sensitivity. We note that
although the BNS detection rate for LIGO-Virgo at design
sensitivity is around three times higher than that of the
2019–2020 observing run, the joint GW-GRB detection

Figure 4. Cumulative histograms of the 90% confidence exclusion distances
D90 for accretion disk instability signal model A (van Putten 2001; van Putten
et al. 2014) and the circular sine-Gaussian 150 Hz (Abbott et al. 2017g) model.
For a given GRB and signal model this is the distance within which 90% of
simulated signals inserted into off-source data are successfully recovered with a
significance greater than the loudest on-source trigger. The median values for
ADI-A and CSG-150 Hz waveforms are 32 and 81 Mpc, respectively.
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Table 3

Information and Limits on Associated GW Emission for Each of the Analyzed GRBs

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite(s) Type Network BNS
Generic
NS–BH

Aligned
NS–BH ADI-A

CSG-
150 Hz

161207224 05:22:47 19h39m14s −9°56′ Fermi Long H1L1 L L L 8 40
161207813 19:31:22 3h55m09s 15°44′ Fermi Long H1L1 L L L 26 73
161210524 12:33:54 18h52m28s 63°03′ Fermi Ambiguous H1L1 61 72 112 19 49
161212652 15:38:59 01h 39m36s 68°12′ Fermi Ambiguous H1 49 59 60 L L

161217128 03:03:45 14h26m31s 51°59′ Fermi Ambiguous H1L1 65 85 122 18 56
170111815 19:34:01 18h 03m31s 63°42′ Fermi Ambiguous H1 95 160 198 L L

170111A 00:33:27 1h22m45s −32°33′ Swift Long H1L1 L L L 13 78
170112A 02:01:59 1h00m55s −17°14′ Swift Short H1L1 83 106 144 32 79
170113Aa 10:04:04 4h06m59s −71°56′ Swift Long H1L1 L L L 32 107
170121067 01:36:53 0h12m07s −75°37′ Fermi Ambiguous H1L1 79 105 144 26 73
170121133 03:10:52 16h07m57s 13°49′ Fermi Ambiguous H1L1 96 142 172 23 88
170124238 05:42:12 19h26m57s 69°37′ Fermi Long H1L1 L L L 25 72
170124528 12:40:29 00h 43m24s 11°01′ Fermi Short H1 65 101 116 L L

170125022 00:31:14 17h 36m34s 28°34′ Fermi Ambiguous H1 46 52 57 L L

170125102 02:27:10 23h57m38s −38°14′ Fermi Short H1L1(H1)b 30 39 63 20 51
170127067 01:35:47 22h37m19s −63°56′ Fermi Short H1L1 76 129 141 24 64
170127B 15:13:29 01h 19m58s −30°20′ Swift Short H1 113 169 197 L L

170130302 07:14:44 18h04m12s −29°07′ Fermi Long H1L1 L L L 48 121
170130510 12:13:48 20h35m00s 1°26′ Fermi Long H1L1† L L L 26 68
170202Ac 18:28:02 10h10m06s 5°01′ Swift Long H1L1 L L L 47 113
170203486 11:40:25 16h20m21s −0°31′ Fermi Short H1L1 66 99 119 10 81
170203A 00:03:41 22h11m26s 25°11′ Swift Long H1L1 L L L 38 112
170206A 10:51:58 14h 12m43s 12°34′ IPN Short H1L1 151 254 264 50 122
170208553 13:16:33 18h57m40s −0°07′ Fermi Long H1L1 L L L 31 64
170208A 18:11:16 11h06m10s −46°47′ Swift Long H1L1 L L L 50 134
170208B 22:33:38 8h28m34s −9°02′ Swift Long H1L1† L L L 32 77
170210116 02:47:36 15h04m14s −65°06′ Fermi Long H1L1† L L L 49 122
170212034 00:49:00 10h20m24s −1°29′ Fermi Long H1L1 L L L 29 76
170219002 00:03:07 3h39m21s 50°04′ Fermi Short H1L1 171 251 304 52 159
170219110 02:38:04 5h14m45s −41°14′ Fermi Long H1L1 L L L 10 33
170222A 05:00:59 19h 31m53s 28°04′ IPN Short H1L1 80 86 112 23 60
170302166 03:58:24 10h17m00s 29°23′ Fermi Ambiguous H1L1 107 175 206 47 109
170304003 00:04:26 22h02m00s −73°46′ Fermi Short H1L1 105 143 178 34 85
170305256 06:09:06 2h34m38s 12°05′ Fermi Short H1L1(L1)d 48 73 82 10 14
170306130 03:07:17 10h31m31s 27°45′ Fermi Long H1L1 L L L 45 111
170310417 09:59:50 14h33m14s 53°59′ Fermi Long H1L1 L L L 50 135
170310883 21:11:43 10h26m43s 41°34′ Fermi Long H1L1 L L L 5 23
170311 13:45:09 23h43m48s 33°24′ IPN Long H1L1 L L L 34 92
170311A 08:08:42 18h42m09s −30°02′ Swift Long H1L1 L L L 22 43
170317A 09:45:59 6h12m20s 50°30′ Swift Long H1L1 L L L 33 80
170318A 12:11:56 20h22m39s 28°24′ Swift Long H1L1† L L L 47 119
170318B 15:27:52 18h57m10s 6°19′ Swift Short H1L1 152 254 281 48 112
170323058 01:23:23 9h40m45s −38°60′ Fermi Long H1L1 L L L 28 75
170325331 07:56:58 8h29m55s 20°32′ Fermi Short H1L1 73 88 125 33 77
170330A 22:29:51 18h53m17s −13°27′ Swift Long H1L1† L L L 41 110
170331A 01:40:46 21h35m06s −24°24′ Swift Long H1L1 L L L 49 119
170402285 06:50:54 22h01m26s −10°38′ Fermi Long H1L1 L L L 9 110
170402961 23:03:25 20h31m40s −45°56′ Fermi Long H1L1 L L L 48 113
170403583 13:59:18 17h 48m19s 14°31′ Fermi Short H1L1 166 240 261 L L

170403707 16:57:33 16h24m09s 41°49′ Fermi Long H1L1 L L L 24 54
170409112 02:42:00 23h10m19s −7°04′ Fermi Long H1L1† L L L 20 106
170414551 13:13:16 2h54m00s 75°53′ Fermi Long H1L1 L L L 33 80
170416583 14:00:05 18h56m52s −57°01′ Fermi Long H1L1† L L L 9 24
170419983 23:36:14 17h39m28s −11°14′ Fermi Long H1L1 L L L 49 119
170419A 13:26:40 5h19m25s −21°26′ Swift Long H1L1 L L L 48 114
170422343 08:13:54 12h34m31s 16°49′ Fermi Long H1L1 L L L 47 114
170423719 17:15:08 22h57m21s −4°16′ Fermi Long H1L1 L L L 36 98
170423872 20:55:23 13h58m24s 26°22′ Fermi Long H1L1 L L L 17 45
170424 10:12:06 10h00m40s −13°41′ IPN Long H1L1 L L L 32 75
170424425 10:12:30 22h54m07s −45°12′ Fermi Long H1L1 L L L 32 74
170428136 03:16:17 0h19m02s 56°14′ Fermi Long H1L1 L L L 23 75
170428Ae 09:13:42 22h00m12s 26°55′ Swift Short H1L1 105 167 178 32 86
170430204 04:54:20 01h 35m26s 30°07′ Fermi Short H1 32 54 81 L L

170501467 11:11:53 6h28m02s 13°43′ Fermi Long H1L1 L L L 34 84
170506169 04:02:48 7h29m02s 51°52′ Fermi Ambiguous H1L1 103 174 149 36 84
170604603 14:28:05 22h 41m36s 40°42′ Fermi Short L1 131 204 237 L L

170610689 16:31:47 4h35m38s 46°29′ Fermi Long H1L1 L L L 53 162
170611937 22:29:35 11h34m19s −7°22′ Fermi Long H1L1 L L L 32 75
170614255 06:06:41 4h42m12s 37°56′ Fermi Long H1L1† L L L 22 55
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increases by only a factor of about two. This discrepancy
highlights the fact that faint, wide-angle emission will remain
detectable for only nearby mergers, meaning that additional

joint GW BNS detections facilitated by improved GW
detector sensitivity will require the system to have small
inclinations in order to produce a detectable GRB.

Table 3

(Continued)

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite(s) Type Network BNS
Generic
NS–BH

Aligned
NS–BH ADI-A

CSG-
150 Hz

170614505 12:06:39 20h 43m58s −37°54′ Fermi Ambiguous H1 9 22 0 L L

170616165 03:58:07 3h18m02s 19°40′ Fermi Long H1L1† L L L 34 95
170618475 11:24:41 0h59m19s 26°44′ Fermi Long H1L1 L L L 48 130
170625692 16:35:47 7h06m48s −69°21′ Fermi Long H1L1 L L L 33 84
170626A 09:37:23 11h01m37s 56°29′ Swift Long H1L1 L L L 33 82
170629A 12:53:33 8h39m50s −46°35′ Swift Long H1L1 L L L 48 117
170705200 04:48:30 23h58m02s −21°56′ Fermi Long H1L1 L L L 29 74
170705244 05:50:45 15h50m26s −7°26′ Fermi Long H1L1 L L L 32 86
170705Af 02:45:47 12h46m50s 18°18′ Swift Long H1L1† L L L 47 156
170708046 01:06:11 22h 13m00s 25°37′ Fermi Short L1 57 105 103 L L

170709334 08:00:24 20h 40m10s 02°12′ Fermi Ambiguous L1 139 228 255 L L

170714Ag 12:25:32 2h17m17s 1°58′ Swift Long H1L1† L L L 48 123
170715878 21:04:13 19h08m52s −16°37′ Fermi Long H1L1 L L L 47 114
170723076 01:49:10 9h03m45s −19°26′ Fermi Long H1L1 L L L 26 75
170723677 16:15:27 1h28m16s 62°41′ Fermi Long H1L1 L L L 37 111
170723882 21:10:18 14h10m19s 39°50′ Fermi Ambiguous H1L1 95 83 179 40 110
170724A 00:48:44 10h00m14s −1°02′ Swift Long H1L1† L L L 21 84
170726249 05:58:15 11h05m40s −34°00′ Fermi Ambiguous H1L1 124 152 207 38 112
170728A 06:53:28 3h55m36s 12°10′ Swift Short H1L1 89 129 163 26 81
170731751 18:01:39 16h20m48s 64°18′ Fermi Long H1L1† L L L 17 44
170802638 15:18:24 3h29m12s −39°13′ Fermi Ambiguous H1L1V1 45 62 72 3 24
170803172 04:07:15 5h06m00s 23°60′ Fermi Ambiguous H1L1

(H1L1V1)h
56 83 105 16 53

170803B 22:00:32 00h 56m53s 06°34′ IPN Short L1i 140 215 234 L L

170804A 12:01:37 0h25m37s −64°47′ Swift Long H1V1† L L L 15 45
170805901 21:37:49 16h15m52s 36°23′ Fermi Long H1V1 L L L 11 25
170805A 14:38:10 20h50m26s 22°28′ IPN Short H1L1V1 69 100 114 22 61
170805B 14:18:49 8h40m32s 70°06′ IPN Short H1L1V1 132 163 218 33 114
170807A 21:56:09 9h33m44s −17°21′ Swift Long H1L1 L L L 27 76
170808065 01:34:09 0h13m12s 62°18′ Fermi Ambiguous L1V1 58 83 87 11 18
170808936 22:27:43 9h42m38s 2°11′ Fermi Long L1V1 L L L 22 41
170809 23:46:26 16h52m37s −12°18′ IPN Long H1L1V1 L L L 27 87
170816258 06:11:11 0h42m48s −15°37′ Fermi Long H1L1† L L L 17 55
170816599 14:23:03 23h25m36s 19°06′ Fermi Short H1L1V1

(H1V1)j
46 56 73 15 34

170817908 21:47:34 5h32m07s 50°04′ Fermi Ambiguous H1V1 35 51 63 16 30
170817A 12:41:06 13h 09m36s −23°24′ Fermi Ambiguous H1L1V1 N/A N/A N/A N/A N/A

170818137 03:17:20 19h 48m53s 06°21′ Fermi Ambiguous H1L1 103 146 169 L L

170821265 06:22:00 16h51m26s 19°07′ Fermi Long H1L1† L L L 33 76
170822A 09:11:51 6h17m29s 54°60′ Swift Long H1L1V1† L L L 32 97
170823A 22:16:48 12h34m51s 35°33′ Swift Long H1L1† L L L 58 166
170825307 07:22:01 18h17m36s −26°12′ Fermi Long L1V1 L L L 15 31
170825500 12:00:06 0h14m33s 20°07′ Fermi Long H1L1 L L L 47 116
170825784 18:49:11 7h45m16s −48°43′ Fermi Long H1L1V1† L L L 6 22

Notes. The “Satellite(s)” column lists the instrument whose sky localization was used for the purposes of analysis. The “Network” column lists the GW detector network used in the analysis
of each GRB—H1=LIGO Hanford; L1=LIGO Livingston; V1=Virgo. A dagger denotes cases in which the on-source window of the generic transient search is extended to cover the
GRB duration (T90 > 60 s). In cases where each analysis used a different network, parentheses indicate the network used for PyGRB analysis, and detail is provided in the table footnotes.
Columns (8)–(12) display the 90% confidence exclusion distances to the GRB (D90) for several emission scenarios: BNS, generic and aligned-spin NS–BH, ADI-A, and CSG GW burst at
150 Hz with total radiated energy EGW=10−2 M☉c

2.
a
GRB170113A has a redshift of z=1.968 (Xu et al. 2017).

b
GRB170125102 occurred when the Livingston detector was not in its nominal observing state; however, the data were deemed suitable for the purposes of the unmodeled analysis.

c
GRB170202A has a redshift of z=3.645 (de Ugarte Postigo et al. 2017a).

d
GRB170305256 occurred near the null of the Hanford detector, and inclusion of its data degraded the PyGRB search sensitivity compared to a Livingston-only analysis.

e
GRB170428A has a redshift of z=0.454 (Izzo et al. 2017).

f
GRB170705A has a redshift of z=2.01 (de Ugarte Postigo et al. 2017b).

g
GRB170714A has a redshift of z=0.793 (de Ugarte Postigo et al. 2017c).

h
GRB170803172: Virgo data did not meet the data quality requirements of X-Pipeline.

i
GRB170803B occurred near the null of the Virgo detector (see note b). In addition, Livingston data did not meet the data quality requirements of X-Pipeline, so this GRB was not

subject to the unmodeled analysis.
j
GRB170816599 occurred near the null of the Livingston detector (see note b).
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7. Conclusions

We have performed targeted analyses for GWs in association
with GRBs during O2, searching for NS binary merger signals
from short GRBs with a modeled analysis and GW burst
signals from all GRBs with an unmodeled analysis. GW170817
is confirmed by both methods as a strong detection associated
with GRB170817A, entirely consistent with previously
published results. No further GW signals were found as a
result of these analyses, and there is no strong evidence found
in our results for subthreshold signals. We set lower bounds on
the distances to progenitors for a number of emission models,
which include the largest D90 values published so far for some
individual GRBs (Abadie et al. 2012a; Abbott et al. 2017g).

Based on the results of the modeled search, we performed a
population model analysis in Section 6 and place bounds on a
twice-broken power-law short-GRB luminosity function that is
consistent with both the measured BNS merger rate and the Fermi-
GBM observed short-GRB rate, and therefore with the hypothesis
that BNS mergers are generally short-GRB progenitors. Further
multimessenger observations should provide tighter constraints on
GRB emission models and event rates and investigate whether
NS–BH mergers also power short GRBs. We expect to observe
0.07–1.80 joint GRB-GW events per year in conjunction with
Fermi-GBM during the 2019–2020 LIGO-Virgo observing run
and 0.15–3.90 per year when GW detectors are operating at their
design sensitivities.
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