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Abstract

The virial stress tensor-based instantaneous heat flux, which is used by LAMMPS, is only valid for the
small subset of simulations that contain only pairwise interactions. For systems that contain many-body interactions
using 3- or 4-body potentials, a more complete derivation is required. We have created a software patch to
LAMMPS that implements the correct heat flux calculation approach for 3- and 4-body potentials, based on the
derivation by Torii et al'. Using two example systems, the error in the uncorrected code for many-body potential
heat flux is shown to be significant and reaches nearly 100% of the many-body potential heat flux for the systems
we studied; hence, the error of the total heat flux calculation is proportional to the fraction of the total heat flux
transferred through the many-body potentials. This error may have consequences for calculating thermal
conductivities calculated using the Green-Kubo method or any NEMD method that uses the instantaneous heat flux.
We recommend that all researchers using LAMMPS for heat flux calculations where significant heat is transferred
via the many-body potentials adopt the corrected code.

Introduction

LAMMPS is a commonly-used open-source molecular dynamics package’ and can be used for, among
other things, calculating thermal transport properties such as the thermal conductivity.>® There are four common
methods in LAMMPS to measure the thermal conductivity. Three of these are based on non-equilibrium molecular
dynamics (NEMD), briefly: (1) enforcing a temperature gradient by thermostatting two regions and measuring the
molecular heat flux or keeping track of the energy added and removed from the thermostatted regions,’ (2) enforcing
an energy flux by adding and removing a constant amount of energy to two defined regions and then measuring the
resulting temperature gradient,® and (3) defining two regions and swapping the kinetic energy of atoms between the
two regions to create a very small temperature gradient, and then measuring the exchanged energy (i.e. the Muller-
Plathe method®). The fourth approach is the Green-Kubo method,'®!! which uses the autocorrelation function of the
instantaneous heat flux to calculate the thermal conductivity, under equilibrium conditions. In this paper, we
describe an error with how LAMMPS calculates the instantaneous heat flux, which could affect thermal
conductivity calculations that employ the instantaneous heat flux, such as some NEMD calculations (subset of case
1 above) as well as the Green-Kubo method. In general, this error will affect any calculation that employs the
instantaneous heat flux, such as the calculation of per-potential heat fluxes.'>!?

In LAMMPS, the function that calculates the instantaneous heat flux uses a virial stress tensor form. To the
best of our knowledge, a derivation for this form of the heat flux has not been published, besides the terse form that
exists in the LAMMPS documentation'*. In systems involving only two-body potentials, this form is valid, but it
cannot be extended to systems with many-body potentials. Torii et al' derive general expressions for many-body
heat fluxes (which we will review below in the background section) but do not address differences with the virial
stress tensor formulation. Fan et al'® states that the LAMMPS virial stress heat flux applies only to two-body
potentials, but does not go into detail about the derivation error in the stress-based form. Additionally, neither paper
provides source code corrections to LAMMPS, although Fan et al does have an alternative GPU code available on
request which is limited to specific potentials (the Stillinger-Weber and Tersoff potentials as currently publicized).
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The purpose of this paper is three-fold: (1) to show how the virial stress tensor formulation used by
LAMMPS to calculate heat flux is derived and how it compares to a correctly derived many-body heat flux, (2) to
publish publicly-available code for correctly calculating many-body heat flux to LAMMPS, and (3) to demonstrate
its importance using different example systems. We analyze an idealized metal-organic framework (MOF) where
heat is transferred predominantly via the bond and angle potentials, and the liquid-phase hydrocarbons propane,
octane, and hexadecane with bond, angle, dihedral and improper potentials. The scale of the error in the heat flux
ranges from significant to inconsequential, depending on the system and how much of the heat flux transfers through
the many-body potentials. The magnitude of this effect on thermal conductivities calculated via the Green Kubo
method is difficult to generalize and is likely system dependent. The hydrocarbon system is particularly illustrative
of the range of error and how the distribution of the heat flux through different potentials affects the total error in
the system.

Background

In LAMMPS, the heat flux is calculated using a virial stress tensor form defined per atom. This definition,
when appropriately limited to only two-body potentials, is provably equivalent to the Irving and Kirkwood®® or
Hardy'” heat fluxes. In this section, we will show a complete derivation of a general heat flux expression for a
many-body potential based on the derivation in Torii, et al.%, before applying it to two-body potentials only in order
to derive the virial stress tensor form of the heat flux used in LAMMPS. We can then compare the virial stress
tensor as defined for many-body heat fluxes to our general derivation to see that the per atom virial stress tensor
heat flux defined in LAMMPS is not a valid expression for the heat flux.

We start with the definitions of the instantaneous heat flux J and per-atom energy E;:*®
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Where V is the volume, and m;, v;, U;, and r; are the mass, velocity, potential energy, and position of the
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i atom. We can separate equation (3) into a convective term J .., = >; E;v; and a potential term Jpot = 2iTi o E;

where J .., represents the heat flux due to the movement of atoms in the system, and J,,,; represents the heat flux
due to changes in atom potentials. Note that J .,,,, is still dependent on the form of the atom potential U;, which will
in general involve a summation over all the potentials defined on the system; in this case: two-body, three-body,
and four-body potentials. Here we define, P, as the set all potentials P = P, + P3 + -+ + P, defined on the
system, where [P, is all two-body potentials, IP5 is all 3-body potentials, and P, is all m-body potentials. Further,
let P; refer to the set of all m-body potentials which include the atom i, and let Uy, be the potential energy for the
specific potential ¢. If we are looking at only two-, three- and four-body potentials, U; can now be defined as:
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Here, the total potential energy of atom i is the sum of all potentials that include the atom i divided by the
number of atoms in each potential. In this way, the energy of each m-body potential is evenly divided up amongst
the atoms that constitute it. There are other ways of distributing the potential energy between atoms but this does
not affect the resulting aggregate heat flux.*® We are evenly distributing them in this derivation for simplicity (and



because this is what LAMMPS does); interested readers can see a full derivation with arbitrarily distributed potential
energies in the paper by Torii, et al.

We have three definitions for forces: (1): let F; be the sum of all forces on i, (2) let F;4 be the force on
atom i due to a specific potential ¢ € P, and (3) let F;; 4 be the force on atom i due to atom j as part of a specific
potential ¢ € P.

Expanding the J,,; term:
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To finish our definition of the J,,,; term, we introduce some additional notation. First, we define rj;, = r; —
1. We will also use the notation j € ¢ to mean j is one of the atoms that constitutes the potential ¢, and if we take
all possible pairs of the atoms in ¢, denoted [¢p]?, then {j, k} € [¢]? will mean that {j, k} is one of these pairs (e.g.,
for a two-, three- or four-body potential, there will be 1, 3, and 6 pairs, respectively). We also need to express the
derivative dUy /dt in terms of the forces and velocities of its constituent atoms, where 17 = |rj| :
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We are able to incorporate the F; - v; term into the outer summations because the total force on i is
equivalent to all the forces on i due to all m-body potentials ¢, i.e. F; = Yr=> Xep,,; Fip - Vi - We are then able
to invert the summations and sum across all atoms i in a potential ¢ for all potentials, rather than summing all
potentials ¢ that atom i is part of. For the inner summation, if we sum F;y - v; m times (once for every j in the
given m-body potential ¢), then we would need to divide it by m, i.e. Fip - v; = %Z j in dacoms Fig - Vi- Finally,
to use the relative positions 7;;, we need to recognize that in equation 7d for every pair {i = iy,j = j;}, there will

be a corresponding pair {i = j;,j = i;} and we can sum them twice per pair if we replace the double sums across i
and j with one sum across all pairs that make up the potential.

Our final general expression for the heat flux will therefore be:
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This is a per-potential version of the general heat flux, meaning we sum across the various potentials in the
system, and then across all possible pairs of atoms included in the potential. The term inside the outermost
parentheses is the heat flux for one specific m-body potential ¢p. To more easily compare to the virial stress heat
flux in LAMMPS, we will also need a version of the heat flux that is rearranged to be per-atom, where we sum
across all atoms and then across all potentials that include that atom. This rearrangement is straightforward; the
only thing to note is that there is an extra factor of 2 due to the summations above being over the pairs {i, j} and the
one below being over all atoms i and then all j € ¢, yielding two pairs {i = i;,j = j;}and {i = j;,j = i1 }:
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We can now show that this equation, when limited to two-body potentials only, is equivalent to the Irving
and Kirkwood and Hardy derivations:
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For a two-body potential, there will be only two j’s for each ¢; one of them will be equal to i and can be
omitted. Then the summations Y.4cp,, Xijep can be replaced with the simpler summations );; 3 j~; as long as one
also replaces the force term, F; = F;j 4 and F;; = ¥4 F;; 4. This final equation 10c is recognizable as Irving and
Kirkwood’s definition of the molecular interaction component of the heat flux for a uniform system in absence of
fluid flow.*® Further, equation 10c is also identical to Hardy’s definition of the potential component for heat flux,
also for a uniform system in absence of fluid flow"’.



Continuing with the assumption that there are only two-body potentials defined on the system, we can now
derive the LAMMPS virial stress tensor heat flux, starting with showing how a general definition of the stress tensor
relates to the per-atom version that LAMMPS uses. The global stress tensor S is defined to be the ensemble average
of a kinetic term summed across all N atoms in the system and the virial tensor,*® (or stress) W(r"), which is a
function of the N positions 7V,

N
SV = (Z mvv; + W) (11)
i=1

where V is the volume, and m; and v; are the mass and velocity of atom i. When calculating heat flux,
LAMMPS excludes the kinetic term, leaving just the ensemble average of the virial stress. We can expand the virial
term using the positions r; and the total force F; on atom i:

W) = riF) (12)

We can further break this up by recognizing that F; will be a summation of the forces caused by all the
potentials defined in the system:
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To get the per-atom form of the virial stress tensor that LAMMPS uses to calculate the heat flux, we separate
the ensemble average of the virial stress into contributions from each atom, which LAMMPS calls a “per-atom
stress tensor” and denoted here by s;:

W) =Y si) (14)

where
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Equation 13 is equivalent to equations 14-15. In the former, the virial terms r;F;4 are summed once per
atom / potential pair. In the latter, the virial terms r;F 4 are summed up by potential so each term will appear m
times, once for every atom j in the potential ¢; the sum of the virial terms is then divided amongst the potential’s
constituent atoms. As mentioned above, the potential could be divided amongst the atoms in a different manner,
but LAMMPS chooses to divide the potential evenly.



LAMMPS defines the instantaneous heat flux J as:'*
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The J .y term Y; E;v; is equivalent to our derivation (equations 8-9) so we can focus on showing
equivalence for just the J, o term. Starting with the J,,, term from our general expression (equation 9), and limiting

it to two body potentials, we can tie it out to the J,,,; of the per-atom virial stress heat flux used in LAMMPS:
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Hence, equation 9, limited to two-body potentials, is equivalent to the LAMMPS heat flux definition, also
limited to two-body potentials. This shows that LAMMPS’s use of the virial stress tensor form of the heat flux is
justified, when limited to two-body potentials.

LAMMPS, however, extends this virial stress beyond two-body potentials to three- and four-body potentials
by making the leap that because virial stress can describe the heat flux for two-body potentials, then it can also
describe the heat flux for three- and four-body potentials, i.e., if Jporp, = XilSilpep,, - Vi, then Jporp =

Yilsilgep - v;. This step is not valid. It may be easier to see the difference between the virial stress heat flux and

the correct heat flux when comparing the heat flux contribution between the two forms for only one three-body
potential ¢ = {a, b, c} € PP5. The correct heat flux, starting from equation (8), will be:
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Whereas the virial stress heat flux for one three-body potential ¢ = {a, b, c} € P, starting with
equations 15-16:
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For the virial stress heat flux, the virial stress term is the same for all atoms in the potential; this can therefore
be multiplied by the sum of the velocities. For the correct form of the heat flux, however, the terms that multiply
the atom velocities are all different from one another and cannot be combined. Curious readers can see the
implementation of equation 19 by looking at the referenced LAMMPS source code files?*2!.

As shown above, the virial stress heat flux that LAMMPS uses is valid for two body potentials; however,
the virial stress heat flux cannot be extended to three- and four-body potentials which may lead to erroneous thermal
conductivity predictions. We suspect that the reason why this problem has mostly gone unnoticed is because for
many systems, the amount of heat flux being transferred via the three- or four-body potentials is diminutive, so that
any error due to the calculation of heat flux for those potentials is rendered largely inconsequential. The error may
also be further obscured by compensating factors when using the heat flux for the purpose of calculating thermal
conductivity via Green-Kubo. Comparisons of the corrected and virial stress heat flux calculations in example
systems follow in the results section.

Notes on Implementation in LAMMPS

The error described above applies to all many-body potentials in LAMMPS. However, in LAMMPS, there
are two different categories of many-body potentials and these different categories require separate code fixes.
These two different categories are (1) many-body potentials defined on sets of three or more atoms where the sets
are defined in advance, usually due to the bonding structure (i.e., the angle, dihedral, and improper styles in
LAMMPS), and (2) many-body potentials where the atoms that interact change over the course of the simulation
(i.e. potentials implemented via the unfortunately named “pair potential” style such as the Tersoff, Brenner, and
Stillinger-Weber potentials, and the AGNI and GAP machine learning potentials). The code fix that we have
implemented addresses the first category of potentials only. Other research groups are working on the second
category of potentials.'®

Due to how LAMMPS stores atoms across multiple processors, the velocity for an atom can only be found
on the processor the atom is assigned to. In order to support this, rather than dividing the heat flux evenly between
the atoms that comprise the potential, we assign the portion of the heat flux that contains the velocity of an atom to
that atom. For a single three-body potential ¢ = {a, b, c}, the heat fluxes assigned to the atoms a, b, ¢ will be:
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These equations are just the individual terms in equation (18d). The total heat flux assigned is unchanged;
the only difference is that the velocity the atom a is now only used in the calculation of the heat flux on atom a,
and so forth with the velocities and heat fluxes for atoms b and c. Dividing the heat flux in this manner guarantees
us the ability to calculate the heat flux, regardless of boundary conditions and number of processors.



We implemented the corrected algorithm described above for angle, dihedral and improper potential styles
and it is currently available via our GitHub page at https://github.com/wilmerlab/lammps.

Results and Discussion

For the example systems, we combined a typical non-equilibrium molecular dynamics (NEMD) setup—we
enforced a heat flux by adding and removing a fixed amount of energy from two regions—with measurements of the
heat flux using the corrected heat flux or the uncorrected LAMMPS virial stress heat flux. The procedure was: a
rectangular cuboid simulation box with periodic boundaries was filled with a crystalline solid or a liquid, and after
an initial equilibration, we ran an NVE simulation with a fixed heat source applied to the center of the cuboid and
a corresponding sink applied to the outer edges (see Figure 1a). After the temperature profiles reached steady-state,
we recorded the instantaneous heat fluxes for control volumes on the left and right sides of the box, and averaged
them over a time-frame necessary for convergence.

The instantaneous heat fluxes were recorded separately for the convective heat flux as well as any defined
pair, bond, angle, dihedral, and improper potentials using both the corrected and uncorrected LAMMPS code.
Because we are using the NVE ensemble, and the heat added and removed is fixed, the heat flux code should self-
consistently report the applied heat flux, regardless of the force-field parameters, and we can therefore use this as
an accurate gauge of measuring the correctness of our implementation. We have included our simulation parameters
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below for completeness, but in all cases, the calculated heat flux should be a function of the applied energy and the
control volume size alone.

For this simulation setup, the corrected total instantaneous heat flux calculation does not require steady-
state to be reached; the recorded instantaneous heat flux may be averaged immediately upon application of the heat
source (see Figure 6). This is in contrast to the per-potential averages, which took a significant amount of time to
converge after steady-state, from between 40-215M timesteps. Calculating the per-potential heat fluxes is usually
unnecessary unless one is studying the distribution of heat flux between different potentials (or writing software to
fix it); researchers should not take the number of timesteps required for our simulations to be indicative of the
number required to measure the total heat flux.

Example System 1: Idealized MOF structures

For testing the 3-body potential, we examined cubic, triangular and hexagonal idealized metal-organic
framework (MOF) structures (see Figure 1(B)(C)(D)); a full description of these idealized MOF structures,
including force field parameters, is covered in a previous paper®” and we will present only the briefest description
here. These idealized structures are simplified models corresponding to common actual geometries of real MOFs;
a simple geometric shape is extended orthogonally to the plane of the shape in a series of channels, forming a lattice
that stretches over the whole cuboid and connects across the periodic boundaries. The force field is defined with
only bond and angle potentials, with parameters chosen to approximate the thermal conductivity of a typical MOF.
After relaxation of the system using NVT / NVE for 500,000 timesteps, an energy source and sink was applied of
0.0040 kcal / mol fs for the cubic structure, 0.0071 kcal / mol fs for the triangular structure, and 0.0213 kcal / mol
fs for the hexagonal structure. After a steady-state was reached at SM timesteps, the per potential heat flux was
averaged over 15M timesteps.
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Figure 2: Per-potential fraction of applied heat flux for
both uncorrected LAMMPS and corrected calculations
for idealized cubic, triangular and hexagonal MOFs.

Because the lattice has zero aggregate momentum, there should be negligible heat transport through
convection and all of the heat flux should travel through the bond and angle potentials. As measured for all three
systems, the summation of the bond and angle heat fluxes from the corrected code equals the expected heat flux as
calculated from the applied energy (see Figure 2). The uncorrected LAMMPS code shows nearly zero heat flux
through the angle potential and the error of the total flux is equivalent to the missing angle potential, or about 15%
of the expected total flux.



Example System 2: Propane, Octane and Hexadecane

To demonstrate the corrected 3- and 4-body potentials work in conjunction to correctly predict heat flux in
a real-life system, we ran simulations for propane, octane and hexadecane. Simulation parameters were adapted
from Ohara, et al?® in order to compare directly with their per-potential results; a brief description of the parameters
follows. Each hydrocarbon was defined using the united atom NERD force field* and packed into the rectangular
cuboid simulation box using Packmol? to the density expected at a temperature of 0.7 times the critical temperature
(see Figure 3). The simulation box was set to be 3L x 3L x 20L, where L is a hydrocarbon-specific length equal to
1/3 of the total of the length of the hydrocarbon + a buffer of 3 A + the Lennard-Jones cutoff of 13.8 A defined by
the NERD forcefield. For propane, octane and hexadecane, 3L = 19.38 A, 25.84 A, and 36.17 A, respectively. A
timestep of 1 fs was used for all simulations. The system was equilibrated using NVT/NVE for 5M total timesteps;
this larger-than-typical equilibration time is because we wanted a longer baseline for statistical averaging for
comparing heat flux measurements before and after the application of a heat flux. After equilibration, an energy
source and sink were applied of 9.4E-04 kcal / mole for propane, 8.3E-04 kcal / mole fs for octane, and 6.5E-04
kcal / mole fs for hexadecane in order to get an appropriate temperature profile. After 10M timesteps, stable
temperature profiles were obtained and then heat flux data was recorded and averaged over 64M timesteps for
propane, 132M timesteps for octane, and 234M timesteps for hexadecane.

Propane

Fiaure 3: Simulation box lavout for probpane. octane and hexadecane.
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Similar to the case of the idealized MOFs, the summation of all the terms in the corrected heat flux code

approximately equals the expected heat flux, regardless of the length of the hydrocarbon (see Figure 4).

Fraction of applied heat flux

Figure 4: Per-potential fraction of applied heat flux for both uncorrected
LAMMPS and corrected calculations for various hydrocarbons. As the
length of the hydrocarbon increases, the heat transfer through the many-
body potentials increases. C1sHs4 shows LAMMPS-reported heat fluxes of
near zero for the angle and dihedral potentials, causing a total error of

about 22%.

For the uncorrected code, as the length of the hydrocarbon increases, the amount of heat transfer through
the angle and dihedral potentials increases, leading to greater errors with longer hydrocarbons. For propane, the
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error is minimal, but for octane, the error is greater than 16% and for hexadecane the error reaches 22%. This

compares well to the results of Ohara, et al,*

results (see Supporting Information).

Fraction of applied heat flux

Figure 5. Per-potential fraction of applied heat flux for hydrocarbons from
Ohara, et al, which predict increasing reliance on the angle and dihedral
manv-bodv terms for heat flux transfer with increasina hvdrocarbon lenath.
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potentials with increasing hydrocarbon length (see Figure 5). A comparable simulation of octane using improper
potentials in place of dihedral potentials was also performed; the improper results were comparable to the dihedral
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In addition to the total error of 16% recorded for octane, the heat flux predicted by uncorrected LAMMPS
shows greater swings in magnitude and visually doesn’t converge as clearly (see Figure 6).
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Figure 6: Total heat flux as a fraction of applied heat flux for both the
uncorrected LAMMPS calculation (blue) and the corrected LAMMPS
calculation (orange), averaged over 1M timesteps, as measured on
octane. Prior to 3M timesteps, there is no applied heat flux (noted in grey)
and the recorded instantaneous heat flux fluctuates around zero; after 3M
timesteps, the heat flux is applied and the corrected calculation fluctuates
around the correct value but the uncorrected calculation underestimates

tha raal valiia ac wall ae ehnwe Araatar mannitiida fhiictiiatinne

Any error in the long-term average of the heat flux, or any error that decorrelates the instantaneous heat
flux may have consequences when calculating thermal conductivity via Green-Kubo; more research needs to be
done to assess which systems are significantly affected by this error in the heat flux calculations.

Conclusion

For systems where significant heat transfer occurs within many-body potentials, the error in the uncorrected
LAMMPS heat flux code can reach nearly 100% of the many-body potential heat flux, which leads to an erroneous
total heat flux calculation. From our example systems, the largest error in the total heat flux we saw was 22%,
though it is not hard to imagine a system where more heat is transferred via the many-body potentials; in that case,
the error would be expected to be proportionally higher. Care should be exercised when evaluating prior results to
ensure thermal conductivity calculations are not erroneous due to the incorrectly defined heat flux. We have
implemented the corrected algorithm into LAMMPS which extends the accuracy of heat flux measurements in
LAMMPS to the 3- and 4-body potentials.

For deciding whether it is necessary to adopt the corrected code for your calculations, we recommend
evaluating which one of these three cases your work fits into: (1) if you are modeling a system composed of only
2-body potentials, you can use the uncorrected LAMMPS heat flux calculation safely; (2) if you are modeling a
system that uses 3- or 4-body potentials implemented via the angle, dihedral or improper potential styles, we
recommend you adopt our corrected LAMMPS code available at https://github.com/wilmerlab/lammps; and (3) if
you are modeling a system with any other many-body potentials, you will need to evaluate whether the potentials
have correct or incorrect implementations of the instantaneous heat flux.
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