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Abstract 

The virial stress tensor-based instantaneous heat flux, which is used by LAMMPS, is only valid for the 

small subset of simulations that contain only pairwise interactions. For systems that contain many-body interactions 

using 3- or 4-body potentials, a more complete derivation is required. We have created a software patch to 

LAMMPS that implements the correct heat flux calculation approach for 3- and 4-body potentials, based on the 

derivation by Torii et al1. Using two example systems, the error in the uncorrected code for many-body potential 

heat flux is shown to be significant and reaches nearly 100% of the many-body potential heat flux for the systems 

we studied; hence, the error of the total heat flux calculation is proportional to the fraction of the total heat flux 

transferred through the many-body potentials. This error may have consequences for calculating thermal 

conductivities calculated using the Green-Kubo method or any NEMD method that uses the instantaneous heat flux. 

We recommend that all researchers using LAMMPS for heat flux calculations where significant heat is transferred 

via the many-body potentials adopt the corrected code. 

Introduction 

LAMMPS is a commonly-used open-source molecular dynamics package2 and can be used for, among 

other things, calculating thermal transport properties such as the thermal conductivity.3–6 There are four common 

methods in LAMMPS to measure the thermal conductivity. Three of these are based on non-equilibrium molecular 

dynamics (NEMD), briefly: (1) enforcing a temperature gradient by thermostatting two regions and measuring the 

molecular heat flux or keeping track of the energy added and removed from the thermostatted regions,7 (2) enforcing 

an energy flux by adding and removing a constant amount of energy to two defined regions and then measuring the 

resulting temperature gradient,8 and (3) defining two regions and swapping the kinetic energy of atoms between the 

two regions to create a very small temperature gradient, and then measuring the exchanged energy (i.e. the Muller-

Plathe method9). The fourth approach is the Green-Kubo method,10,11 which uses the autocorrelation function of the 

instantaneous heat flux to calculate the thermal conductivity, under equilibrium conditions. In this paper, we 

describe an error with how LAMMPS calculates the instantaneous heat flux, which could affect thermal 

conductivity calculations that employ the instantaneous heat flux, such as some NEMD calculations (subset of case 

1 above) as well as the Green-Kubo method. In general, this error will affect any calculation that employs the 

instantaneous heat flux, such as the calculation of per-potential heat fluxes.12,13 

In LAMMPS, the function that calculates the instantaneous heat flux uses a virial stress tensor form. To the 

best of our knowledge, a derivation for this form of the heat flux has not been published, besides the terse form that 

exists in the LAMMPS documentation14. In systems involving only two-body potentials, this form is valid, but it 

cannot be extended to systems with many-body potentials. Torii et al1 derive general expressions for many-body 

heat fluxes (which we will review below in the background section) but do not address differences with the virial 

stress tensor formulation. Fan et al15 states that the LAMMPS virial stress heat flux applies only to two-body 

potentials, but does not go into detail about the derivation error in the stress-based form. Additionally, neither paper 

provides source code corrections to LAMMPS, although Fan et al does have an alternative GPU code available on 

request which is limited to specific potentials (the Stillinger-Weber and Tersoff potentials as currently publicized). 
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The purpose of this paper is three-fold: (1) to show how the virial stress tensor formulation used by 

LAMMPS to calculate heat flux is derived and how it compares to a correctly derived many-body heat flux, (2) to 

publish publicly-available code for correctly calculating many-body heat flux to LAMMPS, and (3) to demonstrate 

its importance using different example systems. We analyze an idealized metal-organic framework (MOF) where 

heat is transferred predominantly via the bond and angle potentials, and the liquid-phase hydrocarbons propane, 

octane, and hexadecane with bond, angle, dihedral and improper potentials. The scale of the error in the heat flux 

ranges from significant to inconsequential, depending on the system and how much of the heat flux transfers through 

the many-body potentials. The magnitude of this effect on thermal conductivities calculated via the Green Kubo 

method is difficult to generalize and is likely system dependent. The hydrocarbon system is particularly illustrative 

of the range of error and how the distribution of the heat flux through different potentials affects the total error in 

the system.  

Background 

In LAMMPS, the heat flux is calculated using a virial stress tensor form defined per atom. This definition, 

when appropriately limited to only two-body potentials, is provably equivalent to the Irving and Kirkwood16 or 

Hardy17 heat fluxes. In this section, we will show a complete derivation of a general heat flux expression for a 

many-body potential based on the derivation in Torii, et al.1, before applying it to two-body potentials only in order 

to derive the virial stress tensor form of the heat flux used in LAMMPS. We can then compare the virial stress 

tensor as defined for many-body heat fluxes to our general derivation to see that the per atom virial stress tensor 

heat flux defined in LAMMPS is not a valid expression for the heat flux.  

We start with the definitions of the instantaneous heat flux 𝑱 and per-atom energy 𝐸𝑖:
18 
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Where 𝑉 is the volume, and 𝑚𝑖, 𝑣𝑖, 𝑈𝑖, and 𝒓𝑖 are the mass, velocity, potential energy, and position of the 

ith atom. We can separate equation (3) into a convective term 𝑱𝑐𝑛𝑣 =  ∑ 𝐸𝑖𝒗𝑖𝑖  and a potential term 𝑱𝑝𝑜𝑡 = ∑ 𝒓𝑖
𝑑

𝑑𝑡
𝐸𝑖𝑖  

where 𝑱𝑐𝑛𝑣 represents the heat flux due to the movement of atoms in the system, and 𝑱𝑝𝑜𝑡 represents the heat flux 

due to changes in atom potentials. Note that 𝑱𝑐𝑛𝑣 is still dependent on the form of the atom potential 𝑈𝑖, which will 

in general involve a summation over all the potentials defined on the system; in this case: two-body, three-body, 

and four-body potentials. Here we define, ℙ, as the set all potentials ℙ = ℙ2 + ℙ3 + ⋯ +  ℙ𝑚  defined on the 

system, where ℙ2 is all two-body potentials, ℙ3 is all 3-body potentials, and ℙm is all m-body potentials. Further, 

let ℙmi refer to the set of all m-body potentials which include the atom 𝑖, and let 𝑈𝜙 be the potential energy for the 

specific potential 𝜙. If we are looking at only two-, three- and four-body potentials, 𝑈𝑖 can now be defined as: 

𝑈𝑖 = ∑ ∑
1

𝑚
𝑈𝜙

𝜙∈ℙ𝑚𝑖

4

𝑚=2

(4) 

Here, the total potential energy of atom 𝑖 is the sum of all potentials that include the atom 𝑖 divided by the 

number of atoms in each potential. In this way, the energy of each m-body potential is evenly divided up amongst 

the atoms that constitute it. There are other ways of distributing the potential energy between atoms but this does 

not affect the resulting aggregate heat flux.1,18 We are evenly distributing them in this derivation for simplicity (and 
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because this is what LAMMPS does); interested readers can see a full derivation with arbitrarily distributed potential 

energies in the paper by Torii, et al.1 

We have three definitions for forces: (1): let 𝑭𝑖 be the sum of all forces on 𝑖, (2) let 𝑭𝑖𝜙 be the force on 

atom 𝑖 due to a specific potential 𝜙 ∈ ℙ, and (3) let 𝑭𝑖𝑗,𝜙 be the force on atom 𝑖 due to atom 𝑗 as part of a specific 

potential 𝜙 ∈ ℙ. 

Expanding the 𝑱𝑝𝑜𝑡 term: 
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(5𝑎𝑏𝑐𝑑) 

To finish our definition of the 𝑱𝑝𝑜𝑡 term, we introduce some additional notation. First, we define 𝒓𝑗𝑘 = 𝒓𝑗 −

𝒓𝑘. We will also use the notation 𝑗 ∈ 𝜙 to mean 𝑗 is one of the atoms that constitutes the potential 𝜙,  and if we take 

all possible pairs of the atoms in 𝜙, denoted [𝜙]2, then {𝑗, 𝑘} ∈ [𝜙]2 will mean that {𝑗, 𝑘} is one of these pairs (e.g., 

for a two-, three- or four-body potential, there will be 1, 3, and 6 pairs, respectively). We also need to express the 

derivative 𝑑𝑈𝜙/𝑑𝑡 in terms of the forces and velocities of its constituent atoms, where 𝑟𝑗 = |𝒓𝑗| : 

 𝑑𝑈𝜙
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4
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=  ∑ ∑ (
1

𝑚
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=  ∑ ∑ (
1

𝑚
∑ [𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

{𝑖,𝑗}∈[𝜙]2

)

𝜙∈ℙ𝑚

4

𝑚=2

                          (7𝑎𝑏𝑐𝑑𝑒𝑓) 

We are able to incorporate the 𝑭𝑖 ⋅ 𝒗𝑖  term into the outer summations because the total force on 𝑖  is 

equivalent to all the forces on 𝑖 due to all m-body potentials 𝜙, i.e.  𝑭𝑖 =  ∑ ∑ 𝑭𝑖𝜙 ⋅ 𝒗𝑖𝜙∈ℙ𝑚𝑖

4
𝑚=2  . We are then able 

to invert the summations and sum across all atoms 𝑖 in a potential 𝜙 for all potentials, rather than summing all 

potentials 𝜙 that atom 𝑖 is part of. For the inner summation, if we sum 𝑭𝑖𝜙 ⋅ 𝒗𝑖 𝑚 times (once for every 𝑗 in the 

given m-body potential 𝜙), then we would need to divide it by 𝑚, i.e. 𝑭𝑖𝜙 ⋅ 𝒗𝑖 =  
1

𝑚
∑ 𝑭𝑖𝜙 ⋅ 𝒗𝑖𝑗 𝑖𝑛 𝜙𝑎𝑡𝑜𝑚𝑠

. Finally, 

to use the relative positions 𝒓𝑖𝑗, we need to recognize that in equation 7d for every pair {𝑖 = 𝑖1, 𝑗 = 𝑗1}, there will 

be a corresponding pair {𝑖 = 𝑗1, 𝑗 = 𝑖1} and we can sum them twice per pair if we replace the double sums across 𝑖 

and 𝑗 with one sum across all pairs that make up the potential. 

Our final general expression for the heat flux will therefore be: 

𝑱𝑉 =  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑ ∑ (
1

𝑚
∑ [𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

{𝑖,𝑗}∈[𝜙]2

)

𝜙∈ℙ𝑚

4

𝑚=2

(8) 

This is a per-potential version of the general heat flux, meaning we sum across the various potentials in the 

system, and then across all possible pairs of atoms included in the potential. The term inside the outermost 

parentheses is the heat flux for one specific m-body potential 𝜙. To more easily compare to the virial stress heat 

flux in LAMMPS, we will also need a version of the heat flux that is rearranged to be per-atom, where we sum 

across all atoms and then across all potentials that include that atom. This rearrangement is straightforward; the 

only thing to note is that there is an extra factor of 2 due to the summations above being over the pairs {𝑖, 𝑗} and the 

one below being over all atoms 𝑖 and then all 𝑗 ∈ 𝜙, yielding two pairs {𝑖 = 𝑖1, 𝑗 = 𝑗1} and {𝑖 = 𝑗1, 𝑗 = 𝑖1}: 

𝑱𝑉 =  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑ ∑
1

2𝑚
∑ ∑[𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

𝑗∈𝜙 𝜙∈ℙ𝑚𝑖

4

𝑚=2𝑖

(9) 

We can now show that this equation, when limited to two-body potentials only, is equivalent to the Irving 

and Kirkwood and Hardy derivations: 

(𝑱𝑉)ℙ2
=  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑
1

4
∑ ∑[𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

𝑗∈𝜙 𝜙∈ℙ2𝑖𝑖

 

=  ∑ 𝐸𝑖𝒗𝑖
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4
∑ ∑ [𝒓𝑖𝑗 (𝑭𝑖𝜙 ⋅ (𝒗𝑖 + 𝒗𝑗))]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=  ∑ 𝐸𝑖𝒗𝑖

𝑖

+
1

2
∑ ∑ [𝒓𝑖𝑗 (𝑭𝑖𝑗 ⋅ (𝒗𝑖 + 𝒗𝑗))]

𝑗>𝑖𝑖

(10𝑎𝑏𝑐) 

 

For a two-body potential, there will be only two 𝑗’s for each 𝜙; one of them will be equal to 𝑖 and can be 

omitted. Then the summations ∑ ∑  𝑗∈𝜙 𝜙∈ℙ2𝑖
 can be replaced with the simpler summations ∑ ∑  𝑗>𝑖𝑖 as long as one 

also replaces the force term, 𝑭𝑖𝜙 = 𝑭𝑖𝑗,𝜙 and 𝑭𝑖𝑗 = ∑ 𝑭𝑖𝑗,𝜙𝜙 . This final equation 10c is recognizable as Irving and 

Kirkwood’s definition of the molecular interaction component of the heat flux for a uniform system in absence of 

fluid flow.16 Further, equation 10c is also identical to Hardy’s definition of the potential component for heat flux, 

also for a uniform system in absence of fluid flow17.  
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Continuing with the assumption that there are only two-body potentials defined on the system, we can now 

derive the LAMMPS virial stress tensor heat flux, starting with showing how a general definition of the stress tensor 

relates to the per-atom version that LAMMPS uses. The global stress tensor 𝑺 is defined to be the ensemble average 

of a kinetic term summed across all 𝑁 atoms in the system and the virial tensor,19 (or stress) 𝑾(𝒓𝑁), which is a 

function of the 𝑁 positions 𝒓𝑁,  

𝑺𝑉 =  〈∑ 𝑚𝑖𝝂𝑖𝝂𝑖

𝑁

𝑖=1

+ 𝑾(𝒓𝑁)〉 (11) 

where 𝑉 is the volume, and 𝑚𝑖 and  𝑣𝑖 are the mass and velocity of atom i.  When calculating heat flux, 

LAMMPS excludes the kinetic term, leaving just the ensemble average of the virial stress. We can expand the virial 

term using the positions 𝒓𝑖 and the total force 𝑭𝑖 on atom 𝑖: 

〈𝑾(𝒓𝑁)〉 = 〈∑ 𝒓𝑖𝑭𝑖

𝑖

〉 (12) 

We can further break this up by recognizing that 𝑭𝑖 will be a summation of the forces caused by all the 

potentials defined in the system: 

〈𝑾(𝒓𝑁)〉 = 〈∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ2𝑖𝑖

+ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ3𝑖𝑖

+ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ4𝑖𝑖

 〉 =  〈∑ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ𝑚𝑖

4

𝑚=2𝑖

〉 (13) 

To get the per-atom form of the virial stress tensor that LAMMPS uses to calculate the heat flux, we separate 

the ensemble average of the virial stress into contributions from each atom, which LAMMPS calls a “per-atom 

stress tensor” and denoted here by 𝒔𝑖: 

〈𝑾(𝒓𝑁)〉 = 〈∑ 𝒔𝑖

𝑖

 〉 (14) 

where 

𝒔𝑖 = ∑ ∑
1

𝑚
∑ 𝒓𝑗𝑭𝑗𝜙

𝑗∈𝜙 𝜙∈ℙ𝑚𝑖

4

𝑚=2

(15) 

Equation 13 is equivalent to equations 14-15.  In the former, the virial terms 𝒓𝑖𝑭𝑖𝜙 are summed once per 

atom / potential pair. In the latter, the virial terms 𝒓𝑗𝑭𝑗𝜙 are summed up by potential so each term will appear m 

times, once for every atom 𝑗 in the potential 𝜙; the sum of the virial terms is then divided amongst the potential’s 

constituent atoms. As mentioned above, the potential could be divided amongst the atoms in a different manner, 

but LAMMPS chooses to divide the potential evenly. 
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LAMMPS defines the instantaneous heat flux 𝑱 as:14 

(𝑱𝑉)𝐿𝐴𝑀𝑀𝑃𝑆 = ∑ 𝐸𝑖𝒗𝑖

𝑖

− ∑ 𝒔𝑖 ⋅ 𝒗𝑖

𝑖

(16) 

The 𝑱𝑐𝑛𝑣  term ∑ 𝐸𝑖𝒗𝑖𝑖  is equivalent to our derivation (equations 8-9) so we can focus on showing 

equivalence for just the 𝑱𝑝𝑜𝑡 term. Starting with the 𝑱𝑝𝑜𝑡 term from our general expression (equation 9), and limiting 

it to two body potentials, we can tie it out to the 𝑱𝑝𝑜𝑡 of the per-atom virial stress heat flux used in LAMMPS: 

𝑱𝑝𝑜𝑡,ℙ2
=   ∑

1

4
∑ ∑ 𝒓𝑖𝑗 (𝑭𝑖𝜙 ⋅ (𝒗𝑖 + 𝒗𝑗))

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

4
∑ ∑ [(𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖 + (𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑗]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

4
∑ ∑ [(𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖 + (𝒓𝑗𝑖𝑭𝑗𝜙) ⋅ 𝒗𝑗]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
∑ ∑ (𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
∑ ∑ (𝒓𝑖𝑭𝑖𝜙 + 𝒓𝑗𝑭𝑗𝜙) ⋅ 𝒗𝑖

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
[ ∑ ∑ 𝒓𝑗𝑭𝑗𝜙

𝑗 ∈ 𝜙𝜙∈ℙ2𝑖

] ⋅ 𝒗𝑖

𝑖

 

=   ∑[𝒔𝑖]𝜙∈ℙ2i
⋅ 𝒗𝑖

𝑖

(17𝑎𝑏𝑐𝑑𝑒𝑓𝑔) 

Hence, equation 9, limited to two-body potentials, is equivalent to the LAMMPS heat flux definition, also 

limited to two-body potentials. This shows that LAMMPS’s use of the virial stress tensor form of the heat flux is 

justified, when limited to two-body potentials.  

LAMMPS, however, extends this virial stress beyond two-body potentials to three- and four-body potentials 

by making the leap that because virial stress can describe the heat flux for two-body potentials, then it can also 

describe the heat flux for three- and four-body potentials, i.e., if 𝑱𝑝𝑜𝑡,ℙ2
=   ∑ [𝒔𝑖]𝜙∈ℙ2i

⋅ 𝒗𝑖𝑖 ,  then  𝑱𝑝𝑜𝑡,ℙ =

  ∑ [𝒔𝑖]𝜙∈ℙ ⋅ 𝒗𝑖𝑖 . This step is not valid. It may be easier to see the difference between the virial stress heat flux and 

the correct heat flux when comparing the heat flux contribution between the two forms for only one three-body 

potential 𝜙 = {𝑎, 𝑏, 𝑐}  ∈ ℙ3. The correct heat flux, starting from equation (8), will be: 

𝑱𝑝𝑜𝑡,𝜙={𝑎,𝑏,𝑐} = [
1

𝑚
∑ 𝒓𝑖𝑗 (𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭

𝑗𝜙
⋅ 𝒗𝑗)

{𝑖,𝑗}∈[𝜙]2

]

𝜙={𝑎,𝑏,𝑐}

 

=
1

3
[𝒓𝑎𝑏 (𝑭𝑎𝜙 ⋅ 𝒗𝑎 −  𝑭

𝑏𝜙
⋅ 𝒗𝑏) + 𝒓𝑏𝑐 (𝑭𝑏𝜙 ⋅ 𝒗𝑏 −  𝑭

𝑐𝜙
⋅ 𝒗𝑐) + 𝒓𝑎𝑐 (𝑭𝑎𝜙 ⋅ 𝒗𝑎 −  𝑭

𝑐𝜙
⋅ 𝒗𝑐)] 

=
1

3
[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)(𝑭𝑎𝜙 ⋅ 𝒗𝑎) + (𝒓𝑏𝑐 − 𝒓𝑎𝑏)(𝑭𝑏𝜙 ⋅ 𝒗𝑏) + (−𝒓𝑏𝑐 − 𝒓𝑎𝑐)(𝑭𝑐𝜙 ⋅ 𝒗𝑐)] 

=
1

3
[[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)𝑭𝑎𝜙] ⋅ 𝒗𝑎 +  [(𝒓𝑏𝑐 − 𝒓𝑎𝑏)𝑭𝑏𝜙] ⋅ 𝒗𝑏 +  [(−𝒓𝑏𝑐 − 𝒓𝑎𝑐)𝑭𝑐𝜙] ⋅ 𝒗𝑐] (18𝑎𝑏𝑐𝑑) 
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Whereas the virial stress heat flux for one three-body potential 𝜙 = {𝑎, 𝑏, 𝑐}  ∈ ℙ3, starting with 

equations 15-16: 

𝑱𝑝𝑜𝑡,𝜙∈{𝑎,𝑏,𝑐} = [∑[𝒔𝑖]𝜙 ⋅ 𝒗𝑖

𝑖

]

𝜙={𝑎,𝑏,𝑐}

 

= [∑
1

3
(∑ 𝒓𝑗𝑭𝑗𝜙

𝑗∈𝜙 

)

𝑖∈𝜙

⋅ 𝒗𝑖]

𝜙={𝑎,𝑏,𝑐}

 

=
1

3
(𝒓𝑎𝑭𝑎𝜙 + 𝒓𝑏𝑭𝑏𝜙 + 𝒓𝑐𝑭𝑐𝜙) ⋅ (𝒗𝑎 +  𝒗𝑏 +  𝒗𝑐) 

=
1

3
(𝒓𝑎𝑏𝑭𝑎𝜙 + 𝒓𝑐𝑎𝑭𝑐𝜙) ⋅ (𝒗𝑎 +  𝒗𝑏 +  𝒗𝑐) (19𝑎𝑏𝑐𝑑) 

For the virial stress heat flux, the virial stress term is the same for all atoms in the potential; this can therefore 

be multiplied by the sum of the velocities. For the correct form of the heat flux, however, the terms that multiply 

the atom velocities are all different from one another and cannot be combined. Curious readers can see the 

implementation of equation 19 by looking at the referenced LAMMPS source code files20,21. 

As shown above, the virial stress heat flux that LAMMPS uses is valid for two body potentials; however, 

the virial stress heat flux cannot be extended to three- and four-body potentials which may lead to erroneous thermal 

conductivity predictions. We suspect that the reason why this problem has mostly gone unnoticed is because for 

many systems, the amount of heat flux being transferred via the three- or four-body potentials is diminutive, so that 

any error due to the calculation of heat flux for those potentials is rendered largely inconsequential. The error may 

also be further obscured by compensating factors when using the heat flux for the purpose of calculating thermal 

conductivity via Green-Kubo. Comparisons of the corrected and virial stress heat flux calculations in example 

systems follow in the results section. 

Notes on Implementation in LAMMPS 

The error described above applies to all many-body potentials in LAMMPS. However, in LAMMPS, there 

are two different categories of many-body potentials and these different categories require separate code fixes. 

These two different categories are (1) many-body potentials defined on sets of three or more atoms where the sets 

are defined in advance, usually due to the bonding structure (i.e., the angle, dihedral, and improper styles in 

LAMMPS), and (2) many-body potentials where the atoms that interact change over the course of the simulation 

(i.e. potentials implemented via the unfortunately named “pair potential” style such as the Tersoff,  Brenner, and 

Stillinger-Weber potentials, and the AGNI  and GAP machine learning potentials). The code fix that we have 

implemented addresses the first category of potentials only. Other research groups are working on the second 

category of potentials.15 

Due to how LAMMPS stores atoms across multiple processors, the velocity for an atom can only be found 

on the processor the atom is assigned to. In order to support this, rather than dividing the heat flux evenly between 

the atoms that comprise the potential, we assign the portion of the heat flux that contains the velocity of an atom to 

that atom. For a single three-body potential 𝜙 = {𝑎, 𝑏, 𝑐}, the heat fluxes assigned to the atoms 𝑎, 𝑏, 𝑐 will be: 

(𝑱𝑉)𝜙,𝑎 =
1

3
[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)𝑭𝑎𝜙] ⋅ 𝒗𝑎  

(𝑱𝑉)𝜙,𝑏 =
1

3
[(𝒓𝑏𝑐 − 𝒓𝑎𝑏)𝑭𝑏𝜙] ⋅ 𝒗𝑏 

(𝑱𝑉)𝜙,𝑐 =
1

3
[(−𝒓𝑏𝑐 − 𝒓𝑎𝑐)𝑭𝑐𝜙] ⋅ 𝒗𝑐 (20𝑎𝑏𝑐) 

These equations are just the individual terms in equation (18d). The total heat flux assigned is unchanged; 

the only difference is that the velocity the atom 𝑎 is now only used in the calculation of the heat flux on atom 𝑎, 

and so forth with the velocities and heat fluxes for atoms 𝑏 and 𝑐. Dividing the heat flux in this manner guarantees 

us the ability to calculate the heat flux, regardless of boundary conditions and number of processors.  
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We implemented the corrected algorithm described above for angle, dihedral and improper potential styles 

and it is currently available via our GitHub page at https://github.com/wilmerlab/lammps.  

Results and Discussion 

For the example systems, we combined a typical non-equilibrium molecular dynamics (NEMD) setup–we 

enforced a heat flux by adding and removing a fixed amount of energy from two regions–with measurements of the 

heat flux using the corrected heat flux or the uncorrected LAMMPS virial stress heat flux. The procedure was: a 

rectangular cuboid simulation box with periodic boundaries was filled with a crystalline solid or a liquid, and after 

an initial equilibration, we ran an NVE simulation with a fixed heat source applied to the center of the cuboid and 

a corresponding sink applied to the outer edges (see Figure 1a). After the temperature profiles reached steady-state, 

we recorded the instantaneous heat fluxes for control volumes on the left and right sides of the box, and averaged 

them over a time-frame necessary for convergence.  

The instantaneous heat fluxes were recorded separately for the convective heat flux as well as any defined 

pair, bond, angle, dihedral, and improper potentials using both the corrected and uncorrected LAMMPS code. 

Because we are using the NVE ensemble, and the heat added and removed is fixed, the heat flux code should self-

consistently report the applied heat flux, regardless of the force-field parameters, and we can therefore use this as 

an accurate gauge of measuring the correctness of our implementation. We have included our simulation parameters 

 

Figure 1: (A) Side view of the layout of a simulation box, where the box is broken up into slabs of width and height 

3L and depth L. Energy is added to the two center slabs (in orange) at the rate of ∆E per slab and removed from 

the two end slabs (in blue) at the same rate. The heat flux is measured in the two control regions (in grey). (B),(C), 

and (D) are snapshots of the cubic, triangular and hexagonal idealized MOFs with both side and end views. 

 

https://github.com/wilmerlab/lammps
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below for completeness, but in all cases, the calculated heat flux should be a function of the applied energy and the 

control volume size alone. 

  For this simulation setup, the corrected total instantaneous heat flux calculation does not require steady-

state to be reached; the recorded instantaneous heat flux may be averaged immediately upon application of the heat 

source (see Figure 6). This is in contrast to the per-potential averages, which took a significant amount of time to 

converge after steady-state, from between 40-215M timesteps. Calculating the per-potential heat fluxes is usually 

unnecessary unless one is studying the distribution of heat flux between different potentials (or writing software to 

fix it); researchers should not take the number of timesteps required for our simulations to be indicative of the 

number required to measure the total heat flux.  

Example System 1: Idealized MOF structures 

For testing the 3-body potential, we examined cubic, triangular and hexagonal idealized metal-organic 

framework (MOF) structures (see Figure 1(B)(C)(D)); a full description of these idealized MOF structures, 

including force field parameters, is covered in a previous paper22 and we will present only the briefest description 

here. These idealized structures are simplified models corresponding to common actual geometries of real MOFs; 

a simple geometric shape is extended orthogonally to the plane of the shape in a series of channels, forming a lattice 

that stretches over the whole cuboid and connects across the periodic boundaries. The force field is defined with 

only bond and angle potentials, with parameters chosen to approximate the thermal conductivity of a typical MOF. 

After relaxation of the system using NVT / NVE for 500,000 timesteps, an energy source and sink was applied of 

0.0040 kcal / mol fs for the cubic structure, 0.0071 kcal / mol fs for the triangular structure, and 0.0213 kcal / mol 

fs for the hexagonal structure. After a steady-state was reached at 5M timesteps, the per potential heat flux was 

averaged over 15M timesteps. 

 

Because the lattice has zero aggregate momentum, there should be negligible heat transport through 

convection and all of the heat flux should travel through the bond and angle potentials. As measured for all three 

systems, the summation of the bond and angle heat fluxes from the corrected code equals the expected heat flux as 

calculated from the applied energy (see Figure 2). The uncorrected LAMMPS code shows nearly zero heat flux 

through the angle potential and the error of the total flux is equivalent to the missing angle potential, or about 15% 

of the expected total flux.  

 

Figure 2: Per-potential fraction of applied heat flux for 

both uncorrected LAMMPS and corrected calculations 

for idealized cubic, triangular and hexagonal MOFs. 
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Example System 2: Propane, Octane and Hexadecane 

To demonstrate the corrected 3- and 4-body potentials work in conjunction to correctly predict heat flux in 

a real-life system, we ran simulations for propane, octane and hexadecane. Simulation parameters were adapted 

from Ohara, et al23 in order to compare directly with their per-potential results; a brief description of the parameters 

follows. Each hydrocarbon was defined using the united atom NERD force field24 and packed into the rectangular 

cuboid simulation box using Packmol25 to the density expected at a temperature of 0.7 times the critical temperature  

(see Figure 3). The simulation box was set to be 3L x 3L x 20L, where L is a hydrocarbon-specific length equal to 

1/3 of the total of the length of the hydrocarbon + a buffer of 3 Å + the Lennard-Jones cutoff of 13.8 Å defined by 

the NERD forcefield. For propane, octane and hexadecane, 3L = 19.38 Å, 25.84 Å, and 36.17 Å, respectively. A 

timestep of 1 fs was used for all simulations. The system was equilibrated using NVT/NVE for 5M total timesteps; 

this larger-than-typical equilibration time is because we wanted a longer baseline for statistical averaging for 

comparing heat flux measurements before and after the application of a heat flux. After equilibration, an energy 

source and sink were applied of 9.4E-04 kcal / mole for propane, 8.3E-04 kcal / mole fs for octane, and 6.5E-04 

kcal / mole fs for hexadecane in order to get an appropriate temperature profile. After 10M timesteps, stable 

temperature profiles were obtained and then heat flux data was recorded and averaged over 64M timesteps for 

propane, 132M timesteps for octane, and 234M timesteps for hexadecane. 

 

 

  

 

Figure 3: Simulation box layout for propane, octane and hexadecane. 
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Similar to the case of the idealized MOFs, the summation of all the terms in the corrected heat flux code 

approximately equals the expected heat flux, regardless of the length of the hydrocarbon (see Figure 4).  

 

For the uncorrected code, as the length of the hydrocarbon increases, the amount of heat transfer through 

the angle and dihedral potentials increases, leading to greater errors with longer hydrocarbons. For propane, the 

error is minimal, but for octane, the error is greater than 16% and for hexadecane the error reaches 22%. This 

compares well to the results of Ohara, et al,23 which roughly predict increasing dependence on the many-body 

potentials with increasing hydrocarbon length (see Figure 5). A comparable simulation of octane using improper 

potentials in place of dihedral potentials was also performed; the improper results were comparable to the dihedral 

results (see Supporting Information). 

 
  

 

Figure 4: Per-potential fraction of applied heat flux for both uncorrected 

LAMMPS and corrected calculations for various hydrocarbons. As the 

length of the hydrocarbon increases, the heat transfer through the many-

body potentials increases. C16H34 shows LAMMPS-reported heat fluxes of 

near zero for the angle and dihedral potentials, causing a total error of 

about 22%. 

 

 

Figure 5. Per-potential fraction of applied heat flux for hydrocarbons from 

Ohara, et al, which predict increasing reliance on the angle and dihedral 

many-body terms for heat flux transfer with increasing hydrocarbon length. 

 



 12 

In addition to the total error of 16% recorded for octane, the heat flux predicted by uncorrected LAMMPS 

shows greater swings in magnitude and visually doesn’t converge as clearly (see Figure 6). 

 

Any error in the long-term average of the heat flux, or any error that decorrelates the instantaneous heat 

flux may have consequences when calculating thermal conductivity via Green-Kubo; more research needs to be 

done to assess which systems are significantly affected by this error in the heat flux calculations.  

Conclusion 

For systems where significant heat transfer occurs within many-body potentials, the error in the uncorrected 

LAMMPS heat flux code can reach nearly 100% of the many-body potential heat flux, which leads to an erroneous 

total heat flux calculation. From our example systems, the largest error in the total heat flux we saw was 22%, 

though it is not hard to imagine a system where more heat is transferred via the many-body potentials; in that case, 

the error would be expected to be proportionally higher. Care should be exercised when evaluating prior results to 

ensure thermal conductivity calculations are not erroneous due to the incorrectly defined heat flux. We have 

implemented the corrected algorithm into LAMMPS which extends the accuracy of heat flux measurements in 

LAMMPS to the 3- and 4-body potentials.  

For deciding whether it is necessary to adopt the corrected code for your calculations, we recommend 

evaluating which one of these three cases your work fits into: (1) if you are modeling a system composed of only 

2-body potentials, you can use the uncorrected LAMMPS heat flux calculation safely; (2) if you are modeling a 

system that uses 3- or 4-body potentials implemented via the angle, dihedral or improper potential styles, we 

recommend you adopt our corrected LAMMPS code available at https://github.com/wilmerlab/lammps; and (3) if 

you are modeling a system with any other many-body potentials, you will need to evaluate whether the potentials 

have correct or incorrect implementations of the instantaneous heat flux.  

 

Figure 6: Total heat flux as a fraction of applied heat flux for both the 

uncorrected LAMMPS calculation (blue) and the corrected LAMMPS 

calculation (orange), averaged over 1M timesteps, as measured on 

octane. Prior to 3M timesteps, there is no applied heat flux (noted in grey) 

and the recorded instantaneous heat flux fluctuates around zero; after 3M 

timesteps, the heat flux is applied and the corrected calculation fluctuates 

around the correct value but the uncorrected calculation underestimates 

the real value as well as shows greater magnitude fluctuations. 

 

https://github.com/wilmerlab/lammps


 13 

Acknowledgements 

H.B. and C.E.W. gratefully acknowledge support from the National Science Foundation (NSF), award 

CBET- 1804011. We would like to acknowledge Alan J. H. McGaughey for the helpful discussions and early 

feedback. This research was supported in part by the University of Pittsburgh Center for Research Computing 

through the resources provided. Figures were primarily created using Python and Matplotlib,26 Simulation snapshots 

were rendered with Avogadro 2.27 

Supporting Information 

Supporting information and results: definition of improper potentials in LAMMPS, CVFF and OPLS potential 

discussion, plot of per-potential fraction of applied heat flux for both uncorrected and corrected LAMMPS 

calculations for octane using dihedral and improper potentials. 

Bibliography 

(1)  Torii, D.; Nakano, T.; Ohara, T. Contribution of Inter- and Intramolecular Energy Transfers to Heat 

Conduction in Liquids. J. Chem. Phys. 2008, 128, 044504. 

(2)  Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 

1–19. 

(3)  Sezginel, K. B.; Asinger, P. A.; Babaei, H.; Wilmer, C. E. Thermal Transport in Interpenetrated Metal–

Organic Frameworks. Chem. Mater. 2018, 30, 2281–2286. 

(4)  Henry, A.; Chen, G. High Thermal Conductivity of Single Polyethylene Chains Using Molecular 

Dynamics Simulations. Phys. Rev. Lett. 2008, 101, 235502. 

(5)  Xu, X.; Pereira, L. F. C.; Wang, Y.; Wu, J.; Zhang, K.; Zhao, X.; Bae, S.; Tinh Bui, C.; Xie, R.; Thong, J. 

T. L.; et al. Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene. Nat. Commun. 

2014, 5, 3689. 

(6)  Lv, W.; Henry, A. Phonon Transport in Amorphous Carbon Using Green – Kubo Modal Analysis. Appl. 

Phys. Lett. 2016, 108, 181905. 

(7)  Shiomi, J. Nonequilirium Molecular Dynamics Methods for Lattice Heat Conduction Calculations. Annu. 

Rev. Heat Transf. 2014, 17, 177–203. 

(8)  Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Comparison of Atomic-Level Simulation Methods for 

Computing Thermal Conductivity. Phys. Rev. B 2002, 65, 144306. 

(9)  Müller-Plathe, F. A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal 

Conductivity. J. Chem. Phys. 1997, 106, 6082–6085. 

(10)  Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple 

Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. 

(11)  Green, M. S. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. 

Irreversible Processes in Fluids. J. Chem. Phys. 1954, 22, 398–413. 

(12)  Ohara, T.; Chia Yuan, T.; Torii, D.; Kikugawa, G.; Kosugi, N. Heat Conduction in Chain Polymer Liquids: 

Molecular Dynamics Study on the Contributions of Inter- and Intramolecular Energy Transfer. J. Chem. 

Phys. 2011, 135, 034507. 

(13)  Rashidi, V.; Coyle, E. J.; Sebeck, K.; Kieffer, J.; Pipe, K. P. Thermal Conductance in Cross-Linked 

Polymers: Effects of Non-Bonding Interactions. J. Phys. Chem. B 2017, 121, 4600–4609. 



 14 

(14)  compute heat/flux command — LAMMPS documentation 

http://lammps.sandia.gov/doc/compute_heat_flux.html (accessed Feb 13, 2018). 

(15)  Fan, Z.; Pereira, L. F. C.; Wang, H.-Q.; Zheng, J.-C.; Donadio, D.; Harju, A. Force and Heat Current 

Formulas for Many-Body Potentials in Molecular Dynamics Simulations with Applications to Thermal 

Conductivity Calculations. Phys. Rev. B 2015, 92, 094301. 

(16)  Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The 

Equations of Hydrodynamics. J. Chem. Phys. 1950, 18, 817–829. 

(17)  Hardy, R. J. Formulas for Determining Local Properties in Molecular‐dynamics Simulations: Shock 

Waves. J. Chem. Phys. 1982, 76, 622–628. 

(18)  McGaughey, A. J. H.; Kaviany, M. Phonon Transport in Molecular Dynamics Simulations: Formulation 

and Thermal Conductivity Prediction. In Advances in Heat Transfer; Greene, G. A., Hartnett†, J. P., Bar-

Cohen, A., Cho, Y. I., Eds.; Elsevier, 2006; Vol. 39, pp 169–255. 

(19)  Thompson, A. P.; Plimpton, S. J.; Mattson, W. General Formulation of Pressure and Stress Tensor for 

Arbitrary Many-Body Interaction Potentials under Periodic Boundary Conditions. J. Chem. Phys. 2009, 

131, 154107. 

(20)  lammps/compute_heat_flux.cpp at master · WilmerLab/lammps 

https://github.com/WilmerLab/lammps/blob/master/src/compute_heat_flux.cpp (accessed May 7, 2019). 

(21)  lammps/angle.cpp at master · WilmerLab/lammps 

https://github.com/WilmerLab/lammps/blob/master/src/angle.cpp (accessed May 7, 2019). 

(22)  Babaei, H.; McGaughey, A. J. H.; Wilmer, C. E. Effect of Pore Size and Shape on the Thermal 

Conductivity of Metal-Organic Frameworks. Chem. Sci. 2017, 8, 583–589. 

(23)  Ohara, T.; Chia Yuan, T.; Torii, D.; Kikugawa, G.; Kosugi, N. Heat Conduction in Chain Polymer Liquids: 

Molecular Dynamics Study on the Contributions of Inter- and Intramolecular Energy Transfer. J. Chem. 

Phys. 2011, 135, 034507. 

(24)  Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. On the Simulation of Vapor–Liquid Equilibria for Alkanes. J. 

Chem. Phys. 1998, 108, 9905–9911. 

(25)  Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A Package for Building Initial 

Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. 

(26)  Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 

(27)  Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: 

An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 

4, 17. 

 

  



 15 

TOC Graphic 

 


