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Connecting short-time microscopic dynamics with long-time hydrodynamics in strongly correlated quantum
systems is one of the outstanding questions. In particular, it is hard to determine various hydrodynamic
coefficients such as the diffusion constant or viscosity starting from a microscopic model: exact quantum
simulations are limited to either small system sizes or to short times, which are insufficient to reach asymptotic
behavior and so various approximations must be applied. We show that these difficulties, at least for particular
models, can be circumvented by using the cluster truncated Wigner approximation (CTWA), which maps
quantum Hamiltonian dynamics into classical Hamiltonian dynamics in auxiliary high-dimensional phase space.
We apply CTWA to XXZ next-nearest-neighbor spin-1/2 chains and XY spin ladders, and find behavior consisting
of short-time spin relaxation which gradually crosses over to emergent diffusive behavior at long times. For a
random initial state, we show that CTWA correctly reproduces the whole spin spectral function. Necessary in this
construction is sampling from properly fluctuating initial conditions: the Dirac mean-field (variational) ansatz,
which neglects such fluctuations, leads to incorrect predictions.
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I. INTRODUCTION

Thermalization of quantum systems has recently become
a focus of active research, both theoretical and experimental
[1–4]. It has been realized that quantum chaos and emerging
relaxation to equilibrium is encoded in the structure of many-
body eigenstates of generic quantum Hamiltonians [5–7].
Despite this progress, most theoretical studies of quantum
thermalization are either confined to small systems amenable
to exact diagonalization [8–11] or to more phenomenological
hydrodynamic and kinetic approaches [12–15]. Recently, new
approaches such as a novel Gaussian variational approach
for quantum impurity systems [16], the time dependent vari-
ational principle (TDVP) [17–20], and the cluster truncated
Wigner approximation (CTWA) [21] were proposed as viable
tools for studying long-time relaxation of quantum systems
to thermal equilibrium. The latter two approaches share a
common feature that they approximate long-time quantum
dynamics with effective nonlinear classical dynamics in a
high-dimensional phase space, which can be systematically
increased to ensure convergence of the results to the correct
ones. This mapping reduces the complexity of the simulations
of quantum dynamics from exponential to polynomial in the
system size, which should be intuitively sufficient for a proper
description of long-time large-scale hydrodynamic behavior.
One key feature of the CTWA approach is that unlike mean-
field approaches, it contains fluctuating initial conditions
distributed according to the appropriate (Wigner) function
describing the initial state. Therefore, the information about
observables and correlations in CTWA can only be obtained
through averaging over many trajectories, each describing a
different effective mean-field evolution.
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Microscopically, hydrodynamic coefficients can be ex-
pressed through appropriate nonequal time correlation func-
tions. In equilibrium, there are various thermodynamic rela-
tions between transport and response coefficients such as the
fluctuation-dissipation relation [22], drift-diffusion Einstein
and Onsager relations [23], and others. These thermodynamic
identities imply that a proper formalism describing thermal-
ization should not only explain the relaxation of various
observables to their thermal values, but also proper asymp-
totic behavior of nonequal time correlation functions and the
dynamic structure factor S(k, ω).

In this work, using phase space methods developed pre-
viously [21], we study S(k, ω) for spin-1/2 next-nearest-
neighbor XXZ chains and XY ladders at infinite tempera-
ture. In particular, we correctly recover both its high- and
low-frequency asymptotics: low frequencies correspond to
hydrodynamic diffusive relaxation, while high frequencies
describe short-time coherent quantum excitations. These
methods smoothly interpolate between the two asymptotic
regimes. While high-frequency behavior can be obtained
using exact diagonalization in relatively small systems, the
correct description of low frequencies for such interacting
thermal models requires access to system sizes which are
beyond the range of existing methods. We also show that
noise in initial conditions is crucial for correctly predicting
the structure factor and the spin diffusion constant: cluster
mean-field dynamics, obtained from CTWA by suppressing
noise, leads to incorrect predictions for subextensive cluster
sizes.

II. METHODS

The cluster truncated Wigner approximation (CTWA), in-
troduced in Ref. [21], is the specific phase space method used
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in this work. The CTWA amounts to first splitting a system of
interest into disconnected clusters of spins (labeled “i′′) and
interpreting the complete set of Hermitian operators inside
each cluster G = {X̂ i

α} as classical phase space variables xi
α

(see Appendix A for details). Quantum operators, including
the observables and the Hamiltonian, are mapped to functions
of these variables. To describe the dynamics of the system,
an ensemble of points is independently evolved in time ac-
cording to a nonlinear classical Hamiltonian induced from
the quantum Hamiltonian, with the initial conditions drawn
from a Gaussian probability distribution reproducing averages
and fluctuations of the operators X̂ i

α in the initial state. To
compute time-dependent expectation values of observables at
time t (or, similarly, the nonequal time correlation functions),
we average the corresponding functions evaluated on this
ensemble of classical trajectories. This sampling of initial
conditions is critical: because the dynamics are nonlinear,
nearby trajectories generically diverge in time in a way which
approximately encodes intercluster correlations and entangle-
ment via correlations in phase space. If all fluctuations are
suppressed to zero and a single trajectory is used, then the
CTWA reduces to the cluster Dirac mean-field (variational)
approximation [24,25].

The CTWA is approximate but improves as the cluster size,
and thus the dimensionality of the phase space, increases. This
is because the method treats the dynamics within a cluster ex-
actly: it captures all intracluster entanglement and correlations
within the expanded phase space. Dynamics between clusters
are nonlinear and do not capture any quantum correlations per
point in phase space: in this way, the time evolution of the
individual points is the mean-field projective dynamics. This
means that in the limit of the cluster size to the system size,
the method recovers the exact result, with the caveat that the
phase space dimensionality is now exponential in the system
size (see Appendix A for details). Confidence thus resides in
convergence with cluster size, which may be subextensive.
The computational difficulty scales as 2L+1 in the cluster size,
e.g., evolution of wave functions.

One of the quantities that the CTWA can approximately re-
produce is the infinite-temperature symmetric nonequal time
correlation function of two spin operators Â and B̂,

GAB(t, t ′) = 1

DTr[Â(t )B̂(t ′)] = 1

2DTr[{Â(t ), B̂(t ′)}+]

≡ 1

2D
∑

n

〈ψn|Â(t )B̂(t ′) + B̂(t ′)Â(t )|ψn〉, (1)

where D is the total Hilbert space dimension and {|ψn〉} is
a complete basis of states. For computational purposes, we
sample the correlation function over spin states randomly
polarized along the Z axis. Under the CTWA, the expectation
value appearing in the equation above for each of the states
|ψn〉 is approximately reproduced as

〈ψn|{Â(t ), B̂(t ′)}+|ψn〉 ≈ 2A[�x(t )]B[�x(t ′)], (2)

where �x(t ) denote coordinates of a specific phase space point
evolved to time t drawn from the initial probability distri-
bution, and A[�x(t )] is the Weyl symbol of the operator Â
evaluated at �x(t ). The overline denotes averaging with respect

to Gaussian initial conditions at t = 0 corresponding to the
state |ψn〉 (see Appendix A and Ref. [21] for details).

III. RESULTS

To demonstrate how the method works, we choose a
particular next-nearest-neighbor spin-1/2 XXZ model with
periodic boundary conditions, which conserves the total Z
magnetization but has no extensive symmetries,

Ĥ =
N∑
i

σ̂ i
xσ̂

i+1
x + σ̂ i

yσ̂
i+1
y + �σ̂ i

z σ̂
i+1
z

+ γ

N∑
i

σ̂ i
xσ̂

i+2
x + σ̂ i

yσ̂
i+2
y + �σ̂ i

z σ̂
i+2
z . (3)

Here, σ̂ represent Pauli matrices. We choose parameters � =
2 and γ = 1/2; for γ = 0, the model is integrable but still
exhibits diffusive behavior [26–28] (see Sec. III A for details).

In Fig. 1, we show the two-time spin-spin correlations
Tr[σ̂ i

α (t )σ̂ i
α (t ′)]/D for α ∈ {x, y, z} as a function of t at dif-

FIG. 1. Nonequal time spin-spin correlation functions of the
next-nearest-neighbor XXZ chain of Eq. (3) at infinite tempera-
ture. (a) Correlation function for t ′ = 10, compared to exact re-
sults; (L, N ) = (8, 16). (b) Correlation function for (L, N ) = (8, 64),
which shows that the correlation function is well captured for offsets
t ′. The mean field (dashed line) does not capture correctly, empha-
sizing the importance of fluctuations. (c) Time traces of individual
points in phase space for a typical (dashed line) mean-field and (solid
line) Gaussian initial condition, and 64 sites. Fluctuations persist at
all times for the Gaussian case, but are exponentially small in the
cluster size for the mean-field case.
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ferent t ′, initialized in the randomly polarized Z states at
t = 0. In Fig. 1(a), we use a system size N = 16 allowing
us to benchmark CTWA with simple exact results: it is clear
that the dynamics are almost indistinguishable. This behavior
persists at all offsets t ′, as shown in Fig. 1(b), and is symmetric
about |t − t ′| as is expected. The mean-field result (colored
dashed lines) does not generally reproduce the correlator,
emphasizing that the initial noise is critical for the formal-
ism. This time translation invariance is highly nontrivial, as
traditional TWA methods usually break down at long times
due to divergent ultraviolet noise in the system leading to
spurious long-time vacuum heating [29]. On the contrary,
within CTWA, quantum noise introduced by the initial Wigner
function has a correct scaling with increasing cluster size [21]
and persists as a function of time: each point in phase space is
generically nonstationary, as is seen in Figs. 1(c2) and 1(c4).
This, too, is nontrivial as initial conditions inject an amount
of noise exponential in the cluster size L: each point is, on
average, a distance 2L/2 from the mean. This is matched by
the exponential size of the phase space, ∼4L. For the mean
field, the noise is only from thermal fluctuations; in particular,
it is equal to zero for each initial spin configuration [each |ψn〉
in Eq. (2)]. In turn, in generic ergodic systems, such mean-
field trajectories lead to the relaxation of local observables
to near constant (thermal) values with exponentially small
fluctuations in the cluster size [7] [see Figs. 1(c1) and 1(c3)].

We point out that while the σxσx and σyσy time corre-
lations decay to zero, the σzσz correlation functions decay
to a nonzero constant scaling as the inverse system size:
Tr[σ̂ i

z (t )σ̂ i
z (t ′)]/D → 1/N for |t − t ′| → ∞. This result fol-

lows from conservation of the total z magnetization: for a
typical random initial state, the magnetization scales as

√
N

such that the average magnetization per spin is 1/
√

N . Within
the mean field, different clusters cannot exchange Z magneti-
zation and thus the spin-spin correlation spuriously relaxes to
a higher constant 1/L instead of 1/N , as is seen in Fig. 1(b).

Diffusion of conserved quantities at β = 0 can be found
using the symmetric correlator [30–32], where instead of the
particle number we use the (conserved) Z magnetization,

CX (t ) = 1

DN

∑
i

Tr
[
σ̂ i

z (t )σ̂ (i+X )%N
z (0)

]
. (4)

For diffusive systems, this correlator should be well ap-
proximated by a Gaussian whose width grows in time as

√
Dt ,

where D is the diffusion constant. Therefore, a natural way to
extract the diffusion constant is to compute the width of this
correlation as a function of time,

R2(t ) =
∑

X
N2

π2 sin2
(

πX
N

)
CX (t )∑

X CX (t )
, (5)

and fit it to the solution of the classical diffusion equation (see
Appendix C for derivation),

R2(t ) = N2

2π2
(1 − e−4Dtπ2/N2

). (6)

Note that in finite periodic chain systems, we find it more
convenient to use this conformal distance between spins; in
the limit N → ∞, we recover the typical Gaussian width as,
e.g., used in Ref. [32].

FIG. 2. Diffusive dynamics for the next-nearest-neighbor XXZ
chain of Eq. (3) at infinite temperature. (a) The conformal width of
the correlation function defined by Eq. (5). The black dashed line is
a single-parameter fit for the classical diffusion of Eq. (6). The gray
box and inset show a comparison of the exact results for N = 16
(solid black line) with CTWA (red solid line) and mean-field (dashed
lines) simulations for a larger system N = 64. (b) Scaled values of
CX for size-8 clusters, averaged over offsets, which collapses to the
form of a Gaussian. Colors are for times t ∈ (5, 10, 20). (c) A fit of
the diffusion constant as a function of cluster size for N ≈ 64.

In Fig. 2(a), we show the results of numerical simulations
of R2(t ) for different cluster sizes and the total system size
N = 64. Except for short times, all of the curves are well fit by
the diffusion prediction (6), although with a cluster-dependent
diffusion constant, which saturates with increasing cluster size
[Fig. 2(c)] to the asymptotic value D ≈ 3.75. The inset shows
the result of exact evolution for a smaller system size N = 16
(CTWA for the same system size will be nearly identical; cf.
Fig. 1). It is clear that the system size N = 16 is insufficient
to see diffusive behavior in this system. Figure 2(b) shows the
correlation function CX (t ) rescaled by

√
t with a very good

collapse to the expected Gaussian profile.
For size-1 clusters, the Gaussian profile is expected, as the

dynamics of the system is then identical to that of a classical
spin chain, which is known to exhibit diffusive behavior over a
wide range of parameters [33,34]. However, for larger cluster
sizes, the emergent diffusive profile is somewhat nontrivial,
as the classical phase space is much larger than the naive one,
encoding many “quantum” correlations.

Moreover, dependence of the diffusion constant on the
cluster size L [Fig. 2(c)] indicates that it is strongly renor-
malized by the underlying quantum fluctuations. As in Fig. 1,
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we see that the mean-field dynamics [dashed lines in the inset
of Fig. 2(a)] is not adequate for correctly capturing long-time
diffusive behavior even for relatively large cluster sizes.

Having analyzed the diffusive spreading of correlations, we
now move on to study the dynamic structure factor S(k, ω)
and its momentum average S(ω), containing more complete
information about nonequal time spin-spin correlations,

S(k, ω) =
∑

X

∫ ∞

−∞
dteiωt+ikXCX (t ), (7)

S(ω) = 1

N

∑
k

S(k, ω) = 2π

N

∫ ∞

−∞
dteiωtC0(t )

= 2π

D
∑
mm′

|〈m′|σ̂z|m〉|2δ(ω − Em + E ′
m). (8)

In finite-size quantum systems [35], S(ω), strictly speak-
ing, consists of isolated δ-function peaks corresponding to
discrete energy levels. However, as the number of states
exponentially increases with the system size, S(ω) effectively
becomes continuous if we introduce a tiny damping factor
into the time integral. We also comment that S(k = 0, ω = 0)
diverges due to conservation of the total spin σ̂z, but this
divergence does not play a role at finite frequencies.

Figure 3(a) shows the time correlations at the same site,
which, after short-time quantum behavior, decays diffusively
as 1/

√
t before saturating at 1/N . Figure 3(b) shows S(ω),

which is the Fourier transform of Fig. 3(a). It shows that at
high frequencies, the structure factor S(ω) agrees well with
exact-diagonalization predictions; the exponential decay as
seen here is expected on general grounds [7]. However, the
simple exact-diagonalization calculation fails to capture the
small frequency diffusive asymptote of the structure factor
S(ω) ∝ 1/

√
ω [36] due to small system sizes: there is a sat-

uration for S(ω < t−1
c ) = t1/2

c , where tc ∼ N2 is the Thouless
time [37]. Conversely, CTWA clearly reproduces this asymp-
tote because one can access much larger system sizes. At
intermediate frequencies, there is a smooth link between the
quantum and classical behaviors, allowing for a correct behav-
ior at all ω. Figures 3(c1)–3(c6) show the dynamic structure
factor S(k, ω) for the first few wave numbers k. Small k repre-
sent long length scales where hydrodynamic behavior should
dominate. As wavelength increases, the diffusive behavior
becomes sensitive to the finite system size, seen as the low-
frequency asymptote in both quantum and effective classical
dynamics [Figs. 3(c4)–3(c6)]. However, for larger frequen-
cies, the CTWA remains sensitive to smaller length scale ef-
fects, with a generic exponential decay in frequency diverging
from the 1/ω2 of classical hydrodynamics. Nongeneric behav-
ior in this regime should be well captured simply by exact
diagonalization (ED) or, equivalently, intracluster dynamics.

A. Integrable XXZ model

A similar model which shows diffusion despite being inte-
grable is the XXZ model [38], which is described by Eq. (3)
for γ = 0 and |�| > 1. The various behaviors of this model
have been well studied. In particular, for � = 0, it is the XY
model, with a mapping to free fermions. For |�| < 1, the
model is ballistic, and at � = 1, it is the Heisenberg model,

FIG. 3. Dynamic structure factors of the next-nearest-neighbor
XXZ chain of Eq. (3) at infinite temperature. (a) Log-log version of
Fig. 1(a) showing diffusive decay. (b) Momentum-averaged structure
factor S(ω), which is the Fourier transform of (a). (c1)–(c6) Dynamic
structure factor S(k, ω) for the first few k. The system size is N = 64;
the dashed black lines are for classical diffusion for D = 3.75.

with superdiffusive behavior [14] with exponent t−2/3. For
|�| > 1, the model is diffusive.

This diffusive behavior has been well studied, especially
within three contexts: boundary wall quenches, [14,27],
nonequilibrium steady states [26,39], and, more recently, from
generalized hydrodynamics (GHD) [15,40]. However, the dif-
fusion constant derived from S(k, ω) does not necessarily
need to match that of a quench: the former averages over
equilibrium, while the latter studies particular special initial
states. It is relatively simple to study both approaches within
the CTWA.

Diffusion from S(k, ω). In Fig. 4, we plot the results of
simulations on the 64-site XXZ chain derived from S(k, ω) and
see behavior as expected. For � < 1, the model is ballistic:
fitting to diffusion does not make sense, although at late
times the method will always show diffusive behavior. This
is flagged by a nonconvergence in cluster size, which is
especially clear for � = 0, where the “diffusion constant”
fit diverges linearly with cluster size. However, for larger �,
the diffusion constant does relatively converge with cluster
size; for � = 2, we find D ≈ 1.2, an increase of about 1.5
from “classical” size-1 clusters. We find that the diffusion
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FIG. 4. Diffusion constant for the XXZ model as derived from
S(k, ω). (a): Diffusion constant as a function of anisotropy � and
cluster size. The inset is log-log of the same, showing 1/�, which is
consistent with previous results [30]. Clearly, for � < 1, the diffu-
sion constant does not converge, as expected for ballistic behavior
(b), while for � = 2, it converges to about 1.5× its “classical”
value (c).

constant scales as �−1 at large �. This finding is consistent
with earlier work [30], but potentially inconsistent with more
recent work, which predicts D = 1/3π for � → ∞ [41] using
GHD methods.

Diffusion from a boundary wall. Instead of an infinite tem-
perature state, we study the 〈Sz(t )〉 dynamics of a boundary
quench from an initial pure state, |ψ〉 = | ↑ . . . ↑↑↓↓ . . . ↓〉.
The results are shown in Fig. 5. For � = 2, we find rapid con-
vergence with cluster size to D ≈ 0.56, consistent with these
previous works [27]. For � < 1, the “diffusion constant”
diverges to a much larger (but still finite) value, consistent
with nondiffusive behavior. This diffusive and nondiffusive
behavior can be seen in the second two panels. We find that the
diffusion constant scales as �−1.5 at large �. As expected, the
two derived diffusion constants differ—by a factor of ∼2.1.
This is not unexpected: one is averaging over an ensemble
of typical states, while the other evolves a single low-energy
state. This suggests a temperature dependence of the diffusion
constant. Unfortunately, the results are inconclusive at the
interesting � = 1 point.

B. XY spin ladder

It is interesting to analyze different potentially diffusive
models under this method. Here, we briefly analyze the XY
spin ladder for rung widths � 2. This model represents a
challenge for the existing methods, as complexity grows
much quicker with increasing width and approaches a two-
dimensional (2D) limit. This model was chosen to emphasize
the lack of dimensional constraints for the method, while
retaining 1D behavior. For the spin ladder, the Hamiltonian
and symmetric correlator are

Ĥ =
∑

〈αβi j〉
σ̂ αi

x σ̂ β j
x + σ̂ αi

y σ̂ β j
y , (9)

CX (t ) = 1

Ny
Tr

⎧⎨
⎩

[∑
α

σ̂ α,i
z (t )

]⎡
⎣∑

β

σ̂ β,(i+X )%N
z (0)

⎤
⎦

⎫⎬
⎭. (10)

FIG. 5. Diffusion constant for the XXZ model as derived from
the boundary wall initial condition. (a): Diffusion constant as a
function of �. For � < 1, the diffusion constant diverges, consistent
with being nondiffusive. The inset is log-log of the same data; the
dashed line is of �−1.5. (b1), (b2): Spin profile for � = 0, showing
ballistic growth improving with cluster size. Lines are for times
[2.5,5,7.5,10]. (b3), (b4): Spin profile for � = 2, renormalized by

√
t

showing diffusive collapse. The dashed line is the classical profile for
D = 0.52.

Here, α and i index the width and height directions, respec-
tively; the summation averages over each rung of the ladder.
This corresponds to spins hopping on a 2D lattice of size
Ny × Nx, with Ny finite and Nx → ∞. The results are shown in
Fig. 6 for Ny = 2, 3, 4 and Nx ≈ 64 up to cluster size round-
ing. Curiously, the diffusion value converges almost instanta-
neously with cluster size to a value of about D ≈ 2.75. This
suggests that there may exist a local hydrodynamic model
which describes well the XY ladder at infinite temperature.

IV. CONCLUSION

We have applied CTWA to analyze infinite-temperature
nonequal time correlation functions in an XXZ chain with first-
and second-nearest-neighbor interactions, and a variable-
width XY ladder. We obtained excellent agreement between
the results of exact numerical simulations and CTWA pre-
dictions for small system sizes. For larger system sizes,
where exact diagonalization is not available, we found that
CTWA smoothly interpolates between short-time quantum
correlations and long-time hydrodynamic correlations. We
showed that both the diffusion constant D and the dynamic
structure factor converge with the cluster size. Moreover,
as our results suggest, D is strongly renormalized by quan-
tum fluctuations and cannot be accurately extracted from
either traditional semiclassical approaches (due to their long-
time failure) or exact diagonalization (due to limited system
sizes).
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FIG. 6. Behavior of symmetric correlator for an XY ladder. Top
to bottom are widths of 2, 3, and 4. Left: Gaussian profile at t = 10
for different widths. Right: Self-correlator demonstrating diffusive
behavior (black dashed line for D = 2.75.). Similarly to the next-
nearest-neighbor model, there is short-time quantum behavior plus
long-time diffusive behavior.

We show that mean-field approaches, where one sup-
presses quantum fluctuations present in CTWA, give a grossly
incorrect prediction for the long-time behavior of the correla-
tion functions and fail to correctly capture diffusion. Similar
incorrect hydrodynamic behavior for this model was observed
in a matrix-product-state-based TDVP approach due to mul-
tiple conservation laws [19,40]. We expect that this failure
of the mean-field approaches to correctly recover hydrody-
namic behavior is generic and stems from relaxation of the
mean-field trajectories for phase space points to nearly time-
independent average values.

It is interesting to see how the results of our work can
be extended to finite temperatures where both symmetric and
antisymmetric correlation functions are nonzero. We antic-
ipate that at least at sufficiently high temperatures, CTWA
should remain accurate and allow one to extract both the
dissipative and Kubo-type response in strongly correlated
regimes. Similarly, extending the model to higher dimensions
to capture other coefficients may also be interesting.
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APPENDIX A: DETAILS OF CTWA

In this Appendix, we summarize key aspects of the cluster
truncated Wigner approximation (CTWA), which is used to
obtain the results shown in the main text. For further details,
we refer to Ref. [21].

The CTWA is a phase space method, which approximately
describes unitary dynamics in some Hilbert space via nonlin-
ear Hamiltonian dynamics in some large-dimensional phase
space. It consists of four main parts: (1) A definition of phase
space, (2) choice of initial conditions, (3) proper classical
Hamiltonian equations of motion defining the time evolution
of phase space points, and (4) recovering information about
observables and correlations. Below we briefly comment on
how one implements each part.

(1) In CTWA, phase space is associated with a set of
basis operators G = {X̂α} which form a closed Lie alge-
bra: [X̂α, X̂β ] = i fαβγ X̂γ ∈ G, where fαβγ are the structure
constants. For our system, we choose the set of all oper-
ators which span clusters of spins. For example, we can
choose all independent strings of products of Pauli matrices
(σ̂ j

x , σ̂
j

y , σ̂
j

z ) and the identity, on the sites j which belong to
a given cluster. For a cluster consisting of L spins, the total
number of independent operators is D2 = 4L. All traceless
operators are the generators of an SU (D) group with the
corresponding structure constants. Operators belonging to
different clusters clearly commute with each other. Then the
phase space is made by associating this set of operators to
phase space variables, {X̂α} → {xα}, satisfying the canonical
Poisson bracket relations defined by the same structure con-
stants,

{xα, xβ} = fαβγ xγ .

In this way, all quantum operators are mapped to functions
of phase space variables via Weyl quantization. In particular,
any operator belonging to a cluster, which can be represented
through a linear combination of the basis operators, maps to
a corresponding linear combination of phase space point. The
nonlinear operators, e.g., products of basis operators belong-
ing to different clusters, map to equivalent nonlinear functions
of phase space points. We note that this construction is a
direct generalization of a standard quantum-classical mapping
between Pauli matrices and classical spin variables, motivated
by ideas of hierarchical mean-field theory [42].

(2) The initial quantum state of the spins is represented
by sampling an ensemble of points in phase space weighted
by some probability distribution W (xα ), which we call the
Wigner function. Although an exact Wigner function exists,
we choose a Gaussian function which reproduces the mean
and variance of associated basis operators. For example, a
Z-polarized state has quantum fluctuations in y: 〈(σ̂ ( j)

y )2〉 = 1
for any site j and likewise for two sites j, j′ belonging to
the same cluster 〈(σ̂ ( j)

y σ̂
( j′ )
x )2〉 = 1. So when drawing initial

points, the variables associated with σ̂
( j)
y and σ̂

( j)
y σ̂

( j′ )
x will

be drawn from a Gaussian of variance 1 and mean 0. This
can be done in a general manner as detailed in Ref. [21].
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Moreover, as discussed in that reference, the actual number
of independent operators scales as 2L, which significantly
reduces the complexity of the sampling.

(3) Time evolution is done independently for each point in
the ensemble drawn from the Wigner function. It is given by
standard classical Hamiltonian equations of motion defined
through the Poisson bracket,

∂xα (t )

∂t
= fαβγ

∂H[x(t )]

∂xβ

xγ (t ).

Within a cluster, the Hamiltonian is linear and the classical
evolution gives exact quantum dynamics. Intercluster interac-
tions lead to a quadratic Hamiltonian and hence to a nonlinear
dynamics, which is approximate. As the cluster size increases,
the number of nonlinear terms goes down and the CTWA
dynamics becomes asymptotically exact.

(4) The expectation values of observables and symmet-
ric correlation functions that we are interested in here are
found by averaging corresponding Weyl symbols over the
time-evolved phase space points (classical trajectories). In
particular,

〈Â(t )〉 = A({x(t )}),

〈{Â(t ), B̂(t ′)}+〉 = 2A({x(t )})B({x(t ′)}),

where the overline denotes averaging over the initial condi-
tions drawn from the Gaussian Wigner probability distribu-
tion. Note that because the classical equations of motion are
generally nonlinear, averaging over the initial conditions and
time propagation are noncommuting operations.

Exactness of the single cluster CTWA. In Ref. [21], we men-
tioned that CTWA exactly reproduces not only expectation
values of observables but also their nonequal time correlation
functions in the limit when the cluster size becomes equal
to the system size and hence the evolution becomes linear.
Let us provide here a simple proof of this statement for the
symmetric correlation functions. In the linear case, the time
evolution of the arbitrary phase space point operator is simply
a unitary rotation given by some generally time-dependent
unitary matrix Uαβ (t ), and therefore both quantum operators
and classical phase space points evolve in the same way:

X̂α (t ) =
∑

β

Uαβ (t )X̂β (0), xα (t ) =
∑

β

Uαβ (t )x̂β (0).

For a time-independent Hamiltonian, the unitary is given by
the exponent of the effective magnetic torque,

Uαβ (t ) = eMαβ t , Mαβ = fαβγ Bγ , (A1)

where the magnetic field �B is defined as usual according to
Ĥ = −∑

α BαX̂α . For a time-dependent Hamiltonian, the uni-
tary Uαβ still exists but is defined through a more complicated
time-ordered exponential of the time integral of the magnetic
field. From this, we find

〈{X̂α (t ), Xβ (t ′)}+〉 =
∑
γ ,δ

Uαγ (t )Uβδ (t ′)〈{X̂γ (0), Xδ (0)}〉

=
∑
γ ,δ

Uαγ (t )Uβδ (t ′)2xγ (0)xδ (0)

= 2xα (t )xβ (t ′). (A2)

Note that even at the level of a single cluster, fluctuations
in the initial conditions are crucial for correctly reproducing
the nonequal time correlation functions. On the contrary, the
mean-field approximation would generally fail to predict such
correlation functions. We comment that similar approaches
can be used (and have been used in similar contexts [43]) for
out of time order correlators (OTOCs), which is a subject of
active research.

APPENDIX B: NUMERICAL IMPLEMENTATION DETAILS

Numerics require the implementation of sampling many in-
dependent points in phase space from some distribution, then
evolving each according to mean-field Hamiltonian equations
of motion. To this regard, this is a relatively computationally
intensive task: for eight size-8 clusters, there are 8 × 48 =
524 288 phase space variables. However, this is simplified
by the particular symmetries of the Gaussian initial condi-
tions and conservation laws, which reduces the number of
degrees of freedom to 8 × 28+1 = 4096 complex doubles (see
Ref. [21] for details).

Time evolution is then one operator that is constrained to
be a product state between clusters with only two nonzero
eigenvalues, which is equivalent to the mean-field evolution
of a density function, where each cluster sees an effective field
from its neighbors. This is implemented via the PYTHON nu-
merical built-in scipy.integrate.complex_ode. For eight size-8
clusters, this requires around 1 second per scale time per
sample on a modern hardware core. In order to strongly
suppress noise in this work, on the order of 20 000 samples
were independently evolved per run, where noise goes as
N−1/2

samples. In this case, the computational cost is around 500 cpu
hours for one run, and is massively parallel. However, on the
order of 1000 samples is normally adequate, especially for
extensive observables which self-average.

APPENDIX C: SOLUTION OF THE DIFFUSION
EQUATION ON A DISCRETE LATTICE

In this Appendix, we detail the derivation of Eq. (6), as
well as of the expressions representing the black dashed lines
of Figs. 2, 3, 5, and 6. The discrete classical diffusion equation
reads

∂tρi = −D(2ρl − ρl−1 − ρl+1). (C1)

Here, ρ represents a conserved charge, which is given by the Z
magnetization in our case. This equation can be easily solved
in the momentum space using the Fourier transform of ρ,

ηk =
∑

l

eiklρl , k = 0, 2π/N, . . . , 2π (N − 1)/N.

Then the diffusion equation for each Fourier component ηk

reduces to a simple first-order differential equation, which is
easy to solve,

∂tηk = −2Dρk[1 − cos(k)]

⇒ ηk (t ) = ηk (0)e−2Dt[1−cos(k)]. (C2)
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Using this solution, one can easily find the conformal
diffusion width shown in the main text [Eq. (5)]:

R2(t ) =
∑

l

N2

π2
sin2

(
π j

N

)
ρ j (t )

=
∑

kl

N2

π2
sin2

(
π l

N

)
e−iklηk (t )

= N

2π2

(
η0 − 1

2
η2π/N − 1

2
η−2π/N

)
.

Inserting the explicit solution for the form of ηk (t ) with
the initial condition ηk (0) = 1 and expanding cos(2π/N ) ≈
1 − (2π/N )2/2 at large N , we derive Eq. (6) from the
main text. Similarly, one can find the diffusive structure
factorS(k, ω),

S(k, ω) =
∫ ∞

−∞
dteiωtηk (t ) = 4D[1 − cos(k)]

ω2 + 4D2[1 − cos(k)]2
.

(C3)
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