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Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at an arbitrary pace,
where excitations due to nonadiabaticity are exactly compensated by adding an auxiliary driving term to
the Hamiltonian. While this CD term is theoretically known and given by the adiabatic gauge potential,
obtaining and implementing this potential in many-body systems is a formidable task, requiring knowledge
of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody
interactions. We show how an approximate gauge potential can be systematically built up as a series of
nested commutators, remaining well defined in the thermodynamic limit. Furthermore, the resulting CD
driving protocols can be realized up to arbitrary order without leaving the available control space using
tools from periodically driven (Floquet) systems. This is illustrated on few- and many-body quantum
systems, where the resulting Floquet protocols significantly suppress dissipation and provide a drastic

increase in fidelity.

DOI: 10.1103/PhysRevLett.123.090602

Introduction.—Adiabaticity presents one of the funda-
mental tools in physics, ranging from heat engines in
thermodynamics to quantum state preparation and compu-
tation [1-4]. However, true adiabatic control can only be
obtained using slow driving and asymptotically long time-
scales. While faster driving leads to diabatic excitations and
resulting dissipative losses, the inevitable presence of
decoherence and noise in realistic quantum systems limits
the available timescales, preventing true adiabaticity.
Various methods have been proposed in order to achieve
so-called “shortcuts to adiabaticity” (STAs) both theoreti-
cally [5-8] and experimentally [9-18], mimicking adiabatic
dynamics without requiring slow driving.

One way of circumventing this loss of fidelity at finite
driving rates is through counterdiabatic (CD) or transition-
less driving—a velocity-dependent term is added to the
control Hamiltonian, exactly compensating the diabatic
contributions to the Hamiltonian in the moving frame
[19-22]. This term is known as the adiabatic gauge
potential (or gauge connection), encoding the geometry
of eigenstates [22]. However, while this potential may be
exactly obtained in few-body systems, its construction, in
general, requires diagonalization of the Hamiltonian in the
full Hilbert space, prohibiting its use in general many-body
systems. Furthermore, the resulting operator tends to
involve highly nontrivial and nonlocal couplings not
present in the control Hamiltonian, preventing its actual
implementation [23-25]. While various applications of
STAs in many-body systems have been investigated, these
generally impose restrictions on the studied system (for a
recent review, see [26])—either dynamic symmetries or
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scaling laws [27,28], Born-Oppenheimer dynamics [29],
underlying Lax pairs [30], etc. Various efforts have also
been made to use STAs to counteract the Kibble-Zurek
mechanism in critical systems [31,32].

Restricting driving to available (local) couplings led to
the development of fast-forward (FF) protocols [33-36],
which follow the adiabatic path only at the beginning and
end of the driving. However, there exists no general way of
constructing these for complex systems. One specific class
of FF protocols is those where CD driving is realized
through Floquet engineering: High-frequency oscillations
are added to the control so that the resulting Floquet
Hamiltonian mimics the CD Hamiltonian. This has already
been used for high-fidelity quantum state manipulation
both theoretically, in closed [37-39] and open systems [40],
and experimentally [41,42].

We propose a method of (i) finding an efficient and
controlled approximation to the gauge potential, remaining
well defined in many-body systems, which can then (ii) be
systematically realized through Floquet engineering by
resonantly oscillating the instantaneous Hamiltonian with
the driving term. Effectively, we propose a general strategy
for designing fast adiabatic protocols, applicable both in
small quantum systems to achieve high fidelity for state
preparation and in large systems, quantum or classical, to
suppress dissipative losses.

Methods.—Consider a control Hamiltonian (1) depen-
dent on a control parameter 4. Our goal is to transport a
stationary state or distribution, at an initial value of the
control parameter /;, to one corresponding to a final value
As. In the standard approach, this is done by adiabatically
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changing A(¢) from 4; to A, which is often impractical
because of the necessary access to long timescales. The key
idea of CD driving is to vary the parameter A(¢) at a finite
rate while simultaneously compensating the diabatic exci-
tations by explicitly adding an auxiliary term as

Hep(1) = H(A) + 1A,. (1)

Adiabatic control at arbitrary driving rates for arbitrary
initial states is realized, provided the adiabatic gauge
potential A4, [22] satisfies

(I AlnY = i{m]dn) = —i IO )

€m — €y

where |n) and ¢, are the eigenstates and the energy
spectrum, respectively, of the instantaneous Hamiltonian
H(A)|n) = €,|n).

Equation (2) highlights the issues with many-body CD
driving: The gauge potential is defined in the eigenbasis of
the instantaneous Hamiltonian, requiring exact diagonal-
ization. Furthermore, for increasing system sizes, the
denominator (¢,, —€,) can become exponentially small,
leading to divergent matrix elements and an ill-defined
gauge potential in the thermodynamic limit [22,43].
Physically, at least in chaotic systems, the exact gauge
potential also cannot be local [44].

We propose an approximate gauge potential defined as

¢
AT =i a[H M. [H 0], (3)
_
2Ue—1

determined by a set of coefficients {a;, a, ..., a,}, where
¢ determines the order of the expansion. The exact gauge
potential can be represented in this form in the limit £ — oo
[45]. Instead, we consider a finite value of £ and treat the
expansion coefficients as variational parameters, which can

be obtained by minimizing the action S,:
S, =Ti[G2. G,=0H-iH. ATl (4
The exact gauge potential is known to follow from the
variational minimization of an action [46]. However, it is
not a priori clear what (local) operators should be included
in the variational basis. The total number of possible
operators increases exponentially with their support, limit-
ing brute-force minimization to highly local operators with
restricted support. Furthermore, it is far from guaranteed
that such operators will be experimentally realizable. The
proposed ansatz tackles both problems simultaneously.
(i) The number of variational coefficients can be kept
small while still returning an accurate approximation to the
exact gauge potential. As such, Eq. (3) can be seen as a
variational ansatz including only the most important

contributions with the maximum range of operators set
by Z. (ii) In addition, this gauge potential can be engineered
with a Floquet protocol. This is possible because the high-
frequency expansion of the Floquet Hamiltonian shares the
commutator structure of Eq. (3). This expansion exhibits
the symmetries of the exact solution, and as an additional
bonus we remark that this ansatz has a well-defined
classical limit, where even the local-operator basis becomes
infinite dimensional. In classical systems, the commutators
in Eq. (3) need only to be replaced by Poisson brackets.

Since the action is the Hilbert-Schmidt norm of G, this
method has the clear advantage that the action can be
calculated without explicitly constructing the operator
matrix in the full Hilbert space. There are various ways
of motivating Eq. (3) (see Supplemental Material [45]):
It can be seen as an expansion in the Krylov subspace
generated by the action of G,, by noting that such
commutators appear through the Baker-Campbell-
Hausdorff expansion in the definition of a (properly
regularized) gauge potential, or by noting that its matrix
elements share the structure of those of the exact gauge
potential. Namely, evaluating Eq. (3) in the eigenbasis
of H returns

4
) =1 a;(m n
(m] A} |n) = ; v (m|[H. [Zil (M. 0;H]]]|n)

= i(kZ; a (e, — en)z"‘1> (m|0,H|n). (5)

This can be compared to the exact expression (2), con-
taining a state-dependent factor (m|d,H|n) and a prefactor
dependent on only the excitation frequency ,,, =
(e,, — €,). The variational optimization can be seen as
approximating the exact prefactor 1/w,,, by a power-series

prefactor aﬁ"ﬁ)(wmn) =0 qwik! for the range of

relevant excitation frequencies set by (m|d,H|n).

While such an approximation is generally impossible
due to the divergence of 1/w,,, near w,, =0 and the
divergence of the power series for w,,, — oo, the approxi-
mation does not need to hold in these limits. First, for large
w,,, the matrix elements of local operators (m|d,H|n)
typically decay exponentially with w,,, [44], leading to a
negligible contribution to the gauge potential. Second, there
are physical motivations for allowing transitions for small
@,,,- When speeding up adiabatic driving in the presence of
an energy gap A, only transitions with w,,,, > A need to be
suppressed to achieve unit fidelity, and, in more general
gapless regimes corresponding to, e.g., excited states, the
resulting excitations will be confined to a narrow energy
shell, the width of which decreases with the order £ of the
expansion.

We illustrate how this expansion works in Fig. 1, for a
nonintegrable Ising chain with
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ag\l) (Wmn)

Variationally obtained power-series prefactor agf) (@n)

for Eq. (6). The dotted line corresponds to exact prefactor 1/w,,),.
Parameters L =14, J =1, h, = h, = 0.3, and 1 = 1.

FIG. 1.

H :Jiafaf»ﬂ +l<hz§:of+hx20f), (6)
i=1 i

i=1 i=1

where no exact gauge potential can be obtained in the
thermodynamic limit. It is clear that the variational opti-
mization returns a gauge potential optimized for a relevant
window of excitation frequencies, where the approximation
necessarily improves with increasing 7.

The resulting gauge potential can be used to reliably
speed up adiabatic protocols taking H(C%(t) =H(A)+
/.IAY) (1). While this presents a guaranteed improvement
in fidelity, it also requires access to interaction terms not
necessarily available, where the only interactions that are
generally present are those of H(A) and 9,H(A).
Remarkably, this CD Hamiltonian can be realized as an
effective Floquet Hamiltonian by oscillating these two
terms at a high frequency. Consider

He (1) = {1 +Z)Ocos(a)t)}H(/1)

+2 [f: B sin [(2k — 1)@]} OHQA), (7)
k=1

with f, the Fourier coefficients of the additional drive and
w, a reference frequency typically set by the excitation
energy of the system, with both to be determined later.
Floquet theory allows for the definition of a time-indepen-
dent Floquet Hamiltonian reproducing time evolution over
a single driving cycle (with T = 2z /w)

exp (—iH,T) = T exp (—i j " HFE(t’)dt’>. (8)

The limit where the driving term scales with the frequency
is known to give rise to nontrivial Floquet Hamiltonians Hy
in various scenarios [52-56].

More specifically, the proposed series expansion for
the adiabatic gauge potential can be implemented in the

infinite-frequency limit @ — oo, realizing (stroboscopic)
CD driving. This Floquet Hamiltonian follows from the
Magnus expansion, presenting a series expansion of Hy in
powers of the inverse frequency. Essentially, the @ — oo
limit combined with the scaling of H with w guarantees that
only commutators of the form [H, ..., [H, 9, H]]] survive
in the Magnus expansion, which can then be found as

Hp = H(A) + 1Ap [45], with

wmn

(Aetn) =13 i (222 ) om0yl 9)
k=1

2]

where 7 are Bessel functions of the first kind. Again, this
reproduces the correct structure of the gauge potential,
where the frequency-dependent prefactor is now expressed
in terms of 7. For small ®,,,/®o, Ji(@0yn/@g) x @k,
which can be used to stroboscopically engineer the CD
term by choosing the Fourier harmonics such that the
Floquet prefactor reproduces the power series (5) in the
relevant range of excitation frequencies. In a first approxi-
mation, this can be done by restricting time evolution to ¢
harmonics and setting

m

w
,

¢ ¢
Zﬁkak—l < ) = Zakw%nkn_l +O0(wg?).  (10)
k=1 k=1

n
0
Analytic expressions can easily be obtained for matching the
harmonics to the coefficients in the gauge potential up to
arbitrary order, and, if necessary, higher-order harmonics
can be added to compensate the O(w,?) corrections order
by order [45]. As an illustration, taking f; = 2a;w, and
B2 = 2w, (24a,0] + 3a;) for the expansion with two terms,
the resulting protocol approximately reproduces the CD
evolution at stroboscopic times ¢t = nT, n € N. In finite
systems, the exact gauge potential can always be obtained
from a large enough ansatz, which can be reproduced as a
Floquet Hamiltonian from a similarly large number of
harmonics, such that exact counterdiabatic driving can
always be realized through Floquet engineering. How-
ever, while this protocol does not introduce new interactions
in the Hamiltonian, the additional cost is that it requires
high-frequency oscillations of both H and 9, H rather than
just O, H.

Applications.—This procedure can now be applied
on various systems with increasing complexity. In all
examples, we consider a specific driving protocol A(z) =
sin?[(z/2)sin?(xt/27)], ramping from 2(0) = 0 to A(z) = 1
in such a way that A and / vanish at the beginning and end of
the protocol. 4 behaves as an annealing parameter, and as a
first measure for the effectiveness of the protocol we initialize
the system in the ground state for 4 = 0 and calculate the
fidelity of the time-evolved state with respect to the instanta-
neous ground state F2(¢) = [{y(1)|wo[A(2)])|?.
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First consider a two-qubit system, for which all calcu-
lations can be performed analytically [45]:

H(4) = J(ojoy + o103) + h.(A=1)(0] +03).  (11)
The first-order expansion leads to

A — _The_(oid3 + o)) 12)
4 2 JP+4(A—1)2h%

Remarkably, this already returns the exact adiabatic gauge
potential as presented in Ref. [38]. This can be understood
either by noting that [H, [H, [H,0,H]] x [H,d;H], such
that the higher-order commutators do not introduce new

operators in the expansion, A;f) (o A(l), and the variational
approach can be seen as a resummation of all higher-order
terms exactly determining the prefactor. Alternatively, this
system behaves as a two-level system, since any instanta-
neous Hamiltonian couples only |} |) and |11), leading to
a single excitation frequency which can be exactly canceled
by a single commutator.

The resulting CD driving can be realized up to O(wy?)
using a single harmonic as

Heg(t) = {1 +wﬂocos(a)t)]H[/1(t)}

2h.w sin(wt)
472 +16[A(t) — 1)?h2

(67 +03).  (13)

The results are illustrated in Fig. 2, where the duration of
the protocol has been chosen in such a way that 7 is too
small for the unassisted (UA) protocol to accurately prepare
the final Bell state (4 = 1)) = (1/vV2)(I11) + [L)).
Exact CD driving returns unit fidelity by definition, which
can be well approximated (with a final error of the order

1 -
= L
:-</ 0.5 /
0
1 ==
~
0.9
P . ——=CD
S L ,
5 08 \ — FE
\
3 0.7 Hrie _ \—— UA
N
0.6 H N
I I I L ==
0 0.2 0.4 0.6 0.8 1
t/T

FIG. 2. Fidelity in the two-qubit system (11) for the UA, CD,
and FE protocols. Increasing @ further suppresses the Floquet
oscillations. Parameters J = =1, h, = 5,7 = 0.1, wy = 10 x 27,
and @ = 250w,.

of 107°) using the proposed Floquet-engineered (FE)
protocol.

Next, consider a two-qubit system behaving as a three-
level system:

H(A) = —2J6365 — h(6% + 63) + 2hA(ct +6%),  (14)

where the total spin-0 state |1],) — || 1) decouples from the
rest of the Hilbert space. Transitionless protocols in three-
level systems have recently attracted experimental [57] and
theoretical [58—60] interest, since exact protocols can no
longer be trivially obtained. As shown in Fig. 3, the fidelity
for the unassisted protocol is 67%, increasing to 92% for
¢ = 1, before reaching approximate unit fidelity (up to an
error of 107%) for # = 2. Again, for # = 2 the variational
approach returns the exact gauge potential, without any
reference to exact diagonalization, since only two excita-
tion frequencies are present. The FE protocol accurately
reproduces the CD protocol.

Magnetic trap.—Moving to many-body systems, we
consider the nonintegrable Ising chain. Rather than chang-
ing the magnetic field uniformly, we will consider a more
involved protocol where a local Gaussian magnetic trap is
moved across the chain, similar to the “optical tweezers”
problem [61]. In this problem, a set of initially localized
spins are to be moved across the model while minimizing
dissipation. The Hamiltonian is given by

L i P
H(A) = Hy— hy Zexp {—ﬂ} oi,  (15)

Cy

Wi
L-1 L L

Ho =13 oioisy +h.y oi+hy of. (16)
i=1 i=1 i=1

with ¢,(4) = (1 = 4)iy + iy Tuning A from O to 1 then
drags the center of the trap ¢,(4) with strength 4, and width
w, from site iy to i;.

Rather than fidelity, we consider absorbed energy E(r) —
Eo(1) = (w(O)HAO]w (1)) = {wo() [HA(D)]yo(r)) as a

measure for dissipation, as shown in Fig. 4(a) for £ =1,

1 =
\v
\o
09F N
= N, —(=2(FE)
S 08FfF N\,
%, 98 —-¢=2(D) \, — (=1 (FE)
AN
o7k~ t=1 (CD) \.\'s.
R
0.6 1 1 1 1
0 0.2 0.4 0.6 0.8 1
t/T

FIG. 3. Fidelity in the two-qubit system (14) for the UA, CD,
and FE protocols with # =1, 2. Parameters 7 = 0.1, J =1,
h=2, wy=10x 2z, and @ = 2.5 x 10¥ w,.
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(a) Absorbed energy for the UA, CD and FE protocol with

=1,2,3.

o,

= N

=

1F xUA o¢=1 Vv(=2 = (=3
—~ 0.5}
Wees
L

0_

—0.5

(b) Spin profile at time 7 for the UA and the CD protocol
with ¢ =1,2,3. Exact final profile is given in a dashed line.

FIG. 4. Moving the magnetic trap in time 7z = 0.5 from site
ny =3 to site ny =10 for an Ising model with parameters
L=12, J=-1, h, =08 h,=09, h =8, w =1,
wy = 10 x 27, and o = 10*w,.

2, 3. It is clear that, for the given protocol duration, the UA
protocol fails in reproducing the final state. This is
remedied by including CD terms with Z = 1, 2, 3, reducing
dissipation and absorbed energy by a factor of 20 [62]. The
Floquet drive reproduces the CD results, with only minor
deviations at intermediate times when E,(f) becomes
extremal. The CD driving is crucial in reproducing the
final spin profile o7 [Fig. 4(b)]. While the proposed method
seems to work particularly well for this type of model, as
also observed in the optical case [63], this is representative
for more general many-body systems. Finally, note that it
was not the derivation of the gauge potential and the
Floquet drive that was the computational bottleneck but
rather the time evolution as a validation of the protocol. The
former remain applicable for arbitrary large system sizes
and should similarly lead to significant suppression of
energy losses.

Conclusion and outlook.—It was argued that the adia-
batic gauge potential can be efficiently constructed as a
series of variationally optimized nested commutators.
While constructions of the gauge potential and CD
driving in complex systems generally rely on dynamical

symmetries or exactly solvable models, the proposed
expansion can be constructed without having to resort
to exact diagonalization and remains well defined in
general (chaotic) many-body systems. Because of the
similarity between this series and the Magnus expansion
in periodically driven systems, this potential is easily
realized through Floquet engineering, such that the
resulting approximate counterdiabatic protocols can be
realized via Floquet driving without introducing addi-
tional interactions. As illustrated on various few- and
many-body systems, a small number of terms can result in
a drastic increase in fidelity. This presents the usual
trade-off in fast-forward protocols, where an increase in
fidelity can be obtained provided precise control over
the driving and access to large interaction strengths is
available [64-66].

In practice, this protocol is expected to mainly be useful
when no efficient CD protocol can be obtained or realized,
as in ergodic systems, and when a few commutators already
provide a large increase in fidelity (as when, e.g., the
induced gap is large). The number of necessary commu-
tators is expected to increase with a decreasing gap, with an
additional drawback being the high energetic cost of the
oscillations (by now common in Floquet systems), where
higher orders necessitate higher driving frequencies and
access to higher harmonics. The presented method requires
neither the presence of dynamical invariants, scaling laws,
nor the closing of the commutators under some Lie algebra,
common requirements for CD driving in complex systems.

Future applications and extensions are plenty. Current
simulations were performed on spin systems but can
immediately be extended towards bosonic or fermionic
models. While the expansion of the gauge potential is
particularly convenient for CD driving, the exact potential
contains information about the geometry of all states,
adiabatic deformations, integrability and its violations,
approximate conservation laws, etc., which also follow
from the current approximation. This should allow for
the construction of approximately conserved operators and
integrable gauge potentials analogous to integrable Floquet
Hamiltonians [67].
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