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Abstract. Let G be a finite group and let π be a set of primes. Write Irrπ′ (G)
for the set of irreducible characters of degree not divisible by any prime in π.
We show that if π contains at most two prime numbers and the only element
in Irrπ′ (G) is the principal character, then G = 1.

Introduction

Let G be a finite group and let π be a set of primes. Write Irrπ′(G) for the set
of irreducible characters of degree not divisible by any prime in π. If π = {p}, then
we use the standard notation Irrp′(G) = Irrπ′(G). The condition Irrp′(G) = {1G}
implies that G = 1 in an elementary way. Indeed, in such a situation we have that
G is a p′-group, since the order of G is the sum of the squares of the degrees of
its irreducible characters. Hence p does not divide the degree of any irreducible
character of G and Irr(G) = Irrp′(G) = {1G} implies G = 1 as wanted. We show
that the same result holds if π contains at most two primes.

Theorem A. Let π = {p, q} be a set of primes. If Irrπ′(G) = {1G}, then G = 1.

We remark that the result no longer holds if |π| > 2. For example, if π = {2, 3, 5},
then Irrπ′(A7) = {1A7}.

Often in Representation Theory of Finite Groups we find a duality between
statements on irreducible characters and corresponding ones on conjugacy classes.
For instance if p is a prime and the conjugacy class of the identity is the unique
conjugacy class of p′-size of G, then G = 1. This is the dual statement of the one for
irreducible characters described in the first paragraph of this section. We care to
remark that the conjugacy class-version of Theorem A does not hold. For instance,
the conjugacy class sizes of A5 are 1, 15, 20, 12, and 12, so for every pair of primes
π dividing its order, the identity is the only conjugacy class of A5 of π′-size.

Our proof of Theorem A mainly relies on the Classification of Finite Simple
Groups. We do not know if a CFSG-free proof might exist or if this result heavily
depends on properties inherent to the representations of simple groups.

The key observation to prove Theorem A is that for a simple group G and any
set π = {p, q} of primes dividing the order of G, there exists some non-principal
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character in Irrπ′(G). Let Γ′(G) be the undirected graph defined as follows. The
set of vertices of Γ′(G) is the set of primes dividing the order of G, denoted π(|G|).
Two vertices p and q are adjacent if there is some χ ∈ Irr(G) \ Lin(G) such that
χ(1) is not divisible by p nor by q. Here Lin(G) denotes the set of linear characters
of G. With this, the claim above can be stated in the following way.

Theorem B. If G is a non-abelian simple group, then Γ′(G) is complete.

In fact, Theorem A implies that Γ′(G) is complete for every perfect group G.
We also analyze the opposite situation, namely, the case of finite groups G with
totally disconnected graph Γ′(G).

Theorem C. Let G be a group. Then Γ′(G) is totally disconnected if and only if
G is solvable and NG(H) ∩G′ = H ′ for every π-Hall subgroup H of G, where π is
any pair of primes dividing the order of G.

Surprisingly enough, if π consists of two primes, then there are many examples
where Irrπ′(G) = Lin(G). For instance, this is the case if G = PSL2(27) · C3

and π = {3, 13}. Infinitely many other examples of this phenomenon can be found
among symmetric, general linear, and general unitary groups as shown by Theorems
2.8 and 3.6 below. In fact, we can precisely describe which groups satisfy this
condition in the latter cases in Theorems 2.8 and 3.5. Finally, we characterize
groups G satisfying Irrπ′(G) = Lin(G) in terms of their solvable residual and discuss
their non-abelian composition factors in Theorem 4.2 and Lemma 4.3.

The paper is structured as follows. In Section 1 we prove Theorem A assuming
that Theorem B holds. We also prove Theorem C, using previous results of Bianchi,
Chillag, Lewis, and Pacifici [BCLP07] and of Navarro and Wolf [NW02]. The rest
of the paper is mostly devoted to the proof of Theorem B on finite simple groups.
In Section 2, we prove that Γ′(G) is complete whenever G is an alternating group,
and we describe Γ′(G) for symmetric groups. In Section 3, we prove that Γ′(G)
is complete when G is a sporadic group or simple group of Lie-type, completing
the proof of Theorem B by applying the Classification of Finite Simple Groups.
We also provide there a description of Γ′(G) when G is a general linear or general
unitary group. Finally, in Section 4, we discuss the structure of groups satisfying
Irrπ′(G) = Lin(G) for a pair of primes π.

1. On Theorems A and C

Assuming that Theorem B holds, which follows from Corollary 2.10 and Theorem
3.5 below, we can easily prove Theorem A.

Proof of Theorem A. By way of contradiction assume that G > 1. We may assume
that |π| = 2 and that p and q divide the order of G, otherwise the result follows
from the case where |π| = 1 treated in the introduction. The fact that Lin(G) ⊆
Irrπ′(G) = {1G} forces G to be perfect. Moreover, if N #G has index coprime to p,
then Irrπ′(G/N) = Irrq′(G/N) = {1G/N} implies N = G. Similarly, one concludes
that G has no normal subgroup of index coprime to q. If we let M #G be the first
(proper) term in a composition series of G, then S = G/M is a simple non-abelian
group of order divisible by p and q. Since the property is inherited by quotients of
G, we have that Irrπ′(G/M) = {1G/M}. By Theorem B we conclude that G = M ,
and this is a contradiction. !
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The proof of Theorem C relies on [BCLP07] and [NW02]. We will first show that
if Γ′(G) is totally disconnected, then the group G must be solvable. For a group G,
the common-divisor character degree graph Γ(G) of G is defined as follows. The
vertices of Γ(G) are the degrees of the irreducible characters of G, and two vertices
a and b are adjacent if gcd(a, b) > 1. In [BCLP07], the authors prove that if Γ(G)
is complete, then G is solvable.

Lemma 1.1. Let G be a group with totally disconnected Γ′(G). Then G is solvable.

Proof. By Burnside’s paqb-theorem we may assume that the order of G is divisible
by at least three different primes. Since Γ′(G) is totally disconnected, if the order of
G is divisible by m primes, then the degree of every non-linear irreducible character
of G is divisible by at least m − 1 primes. In particular, Γ(G) is complete. We
conclude that G is solvable by [BCLP07, Main Theorem]. !

The condition Irrπ′(G) = Lin(G) for solvable groups was studied in [NW02].
Notice that Theorem 1.2 below does not generally hold outside solvable groups
(more precisely, outside π-separable groups) as Hall π-subgroups of Gmay not exist.

Theorem 1.2 (Navarro, Wolf). Let G be a solvable group and let π be any set of
primes. Let H be a Hall π-subgroup of G. Then Irrπ′(G) = Lin(G) if and only if
NG(H) ∩G′ = H ′.

Proof. This is Corollary 3 in [NW02]. !

The aforementioned results allow us to characterize the groups G with totally
disconnected Γ′(G).

Proof of Theorem C. If Γ′(G) is totally disconnected, then by Lemma 1.1, the
group G is solvable and the direct implication follows from Theorem 1.2. The
reverse implication follows directly from Theorem 1.2. !

We end this section describing Γ′(G) for nilpotent groups. Notice that nilpotent
groups, and therefore solvable groups, can have complete graph Γ′(G). In fact,
examples of solvable, respectively, nilpotent, groups with the same set of character
degrees as a perfect group are provided in [N15], respectively, [NR14].

Remark 1.3. Let G be a nilpotent non-abelian group of order |G| = pa1
1 · · · pak

k
for primes pi, ai > 0, and k ≥ 3. Recalling that G is the direct product of its
Sylow subgroups, we see that Γ′(G) is complete if and only if at most k − 3 Sylow
subgroups of G are abelian. In the case where k − 2 Sylow subgroups are abelian,
there is an edge connecting every two primes except for the primes corresponding
with the non-abelian Sylow subgroups. In the case where all but one Sylow, say the
Sylow pk-subgroup, are abelian, the subgraph of Γ′(G) defined by {p1, . . . , pk−1} is
complete and the vertex pk is isolated.

2. Alternating groups

The aim of this section is to prove Theorem B for alternating groups.
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2.1. Background. We recall some basic facts in the representation theory of sym-
metric groups. Standard references for this topic are [Ja79], [JK81], and [Ol94].
A partition λ = (λ1,λ2, . . . ,λ") is a finite non-increasing sequence of positive inte-
gers. If n =

∑
λi, then we say that λ is a partition of n and we write λ & n or,

sometimes, |λ| = n. We denote by P(n) the set of partitions of n. With a slight
abuse of notation, given a sequence of partitions T = (µ1, . . . , µt) we will write |T |
to denote the number |µ1|+ · · ·+ |µt|.

The Young diagram of a partition λ is the set

[λ] = {(i, j) ∈ N× N | 1 ≤ i ≤ %, 1 ≤ j ≤ λi},

where we orient N×N with the x-axis pointing right and the y-axis pointing down.
We denote by λ′ the conjugate partition of λ, whose Young diagram is obtained
from that of λ by a reflection over the main diagonal. Given (r, c) ∈ [λ], the
corresponding hook H(r,c)(λ) is the set defined by H(r,c)(λ) = {(r, y) ∈ [λ] | y ≥
c}∪ {(x, c) ∈ [λ] | x ≥ r}. We set hr,c(λ) = |H(r,c)(λ)| = 1+(λr − c)+ (λ′

c− r). We
refer to hr,c(λ) as the hook-length of H(r,c)(λ). We denote by H(λ) the multiset
of hook-lengths in [λ]. For e ∈ N we let He(λ) = {(r, c) ∈ [λ] | e divides hr,c(λ)}.
If (r, c) ∈ He(λ), then we say that H(r,c)(λ) is an e-hook of λ, so that |He(λ)|
is the number of e-hooks of λ. We record here an elementary observation (see
[Ol94, Corollary 1.7]) that will be quite useful later in this section.

Lemma 2.2. Let e, f ∈ N and suppose that hr,c(λ) = ef . Then |He(λ)∩H(r,c)(λ)|
= f.

We denote by λ − H(r,c)(λ) the partition obtained by removing the e-hook
H(r,c)(λ) from λ (see [Ol94, Chapter I] for the precise definition of this process).
The e-core Ce(λ) of λ is the partition obtained from λ by successively removing all
e-hooks. The e-quotient Qe(λ) = (λ(0), . . . ,λ(e−1)) is another important combina-
torial object, defined for instance in [Ol94, Section 3]. The number of e-hooks to
be removed from λ to obtain Ce(λ) is called the e-weight we(λ). By [Ol94, 3.6] we
derive the following equations:

(2.1) |λ| = ewe(λ)+|Ce(λ)| and we(λ) = |He(λ)| = |Qe(λ)| = |λ(0)|+· · ·+|λ(e−1)|.

Let TQ
0 (λ) = (λ), TQ

1 (λ) = Qe(λ) = (λ(0), . . . ,λ(e−1)) and for k ≥ 1 we define
TQ
k+1(λ) to be the sequence of ek+1 partitions given by

TQ
k+1(λ) = ((λ(i1,...,ik))(0), . . . , (λ(i1,...,ik))(e−1)),

where (i1, . . . , ik) ∈ {0, 1, . . . , e − 1}k. The collection of all the sequences TQ
j (λ)

for j ≥ 0 is known as the e-quotient tower of λ. It is not too difficult to see
that |Qek(λ)| = |TQ

k (λ)| for all k ∈ N. If TQ
k (λ) = (µ1, . . . , µek), then we let

TC
k (λ) = (Ce(µ1), . . . , Ce(µek)). The collection of all the sequences TC

j (λ) for j ≥ 0
is known as the e-core tower of λ.

Now let p be a prime. As shown in [Ol94, Chap. II], every partition of a given
natural number is uniquely determined by its p-core tower. Using the definitions
given above we observe that for all k ∈ N0 we have that

(2.2) |Hpk

(λ)| = |TQ
k (λ)| =

∑

j≥k

|TC
j (λ)|pj−k, in particular |λ| =

∑

j≥0

|TC
j (λ)|pj .
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Partitions of n correspond canonically to the irreducible characters of Sn. We
denote by χλ the irreducible character naturally labelled by λ & n. We use the
notation λ &p′ n to say that χλ ∈ Irrp′(Sn). We recall that (χλ)An is irreducible
if and only if λ *= λ′. Otherwise (χλ)An = ϕ + ϕg for some ϕ ∈ Irr(An) and
g ∈ Sn ! An. (See [JK81, Thm. 2.5.7].) The following result was first proved by
Macdonald [Mac71] and it is crucial for our purposes.

Theorem 2.3. Let p be a prime and let n be a natural number with p-adic expansion
n =

∑k
j=0 ajp

j. Let λ be a partition of n. Then

νp(χ
λ(1)) =

(∑

j≥0

|TC
j (λ)|−

k∑

j=0

aj
)
/(p− 1).

Moreover, νp(χλ(1)) = 0 if and only if |TC
j (λ)| = aj for all j ∈ N0.

Here for a natural number m, we denoted by νp(m) the maximal integer k such
that pk divides m. We will keep this notation for the rest of the article.

A useful consequence of Theorem 2.3 is stated in the following lemma. This is
well known to experts in the field. For the reader’s convenience, we only include a
brief proof.

Lemma 2.4. Let p, n, and λ be as in Theorem 2.3. Then λ &p′ n if and only if

|Hpk

(λ)| = ak and Cpk(λ) &p′ n− akpk.

Proof. Assume that |Hpk
(λ)| = ak and that Cpk(λ) &p′ n− akpk. Since pk+1 > n,

it follows that |TC
s (λ)| = 0 for all s > k. Hence using equation (2.2) above,

we get that ak = |Hpk

(λ)| = |TC
k (λ)|. By [Ol94, Theorem 3.3] one deduces that

TC
j (Cpk(λ)) = TC

j (λ) for all 0 ≤ j < k. Using Theorem 2.3, we deduce that λ &p′ n.
The converse implication is a direct consequence of Theorem 2.3. !

Let L(n) := {(n−x, 1x) | 0 ≤ x ≤ n−1} be the set all the hook partitions of the
natural number n. The following fact is an immediate consequence of Lemma 2.4.

Lemma 2.5. Let k ∈ N and let p be a prime. Then χλ ∈ Irrp′(Spk) if and only if
λ ∈ L(pk).

Lemma 2.6. Let k ∈ N>0 and let ε ∈ {0, 1}. Let n = 2k + ε and let λ & n. If

H2k(λ) = ∅ and |H2k−1
(λ)| = 2, then ν2(χλ(1)) = 1.

Proof. By equations (2.1) we have that n = |C2k−1(λ)|+2k−1|H2k−1

(λ)|. It follows
that |C2k−1(λ)| = ε. In particular C2k−1(λ) is a 2-core partition. Since removing
a 2k−1-hook does not change the 2-core of a partition, we have that C2(λ) =
C2(C2k−1(λ)) & ε. Thus |TC

0 (λ)| = |C2(λ)| = ε. Moreover, using equations (2.2),
we see that |TC

j (λ)| = 0 for all j ≥ k. Hence, again by equations (2.2) we conclude
that

|TC
k−1(λ)|= |TQ

k−1(λ)|= |H2k−1

(λ)| = 2, and hence |TC
j (λ)|=0 for all 1 ≤ j ≤ k− 2.

It follows that
∑

j≥0 |TC
j (λ)| = 2 + ε, while

∑k
j=0 aj = 1 + ε. The statement now

follows from Theorem 2.3. !



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4702 E. GIANNELLI, A. A. SCHAEFFER FRY, AND C. VALLEJO RODRÍGUEZ

2.7. Main results. We are now ready to prove Theorem B for alternating groups.

Theorem 2.8. Let n ≥ 5 and let q and p be distinct primes such that 2 ≤ q, p ≤ n.
Let π = {p, q}. Then Irrπ′(Sn) = Lin(Sn) if and only if q = 2 and

n =

{
2k = pm + 1 or

2k + 1 = pm.

Proof. We aim to construct a partition λ ∈ P(n) ! {(n), (1n)} such that χλ ∈
Irrπ′(Sn). Let

t∑

i=1

aip
mi = n =

r∑

i=1

biq
ki

be the p-adic and, respectively, the q-adic expansions of n, where m1 > m2 >
· · ·mt ≥ 0 and k1 > k2 > · · · kr ≥ 0. It is clear that b1qk1 *= a1pm1 .

Suppose that b1qk1 < a1pm1 (the statement in the opposite setting will be proved
just by swapping p with q, a1 with b1, and m1 with k1 in what follows). Consider
the partition λ of n defined by:

λ = (n− b1q
k1 , n− a1p

m1 + 1, 1b1q
k1−(n−a1p

n1+1)).

Observe that λ is a well-defined partition as λ1 ≥ λ2 ≥ λj = 1 for all j ≥ 3. Since
h1,1(λ) = a1pm1 , we deduce that |Hpm1 (λ)| ≥ a1 from Lemma 2.2. By equations
(2.1) we know that |Hpm1 (λ)| = wpm1 (λ) ≤ a1. It follows that |Hpm1 (λ)| = a1.
Moreover

Cpm1 (λ) = λ−H1,1(λ) = (n− a1p
m1) &p′ n− a1p

m1 .

Using Lemma 2.4, we conclude that χλ ∈ Irrp′(Sn). On the other hand, using a
similar argument, we can also show that χλ ∈ Irrq′(Sn). This follows from Lemma

2.4 because h2,1(λ) = b1qk1 , hence |Hqk1 (λ)| = wqk1 (λ) = b1, and again it is routine
to check that Cqk1 (λ) = (n− b1qk1) &q′ n− b1qk1 . We obtain that χλ ∈ Irrπ′(Sn).
To conclude we need to make sure that χλ /∈ Lin(Sn) (i.e., λ /∈ {(n), (1n)}).

Since λ2 ≥ 1 we notice that λ ∈ {(n), (1n)} if and only if λ = (1n) and this
happens if and only if n−a1pm1 = λ2−1 = 0 and n−b1qk1 = λ1 = 1. Equivalently,
λ ∈ {(n), (1n)} if and only if

n = apm = bqk + 1.

(To ease the notation we renamed a1,m1, b1, and k1 by a,m, b, and k, respectively.)
In this very specific situation λ = (1n), hence we need to pick a different partition.
In order to make this new choice we distinguish two main cases, depending on
2 ∈ {p, q} or not.

Let us first assume that 2 /∈ {p, q}. If b ≥ 2, then let µ & n be defined as follows:

µ = (1 + (b− 1)qk, 1q
k

).

Notice that h1,1(µ) = apm, h1,2(µ) = (b − 1)qk, and h2,1(µ) = qk. Hence from

Lemma 2.2 we obtain that |Hpm
(µ)| = a and that |Hqk(µ)| = b. Moreover,

Cpm(µ) = ∅ and Cqk(µ) = (1). Using Lemma 2.4 we deduce that χµ ∈ Irrπ′(Sn).
Otherwise if b = 1, then a = 2c is even and we let

µ = (cpm, 2, 1cp
m−2).
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It is now routine to check that h1,1(µ) = qk, h1,2(µ) = h2,1(µ) = cpm, |Hpm
(µ)| = a,

|Hqk(µ)| = 1, Cpm(µ) = ∅, and Cqk(µ) = (1). Lemma 2.4 implies that χµ ∈
Irrπ′(Sn).

To conclude we now analyze the case where 2 ∈ {q, p}. We have two substantially
different cases to consider. Namely, n = apm = 2k + 1 and n = apm + 1 = 2k.

- If n = 2k = apm+1, then χµ ∈ Irr2′(Sn) if and only if µ ∈ L(n), by Lemma 2.5.
If a > 1, then we let µ be the partition of n defined as follows:

µ = (1 + (a− 1)pm, 1p
m

) ∈ L(n)! {(n), (1n)}.
We observe that h1,2(µ) = (a − 1)pm and h2,1(µ) = pm. Hence |Hpm

(µ)| = a by
Lemma 2.2, and Cpm(µ) = (1). Therefore χµ ∈ Irr{2,p}′(Sn) by Lemma 2.4.

On the other hand, if a = 1, then it is not difficult to see that the only characters
in Irrp′(Sn) labelled by hook partitions are the trivial and the sign character. More
precisely, we have that Irrp′(Sn) ! Lin(Sn) = {(n − x, 2, 1x−2) | 2 ≤ x ≤ n − 2}.
Hence Irr{2,p}′(Sn) = Lin(Sn).

- If n = 2k + 1 = apm and a > 1, then we define µ & n as follows:

µ = (1 + (a− 1)pm, 2, 1p
m−2).

It is routine to check that h11(µ) = 2k, h1,2(µ) = (a−1)pm, and that h2,1(µ) = pm.
We conclude that χµ ∈ Irr{2,p}′(Sn), by Lemma 2.4.

If a = 1, then χµ ∈ Irrp′(Sn) if and only if µ ∈ L(n), by Lemma 2.5. It is now
easy to check that the only characters in Irr2′(Sn) labelled by hook partitions are
the trivial and the sign character. Hence Irr{2,p}′(Sn) = Lin(Sn). !

Theorem 2.8 can be reformulated as follows.

Corollary 2.9. The graph Γ′(Sn) is not complete if and only if n = 2k = pm + 1
or n = 2k +1 = pm. In these cases the subgraphs of Γ′(Sn) defined by π(|Sn|)! {2}
and by π(|Sn|)! {p} are complete, and there is no edge between 2 and p.

Corollary 2.10. Let p *= q be two primes and define π := {p, q}. Then |Irrπ′(An)|
> 1 for all n ≥ 5.

Proof. By Theorem 2.8 there exists λ ∈ P(n)!{(n), (1n)} such that χλ ∈ Irrπ′(Sn),
unless q = 2 and n = 2k = pm + 1 or n = 2k + 1 = pm. In all these cases, let
ϕ ∈ Irr(An) be an irreducible constituent of (χλ)An . Then ϕ(1) ∈ {χλ(1),χλ(1)/2}.
In particular ϕ ∈ Irrπ′(An). Suppose now that q = 2 and n = 2k = pm + 1 or
n = 2k + 1 = pm. We let µ be the partition of n defined as follows:

µ =

{
(2k−1 + 1, 12

k−1
) if n = pm = 2k + 1,

(2k−1, 2, 12
k−1−2) if n = pm + 1 = 2k.

(Notice that µ is well defined because n > 4.) In both cases we see that H2k(µ) = ∅
and that |H2k−1

(µ)| = 2. Therefore by Lemma 2.6 we deduce that ν2(χµ(1)) = 1.
Since µ = µ′ we conclude that ϕ(1) = χµ(1)/2 is odd for any irreducible constituent
ϕ of (χµ)An . Moreover, in both cases h1,1(µ) = pm and

Cpm(µ) =

{
∅ if n = pm = 2k + 1,

(1) if n = pm + 1 = 2k.

Hence Lemma 2.4 guarantees that χµ ∈ Irrp′(Sn). We conclude that ϕ ∈ Irrπ′(An).
!
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We conclude this section by discussing the extendibility to Sn of characters in
Irrπ′(An). The ideas used in the proof of Theorem 2.8 can be adapted to classify
those alternating groups whose only extendible π′-character is the trivial character.
As we will remark in Section 4, the following result will be useful to study the
normal structure of finite groups G such that Irrπ′(G) = Lin(G).

Proposition 2.11. Let π = {p, q} where p and q are distinct primes and let n ≥ 5
be a natural number. Then An admits a non-trivial irreducible character of π′-degree
that extends to Sn, unless

n =

{
2qk = pm + 1 or

2qk + 1 = pm.

Proof. If q = 2 and n = 2k = pm + 1 or n = 2k + 1 = pm for some k,m ∈ N,
then Lin(Sn) = Irrπ′(Sn) by Theorem 2.8. It follows that An admits no non-
trivial irreducible character of π′-degree that extends to Sn. If q is odd and n =
2qk + 1 = pm, then using Lemma 2.5 we see that the only non-linear irreducible
π′-degree character of Sn is labelled by the partition λ = (1 + qk, 1q

k

). Similarly,
if n = 2qk = pm + 1, then the only non-linear irreducible π′-degree character of Sn
is labelled by the partition λ = (qk, 2, 1q

k−2). In both cases λ = λ′ and therefore
we deduce that An admits no non-trivial irreducible character of π′-degree that
extends to Sn, by [JK81, Thm. 2.5.7].

We now recycle the notation used in the proof of Theorem 2.8 and let

t∑

i=1

aip
mi = n =

r∑

i=1

biq
ki

be the p-adic and, respectively, the q-adic expansions of n. Again we assume that
b1qk1 < a1pm1 and we consider λ = (n− b1qk1 , n− a1pm1 + 1, 1b1q

k1−(n−a1p
n1+1)).

As shown in the proof of Theorem 2.8 we have that χλ ∈ Irrπ′(Sn). Moreover,
if n − a1pm1 ≥ 2, then λ2 ≥ 3 and hence λ *= λ′. It follows that (χλ)An is
a non-trivial irreducible character of π′-degree that extends to Sn. We are left
to consider the cases where n − a1pm1 ≤ 1. If n − a1pm1 = 1, then λ *= λ′

because (λ′)1 = b1qk1 > n − b1qk1 = λ1. Moreover, λ /∈ {(n), (1n)} because
λ2 = 2. It follows that also in this case (χλ)An is a non-trivial irreducible character
of π′-degree that extends to Sn. If n − a1pm1 = 0, then again λ *= λ′ because
(λ′)1 = b1qk1 + 1 > n − b1qk1 = λ1. Hence (χλ)An is a non-trivial irreducible
character of π′-degree that extends to Sn, unless λ ∈ {(n), (1n)}. This happens
if and only if n = apm = bqk + 1. (To ease the notation we renamed a1,m1, b1,
and k1 by a,m, b, and k, respectively). Suppose first that 2 /∈ {p, q}. From the
first part of this proof, we can assume that (a, b) /∈ {(1, 2), (2, 1)}. If b ≥ 3 and

µ = (1 + (b − 1)qk, 1q
k
), then arguing in a very similar fashion as in the proof of

Theorem 2.8 we observe that (χµ)An is a non-trivial irreducible character of π′-
degree that extends to Sn. If b ≤ 2, we let ν = ((a − 1)pm, 2, 1p

m−2). This is a
well defined partition as a > 1. This can be deduced by noticing that when b = 1
then a must be even, and for b = 2 then (a, b) *= (1, 2). By Lemma 2.4 we see that
χν ∈ Irrπ′(Sn). Moreover, we notice that if b = 2, then h1,1(ν) = 2qk is even and
hence ν *= ν′. On the other hand, if b = 1, then a is even and strictly greater than
2 (as (a, b) *= (2, 1)). Thus also in this case it follows that ν *= ν′. We conclude that
(χν)An is a non-trivial irreducible character of π′-degree that extends to Sn. Finally,
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we study the case where 2 ∈ {p, q}. If n = 2k = apm + 1, then we can assume that
a ≥ 2 from the first part of the proof. In this case we take µ = (1+ (a− 1)pm, 1p

m
)

as in the proof of Theorem 2.8. Similarly, if n = 2k + 1 = apm, then a is odd
and again we can use the first part of the proof to assume that a ≥ 3 and we let
µ = (1+(a− 1)pm, 2, 1p

m−2). In both cases we observe that (χµ)An is a non-trivial
irreducible character of π′-degree that extends to Sn. !

3. Groups of Lie-type and sporadic groups

The aim of this section is to complete the proof of Theorem B. We begin with
the case of the sporadic groups and certain groups of Lie-type that may be treated
computationally.

Lemma 3.1. The simple groups G2(3), G2(4), 2G2(3)′, 2F4(2)′, and 2E6(2) and the
26 sporadic groups satisfy Theorem B.

Proof. This can be seen using GAP and the Character Table Library. !

Let G = GF be the group of fixed points of a connected reductive algebraic
group G defined over Fr under a Steinberg map F . Here r is a prime and Fr is an
algebraic closure of the finite field of cardinality r. We will call a group G of this
form a finite reductive group. Further, let G∗ = (G∗)F

∗
, where (G∗, F ∗) is dual to

(G, F ).
The set of irreducible characters Irr(G) can be written as a disjoint union⊔
E(G, s) of rational Lusztig series corresponding to G∗-conjugacy classes of semi-

simple elements s ∈ G∗. The characters in the series E(G, 1) are called unipotent
characters, and there is a bijection E(G, s) → E(CG∗(s), 1). Hence, characters of
Irr(G) may be indexed by pairs (s,ψ), where s ∈ G∗ is a semisimple element, up
to G∗-conjugacy, and ψ ∈ Irr(CG∗(s)) is a unipotent character.

Further, if χ ∈ Irr(G) is indexed by the pair (s,ψ), then the degrees of χ and ψ
are related in the following way:

(3.1) χ(1) = |G∗ : CG∗(s)|r′ψ(1)

(see [DM91, Remark 13.24]). Here for a natural number n and a prime p, we denote
by np′ the largest integer m dividing n such that gcd(m, p) = 1. Similarly, we will
denote the number pνp(n) by np.

From (3.1), we immediately see the following.

Proposition 3.2. Let G = GF be a finite reductive group defined over a field of
characteristic r. Let p *= q be two primes and define π := {p, q}.

• If r *∈ π, then the set Irrπ′(G) is parametrized by pairs (s,ψ) as above,
where s centralizes both a Sylow p-subgroup and Sylow q-subgroup of G∗

and ψ ∈ Irrπ′(CG∗(s)).
• If r = p, then Irrπ′(G) is parametrized by pairs (s,ψ) as above where s
centralizes a Sylow q-subgroup of G∗ and ψ ∈ Irrπ′(CG∗(s)).

Moreover, [Ma07, Theorem 6.8] yields that in the second statement of Proposi-
tion 3.2, we may often further say ψ(1) = 1.

Lemma 3.3. Let G = GF be a finite reductive group defined over a field of char-
acteristic r. Let p *= q be two primes and define π := {p, q}. Then | Irrπ′(G)| > 1.
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Proof. First, suppose p *= r and q *= r. Then the degree of the Steinberg character
StG is a power of r (see for example [DM91, Corollary 9.3]), and is therefore an
element in Irrπ′(G). Then we may assume that p is the defining characteristic for G.
That is, we assume r = p.

Now, let Q be a Sylow q-subgroup of G∗ and let s ∈ Z(Q) be non-trivial. Then s
is semisimple, since q *= p, and certainly Q ≤ CG∗(s). Hence taking χ to be indexed
by (s, 1CG∗ (s)), we have q " χ(1) and p " χ(1) from (3.1), so χ ∈ Irrπ′(G). !

Before we extend the above result to prove Theorem B in the case of simple
groups of Lie-type, we note the following straightforward but useful lemma.

Lemma 3.4. Let G be a perfect group and let q be prime. Suppose that |Z(G)| is
a power of q and that χ ∈ Irr(G) has degree prime to q. Then Z(G) is in the kernel
of χ.

Proof. Write Z = Z(G). The order o(λ) of λ ∈ Irr(Z) lying under χ must divide
χ(1), since 1Z = det(χ)Z = λχ(1). !

We are now ready to complete the proof of Theorem B.

Theorem 3.5. Let S be a finite simple group such that S = G/Z(G) for G = GF

a finite reductive group of simply connected type defined over Fra for some prime r.
Let p *= q be two primes and define π := {p, q}. Then | Irrπ′(S)| > 1.

Proof. By Lemma 3.1, we may assume S is not one of the groups listed there, and
by Section 2, we may assume S is not isomorphic to an alternating group. We wish
to show that the character χ constructed in the proof of Lemma 3.3 can be chosen
to be trivial on Z(G). This is satisfied for StG, so we again assume r = p. By
[NT13, Lemma 4.4(ii)], it therefore suffices to show that the semisimple element s
used in the proof of Lemma 3.3 can be chosen to be contained in (G∗)′.

Here G is quasisimple and |Z(G)| = |G∗ : (G∗)′|, where (G∗)′ denotes the com-
mutator subgroup of G∗. Now, if q " |Z(G)|, then Q ≤ (G∗)′, where Q is any Sylow
q-subgroup of G∗, and the s chosen in Lemma 3.3 is in this case contained in (G∗)′.
Combining this with Lemma 3.4, we may therefore assume that q divides |Z(G)|
but that |Z(G)| is not a power of q. This leaves only the case that G is of type A.

Hence, for the remainder of the proof, we assume that G = SLε
n(p

a) with ε ∈
{±1}. Here ε = 1 means G = SLn(pa), ε = −1 means G = SUn(pa), and |Z(G)| =
gcd(n, pa−ε). Recall from above that we may assume n is not a power of q. Writing
G̃ = GLε

n(p
a), we further have

G∗ ∼= G̃/Z(G̃) and (G∗)′ ∼= GZ(G̃)/Z(G̃) ∼= S,

and we will make these identifications.
Let Q̃ be a Sylow q-subgroup of G̃, so that Q := Q̃Z(G̃)/Z(G̃) is a Sylow q-

subgroup of G∗. Now, if Z(Q) ∩ (G∗)′ *= 1, we can take s to be a non-trivial
element of this intersection, and we are done. So we may assume Z(Q) ∩ (G∗)′ =
1, in which case Z(Q) ∼= Z(Q)(G∗)′/(G∗)′ ≤ G∗/(G∗)′ and we see that |Z(Q)|
divides gcd(n, pa− ε)q, since |G∗ : (G∗)′| = gcd(n, pa− ε), and hence |Z(Q̃)| divides
(pa − ε)q · gcd(n, pa − ε)q.

Now, writing n = a0 + a1q + a2q2 + · · · + atqt with 0 ≤ ai < q for the q-adic
expansion of n, we see by [We55] and [CF64] that Q̃ can be chosen as the direct



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHARACTERS OF π′-DEGREE 4707

product

Q̃ =
t∏

i=0

Qai
i ,

where Qi is a Sylow q-subgroup of GLε
qi(p

a), and this identification can be made

by embedding the matrices block-diagonally into G̃. Note that Z(Qi) contains
the Sylow q-subgroup of Z(GLε

qi(p
a)) ∼= Cpa−ε. Then |Z(Q̃)| > (pa − ε)2q, a con-

tradiction, unless n is of the form qi + qj for some 0 ≤ i ≤ j. (Note that this
includes the case n = 2qi for some i ≥ 1, which can only occur if q *= 2.) Further,
|Z(Q̃)| > (pa − ε)q · gcd(n, pa − ε)q unless (pa − ε)q | nq. Since nq = qi, this means
we must have (pa − ε)q | qi.

Now let µ be any non-trivial element in the Sylow q-subgroup of Cpa−ε, viewed
inside F×

pa or F×
p2a , corresponding to the cases ε = 1 and −1, respectively. Consider

the element x = (µIqi , Iqj ) ∈ Z(GLε
qi(p

a)) × Z(GLε
qj (p

a)) ≤ Z(Q̃). Then x is a

non-central semisimple element of G̃ in Z(Q̃) and satisfies det(x) = µqi = 1, where
the last equality follows from the fact that (pa−ε)q | qi. Hence x ∈ G and therefore

the element s := xZ(G̃) is a non-trivial element of GZ(G̃)/Z(G̃) = (G∗)′ in Z(Q),
again a contradiction. !

Using the construction in the proof of Theorem 3.5, we find an analogue of
Theorem 2.8 and Corollary 2.9 for the groups GLε

n(r
a).

Theorem 3.6. Let q *= p be two prime numbers and write π := {p, q}. Let G =
GLε

n(r
a) for a prime r and ε ∈ {±1}. Then Irrπ′(G) = Lin(G) if and only if there

is some k ≥ 0 such that (r, n) = (p, qk) and q | (pa − ε), up to reordering p and q.

Proof. Note that in this case, we may identifyG ∼= G∗. First assume that Irrπ′(G) =
Lin(G). Since the Steinberg character of G has degree ran(n−1)/2, it must be that
r = p or r = q. Without loss, we assume that r = p.

Let Q be a Sylow q-subgroup of G. Then any character of degree prime to q
can be indexed by a pair (s,ψ), where s centralizes Q and ψ has degree prime
to q, using (3.1). However, Lin(G) is comprised of characters indexed by pairs
(z, 1G) for z ∈ Z(G) (see [DM91, Proposition 13.30]), so it follows that there are
no non-central semisimple elements of G centralizing Q. In particular, this shows
that q | (pa − ε), since otherwise q " |Z(G)|, so Q ∩ Z(G) = 1, yielding non-central
semisimple elements of G contained in Z(Q). Further, arguing as in the proof of
Proposition 3.5, we see n = qk for some integer k, since otherwise |Z(Q)| ≥ (pa−ε)2q
and there is some semisimple element in Z(Q) not contained in Z(G).

Conversely, assume that r = p, n = qk, and q | (pa − ε). Since the centralizer
of a semisimple element s ∈ G is a product of groups of the form GLεi

ni
(pai),

[Ma07, Theorem 6.8] and [DM91, Proposition 13.20] yield that the only unipotent
characters of CG(s) with degree prime to p are linear. It therefore suffices to show
that if s ∈ G is semisimple and Q ≤ CG(s), then s ∈ Z(G).

Let s ∈ G be a semisimple element centralizing Q. For i ≥ 0, let Qi and Ti

denote a Sylow q-subgroup of GLε
qi(p

a) and Sqi , respectively. Using [CF64] and
[We55], we have Q = Qk is of the form Q1 . Tk−1.

Suppose q is odd. If ε = 1, then further Q = Q0 . Tk
∼= C(pa−1)q . Tk. In

particular, in this case, the normal subgroup Cqk

(pa−1)q
of Q may be viewed as the

Sylow q-subgroup of a maximally split torus, consisting of diagonal matrices. Since
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s must centralize this subgroup, we have s is also a diagonal matrix. Further,
with this identification, Tk acts via permuting the copies of C(pa−1)q , and hence
the diagonal entries of a diagonal matrix. Then since s must commute with this
subgroup, we see that s is a scalar matrix, so is in Z(G).

Now let ε = −1, so G = GUqk(p
a) ≤ GLqk(p

2a). Then since q | (pa + 1),
[We55, 4(ii)] yields that Q is a Sylow q-subgroup of GLqk(p

2a). As q | (p2a − 1),
the previous paragraph shows that s must be an element of Z(G).

Finally, assume q = 2 and ε ∈ {±1}. Then by [CF64], we have NG(Q) ∼= Q ×
C(pa−ε)2′ , where the factor C(pa−ε)2′ is embedded naturally as the largest odd-order
subgroup of Z(G), which shows that an element of CG(Q) must be a member of
Z(Q)Z(G). But since x ∈ Z(Q) must commute with the action of Tk−1, Z(Q) must

be comprised of elements of Q2k−1

1 whose components are all the same. Further,
these components must be in Z(Q1). Considering the description in [CF64] of the
Sylow 2-subgroups Q1 of GLε

2(p
a), we see that Z(Q) therefore consists of scalar

matrices, and hence elements of Z(G). !

Corollary 3.7. Let q *= p be two prime numbers and write π := {p, q}. Let
G = GLε

n(r
a) for a prime r and ε ∈ {±1}. Then Γ′(G) is not complete if and

only if there is some k ≥ 0 such that (r, n) = (p, qk) and q | (pa − ε), up to
reordering p and q. In this case, the subgraphs of Γ′(G) defined by π(|G|)!{p} and
by π(|G|)! {q} are complete, and there is no edge between p and q.

To conclude this section, we make some remarks about the corresponding state-
ment to Proposition 2.11 for groups of Lie-type. We first remark that if S is a
simple group of Lie-type defined over a field of characteristic r and π is a set of
primes not containing r, then there exists a member of Irrπ′(S) that extends to
Aut(S), taking for example the Steinberg character. Hence we are interested in the
question of when there exists a member of Irrπ′(S) that extends to Aut(S), where
π = {p, q} with p = r.

For example, for S = PSp2n(p
a) with p odd and π = {p, 2}, [Ma07, Theorem 6.8]

and [Ma08, Proposition 4.8] yield that there are no such characters. More generally,
given [Ma07, Theorem 6.8], an important step is to determine when there exists a
semisimple character of degree prime to q that extends to Aut(S). Although the
general consideration of this question is beyond the scope of the current article, we
make use of some of the techniques used already in this section to answer it in the
case of PSLn(pa) with π = {p, 2}.

Proposition 3.8. Let S = PSLε
n(p

a) be simple for an odd prime p and ε ∈ {±1}.
Let q be a prime dividing pa − ε and let π := {p, q}. If n is not of the form n = qi

or n = qi + qj for any 0 ≤ i ≤ j and n *= 4qi if 4 " (pa − ε), then there exists
a non-principal θ ∈ Irrπ′(S) that extends to Aut(S). Further, if π = {p, 2}, then
there exists a non-principal θ ∈ Irrπ′(S) that extends to Aut(S) if and only if n *= 2i

for any i ≥ 1.

Proof. Assume n *= qi for any i ≥ 1, and further assume n *= qi + qj for any
0 ≤ i ≤ j if q > 2 and that n *= 4qi if pa ≡ −ε (mod 4). Then we may write
n = a0 + a1q + a2q2 + . . .+ atqt with 0 ≤ ai < q for each i and

∑t
i=1 ai > 2 if q is

odd and
∑t

i=1 ai > 1 if q = 2. Let G = SLε
n(p

a) and G̃ = GLε
n(p

a), so G̃∗ ∼= G̃, and
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we make this identification. Let Q̃ be a Sylow q-subgroup of G̃, so that we may
write Q̃ =

∏t
i=1 Q

ai
i embedded block-diagonally, as before, where Qi is a Sylow

q-subgroup of GLε
qi(p

a).

Let i be the first index for which ai *= 0. If q = 2, let s ∈ G̃ be of the form
diag(−I2i , In−2i). If q > 2, pa ≡ ε (mod 4), and n = 4qi, let

s = diag(ωIqi ,ω
−1Iqi , I2qi)

where ω ∈ Cpa−ε has order 4. Otherwise, let s be of the form diag(−I2qi , In−2qi)
if ai ≥ 2. If ai = 1, let j be the next index for which aj *= 0, and let s be of

the form diag(−Iqi ,−Iqj , In−qi−qj ). Then note that det(s) = 1, so s ∈ G = G̃′

and the semisimple character χs corresponding to (s, 1CG̃(s)) is trivial on Z(G̃).

Further, s ∈
∏t

i=1 Z(GLqi(p
a))ai , so it centralizes Q̃, and hence χs ∈ Irrπ′(G̃).

Further, since conjugacy classes of semisimple elements in G̃ are determined by the
eigenvalues, we see that sz is not conjugate to s for any non-trivial z ∈ Z(G̃). Then
since the number of irreducible constituents of the restriction of χs to G is exactly
the number of irreducible characters θ ∈ Irr(G̃/G) = {χz | z ∈ Z(G̃∗)} satisfying
χsθ = χs, [DM91, 13.30] yields that χs|G is irreducible, yielding a character χ of
Irrπ′(S). Further, s is Out(S)-invariant by construction, and hence so is χs . We
may then apply [Sp12, Proposition 3.4 and proof of Lemma 2.13] to see that χ
extends to Aut(S). The last statement follows by considering Lemma 4.3 below
together with Theorem 3.6. !

4. Groups whose π′-degree characters are linear

In this section we provide further discussion on finite groups G satisfying Irrπ′(G)
= Lin(G), where π = {p, q} for some distinct primes p and q.
The Navarro-Wolf theorem (see Theorem 1.2) can be slightly generalized by

using the following consequence of Wolf’s π-version of the McKay conjecture for
π-separable groups.

Lemma 4.1. Let M # G and let π be a set of primes. Suppose that G/M is π-
separable and let H/M be a Hall π-subgroup of G/M . Write N = NG(H). Then
| Irrπ′(G)| = | Irrπ′(N)|.

Proof. Given χ ∈ Irrπ′(G). Note that χ lies over a single N -orbit of H-invariant
Irrπ′(M). Let ϕ be under χ. Then ϕ ∈ Irrπ′(M) and |G : Gϕ| is a π′-number. Hence

Hx−1

/M ⊆ Gϕ/M for some x ∈ G. In particular, H ⊆ Gϕx . Write θ = ϕx, then
θ is H-invariant and lies under χ. Moreover, if θ′ ∈ Irr(M) is another H-invariant
character lying under χ, then θ′ = θy for some y ∈ G. Then H,Hy ⊆ Gθy . Hence,
there exists some x ∈ Gθy such that H = Hyx and θyx = θy = θ′, as claimed. The
same happens for each ψ ∈ Irrπ′(N) by the same argument.

Let Θ be a set of representatives of the N -orbits on the set of H-invariant
Irrπ′(M). Then

Irrπ′(G) =
⋃̇

θ∈Θ
Irrπ′(G|θ) and Irrπ′(N) =

⋃̇
θ∈Θ

Irrπ′(N |θ).

It will be enough to show that | Irrπ′(G|θ)| = | Irrπ′(N |θ)| for each θ ∈ Θ. Since
|G : Gθ| and |N : Nθ| are π′-numbers, by the Clifford correspondence we may
assume Gθ = G. By using projective representations we can find a character triple
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(G∗,M∗, θ∗) isomorphic to (G,M, θ) such that M∗ ⊆ Z(G∗). In particular, G∗ is π-
separable. We can now apply Corollary 1.15 of [Wolf90] to get that | Irrπ′(G∗|θ∗)| =
| Irrπ′(N∗|θ∗)|, with some caution. In Corollary 1.15 of [Wolf90], we should take
π = π(|G∗|) so that Bπ(X) = Irr(X) for every X ≤ G∗, and then let ω be equal to
the set of primes π given by our statement. !

Let G be a finite group. Then the solvable residual of G is the smallest normal
subgroup M of G such that G/M is solvable. In particular, M is perfect. Notice
that for every M ⊆ H ≤ G, we have that M ⊆ H ′.

Theorem 4.2. Let G be a group and let π be a set of primes. Write M for
the solvable residual of G, and let H/M be a Hall π-subgroup of G/M . Then
Irrπ′(G) = Lin(G) if and only if NG/M (H/M) ∩ G′/M = H ′/M and H acts on
Irrπ′(M) with fixed points {1M}.

Proof. To prove the “only if” implication, note that the first hypothesis implies
that Irrπ′(G/M) = Lin(G/M) by [NW02]. Let χ ∈ Irrπ′(G) and let θ ∈ Irr(M)
be under χ. If θ = 1M , then χ ∈ Irrπ′(G/M) = Lin(G/M) = Lin(G). Otherwise
θ *= 1M is not H-fixed by hypothesis. Hence |G : Gθ| is divisible by some prime in
π, and χ(1) is not a π′-number, a contradiction.

To prove the converse, first notice that Irrπ′(G) = Lin(G) implies that Irrπ′(G/M)
= Lin(G/M). Write N = NG(H). By [NW02] we have that N/M ∩ G′/M =
H ′/M . Then G′H/M #G/M and, by the Frattini argument, we have that G/M =
(G′H/M)N/M . Hence G = G′N and

| Irrπ′(G)| = |Irr(G/G′)| = |Irr(N/H ′)| ≤ | Irrπ′(N)| ,
as every Irr(N/H ′) is linear. By Lemma 4.1, the equality | Irrπ′(G)| = | Irrπ′(N)|
forces Irrπ′(N) = Lin(N). Assume that 1M *= θ ∈ Irrπ′(M) is H-fixed. Since M
is perfect, then θ(1) > 1 and o(θ) = 1. Then θ extends to some ϕ ∈ Irr(H) by
Corollary 6.28 of [Isa76]. Let ψ ∈ Irr(N |ϕ); then ψ ∈ Irrπ′(N) (by Corollary 11.29
of [Isa76]) is non-linear, a contradiction. !

Note that if π consists of two primes, then Irrπ′(M) # {1M} by Theorem A and
hence H/M ∈ Hallπ(G/M) above is non-trivial.

By using the following lemma we can assure that certain non-abelian simple
groups do not appear as composition factors of groups satisfying Irrπ′(G) = Lin(G).
(Note that non-abelian composition factors of G appear as composition factors of
its solvable residual.)

Lemma 4.3. Let S be a non-abelian simple composition factor of a group G. Let
π be a set of primes. If some non-principal θ ∈ Irrπ′(S) extends to Aut(S), then
Lin(G) $ Irrπ′(G).

Proof. Since Irrπ′(G/M) = Lin(G/M) whenever M # G, by conveniently taking
quotients we may assume that G has a minimal normal subgroup N which is the
product of the G-conjugates of S. The statement then follows from Lemma 5 of
[BCLP07]. !

Remark 4.4. Let π = {p, q}, let G be such that Irrπ′(G) = Lin(G), and let S be
a simple composition factor of G. Then using Proposition 2.11, we deduce that S
cannot be an alternating group An, unless n = 2qk + 1 = pm or n = 2qk = pm + 1
for some k,m ∈ N.
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The observations in Proposition 3.8 and the discussion before it further yield
that if S is a simple group of Lie-type, then the defining characteristic is in π, and
if π = {p, 2}, then S is not PSLn(pa) unless n = 2k for some k ∈ N.

Using Lemma 4.3 together with GAP and the Character Table Library, we can
see that if π = {2, p}, then the only simple sporadic groups that can possibly appear
as composition factors of G are J3 for p = 5, McL for p = 7, Suz for p = 13, and
He for p = 17.
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