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1. Introduction

Many problems in the character theory of finite groups deal with character degrees and prime numbers.
For instance, the It6-Michler theorem ([14], [21]) asserts that a prime p does not divide x(1) for any
X € Irr(G) if and only if the group G has a normal abelian Sylow p-subgroup. As usual, we denote by Irr(G)
the set of complex irreducible characters of G and by Irr,/ (G) the subset of Irr(G) consisting of irreducible
characters of degree coprime to p. If we write cd(G) for the set of character degrees of G and cd, (G) for the
subset of cd(G) consisting of those character degrees not divisible by p, the It6-Michler theorem deals with
the situation when cd, (G) = cd(G). At the opposite end of the spectrum, we have a theorem of Thompson
([30]) showing that if cd,/(G) = {1}, then G has a normal p-complement. In [1], Berkovich showed that in
this situation, G is solvable, using the Classification of Finite Simple Groups.

In [9], a variation on Thompson’s theorem for two primes is studied. Namely, it is shown there that
if G has only one character with degree coprime to two different primes, then G is trivial. In this paper,
we offer another variation on Thompson’s theorem by describing finite groups G such that |cd, (G)| = 2.
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Thompson’s theorem may equivalently be viewed in terms of OPP' (@), where OP (G) = O (OP(@)).
Namely, Thompson’s theorem says that if cd, (G) = 1 then OP"(G) = 1. Similarly, we will denote by
OPP'PP' (@) the group OPP (OPP' (G)) and prove a corresponding statement for the case |cd, (G)] = 2.

Theorem A. Let G be a finite group and let p > 3 be a prime. Suppose that |cd, (G)| = 2. Then G is solvable
and OPP'PP (G) = 1.

We remark that Theorem A answers Problem 5.3 of [22], which suggested that groups satisfying
lcdy (G)| = 2 must be p-solvable. We would like to point out that the assumption p > 3 in Theorem A is
needed. Indeed, it has already been mentioned in [22] that there are many examples of non-solvable groups
satisfying |cde (G)| = 2 (the symmetric group on 5 letters is the smallest one). For p = 3, we have that
if G is the automorphism group of PSL2(27), then |cds (G)| = 2, for instance. However, if the group G is
p-solvable, Nicola Grittini has recently proved in [11] that the p-length of G is bounded by |cd,/ (G)|, for
any prime number p.

We also remark that, for a given prime p, we can find examples of non-solvable groups G satisfying
|cd, (G)| = 3. For instance, the alternating group on 5 letters, As, satisfies that |cd, (As)| = 3 for p = 2,3, 5.
For p > 5, we have that |cd, (PGL2(p))| = 3.

Further, unlike many statements on character degrees, Theorem A does not immediately seem to corre-
spond to a dual statement for conjugacy classes. For instance, we observe that As has exactly two conjugacy
classes of size coprime to 5.

As in the case of the result of Berkovich, our proof of Theorem A uses the Classification of Finite Simple
Groups. In particular, we need the following result on simple groups.

Theorem B. Let S be a non-abelian simple group and let p > 3 be a prime. Then there exist nontrivial
a,f € Irry (S) such that o extends to Aut(S), B(1) t a(l), and  is P-invariant for every p-subgroup
P < Aut(S).

We obtain Theorem B as a corollary to the following stronger statement, after dealing with the exceptions
separately.

Theorem C. Let S be a non-abelian simple group and let p > 3 be a prime dividing |S|. Assume that S is
not one of As, Ag for p=>5 or one of PSLa(q), PSL§(q), PSpy(q), or 2Ba(q). Then there exist two nontrivial
characters a, B € Irr, (S) such that a(1) # (1) and both o and ( extend to Aut(S).

This article is structured as follows. In Section 2, we prove Theorem A assuming that Theorem B is
true and show that Theorem C (and hence Theorem B) holds for sporadic groups. In Section 3, we prove
Theorem B for the alternating groups. Finally, in Section 4, we prove Theorem B for simple groups of Lie
type and we conclude by using the Classification of Finite Simple Groups.
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and FEDER funds. The third author is partially supported by a grant from the National Science Foun-
dation (Award No. DMS-1801156). We are grateful to the anonymous reviewer for useful suggestions and
corrections. Finally, we thank Gunter Malle for several comments on a previous version of the paper.
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2. Reduction to simple groups

In this section we assume Theorem B and we prove Theorem A. We will need the following result, which
is essentially Lemma 4.1 of [24]. We provide a proof for the reader’s convenience.

Lemma 2.1. Let Q be a finite group acting on a finite group N and suppose that N = S1 x --- X S, where
the S;’s are transitively permuted by Q. Let Qy be the stabilizer of S in Q and let T = {ay,...,a:} be a
transversal for the right cosets of Q1 in Q with S; = S7*. Let ¢ € Irr(S1) be Qq-invariant. Then

v =P x P x - x P € Irr(N)
is Q-invariant.

Proof. First, we have that ) acts transitively on T, and we use the notation a; - ¢ to indicate the unique
element of T" such that Q1(a;q) = Q1(a; - q) for a; € T and ¢ € Q. Now notice that @ acts on N as follows:
if g € Q and S} = S; (that is, if a; - ¢ = a;), then (z1,...,24)? = (y1,...,yt), where y; = z!. Let ¢ € Q,
and let o € S; be the permutation defined by a; - ¢ = a,(;), so z! = Yo(i)- Then

—1

N @y, m) = (M X ™ X x ™)z, @)
=" (y1) 0™ (ye)
=" (95371(1)) - '1/)%(95371(@)
=y (To-1(1)) - pd (To-1(1))
= 1/1a1'q_1(33rl(1)) CqpordT (To-1(1))
= Pl O (Xomr (1)) PO (Tgo1(r))
=" (1) - P (24)
=v(x1,...,2). O

Theorem 2.2. Let G be a finite group and let p > 3 be a prime. Suppose that |cdy (G)| = 2. Then G is
solvable.

Proof. We argue by induction on |G|. Write cd,/(G) = {1, m}. Let N be a minimal normal subgroup of G.
Then either N is abelian or N is semisimple. It is clear that |cd, (G/N)| < |cd, (G)|. Hence by induction
and Proposition 9 of [1] we have that G/N is solvable.

Suppose that N = 51 x Sy x - -+ x S where S; = S, a non-abelian simple group. Write H = N¢(S1) and
S; = i, where G = |Ji_, Hz; is a disjoint union. By Theorem B, there exist a € Irr,(S) with a(1) # 1,
extending to Aut(S;), and 8 € Irry (S1) P-invariant for every p-subgroup P < Aut(S), with 8(1)  a(1).

Now let § = o x --- x a® € Irr(N). By Lemma 5 of [2] we have that 6 extends to G. Let 6 € Irr(G)
extending 6. Then 6(1) = #(1) = «(1)* is not divisible by p and hence, by hypothesis, (1) = m.

Let Q € Syl,(G) and write {T1,...,T,} for a set of representatives of the action of @ on {Si,..., 5},
with 77 = S;. Write O(T;) for the orbit of T; under the action of Q. Rearrange Si,S5s,...,S; in such a
way that O(Ty) = {S1,52,...,5,}, O(T2) = {Si,+1,- -, 51,41, }, etc. Notice that l; + Iy + - -- [, = t. Write
Np = 51 x83%x- x5, No = S, 41X+ xS, +1,, etc. Notice that Q) normalizes NV; and N = Ny X NaX- - X N,.

Now, let U = {q1,q2,-..,q, } be a transversal for the right cosets of @; = Q N Ng(S1) in @ such that
S; =87 for j =1,2,...,11, and define 1 € Irr(Ny) as follows:

=L X B X x [T € II‘I‘(N1).
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By Lemma 2.1 we have that v; is Q-invariant. If T; = S7* proceed analogously with 57+ to define 7; € Irr(XV;)
(notice that 8%* is Qp-invariant, where Qi = Ng(S7*) N Q). By Lemma 2.1, we have that ~; is () invariant
foralli=1,2,...,r

Now, let

Y= X o Xy € Irr(N).

We claim that v is Q-invariant. Indeed, let ¢ € @ and let nins ---n, € N, with n; € N;. Since () normalizes
N; for all i, we have:

YU (ning - --n,) = A{(n1)yg(n2) - -4 (ne) = yi(na) - - ye(ng).

Notice that (1) = 3(1)" and hence, v € Irr, (N). Then ged(o(y)y(1),|NQ : N|) = 1 and since 7 is
Q-invariant, we have that v extends to 4 € Irr(NQ). Since 4(1) and |G : NQ| are not divisible by p, there
exists x € Irr(G|7) of p’-degree. But x € Irr(G|y), and hence (1) | x(1). Since v(1) # 1, we have that
x(1) # 1, and therefore x(1) = m. Hence 8(1)* = (1) divides x(1) = m = (1), and B(1) | «(1). This
contradiction shows that N is abelian and hence G is solvable. O

The following is the second part of Theorem A.

Theorem 2.3. Let G be a finite group and let p > 3 be a prime. Suppose that |cd, (G)| = 2. Then ovr'vY (G) =
1.

Proof. Let K = O°(G), L = O” (K) = 0" (G), N = OP(L) = O"’’?(G) and W = O” (N) = 0”7 (@),
and write cdy (G) = {1, m}. Let W/X be a chief factor of G. Then W/X is a minimal normal subgroup of
G/X and since G is solvable by Theorem 2.2, we have that W/X is abelian. Now, if a prime ¢, different
from p, divides |W : X|, we have that W/X has a normal g-complement H/X and |W : H| is not divisible
by p, a contradiction with the fact that W = 0" (N). Hence W/X is a p-group.

Now, if X > 1, since c¢dy(G/X) C cdy(G), by induction and Thompson’s theorem we have that
Opp,pp/(G/X) = X and hence W = X, a contradiction. Therefore we may assume that X = 1.

Let Y be a complement of W in N. By the Frattini argument, we have that G = N-Ng(Y) = W-Ng(Y).
Since W is abelian, we have that Cy (Y) <G and then WNNg(Y) = Cw (Y') = 1. Hence W is complemented
in G and by Problem 6.18 of [12], every A € Irr(W) extends to G.

Let P be a Sylow p-subgroup of G, let 1y = A1, A2..., A be representatives of the action of P on Irr(W)
and let O; be the P-orbit of A\;. Then

1+Z|O\/\ (1) = Z|O\)\ (1’= > M1)?>=|W|=0 modp.

AeIrr(W)

Then there exists ¢ > 1 such that |O;|\;(1)? is not divisible by p. Since |O;| = |P : Py,|, we have that
|0;| = 1 and hence there is 1y # A € Irr(W) P-invariant. Let T = G and let A be an extension of A to T'.
Then AS € Irr(G) and A%(1) = |G : T|. But P C T and hence |G : T| = p/. By hypothesis, |G : T| =

If A is N invariant, we have that

A rw ™ nw) = X(w™HA(w) = A1)

and [N, W] C ker(A). But [N, W] < G and [N,W] C W. Since W is a minimal normal subgroup of G we
have that [N, W] = W or [N,W] = 1. If [N,W] = 1, we have that [Y,W] C [N,W] = 1 and hence by
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Lemma 4.28 of [13] we have that W = 1 and we are done. Thus we may assume that [N, W] = W. Then
W C ker(\), which contradicts the fact that X # 1y. Hence N ¢ T.

If cd, (G/N) = {1}, by Thompson’s theorem we are done. Then we may assume that cd, (G/N) = {1, m}.
Let x € Irr(G/N) with x(1) = m and let € € Irr(T'N/N) lying under x of p’-degree. Since N C ker(e), we
have that er is irreducible and p = epA € Irr(T|\). Thus p€ € Irr(G|A) and

pe(1) =G :Tlp(1) = |G : Tle(1)

is not divisible by p. Then |G : T|e(1) = m = |G : T| and € is linear. Now, since x is an irreducible
constituent of € we have that

m=x(1)<e(1)=|G:TN|<|G:T|=m.
This contradiction shows that W =1. 0O
We end this section with the following, which can be seen using the GAP Character Table Library.

Proposition 2.4. Let S be a simple sporadic group or the Tits group 2Fy(2)'. Then Theorem C holds for S.
3. Alternating groups

The aim of this section is to prove Theorem B for alternating groups. This result is obtained as a con-
sequence of Propositions 3.2 and 3.3 below. There we give a closed formula for the number of irreducible
p’-degree characters of S, that are labelled by hook partitions. This observation might have some combina-
torial independent interest.

We begin by recalling some basic facts in the representation theory of symmetric and alternating groups.
The irreducible characters of the symmetric group S, are labelled by partitions of n. We let P(n) be the set
of partitions of n. Given A = (\1,..., ) € P(n), we denote by x* the corresponding irreducible character
of S,. We sometimes use the notation A - n to say that A € P(n) and we use the symbol A -, n to mean
that x* € Irr, (S,,), for some prime number p. Given A € P(n) we let X’ be the conjugate partition of A.
We recall that the restriction to the alternating group (x*)a, is irreducible if, and only if, A # X\ (see [15,
Thm. 2.5.7]). Moreover, if A, u € P(n) then (x))a, = (x*)a, if, and only if, u € {\, \'}.

Given A € P(n) we denote by [)] its corresponding Young diagram. The node (7, ;) of [A] lies in row
i and column j. As usual, we denote by h(; j)(A) the hook-length corresponding to (i, j). We let H(X) be
the multiset of hook-lengths in A. By the hook-length formula [15, Thm. 2.3.21] we know that x*(1) =
(I Theroy M~

Given e € N we let H¢(\) be the multiset of hook-lengths in H(\) that are divisible by e. The e-core
Ce(N) of A is the partition of n — e|H¢(A\)| obtained from A by successively removing hooks of length e. A
useful consequence of work of Macdonald [17] is stated here (see [9, Lemma 2.4] for a short proof).

Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n = Z?:o ajp’. Let \ be
a partition of n. Then A\ by n if and only if |’Hpk (V)| = ag and Cpe(N) by n — agph.

We let L(n) = {\ € P(n) | A2 < 1}. Elements of £(n) are usually called hook partitions. We denote by
L, (n) the set consisting of all those hook partitions of n whose corresponding irreducible character of S,
has degree coprime to p. In the following proposition we completely describe the elements of £,/ (n) and we
give a closed formula for £, (n)|.
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Proposition 3.2. Let n € N and let n = Z?:l a;p"i be its p-adic expansion, where 0 <ny <ng < --- < ny
and 1 <a; <p—1 forallje{l,...,k}. Then

k
1Ly (n)] = arp™ - ] (a; + 1)

Jj=2
Moreover, for A\, u € L(n) we have that x*(1) = x*(1) if and only if X € {u, 1’}

Proof. We proceed by induction on k, the p-adic length of n. Suppose first that £ = 1. If n; = 0 then
n = a; < p and therefore |, (n)| = [£(n)| = a;. On the other hand, if n; > 0 and A € L(n) then
ha,1)(A) =n = a;p™. It follows that |[HP" (X)| = a; and that Cyni (A) = (). Using Lemma 3.1 we conclude
that A\ € L, (n) and hence that £(n) = L,/(n). Therefore, we have that |£,(n)| = a;p™. Let us now
assume that k > 2. Let m :=n — agp™ and let v € L, (m). We denote by A, the subset of £,/ (n) defined
as follows:

A, ={ e Ly(n) | Cpnr(X) =~}

Observing that the p™*-core of a hook partition is a hook partition and using Lemma 3.1 we deduce that

where the above union is clearly disjoint. Given v € £,/(m) we notice that the set A, consists of all those
hook partitions of n that are obtained from v by adding xz-many p™*-hooks to the first row of [y] and
(ar — x)-many to the first column of [y]. In particular

Ay, ={ ;|2 €{0,1,...,a,}}, where Ay = (71 +zp"*, 1Tty

We conclude that |A,| = aj + 1, for all v € L,/(m). This, combined to the inductive hypothesis shows that:

k—1 k
1Ly (n)| = Ly (m)] - (ag, + 1) = (arp™ - H(aj +1)) - (ak + 1) = a;p™ - H(aj +1).

The second statement is a consequence of a very well known fact. Namely that for A = (n—z,1%) € L(n)
we have that x*(1) = (”;1) (This can be easily deduced from the hook length formula.) O

Given a natural number n and S C P(n) we let cd(S) = {x*(1) | A € S}. Moreover, we let cd;*(A,,) be
the set consisting of all the degrees of irreducible characters of A,, of degree coprime to p that extend to
Sy Here we find a lower bound to [ed5*(A,)].

Proposition 3.3. Let n € N. Then |cd;* (An)| > ||£,(n)]/2].

Proof. A hook-partition A € L(n) is such that A = X if and only if n is odd and A = ((n +
1)/2,1("=1/2) Moreover, the set L,/ (n) is clearly closed under conjugation of partitions. It follows that
(n+1)/2,1=1/2) € £, (n) if and only if |£,(n)| is odd. Let S = {\ € L,(n) | A1 > \;}. The above
discussion shows that |S| = ||£,(n)]/2]. The second statement of Proposition 3.2 implies that [cd(S)| = |S].
We observe that if A\ € S then (x*)a, is irreducible of degree coprime to p and clearly extends to S,. In
other words, (x*)a, (1) € cd5*(Ay). Moreover, for A, i1 € S we have that (x*)a, (1) = (x*)a, (1) if and
only if A\ = p. Thus we conclude that [cd$*(A,,)] > |cd(S)| = |S| = [|Lp(n)]/2], as desired. O

p/
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In order to verify that Theorem C holds for alternating groups, we aim of to show that |cd§’ft(An)| >3,
for all n > 7. Propositions 3.2 and 3.3 give in most of the cases a much larger lower bound than the one
needed. In fact, Proposition 3.5 below is a consequence of these propositions, together with the analysis of
the cases where n € N is such that ||£,(n)]/2] < 2.

The following facts are easy applications of the hook-length formula and are important to deal with the
few exceptional cases mentioned above.

Lemma 3.4. Let n,t,c € N be such that ¢ € {2,3}, n >4+ ¢ and 0 <t < n — 2c. Let A(t) be the partition
of n defined as A(t) := (n—c—t,c,1') € P(n). If 0 < t < | 2=3=<], then

X)\(t) (1) < XA(t—l—l) (1)

Proof. To ease the notation we let m := A(t); = n — ¢ — t. The (strange) hypothesis 0 < t < [2=1=¢] is
equivalent to say that A\(¢ 4+ 1); > (A(t + 1)’);. In turn this is equivalent to say that 0 <t <m — 4.
If ¢ = 2 then using the hook length formula we observe that

YA (1) ~ m(m—2)(t+2) (m —2)? m
) m—DE+3)E+) S (m=1)? m—3 "

where the first inequality is obtained by replacing ¢ with m — 4. The proof of the statement for ¢ = 3 is
completely similar and therefore it is omitted. O

We care to remark that a more general statement (with arbitrary ¢ € N) does not hold, as for instance
is shown by the pair (6,5,1,1) and (5,5,1,1,1).

Proposition 3.5. Let n > 7 be a natural number and let p > 3 be a prime, then |cd5i* (A,)] > 3.

Proof. Let n = Z§:1 a;p"i be the p-adic expansion of n, where 0 <n; <no <---<npand1<a; <p—1
for all j € {1,...,k}. Suppose that

n ¢ {1+p" +p", 24 p", 14 ap™ | ag € {1,2,3}},

since n > 7, then \cd;’,‘t(An)] > 3, by Propositions 3.2 and 3.3. To conclude the proof, we analyze the
remaining cases one by one.

Suppose first that n = 1 4 ap®, for some a € {1,2,3}. Let t € N be such that 0 < t < L"T_GJ and let
A(t) = (n—2—1t,2,1"). Observe that A(t) # (A(¢)). By Lemma 3.4 we have that

1< xO1) < D (1) < - < AN (1) < MUY (1),

Moreover, since hy 1)(A()) = ap® and Cpr(A(t)) = (1), then Lemma 3.1 implies that x*® € Irr, (S,,), for
all t € {0,1,...,[%58]}. Since n = 1+ ap® > 7 it follows that n > 8 and hence that [25%| > 1. Since A()
is never equal to the trivial partition, we conclude that |ed5 *(Ay)| > 3.

Let k, h € N be such that k < h, and suppose that n = 1+p”* +p". To ease the notation we let m = 1+p*.
By Lemma 3.1 it is easy to observe that

Py (m) = {(p" —1,2,171) [t € {1,....p" = 2}} U {(m), 1™)}.
Since p > 5 we have that [P, (m)| > 3. For each v € P, (m) we let

)‘(’Y> = (,‘Yl +ph?727 v afyf) € P(’)’L)
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Using Lemma 3.1 it is now routine to check that A(y) b, n. Moreover, since p" > m we have that
A(y) # (A(vy)) for all v € Py (m). Therefore, using again Lemma 3.4 we conclude that also in this case
leds (An)| > 3.

Finally suppose that n = 2 + p*, for some k € N. Let ¢ € N be such that 0 < ¢ < [257] and let
A(t) = (n — 3 —1t,3,1"). Observe that A(t) # (A(t))’. Since hq,1)(A(t)) = p* and Cpe(A(t)) = (2), by
Lemma 3.1 we deduce that x*! € Irr,(S,), for all t € {0,1,...,[257]}. If p* # 5 then n > 9 and
hence |%57] > 1. Since A(t) is never equal to the trivial partition, using Lemma 3.4 we conclude that
led5i* (An)| > 3. If p* = 5 then direct verification shows that |cd$ (A7) >3. O

We are now ready to prove Theorem B.
Corollary 3.6. Theorem B holds for all simple non-abelian alternating groups.

Proof. Let n > 5. Since p > 3 a Sylow p-group P of Aut(A4,) is necessarily contained in A,,. Hence all
irreducible characters of A,, are P-invariant. With this in mind, we observe that for all n > 7 Theorem
B follows from Proposition 3.5. If n = 5 then (in accordance with the notation used in the statement of
Theorem B) we choose a = (x(*1)) 4, and 8 an irreducible constituent of (x(*11)) 4. Similarly for n = 6 we
observe that Theorem B holds by choosing a = (x(4?)) 4, and 3 an irreducible constituent of (x>21) .. O

Remark 3.7. As mentioned at the start of the present section, the proof of Theorem B for alternating groups
is achieved via Proposition 3.2 and 3.3, which we believe could also have applications in other contexts. Of
course, this is not the only way to prove Theorem B. For instance, for any n > 6 it can be shown that the
set {(n—1,1),(n—2,2), (n—2,1%),(n—3,2,1)} always contains at least two partitions labelling irreducible
characters of S, of distinct p’-degree that restrict irreducibly to A,. We are indebted to the anonymous
reviewer for this observation.

4. Simple groups of Lie type

Throughout this section, we will adopt the following notation. Let S be a simple group of Lie type, by
which we mean that there is a simply connected simple linear algebraic group G defined over Fq such that
S = G/Z(G), where G := G% is the group of fixed points of G under a Steinberg endomorphism F. Here

[F, is an algebraic closure of the field F, with ¢ elements, and ¢ is a power of some prime. We further write
G* = (G*)F" | where (G*, F*) is dual to (G, F).

We denote by v: G — G a regular embedding, as in [5, Chapter 15], and let ¢*: G - G* be the
dual surjection of algebraic groups. When F' is a Frobenius endomorphism, we may extend F' to a Frobenius
endomorphism on G, which we also denote by F, and we let G := éF and G* := (é*)F " be the corresponding
group of Lie type and its dual, respectively. Then G < G and the automorphisms of GG are generated by the
inner automorphisms of G (known as inner-diagonal automorphisms of G) together with graph and field
automorphisms.

When G is of type A,_1, we use the notation PSL; (¢) with € € {£1} to denote PSL,,(¢q) for e = 1 and
PSU, (q) for e = —1. We will also use the corresponding notation for SL, (q), GL,(¢), and PGL;,(q).

The goal of this section is to prove the following, which is Theorem B for groups of Lie type.
Theorem 4.1. Let S be a simple group of Lie type defined over Fy and let p > 3 be a prime dividing |S]|.
Assume that S is not one of PSLa(q), PSL5(q), PSpy(q), or?Ba(q). Then there exist two nontrivial characters
X1, X2 € Irr, (S) such that x1(1) # x2(1) and both x1 and x2 extend to Aut(S).

To deal with the exceptions in Theorem 4.1, we prove the following, which is Theorem C.
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Theorem 4.2. Let S be a simple group of Lie type defined over F, and let p > 3 be a prime dividing |S]|.
Then there exist two nontrivial characters x1,x2 € Irry (S) such that x2(1) { x1(1), x1 extends to Aut(S),
and x2 is invariant under every p-group of Aut(\S).

4.1. Defining characteristic

We begin by fixing some notation for this section. Let ¢ = p* be a power of a prime p > 3. We fix
a = p®-m where (m,p) =1,b>0,and m > 1. In what follows, it will be useful to consider certain elements
of F: . For a positive integer n, we will denote by (,, an element of order p™ — 1 in qu and by &, an element
of order p™ + 1 in qu. In particular, ¢; € F) CFS, ¢ € F, and &, € ]quz \ F;. We also have &; € IFqXZ
and further §; € F ¢ if and only if ¢ is a square.

4.1.1. Establishing the basic strategy

Suppose that F' is a Frobenius map. In what follows, we will often proceed following ideas like those in
26, Theorem 4.5(4)] and [27, Proposition 6.4] to construct characters of S = G/Z(G) satisfying our desired
properties, using characters of G. Namely, if s is a semlslmple element of G*, there exists a unlque so-called
semisimple character Y of p’-degree associated to the G*- -conjugacy class of s, and xs(1) = [G* 1 Can ()]
If further s € [G*, G*], then Y, is trivial on Z(G), using [23, Lemma 4.4]. Furthermore, the number of
irreducible constituents of x := Xs|¢ is exactly the number of irreducible characters 6 € Irr(é /G) satisfying
Y0 = Xs, and we have Irr(G/G) = {X. | z € Z(G*)} and E(G, s)X- = E(G, sz) for such z € Z(G*), by [,
13.30]. Then Y is irreducible if and only if s is not é*—conjugate to sz for any nontrivial z € Z (é*) Finally,
if o € Aut(é) and ¢*: G* — G* is dual to ¢, then [25, Corollary 2.4] tells us that x¥ = x«(s)-

Therefore, in the context of proving Theorem 4.1, we will be interested in showing that there exist two
nontrivial semisimple elements s1, 59 € G* such that:

1)
(2) for i = 1,2, s; is not conjugate to s;z for any nontrivial z € Z(G*)
(3) the G*-classes of s; and s, are Aut(G )-invariant; and
(4)

4 |CG*(51)|p a |CG*(52)|P'

s1, s9 are contained in [G*, G*];

In the context of Theorem 4.2, we will need to replace (3) and (4) with:

(3') the G*-class of s1 is Aut(G*)-invariant and that of s, is fixed by p-elements of Aut(G*); and
(4) Cg-(s1)lp 1 1Cg- (s2) -

4.1.2. The proofs in defining characteristic

Proposition 4.3. Let S be a simple group of Lie type defined in characteristic p > 3 not in the list of
exclusions of Theorem /J.1. Then the conclusion of Theorem /.1 holds for S and p.

Proof. First assume S is one of Ga(q), F4(q), or 3D4(q). Recall here that ¢ is not a power of 2 or 3. The
character degrees in these cases are available at [16], and the generic character tables are available in
CHEVIE [8]. Here Aut(S)/S is cyclic generated by a field automorphism, so characters extend to Aut(S)
if and only if they are invariant under Aut(S). In the case of Ga(q), there is a unique character of degree
(¢* + ¢*> + 1) and a unique character of degree (¢> + €), where € = +1 is such that ¢ = ¢ (mod 6), so the
statement holds for Go(g). Similarly, F4(q) has a unique character of degree (¢® + ¢* 4+ 1) and a unique
character of degree (¢® +1)(q* +1)(¢® +¢* +1). Since ®D4(q) has a unique character of degree (¢%+ ¢* +1),
it suffices in this case to find another member of Irr,/ (S) invariant under field automorphisms. Taking k to
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be such that v* € F)¢, where v generates I ¢, this is accomplished by x13(k) in CHEVIE notation, which
has degree (¢ +1)(¢® +¢* +1).

Hence we may assume S is not in the above list, and by Section 3, we may assume that S is not isomorphic
to an alternating group. Also note that since p > 3, we may assume G does not have an exceptional Schur
multiplier. Let D < Aut(é) be as in [28, Notation 3.1], so that D is generated by appropriate graph and
field automorphisms and Aut(G) is generated by D and the inner automorphisms of G.

Since [G G] is coprime to p, we see by Clifford theory that the set of members of Irr(G) lying above
members of Irr, (G) is exactly the set Irr, (G). By [28, Proposition 3.4], for every x € Irry /(G), there is a
character yo € Irr(G|Y) such that (G x D)y, = Gxo x D, and xo extends to G x D,,. Further, if X|¢ = xo
and X is D-invariant, it further follows that yo extends to G x D, following the proof of [28, Lemma 2.13],
since the factor set constructed there for the projective representation of (é x D)y, extending xo is trivial
in this case.

Hence it suffices to show that there exist D-invariant i, X2 € Irrp/(é) that are trivial on Z(G), have
different degrees, and satisfy that X1|¢ and Y2|¢ are irreducible. In particular, it suffices to find s; and so
as described in Section 4.1.1 satisfying conditions (1)-(4). For condition (2), we note that by [3, Corollary
2.8(a)], it suffices to show that Cg=(.*(s;)) are connected, and hence by [20, Exercise 20.16(c)], to choose s;
such that (|s;],|Z(G)|) = 1.

First, suppose that G i is not of type Ay. Let ® and A := {al, Qg,...,qp} be a system of roots and simple
roots, respectively, for G" with respect to a maximal torus T followmg the standard model described in
[10, Remark 1.8.8]. Note that we may assume that |A| > 3 if ® is type By or Cy, |A| > 4 if ® is type Dy,
and otherwise ® is type Fg, E7, or Eg. Further, our assumptions imply that if the Dynkin diagram for ®
has a nontrivial graph automorphism, then all members of A have the same length and that automorphism
has order 2 unless @ is of type Dy.

Given o € @, let h, denote the corresponding coroot, following the notation of [10]. Notice that for o € ®
and t € qu, we have h(t) € [é*, (E*] (See, for example, [10, Theorem 1.10.1(a)].) Let 6 € F* be such that
|0] is prime to |Z(G)|, if possible. Otherwise, we have G is type E7, By, Cy, or Dy and p — 1 is a power of 2.
(Note that if G is type Fg, and p — 1 is a power of 3, then p = 2, contradicting our assumption that p > 3.)
In these latter cases, let § be an element of F; with order prime to |Z(G)| dividing p + 1.

We define s} := ha, (0)hay (0) -+ - hay_y (6)ha, (9). Let 8 be a member of A as follows. For ® of type Es, Er,
or Fg, let 8 := ay. If ® is of type Cg or Dy, let B := ay. If ® is type By, let § := ;. Let s5 := hg(d) for
® not of type Dy; s5 := hq,(0)hq, ,(0) for @ of type D, with ¢ > 5; and s5 := hq, (6)hay (0)ha, (9) for & of
type Dy. Note then that for i = 1,2, s/ is fixed under graph automorphisms and (|s}|,|Z(G)|) = 1.

Ifo € F, <, we see that the s, are F*-fixed, and we write s; := s}. Otherwise, the elements a;+. . .4y and 8
are members of ®, and in the case of Dy, we have apy+ay_1 = 2ep_1 and for £ = 4, a1 +az+ay = - e1—€2 +2e3.
In the first case, let w € Ng~ (T ) induce the corresponding reflection in the Weyl group of G . In the case
of oy + ay—1 in type D¢, we may take w to be the product of members of Ng- (T ) inducing the reflections
in the Weyl group of G for oy and ay_1, and similarly for a; + a3 + a4 in the case of D4. In any case,
we have s; 1= s;7 is F*-fixed, where g € G satisfies g_lF*(g) = . (Note that such a g exists by the
Lang-Steinberg theorem ) Hence s; and sy are members of [G*, G*].

Further, we have constructed s; and ss to be fixed under graph automorphisms and such that
|Cq.(51)]pr # [Cg.(s2)]pr. The latter can be seen by analyzing the root information in [10] and using
the fact that Cg«(s;) has root system ®,, where ®,, consists of a € ® with a(s;) = 1 (see [7, Proposition
2.3]). Let F), denote a generating field automorphism such that Fj,(ha(t)) = ha(tP) for a € ® and t € FX
Then for i = 1,2, s} is G —conjugate to F,(s}), taking for example w as the conjugating element when
s; # Fp(s}). Hence s; is also G -conjugate to F(s;). Since the Cg-(s;) are connected, this yields that the
s; are G*-conjugate to F,(s;), using [7, (3.25)]. Then s; and s, are semisimple elements satisfying (1)-(4),
as desired.
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Now let ® be of type A,_1, so that G = G* = GL¢ (¢), G = [G*,G*] = SL¢ (¢), and G* = PGLE (¢), with
e € {£1} and n > 4. If (p,€) # (5,+1), let § € Cp—c, viewed as a subgroup of F,2, be such that 6 = (; in
case € = 1 and § = & in case € = —1. Note that |0| > 4, from the conditions on p. If (p,€) = (5,+1), let ¢
be an element of order 6 in Fo5. Then in any case, we have ¢ chosen such that |6| > 4.

Recall that the class of a semisimple element in GL;, (¢) is determined by its eigenvalues. Let s1 € G* have
eigenvalues {0,671,1,1,...,1} and s have eigenvalues {6,5,071,071,1,...,1}. Then Cx, (s1) = GL{,_,(q) x

L{(¢)? and Cg.(s2) = GL;,_,(¢q) x GL5(¢)?, unless ¢ = —1 and q is square or (p,e) = (5,+) and ¢ is
nonsquare, in which case Cg. (s1) = GL;, _5(¢) x GL1(¢?) and Cg. (s2) = GL;, _4(¢) X GL2(¢?). In any case,
we therefore have |Cg. (s1)]p # |Cg. (82)]p- Since the graph automorphism acts via inverse-transpose on
GL,,(¢q) and the generating field automorphism acts on semisimple elements by raising the eigenvalues to
the power of p, we see that the G*-classes of s1 and s are each Aut(é*)-invariant. Further, as s; and so
have determinant 1, they are contained in [G*, G*] = SLE (q).

Now, in this case, Z (C:’*) is comprised of matrices of the form p-I,,, where p is an element of Cy_, viewed
as a subgroup of Fg2. Since || # 2, we see by comparing eigenvalues that s; cannot be conjugate to s;z for
any nontrivial z € Z(é*) Now, if soz is conjugate to some z € Z(é*), then there is some p as above such
that 6u = 6! and §~'u = §, except possibly if n = 6, in which case du = 1 is another possibility. In the
latter case, 1 = 71, s0 sa2 has eigenvalues {1,1,672,672,671, 671}, so we must have =2 = §, contradicting
|6| > 4. Hence we are in the case dpu = 6~ and 'y = §. Then u = §~2 = §2, again contradicting |§| > 4.
Hence in all cases, we have exhibited the desired elements sq, so € @*, and the proof is complete. O

We remark that the conclusion of Theorem 4.1 fails for PSL;(¢) and PSL3(g) when ¢ is a square. Indeed,
in these cases, the only option for Aut(G*) invariant semisimple classes of G* would be comprised of elements
with eigenvalues {,0~'} and {6,671, £1}, respectively, where 7 = § or 6~ L. If ¢ is a square, both options
would yield 6 € [y, so all corresponding semisimple characters have the same degree. However, we can show
the following:

Lemma 4.4. Let S = PSLy(q), PSL5(q), or PSpy(q) with g a power of a prime p > 3. Then the conclusion
of Theorem 4.2 holds for S and p. Moreover, if q is not square and further p # 5 in the case of PSLa(q),
then the conclusion of Theorem 4.1 holds for S and p.

Proof. Note that since p > 3, the graph and diagonal automorphisms are not in a p-subgroup of Aut(.5). In
particular, the only p-elements of D are induced from field automorphisms of p-power order. Arguing as in
the proof of Proposition 4.3, it suffices to show that there are two semisimple elements s1, so of G* satisfying
conditions (1), (2), (37), and (4’) from Section 4.1.1. Throughout the proof, let ¢ = p® where a = p’m with
(m,p) = 1.

(i) First suppose that p > 5 and S = PSLQ( ). Note that since p > 5, both (; and &,, have order larger
than 4. Let s; € G* have eigenvalues {¢1,¢1), and so have eigenvalues {&,,, &1} Then s; and sy satisfy
conditions (1), (2), (3"), and (4’) from Section 4.1.1. Here Cg. (s1) = GL1(q)?, Cg. (s2) = GL1(¢?), and the
corresponding semisimple characters have degrees x1(1) = ¢+ 1 and x2(1) = g — 1, respectively. This proves
the first statement when p > 5 and S = PSLy(q).

(i) Next let p = 5 and S = PSLy(q). First suppose m > 1. Here we may take s; € G* to have eigenvalues
{€1,€671}, and take s, to have eigenvalues {(,,, ¢} if 2 1 m and eigenvalues {&,,, &1} if 2|m. Then if 2§ m,
we have Cg. (s1) = GL1(¢?) and Cg. (s2) = GL1(g)?. When 2 | m, the centralizers of s; and sy are reversed.
In either case, however, we obtain x; and Y. satisfying the required conditions, as above.

Now let m =1, s0 ¢ = 5° . Then ¢ = 1 (mod 4) and ¢ = —1 (mod 3). We obtain an Aut(S)-invariant
character y; constructed using s; as in the case in the previous paragraph. Here x1(1) = ¢ — 1. Further, we
see from the generic character table that there is a character of degree (¢ + 1)/2 which is invariant under
every field automorphism, completing the proof of the first statement for PSLy(q).
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(iii) Now let S be PSL§(q), with p > 5. Notice that an element s € G* with eigenvalues {8,611} with
6] > 4 cannot be conjugate to sz for any nontrivial z € Z(G*), as then the sets {8,671} and {6y, 6~ p, u}
are the same for some p € Cy_, yielding 6% = 1. Note |¢;| > 4 since p > 5. Hence we may construct s; and
so analogously to case (i) above. Namely, let s; have eigenvalues {1, (] L 1}, and let s have eigenvalues
{&m. &5 1} Then sy and sy satisfy properties (1), (2), (37), (47) of Section 4.1.1. Here C. (s1) = GL1(¢)* in
case € = 1, and Cg. (s1) = GL1(¢*) x GUy(q) in case € = —1. Further, Cg. (s2) = GL1(¢*) x GL1(g) in case
e =1and Cp.(s2) = GUy(q)? in case e = —1. Hence x1(1) = (¢+1)(¢*+eg+1) and x2(1) = (¢—1)(¢*+eq+1).

(iv) Now let S = PSp,(q). The character table of G = Sp,(¢q) and of G = CSp,(q) are available
in [29] and [4], respectively. From this we see that the characters in the families yg(k) and x¢(¢) with
ke {l,....(¢ —3)/2},¢ € {1,...,(¢ — 1)/2} in the notation of [29], with degrees (¢ + 1)(¢> + 1) and
(g—1)(q%+1), respectively, contain Z(G) in the kernel and extend to G. Further, comparing notation shows
these extensions are invariant under the same field automorphisms as the characters of G. Choosing k and
¢ such that v¥ = ¢; and n* = &,,, where v generates F, and n generates the cyclic group of size ¢ + 1 in
IFqXQ, we see that x1 := xs(k) and x2 := x6(¢) satisfy the desired properties.

(v) Finally, let ¢ be nonsquare, and further assume p > 5 in the case S = PSL2(q). Let s1 be as in part (i)
in the case PSLy(g) and as in part (iii) for PSL§(q). Let s5 in G* have eigenvalues {&1,€7 1} or {&1,¢7%, 11,
respectively. In this case §; € F; \ F* has order larger than 4. These elements satisfy conditions (1)-(4)
discussed in Section 4.1.1. In particular, when S = PSLs(q), the semisimple characters corresponding to s;
and sy have degrees ¢+1 and ¢—1, respectively. When S = PSL5(q), the semisimple characters corresponding
to s1 and sy have degrees (¢+ 1)(¢> + eq+ 1) and (¢ — 1)(¢*> + €g + 1), respectively. Then in these cases, as
in the proof of Proposition 4.3, the conclusion of Theorem 4.1 holds.

Now let S = PSp,(q). Here we let x; be as in (iv), and let x2 be the character yg(¢), where ¢ is now
chosen so that nf = & is a p+ 1 root of unity in Fg2 \ Fy. Then x; and x2 both extend to Aut(S) and have
different degrees, completing the proof. O

4.2. Non-defining characteristic

In this section, we address the proofs of Theorems 4.1 and 4.2 in the case p 1 gq.

Proposition 4.5. Let S be a simple group of Lie type defined over Fy not in the list of exclusions of Theo-
rem 4.1, and let p > 3 be a prime dividing |S| but not dividing q. Or let S = ?Bo(q?) where ¢* := 22m+1
and let p > 3 be a prime dividing |S| but not dividing ¢> — 1. Then the conclusion of Theorem /.1 holds for
S and p.

Proof. By [19, Theorem 2.4], every unipotent character of S extends to its inertia group in Aut(S), so it
suffices to find two unipotent characters with different degrees in Irr,/ (S) that are invariant under Aut(S).
Since the Steinberg character Stg is one such character, we aim to exhibit another nontrivial unipotent
character of p’-degree invariant under Aut(.S).

Further, [19, Theorem 2.5], yields that every unipotent character of S is invariant under Aut(S) unless
S is a specifically stated exception for one of D, (q) with n even, Bs(q) with ¢ even, G2(q) with ¢ a power
of 3, or Fy(q) with ¢ even.

The unipotent characters of classical groups are indexed by partitions in case of type A,_; and ?4,,_;
and by “symbols” in the other types. Discussions of these symbols and the corresponding character degrees
are available in [6, Section 13.8]. In Table 1, we list two or three unipotent characters for each classical
type that extend to Aut(S) by [19, Theorems 2.4 and 2.5]. Further, p > 3 cannot divide the degree of all
characters listed for a given type simultaneously, which can be seen, for example, by an application of [18,
Lemma 5.2]. Hence taking y; = Stg and x2 the character listed whose degree is not divisible by p, the
desired statement holds in the case of classical types.
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Table 1
Some unipotent characters that extend to Aut(S).
Type Partition/symbol indexing x x(1)g
Ap—1,m >4 (n—1,1) ‘1':111;1
(¢"—1)(g"*—1)
(n—2,2) BCEnICE
( 7L7|—1)( 7L72_1)
(n-21,1) ENCEI
n—1_(_qyn—1
Apn_1,n >4 (n—-1,1) S
("= (=1)") ("3 —(=1)""?)
(n—2,2) @D (@=1)
(" 1= (=1)"" ) (g"2—(=1)""2)
(n—-211) D=1
B, or Cp,,n>3o0orn=2and q odd (10") W;?;#
(0 n (¢"'4+1)(g"~1)
1 2(¢g—1)
Bs with g a power of 2 (L2 (g —1)%/2
“?) (¢ +1)2/2
n—1 "—1)(g" 41
Dy,n>5 " R
(1 ") (@ '+ (g" ' —1)
01 -1
13 +1)3(g®+1
Dy 63 (a )Q(q )
(23 (®+1)2(a®+q+1)
03 2
2 1 n—1 "4+1)(¢g" %21
D,,n >4 "N (flq)g(—gl>
1M @l (g o)
1 g2—1

Similarly, for groups of exceptional type, Suzuki and Ree groups, and 3D4(q), by observing the explicit
list of unipotent character degrees in [6, Section 13.9], we see that there is likewise always a second unipotent
character with degree not divisible by p, except in the case of ?Bs(q?) or 2G2(q?) with p|(¢® — 1). Further,
these can again be chosen not to be one of the exceptions listed in [19, Theorem 2.5]. When S = %G5(q¢?)
and p | (¢ —1), we may consider instead the unique character of degree ¢* — ¢ + 1, which must be invariant
under Aut(S), and hence extends since Aut(S)/S is cyclic. O

Together, note that Propositions 4.3 and 4.5 prove Theorem 4.1. We also note the following, which follows
from the proof of Lemma 4.4 and ideas from Proposition 4.5, together with the fact that PSL§(q) has a
unipotent character of degree ¢(q + ¢€).

Lemma 4.6. Let p > 3 be a prime and let S = PSLa(q) or PSL5(q) be simple with q a power of a prime
r > 3, where r # p. Then the conclusion of Theorem 4.2 holds for S and p. Moreover, the conclusion of
Theorem /.1 holds for S and p in the following situations:

o S=PSLa(q), r>5, and pt(q+ 1) or q is not square;
o S=PSL3(q) and pt(q¢+ 1) or q is not square;
o« S =PSUs(q).

To complete the proof of Theorem 4.2, we need to consider 2By (22"1), PSLy(q), and PSL$(q) when q is
a power of 2 or 3 and p { ¢. These are treated in the next two Lemmas.

Lemma 4.7. Let p > 3 be a prime and let S = PSLa(q) or PSL5(q) be simple with g a power of 2 or 3. Then
the conclusion of Theorem 4.2 holds for S and p.

Proof. Let r € {2,3}. Note that we omit the cases PSLy(r), since S is simple. As before, we take ;1 = Stg,
and show that there exists yo satisfying the desired properties.
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First suppose that g = P for some positive integer b. Notice then that p { (¢> — 1). Indeed, otherwise
we have p|®ope(r) or p|®pe(r) for some nonnegative integer ¢, and hence by [18, Lemma 5.2], we have r
has order 1,2, or a power of p modulo p. Since the latter is impossible, it follows that p | (r? — 1), which
is impossible since p > 3 and r < 3. If S = PSL5(¢), we may take y2 to be the unipotent character of
degree ¢ + €q, and in fact the conclusion of Theorem 4.1 holds in this case using [19, Theorems 2.4 &
2.5]. In the case S = PSLy(q) and r = 3, we have ¢ = —1 (mod 4), and we may take x2 to be a character
of degree (¢ — 1)/2, which is fixed by the field automorphisms. In the case r = 2 and S = PSLsy(q), let
s € G* have eigenvalues {6,671} where |§| = 3. Then the corresponding semisimple character of G restricts
to SLa(q) = PSLay(q) irreducibly, is fixed by field automorphisms, and has degree ¢ £+ 1. Letting x2 be the
corresponding irreducible character of S, we are done in this case.

So we may assume g = 7% where r € {2,3}, and a = p’m with m > 1 and (m,p) = 1. Let S = PSL§(q).
If pt(q+ €), we may again take Y2 to be the unipotent character of degree ¢ + g, and the conclusion of
Theorem 4.1 holds. So assume that p | (¢ + €). Arguing similarly to above, we see that this excludes the
case (r,m) = (2,2) if € = —1, so we may further assume (r,m) # (2,2) if e = —1. Taking s € G* to have
eigenvalues {9,061, 1} with |0| = ™ + ¢, we may argue as before to obtain a character x» of S with degree
(¢ — €)(¢® + eq + 1), which is not divisible by p, that is invariant under every p-element of Aut(S).

Now let S = PSLy(q). Then taking s; € G* for i = 1,2 to have eigenvalues {6:,6; 1}, with [01] = r™ — 1
and |02| = ™41, we obtain characters with degree (¢+1) and (¢—1) of S that are invariant under p-elements
of Aut(S). Since p > 3 cannot divide both of these character degrees, we may make an appropriate choice
for x2, which completes the proof. O

— 22n+1

Lemma 4.8. Let S be a simple Suzuki group %Bo(q?) with q? and let p > 3 be a prime dividing

q*> — 1. Then the conclusion of Theorem /.2 holds for S and p.

Proof. As before, we may take y; to be the Steinberg character. Now, since Aut(S)/S is cyclic of size
2n+ 1, generated by field automorphisms, it suffices to exhibit a character yo with degree coprime to p that
is invariant under field automorphisms of p-power order. Let 2n + 1 = p®m with (m,p) = 1. Arguing as in
Lemma 4.7, we see m > 1, since p|(¢%> — 1). Hence letting s be such that v* has order 2™ — 1, where v has
order ¢? — 1, we may take y2 to be the character xs(s) in CHEVIE notation. Then y» has degree ¢* + 1
and is invariant under p-elements of Aut(S). O

Theorem 4.2 now follows by combining Lemmas 4.4, 4.6, 4.7, and 4.8 with Theorem 4.1, which completes
the proofs of Theorems A—C.

References

[1] Yakov Berkovich, Finite groups with small sums of degrees of some non-linear irreducible characters, J. Algebra 171 (2)
(1995) 426-443.
Mariagrazia Bianchi, David Chillag, Mark L. Lewis, Emanuele Pacifici, Character degree graphs that are complete graphs,

2] Mari ia Bianchi, David Chillag, Mark L. Lewis, E le Pacifici, Ck 1 hs tl 1 &
Proc. Am. Math. Soc. 135 (3) (2007) 671-676.

[3] Cédric Bonnafé, Quasi-isolated elements in reductive groups, Commun. Algebra 33 (7) (2005) 2315-2337.

[4] I.I. Jeffery Breeding, Irreducible characters of GSp(4,¢q) and dimensions of spaces of fixed vectors, Ramanujan J. 36 (3)
(April 2015) 305-354.

[6] Marc Cabanes, Michel Enguehard, Representation Theory of Finite Reductive Groups, New Mathematical Monographs,
vol. 1, Cambridge University Press, Cambridge, 2004.

[6] Roger W. Carter, Finite groups of Lie type, in: Conjugacy Classes and Complex Characters, in: Wiley Classics Library,
John Wiley & Sons Ltd., Chichester, 1993, reprint of the 1985 original.

[7] Francois Digne, Jean Michel, Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts,
vol. 21, Cambridge University Press, Cambridge, 1991.

[8] Meinolf Geck, Gerhard Hiss, Frank Liibeck, Gunter Malle, Gotz Pfeiffer, CHEVIE — a system for computing and processing
eneric character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Eng. Commun.
g g Yy yl g g 2 g
Comput. 7 (1996) 175-210.

[9] E. Giannelli, A.A. Schaeffer Fry, C. Vallejo, Characters of n’-degree, Proc. Am. Math. Soc. 147 (11) (2019) 4697-4712.



E. Giannelli et al. / Journal of Pure and Applied Algebra 224 (2020) 106338 15

[10] Daniel Gorenstein, Richard Lyons, Ronald Solomon, The Classification of the Finite Simple Groups. Number 7. Part III.
Chapters 7-11, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 2018.

[11] Nicola Grittini, Characters of solvable and w-separable groups, PhD Thesis, 2019.

[12] I. Martin Isaacs, Character Theory of Finite Groups, AMS Chelsea Publishing, Providence, RI, 2006, corrected reprint of
the 1976 original, Academic Press, New York, 1976.

[13] I. Martin Isaacs, Finite Group Theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Prov-
idence, RI, 2008.

[14] Noboru Itd, Some studies on group characters, Nagoya Math. J. 2 (1951) 17-28.

[15] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Appli-
cations, vol. 16, Addison-Wesley Publishing Co., 1981.

[16] Frank Liibeck, Character degrees and their multiplicities for some groups of Lie type of rank < 9 (webpage), 2007.

[17] I.G. Macdonald, On the degrees of the irreducible representations of symmetric groups, Bull. Lond. Math. Soc. 3 (1971)
189-192.

[18] Gunter Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007) 192-220 (electronic).

[19] Gunter Malle, Extensions of unipotent characters and the inductive McKay condition, J. Algebra 320 (7) (2008) 2963-2980.

[20] Gunter Malle, Donna Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced
Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011.

[21] Gerhard O. Michler, Brauer’s conjectures and the classification of finite simple groups, in: Representation Theory, II,
Ottawa, Ont., 1984, in: Lecture Notes in Math., vol. 1178, Springer, Berlin, 1986, pp. 129-142.

[22] Gabriel Navarro, Variations on the It6-Michler theorem on character degrees, Rocky Mt. J. Math. 46 (4) (2016) 1363-1377.

[23] Gabriel Navarro, Pham Huu Tiep, Characters of relative p’-degree over normal subgroups, Ann. Math. 178 (3) (2013)
1135-1171.

[24] Gabriel Navarro, Pham Huu Tiep, Alexandre Turull, p-rational characters and self-normalizing Sylow p-subgroups, Rep-
resent. Theory 11 (2007) 84-94 (electronic).

[25] Gabriel Navarro, Pham Huu Tiep, Alexandre Turull, Brauer characters with cyclotomic field of values, J. Pure Appl.
Algebra 212 (3) (2008) 628-635.

[26] A.A. Schaeffer Fry, Odd-degree characters and self-normalizing Sylow subgroups: a reduction to simple groups, Commun.

Algebra 44 (2016) 5.

A.A. Schaeffer Fry, J. Taylor, On self-normalising Sylow 2-subgroups in type A, J. Lie Theory 28 (1) (2018) 139-168.

Britta Spath, Inductive McKay condition in defining characteristic, Bull. Lond. Math. Soc. 44 (3) (2012) 426-438.

Bhama Srinivasan, The characters of the finite symplectic group Sp(4, ¢), Trans. Am. Math. Soc. 131 (1968) 488-525.

John G. Thompson, Normal p-complements and irreducible characters, J. Algebra 14 (1970) 129-134.

[27
[28
29
30



