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1. Introduction

Many problems in the character theory of finite groups deal with character degrees and prime numbers. 
For instance, the Itô-Michler theorem ([14], [21]) asserts that a prime p does not divide χ(1) for any 
χ ∈ Irr(G) if and only if the group G has a normal abelian Sylow p-subgroup. As usual, we denote by Irr(G)
the set of complex irreducible characters of G and by Irrp′(G) the subset of Irr(G) consisting of irreducible 
characters of degree coprime to p. If we write cd(G) for the set of character degrees of G and cdp′(G) for the 
subset of cd(G) consisting of those character degrees not divisible by p, the Itô-Michler theorem deals with 
the situation when cdp′(G) = cd(G). At the opposite end of the spectrum, we have a theorem of Thompson 
([30]) showing that if cdp′(G) = {1}, then G has a normal p-complement. In [1], Berkovich showed that in 
this situation, G is solvable, using the Classification of Finite Simple Groups.

In [9], a variation on Thompson’s theorem for two primes is studied. Namely, it is shown there that 
if G has only one character with degree coprime to two different primes, then G is trivial. In this paper, 
we offer another variation on Thompson’s theorem by describing finite groups G such that |cdp′(G)| = 2. 

* Corresponding author.
E-mail addresses: eugenio.giannelli@unifi.it (E. Giannelli), noelia.rizo@uv.es (N. Rizo), aschaef6@msudenver.edu

(A.A. Schaeffer Fry).

https://doi.org/10.1016/j.jpaa.2020.106338
0022-4049/© 2020 Elsevier B.V. All rights reserved.



2 E. Giannelli et al. / Journal of Pure and Applied Algebra 224 (2020) 106338

Thompson’s theorem may equivalently be viewed in terms of Opp′(G), where Opp′(G) = Op′(Op(G)). 
Namely, Thompson’s theorem says that if cdp′(G) = 1 then Opp′(G) = 1. Similarly, we will denote by 
Opp′pp′(G) the group Opp′(Opp′(G)) and prove a corresponding statement for the case |cdp′(G)| = 2.

Theorem A. Let G be a finite group and let p > 3 be a prime. Suppose that |cdp′(G)| = 2. Then G is solvable 
and Opp′pp′(G) = 1.

We remark that Theorem A answers Problem 5.3 of [22], which suggested that groups satisfying 
|cdp′(G)| = 2 must be p-solvable. We would like to point out that the assumption p > 3 in Theorem A is 
needed. Indeed, it has already been mentioned in [22] that there are many examples of non-solvable groups 
satisfying |cd2′(G)| = 2 (the symmetric group on 5 letters is the smallest one). For p = 3, we have that 
if G is the automorphism group of PSL2(27), then |cd3′(G)| = 2, for instance. However, if the group G is 
p-solvable, Nicola Grittini has recently proved in [11] that the p-length of G is bounded by |cdp′(G)|, for 
any prime number p.

We also remark that, for a given prime p, we can find examples of non-solvable groups G satisfying 
|cdp′(G)| = 3. For instance, the alternating group on 5 letters, A5, satisfies that |cdp′(A5)| = 3 for p = 2, 3, 5. 
For p > 5, we have that |cdp′(PGL2(p))| = 3.

Further, unlike many statements on character degrees, Theorem A does not immediately seem to corre-
spond to a dual statement for conjugacy classes. For instance, we observe that A5 has exactly two conjugacy 
classes of size coprime to 5.

As in the case of the result of Berkovich, our proof of Theorem A uses the Classification of Finite Simple 
Groups. In particular, we need the following result on simple groups.

Theorem B. Let S be a non-abelian simple group and let p > 3 be a prime. Then there exist nontrivial 
α, β ∈ Irrp′(S) such that α extends to Aut(S), β(1) ! α(1), and β is P -invariant for every p-subgroup 
P ≤ Aut(S).

We obtain Theorem B as a corollary to the following stronger statement, after dealing with the exceptions 
separately.

Theorem C. Let S be a non-abelian simple group and let p > 3 be a prime dividing |S|. Assume that S is 
not one of A5, A6 for p = 5 or one of PSL2(q), PSLε

3(q), PSp4(q), or 2B2(q). Then there exist two nontrivial 
characters α, β ∈ Irrp′(S) such that α(1) $= β(1) and both α and β extend to Aut(S).

This article is structured as follows. In Section 2, we prove Theorem A assuming that Theorem B is 
true and show that Theorem C (and hence Theorem B) holds for sporadic groups. In Section 3, we prove 
Theorem B for the alternating groups. Finally, in Section 4, we prove Theorem B for simple groups of Lie 
type and we conclude by using the Classification of Finite Simple Groups.
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2. Reduction to simple groups

In this section we assume Theorem B and we prove Theorem A. We will need the following result, which 
is essentially Lemma 4.1 of [24]. We provide a proof for the reader’s convenience.

Lemma 2.1. Let Q be a finite group acting on a finite group N and suppose that N = S1 × · · · × St, where 
the Si’s are transitively permuted by Q. Let Q1 be the stabilizer of S1 in Q and let T = {a1, . . . , at} be a 
transversal for the right cosets of Q1 in Q with Si = Sai

1 . Let ψ ∈ Irr(S1) be Q1-invariant. Then

γ = ψa1 × ψa2 × · · · × ψat ∈ Irr(N)

is Q-invariant.

Proof. First, we have that Q acts transitively on T , and we use the notation ai · q to indicate the unique 
element of T such that Q1(aiq) = Q1(ai · q) for ai ∈ T and q ∈ Q. Now notice that Q acts on N as follows: 
if q ∈ Q and Sq

i = Sj (that is, if ai · q = aj), then (x1, . . . , xt)q = (y1, . . . , yt), where yj = xq
i . Let q ∈ Q, 

and let σ ∈ St be the permutation defined by ai · q = aσ(i), so xq
i = yσ(i). Then

γq−1(x1, . . . , xt) = (ψa1 × ψa2 × · · · × ψat)q−1(x1, . . . , xt)
= ψa1(y1) · · ·ψat(yt)
= ψa1(xq

σ−1(1)) · · ·ψ
at(xq

σ−1(t))

= ψa1q
−1(xσ−1(1)) · · ·ψatq

−1(xσ−1(t))

= ψa1·q−1(xσ−1(1)) · · ·ψat·q−1(xσ−1(t))
= ψaσ−1(1)(xσ−1(1)) · · ·ψaσ−1(t)(xσ−1(t))
= ψa1(x1) · · ·ψat(xt)
= γ(x1, . . . , xt). ✷

Theorem 2.2. Let G be a finite group and let p > 3 be a prime. Suppose that |cdp′(G)| = 2. Then G is 
solvable.

Proof. We argue by induction on |G|. Write cdp′(G) = {1, m}. Let N be a minimal normal subgroup of G. 
Then either N is abelian or N is semisimple. It is clear that |cdp′(G/N)| ≤ |cdp′(G)|. Hence by induction 
and Proposition 9 of [1] we have that G/N is solvable.

Suppose that N = S1 × S2 × · · ·× St where Si
∼= S, a non-abelian simple group. Write H = NG(S1) and 

Si = Sxi
1 , where G =

⋃t
i=i Hxi is a disjoint union. By Theorem B, there exist α ∈ Irrp′(S1) with α(1) $= 1, 

extending to Aut(S1), and β ∈ Irrp′(S1) P -invariant for every p-subgroup P ≤ Aut(S1), with β(1) ! α(1).
Now let θ = αx1 × · · · × αxt ∈ Irr(N). By Lemma 5 of [2] we have that θ extends to G. Let θ̃ ∈ Irr(G)

extending θ. Then θ̃(1) = θ(1) = α(1)t is not divisible by p and hence, by hypothesis, θ̃(1) = m.
Let Q ∈ Sylp(G) and write {T1, . . . , Tr} for a set of representatives of the action of Q on {S1, . . . , St}, 

with T1 = S1. Write O(Ti) for the orbit of Ti under the action of Q. Rearrange S1, S2, . . . , St in such a 
way that O(T1) = {S1, S2, . . . , Sl1}, O(T2) = {Sl1+1, . . . , Sl1+l2}, etc. Notice that l1 + l2 + · · · lr = t. Write 
N1 = S1×S2×· · ·×Sl1 , N2 = Sl1+1×· · ·×Sl1+l2 , etc. Notice that Q normalizes Ni and N = N1×N2×· · ·×Nr.

Now, let U = {q1, q2, . . . , ql1} be a transversal for the right cosets of Q1 = Q ∩ NG(S1) in Q such that 
Sj = S

qj
1 for j = 1, 2, . . . , l1, and define γ1 ∈ Irr(N1) as follows:

γ1 = βq1 × βq2 × · · · × βql1 ∈ Irr(N1).
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By Lemma 2.1 we have that γ1 is Q-invariant. If Ti = Sxk
1 proceed analogously with βxk to define γi ∈ Irr(Ni)

(notice that βxk is Qk-invariant, where Qk = NG(Sxk
1 ) ∩Q). By Lemma 2.1, we have that γi is Q invariant 

for all i = 1, 2, . . . , r.
Now, let

γ = γ1 × · · · × γr ∈ Irr(N).

We claim that γ is Q-invariant. Indeed, let q ∈ Q and let n1n2 · · ·nr ∈ N , with ni ∈ Ni. Since Q normalizes 
Ni for all i, we have:

γq(n1n2 · · ·nr) = γq
1(n1)γq

2(n2) · · · γq
r (nr) = γ1(n1) · · · γr(nr).

Notice that γ(1) = β(1)t and hence, γ ∈ Irrp′(N). Then gcd(o(γ)γ(1), |NQ : N |) = 1 and since γ is 
Q-invariant, we have that γ extends to γ̃ ∈ Irr(NQ). Since γ̃(1) and |G : NQ| are not divisible by p, there 
exists χ ∈ Irr(G|γ̃) of p′-degree. But χ ∈ Irr(G|γ), and hence γ(1) | χ(1). Since γ(1) $= 1, we have that 
χ(1) $= 1, and therefore χ(1) = m. Hence β(1)t = γ(1) divides χ(1) = m = α(1)t, and β(1) | α(1). This 
contradiction shows that N is abelian and hence G is solvable. ✷

The following is the second part of Theorem A.

Theorem 2.3. Let G be a finite group and let p > 3 be a prime. Suppose that |cdp′(G)| = 2. Then Opp′pp′
(G) =

1.

Proof. Let K = Op(G), L = Op′
(K) = Opp′

(G), N = Op(L) = Opp′p(G) and W = Op′
(N) = Opp′pp′

(G), 
and write cdp′(G) = {1, m}. Let W/X be a chief factor of G. Then W/X is a minimal normal subgroup of 
G/X and since G is solvable by Theorem 2.2, we have that W/X is abelian. Now, if a prime q, different 
from p, divides |W : X|, we have that W/X has a normal q-complement H/X and |W : H| is not divisible 
by p, a contradiction with the fact that W = Op′

(N). Hence W/X is a p-group.
Now, if X > 1, since cdp′(G/X) ⊆ cdp′(G), by induction and Thompson’s theorem we have that 

Opp′pp′
(G/X) = X and hence W = X, a contradiction. Therefore we may assume that X = 1.

Let Y be a complement of W in N . By the Frattini argument, we have that G = N ·NG(Y ) = W ·NG(Y ). 
Since W is abelian, we have that CW (Y ) ✁G and then W ∩NG(Y ) = CW (Y ) = 1. Hence W is complemented 
in G and by Problem 6.18 of [12], every λ ∈ Irr(W ) extends to Gλ.

Let P be a Sylow p-subgroup of G, let 1W = λ1, λ2 . . . , λt be representatives of the action of P on Irr(W )
and let Oi be the P -orbit of λi. Then

1 +
t∑

i=2
|Oi|λi(1)2 =

t∑

i=1
|Oi|λi(1)2 =

∑

λ∈Irr(W )
λ(1)2 = |W | ≡ 0 mod p.

Then there exists i > 1 such that |Oi|λi(1)2 is not divisible by p. Since |Oi| = |P : Pλi |, we have that 
|Oi| = 1 and hence there is 1W $= λ ∈ Irr(W ) P -invariant. Let T = Gλ and let λ̂ be an extension of λ to T . 
Then λ̂G ∈ Irr(G) and λ̂G(1) = |G : T |. But P ⊆ T and hence |G : T | = p′. By hypothesis, |G : T | = m.

If λ is N invariant, we have that

λ(n−1w−1nw) = λn(w−1)λ(w) = λ(1)

and [N, W ] ⊆ ker(λ). But [N, W ] ✁ G and [N, W ] ⊆ W . Since W is a minimal normal subgroup of G we 
have that [N, W ] = W or [N, W ] = 1. If [N, W ] = 1, we have that [Y, W ] ⊆ [N, W ] = 1 and hence by 
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Lemma 4.28 of [13] we have that W = 1 and we are done. Thus we may assume that [N, W ] = W . Then 
W ⊆ ker(λ), which contradicts the fact that λ $= 1W . Hence N " T .

If cdp′(G/N) = {1}, by Thompson’s theorem we are done. Then we may assume that cdp′(G/N) = {1, m}. 
Let χ ∈ Irr(G/N) with χ(1) = m and let ε ∈ Irr(TN/N) lying under χ of p′-degree. Since N ⊆ ker(ε), we 
have that εT is irreducible and ρ = εT λ̂ ∈ Irr(T |λ). Thus ρG ∈ Irr(G|λ) and

ρG(1) = |G : T |ρ(1) = |G : T |ε(1)

is not divisible by p. Then |G : T |ε(1) = m = |G : T | and ε is linear. Now, since χ is an irreducible 
constituent of εG we have that

m = χ(1) ≤ εG(1) = |G : TN | < |G : T | = m.

This contradiction shows that W = 1. ✷

We end this section with the following, which can be seen using the GAP Character Table Library.

Proposition 2.4. Let S be a simple sporadic group or the Tits group 2F4(2)′. Then Theorem C holds for S.

3. Alternating groups

The aim of this section is to prove Theorem B for alternating groups. This result is obtained as a con-
sequence of Propositions 3.2 and 3.3 below. There we give a closed formula for the number of irreducible 
p′-degree characters of Sn that are labelled by hook partitions. This observation might have some combina-
torial independent interest.

We begin by recalling some basic facts in the representation theory of symmetric and alternating groups. 
The irreducible characters of the symmetric group Sn are labelled by partitions of n. We let P(n) be the set 
of partitions of n. Given λ = (λ1, . . . , λ$) ∈ P(n), we denote by χλ the corresponding irreducible character 
of Sn. We sometimes use the notation λ * n to say that λ ∈ P(n) and we use the symbol λ *p′ n to mean 
that χλ ∈ Irrp′(Sn), for some prime number p. Given λ ∈ P(n) we let λ′ be the conjugate partition of λ. 
We recall that the restriction to the alternating group (χλ)An is irreducible if, and only if, λ $= λ′ (see [15, 
Thm. 2.5.7]). Moreover, if λ, µ ∈ P(n) then (χλ)An = (χµ)An if, and only if, µ ∈ {λ, λ′}.

Given λ ∈ P(n) we denote by [λ] its corresponding Young diagram. The node (i, j) of [λ] lies in row 
i and column j. As usual, we denote by h(i,j)(λ) the hook-length corresponding to (i, j). We let H(λ) be 
the multiset of hook-lengths in λ. By the hook-length formula [15, Thm. 2.3.21] we know that χλ(1) =
n!(

∏
h∈H(λ) h)−1.

Given e ∈ N we let He(λ) be the multiset of hook-lengths in H(λ) that are divisible by e. The e-core 
Ce(λ) of λ is the partition of n − e|He(λ)| obtained from λ by successively removing hooks of length e. A 
useful consequence of work of Macdonald [17] is stated here (see [9, Lemma 2.4] for a short proof).

Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n =
∑k

j=0 ajp
j. Let λ be 

a partition of n. Then λ *p′ n if and only if |Hpk(λ)| = ak and Cpk(λ) *p′ n − akpk.

We let L(n) = {λ ∈ P(n) | λ2 ≤ 1}. Elements of L(n) are usually called hook partitions. We denote by 
Lp′(n) the set consisting of all those hook partitions of n whose corresponding irreducible character of Sn

has degree coprime to p. In the following proposition we completely describe the elements of Lp′(n) and we 
give a closed formula for |Lp′(n)|.
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Proposition 3.2. Let n ∈ N and let n =
∑k

j=1 ajp
nj be its p-adic expansion, where 0 ≤ n1 < n2 < · · · < nk

and 1 ≤ aj ≤ p − 1 for all j ∈ {1, . . . , k}. Then

|Lp′(n)| = a1p
n1 ·

k∏

j=2
(aj + 1).

Moreover, for λ, µ ∈ L(n) we have that χλ(1) = χµ(1) if and only if λ ∈ {µ, µ′}.

Proof. We proceed by induction on k, the p-adic length of n. Suppose first that k = 1. If n1 = 0 then 
n = a1 < p and therefore |Lp′(n)| = |L(n)| = a1. On the other hand, if n1 > 0 and λ ∈ L(n) then 
h(1,1)(λ) = n = a1pn1 . It follows that |Hpn1 (λ)| = a1 and that Cpn1 (λ) = ∅. Using Lemma 3.1 we conclude 
that λ ∈ Lp′(n) and hence that L(n) = Lp′(n). Therefore, we have that |Lp′(n)| = a1pn1 . Let us now 
assume that k ≥ 2. Let m := n − akpnk and let γ ∈ Lp′(m). We denote by Aγ the subset of Lp′(n) defined 
as follows:

Aγ = {λ ∈ Lp′(n) | Cpnk (λ) = γ}.

Observing that the pnk -core of a hook partition is a hook partition and using Lemma 3.1 we deduce that

Lp′(n) =
⋃

γ∈Lp′ (m)
Aγ ,

where the above union is clearly disjoint. Given γ ∈ Lp′(m) we notice that the set Aγ consists of all those 
hook partitions of n that are obtained from γ by adding x-many pnk -hooks to the first row of [γ] and 
(ak − x)-many to the first column of [γ]. In particular

Aγ = {λx | x ∈ {0, 1, . . . , ak}}, where λx = (γ1 + xpnk , 1n−γ1−xpnk ).

We conclude that |Aγ | = ak +1, for all γ ∈ Lp′(m). This, combined to the inductive hypothesis shows that:

|Lp′(n)| = |Lp′(m)| · (ak + 1) =
(
a1p

n1 ·
k−1∏

j=2
(aj + 1)

)
· (ak + 1) = a1p

n1 ·
k∏

j=2
(aj + 1).

The second statement is a consequence of a very well known fact. Namely that for λ = (n −x, 1x) ∈ L(n)
we have that χλ(1) =

(n−1
x

)
. (This can be easily deduced from the hook length formula.) ✷

Given a natural number n and S ⊂ P(n) we let cd(S) = {χλ(1) | λ ∈ S}. Moreover, we let cdextp′ (An) be 
the set consisting of all the degrees of irreducible characters of An of degree coprime to p that extend to 
Sn. Here we find a lower bound to |cdextp′ (An)|.

Proposition 3.3. Let n ∈ N. Then |cdextp′ (An)| ≥ /|Lp′(n)|/20.

Proof. A hook-partition λ ∈ L(n) is such that λ = λ′ if and only if n is odd and λ = ((n +
1)/2, 1(n−1)/2). Moreover, the set Lp′(n) is clearly closed under conjugation of partitions. It follows that 
((n + 1)/2, 1(n−1)/2) ∈ Lp′(n) if and only if |Lp′(n)| is odd. Let S = {λ ∈ Lp′(n) | λ1 > λ′

1}. The above 
discussion shows that |S| = /|Lp′(n)|/20. The second statement of Proposition 3.2 implies that |cd(S)| = |S|. 
We observe that if λ ∈ S then (χλ)An is irreducible of degree coprime to p and clearly extends to Sn. In 
other words, (χλ)An(1) ∈ cdextp′ (An). Moreover, for λ, µ ∈ S we have that (χλ)An(1) = (χµ)An(1) if and 
only if λ = µ. Thus we conclude that |cdextp′ (An)| ≥ |cd(S)| = |S| = /|Lp′(n)|/20, as desired. ✷
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In order to verify that Theorem C holds for alternating groups, we aim of to show that |cdextp′ (An)| ≥ 3, 
for all n ≥ 7. Propositions 3.2 and 3.3 give in most of the cases a much larger lower bound than the one 
needed. In fact, Proposition 3.5 below is a consequence of these propositions, together with the analysis of 
the cases where n ∈ N is such that /|Lp′(n)|/20 ≤ 2.

The following facts are easy applications of the hook-length formula and are important to deal with the 
few exceptional cases mentioned above.

Lemma 3.4. Let n, t, c ∈ N be such that c ∈ {2, 3}, n ≥ 4 + c and 0 ≤ t ≤ n − 2c. Let λ(t) be the partition 
of n defined as λ(t) := (n − c − t, c, 1t) ∈ P(n). If 0 ≤ t ≤ /n−4−c

2 0, then

χλ(t)(1) < χλ(t+1)(1).

Proof. To ease the notation we let m := λ(t)1 = n − c − t. The (strange) hypothesis 0 ≤ t ≤ /n−4−c
2 0 is 

equivalent to say that λ(t + 1)1 ≥ (λ(t + 1)′)1. In turn this is equivalent to say that 0 ≤ t ≤ m − 4.
If c = 2 then using the hook length formula we observe that

χλ(t+1)(1)
χλt(1) = m(m − 2)(t+ 2)

(m − 1)(t+ 3)(t+ 1) ≥ (m − 2)2
(m − 1)2 · m

m − 3 > 1,

where the first inequality is obtained by replacing t with m − 4. The proof of the statement for c = 3 is 
completely similar and therefore it is omitted. ✷

We care to remark that a more general statement (with arbitrary c ∈ N) does not hold, as for instance 
is shown by the pair (6, 5, 1, 1) and (5, 5, 1, 1, 1).

Proposition 3.5. Let n ≥ 7 be a natural number and let p > 3 be a prime, then |cdextp′ (An)| ≥ 3.

Proof. Let n =
∑k

j=1 ajp
nj be the p-adic expansion of n, where 0 ≤ n1 < n2 < · · · < nk and 1 ≤ aj ≤ p − 1

for all j ∈ {1, . . . , k}. Suppose that

n /∈ {1 + pn2 + pn3 , 2 + pn2 , 1 + a2p
n2 | a2 ∈ {1, 2, 3}},

since n ≥ 7, then |cdextp′ (An)| ≥ 3, by Propositions 3.2 and 3.3. To conclude the proof, we analyze the 
remaining cases one by one.

Suppose first that n = 1 + apk, for some a ∈ {1, 2, 3}. Let t ∈ N be such that 0 ≤ t ≤ /n−6
2 0 and let 

λ(t) = (n − 2 − t, 2, 1t). Observe that λ(t) $= (λ(t))′. By Lemma 3.4 we have that

1 < χλ(0)(1) < χλ(1)(1) < · · · < χλ($ n−6
2 %)(1) < χλ($ n−6

2 %+1)(1).

Moreover, since h(1,1)(λ(t)) = apk and Cpk(λ(t)) = (1), then Lemma 3.1 implies that χλ(t) ∈ Irrp′(Sn), for 
all t ∈ {0, 1, . . . , /n−6

2 0}. Since n = 1 + apk ≥ 7 it follows that n ≥ 8 and hence that /n−6
2 0 ≥ 1. Since λ(t)

is never equal to the trivial partition, we conclude that |cdextp′ (An)| ≥ 3.
Let k, h ∈ N be such that k < h, and suppose that n = 1 +pk+ph. To ease the notation we let m = 1 +pk. 

By Lemma 3.1 it is easy to observe that

Pp′(m) = {(pk − t, 2, 1t−1) | t ∈ {1, . . . , pk − 2}} ∪ {(m), (1m)}.

Since p ≥ 5 we have that |Pp′(m)| ≥ 3. For each γ ∈ Pp′(m) we let

λ(γ) := (γ1 + ph, γ2, . . . , γ$) ∈ P(n).
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Using Lemma 3.1 it is now routine to check that λ(γ) *p′ n. Moreover, since ph > m we have that 
λ(γ) $= (λ(γ))′ for all γ ∈ Pp′(m). Therefore, using again Lemma 3.4 we conclude that also in this case 
|cdextp′ (An)| ≥ 3.

Finally suppose that n = 2 + pk, for some k ∈ N. Let t ∈ N be such that 0 ≤ t ≤ /n−7
2 0 and let 

λ(t) = (n − 3 − t, 3, 1t). Observe that λ(t) $= (λ(t))′. Since h(1,1)(λ(t)) = pk and Cpk(λ(t)) = (2), by 
Lemma 3.1 we deduce that χλ(t) ∈ Irrp′(Sn), for all t ∈ {0, 1, . . . , /n−7

2 0}. If pk $= 5 then n ≥ 9 and 
hence /n−7

2 0 ≥ 1. Since λ(t) is never equal to the trivial partition, using Lemma 3.4 we conclude that 
|cdextp′ (An)| ≥ 3. If pk = 5 then direct verification shows that |cdextp′ (A7)| ≥ 3. ✷

We are now ready to prove Theorem B.

Corollary 3.6. Theorem B holds for all simple non-abelian alternating groups.

Proof. Let n ≥ 5. Since p > 3 a Sylow p-group P of Aut(An) is necessarily contained in An. Hence all 
irreducible characters of An are P -invariant. With this in mind, we observe that for all n ≥ 7 Theorem 
B follows from Proposition 3.5. If n = 5 then (in accordance with the notation used in the statement of 
Theorem B) we choose α = (χ(4,1))A5 and β an irreducible constituent of (χ(3,1,1))A5 . Similarly for n = 6 we 
observe that Theorem B holds by choosing α = (χ(4,2))A6 and β an irreducible constituent of (χ(3,2,1))A6 . ✷

Remark 3.7. As mentioned at the start of the present section, the proof of Theorem B for alternating groups 
is achieved via Proposition 3.2 and 3.3, which we believe could also have applications in other contexts. Of 
course, this is not the only way to prove Theorem B. For instance, for any n ≥ 6 it can be shown that the 
set {(n −1, 1), (n −2, 2), (n −2, 12), (n −3, 2, 1)} always contains at least two partitions labelling irreducible 
characters of Sn of distinct p′-degree that restrict irreducibly to An. We are indebted to the anonymous 
reviewer for this observation.

4. Simple groups of Lie type

Throughout this section, we will adopt the following notation. Let S be a simple group of Lie type, by 
which we mean that there is a simply connected simple linear algebraic group G defined over Fq such that 
S = G/Z(G), where G := GF is the group of fixed points of G under a Steinberg endomorphism F . Here 
Fq is an algebraic closure of the field Fq with q elements, and q is a power of some prime. We further write 
G∗ = (G∗)F∗ , where (G∗, F ∗) is dual to (G, F ).

We denote by ι : G ↪→ G̃ a regular embedding, as in [5, Chapter 15], and let ι∗ : G̃∗ ! G∗ be the 
dual surjection of algebraic groups. When F is a Frobenius endomorphism, we may extend F to a Frobenius 
endomorphism on G̃, which we also denote by F , and we let G̃ := G̃F

and G̃∗ := (G̃∗
)F∗ be the corresponding 

group of Lie type and its dual, respectively. Then G ✁ G̃ and the automorphisms of G are generated by the 
inner automorphisms of G̃ (known as inner-diagonal automorphisms of G) together with graph and field 
automorphisms.

When G is of type An−1, we use the notation PSLε
n(q) with ε ∈ {±1} to denote PSLn(q) for ε = 1 and 

PSUn(q) for ε = −1. We will also use the corresponding notation for SLε
n(q), GLε

n(q), and PGLε
n(q).

The goal of this section is to prove the following, which is Theorem B for groups of Lie type.

Theorem 4.1. Let S be a simple group of Lie type defined over Fq and let p > 3 be a prime dividing |S|. 
Assume that S is not one of PSL2(q), PSLε

3(q), PSp4(q), or 2B2(q). Then there exist two nontrivial characters 
χ1, χ2 ∈ Irrp′(S) such that χ1(1) $= χ2(1) and both χ1 and χ2 extend to Aut(S).

To deal with the exceptions in Theorem 4.1, we prove the following, which is Theorem C.
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Theorem 4.2. Let S be a simple group of Lie type defined over Fq and let p > 3 be a prime dividing |S|. 
Then there exist two nontrivial characters χ1, χ2 ∈ Irrp′(S) such that χ2(1) ! χ1(1), χ1 extends to Aut(S), 
and χ2 is invariant under every p-group of Aut(S).

4.1. Defining characteristic

We begin by fixing some notation for this section. Let q = pa be a power of a prime p > 3. We fix 
a := pb ·m where (m, p) = 1, b ≥ 0, and m ≥ 1. In what follows, it will be useful to consider certain elements 
of F×

q . For a positive integer n, we will denote by ζn an element of order pn − 1 in F
×
q and by ξn an element 

of order pn + 1 in F
×
q . In particular, ζ1 ∈ F×

p ⊆ F×
q , ζm ∈ F×

q , and ξm ∈ F×
q2 \ F

×
q . We also have ξ1 ∈ F×

q2

and further ξ1 ∈ F×
q if and only if q is a square.

4.1.1. Establishing the basic strategy
Suppose that F is a Frobenius map. In what follows, we will often proceed following ideas like those in 

[26, Theorem 4.5(4)] and [27, Proposition 6.4] to construct characters of S = G/Z(G) satisfying our desired 
properties, using characters of G̃. Namely, if s is a semisimple element of G̃∗, there exists a unique so-called 
semisimple character χ̃s of p′-degree associated to the G̃∗-conjugacy class of s, and χ̃s(1) = [G̃∗ : CG̃∗(s)]p′ . 
If further s ∈ [G̃∗, G̃∗], then χ̃s is trivial on Z(G̃), using [23, Lemma 4.4]. Furthermore, the number of 
irreducible constituents of χ := χ̃s|G is exactly the number of irreducible characters θ ∈ Irr(G̃/G) satisfying 
χ̃sθ = χ̃s, and we have Irr(G̃/G) = {χ̃z | z ∈ Z(G̃∗)} and E(G̃, s)χ̃z = E(G̃, sz) for such z ∈ Z(G̃∗), by [7, 
13.30]. Then χ is irreducible if and only if s is not G̃∗-conjugate to sz for any nontrivial z ∈ Z(G̃∗). Finally, 
if ϕ ∈ Aut(G̃) and ϕ∗ : G̃∗ → G̃∗ is dual to ϕ, then [25, Corollary 2.4] tells us that χϕ

s = χϕ∗(s).
Therefore, in the context of proving Theorem 4.1, we will be interested in showing that there exist two 

nontrivial semisimple elements s1, s2 ∈ G̃∗ such that:

(1) s1, s2 are contained in [G̃∗, G̃∗];
(2) for i = 1, 2, si is not conjugate to siz for any nontrivial z ∈ Z(G̃∗);
(3) the G̃∗-classes of s1 and s2 are Aut(G̃∗)-invariant; and
(4) |CG̃∗(s1)|p′ $= |CG̃∗(s2)|p′ .

In the context of Theorem 4.2, we will need to replace (3) and (4) with:

(3’) the G̃∗-class of s1 is Aut(G̃∗)-invariant and that of s2 is fixed by p-elements of Aut(G̃∗); and
(4’) |CG̃∗(s1)|p′ ! |CG̃∗(s2)|p′ .

4.1.2. The proofs in defining characteristic

Proposition 4.3. Let S be a simple group of Lie type defined in characteristic p > 3 not in the list of 
exclusions of Theorem 4.1. Then the conclusion of Theorem 4.1 holds for S and p.

Proof. First assume S is one of G2(q), F4(q), or 3D4(q). Recall here that q is not a power of 2 or 3. The 
character degrees in these cases are available at [16], and the generic character tables are available in 
CHEVIE [8]. Here Aut(S)/S is cyclic generated by a field automorphism, so characters extend to Aut(S)
if and only if they are invariant under Aut(S). In the case of G2(q), there is a unique character of degree 
(q4 + q2 + 1) and a unique character of degree (q3 + ε), where ε = ±1 is such that q ≡ ε (mod 6), so the 
statement holds for G2(q). Similarly, F4(q) has a unique character of degree (q8 + q4 + 1) and a unique 
character of degree (q2+1)(q4+1)(q8+ q4+1). Since 3D4(q) has a unique character of degree (q8+ q4+1), 
it suffices in this case to find another member of Irrp′(S) invariant under field automorphisms. Taking k to 



10 E. Giannelli et al. / Journal of Pure and Applied Algebra 224 (2020) 106338

be such that γk ∈ F×
p , where γ generates F×

q , this is accomplished by χ13(k) in CHEVIE notation, which 
has degree (q + 1)(q8 + q4 + 1).

Hence we may assume S is not in the above list, and by Section 3, we may assume that S is not isomorphic 
to an alternating group. Also note that since p > 3, we may assume G does not have an exceptional Schur 
multiplier. Let D ≤ Aut(G̃) be as in [28, Notation 3.1], so that D is generated by appropriate graph and 
field automorphisms and Aut(G) is generated by D and the inner automorphisms of G̃.

Since [G̃ : G] is coprime to p, we see by Clifford theory that the set of members of Irr(G̃) lying above 
members of Irrp′(G) is exactly the set Irrp′(G̃). By [28, Proposition 3.4], for every χ̃ ∈ Irrp′(G̃), there is a 
character χ0 ∈ Irr(G|χ̃) such that (G̃#D)χ0 = G̃χ0 #Dχ0 and χ0 extends to G #Dχ0 . Further, if χ̃|G = χ0
and χ̃ is D-invariant, it further follows that χ0 extends to G̃#D, following the proof of [28, Lemma 2.13], 
since the factor set constructed there for the projective representation of (G̃#D)χ0 extending χ0 is trivial 
in this case.

Hence it suffices to show that there exist D-invariant χ̃1, χ̃2 ∈ Irrp′(G̃) that are trivial on Z(G), have 
different degrees, and satisfy that χ̃1|G and χ̃2|G are irreducible. In particular, it suffices to find s1 and s2
as described in Section 4.1.1 satisfying conditions (1)-(4). For condition (2), we note that by [3, Corollary 
2.8(a)], it suffices to show that CG∗(ι∗(si)) are connected, and hence by [20, Exercise 20.16(c)], to choose si
such that (|si|, |Z(G)|) = 1.

First, suppose that G is not of type A$. Let Φ and ∆ := {α1, α2, . . . , α$} be a system of roots and simple 
roots, respectively, for G̃∗

with respect to a maximal torus T̃∗
, following the standard model described in 

[10, Remark 1.8.8]. Note that we may assume that |∆| ≥ 3 if Φ is type B$ or C$, |∆| ≥ 4 if Φ is type D$, 
and otherwise Φ is type E6, E7, or E8. Further, our assumptions imply that if the Dynkin diagram for Φ
has a nontrivial graph automorphism, then all members of ∆ have the same length and that automorphism 
has order 2 unless Φ is of type D4.

Given α ∈ Φ, let hα denote the corresponding coroot, following the notation of [10]. Notice that for α ∈ Φ
and t ∈ F

×
q , we have hα(t) ∈ [G̃∗

, G̃∗
]. (See, for example, [10, Theorem 1.10.1(a)].) Let δ ∈ F×

p be such that 
|δ| is prime to |Z(G)|, if possible. Otherwise, we have G is type E7, B$, C$, or D$ and p − 1 is a power of 2. 
(Note that if G is type E6, and p − 1 is a power of 3, then p = 2, contradicting our assumption that p > 3.)
In these latter cases, let δ be an element of F×

p2 with order prime to |Z(G)| dividing p + 1.
We define s′

1 := hα1(δ)hα2(δ) · · ·hα"−1(δ)hα"(δ). Let β be a member of ∆ as follows. For Φ of type E6, E7, 
or E8, let β := α4. If Φ is of type C$ or D$, let β := α$. If Φ is type B$, let β := α1. Let s′

2 := hβ(δ) for 
Φ not of type D$; s′

2 := hα"(δ)hα"−1(δ) for Φ of type D$ with 1 ≥ 5; and s′
2 := hα1(δ)hα3(δ)hα4(δ) for Φ of 

type D4. Note then that for i = 1, 2, s′
i is fixed under graph automorphisms and (|s′

i|, |Z(G)|) = 1.
If δ ∈ F×

q , we see that the s′
i are F ∗-fixed, and we write si := s′

i. Otherwise, the elements α1+. . .+α$ and β
are members of Φ, and in the case of D$, we have α$+α$−1 = 2e$−1 and for 1 = 4, α1+α3+α4 = e1−e2+2e3. 
In the first case, let ẇ ∈ NG̃∗(T̃∗

) induce the corresponding reflection in the Weyl group of G̃∗
. In the case 

of α$ + α$−1 in type D$, we may take ẇ to be the product of members of NG̃∗(T̃∗
) inducing the reflections 

in the Weyl group of G̃∗
for α$ and α$−1, and similarly for α1 + α3 + α4 in the case of D4. In any case, 

we have si := s′ g
i is F ∗-fixed, where g ∈ G̃∗

satisfies g−1F ∗(g) = ẇ. (Note that such a g exists by the 
Lang-Steinberg theorem.) Hence s1 and s2 are members of [G̃∗, G̃∗].

Further, we have constructed s1 and s2 to be fixed under graph automorphisms and such that 
|CG̃∗(s1)|p′ $= |CG̃∗(s2)|p′ . The latter can be seen by analyzing the root information in [10] and using 
the fact that CG̃∗(si) has root system Φsi where Φsi consists of α ∈ Φ with α(si) = 1 (see [7, Proposition 

2.3]). Let Fp denote a generating field automorphism such that Fp(hα(t)) = hα(tp) for α ∈ Φ and t ∈ F
×
q . 

Then for i = 1, 2, s′
i is G̃∗

-conjugate to Fp(s′
i), taking for example ẇ as the conjugating element when 

s′
i $= Fp(s′

i). Hence si is also G̃∗
-conjugate to Fp(si). Since the CG∗(si) are connected, this yields that the 

si are G̃∗-conjugate to Fp(si), using [7, (3.25)]. Then s1 and s2 are semisimple elements satisfying (1)-(4), 
as desired.
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Now let Φ be of type An−1, so that G̃ ∼= G̃∗ ∼= GLε
n(q), G ∼= [G̃∗, G̃∗] = SLε

n(q), and G∗ ∼= PGLε
n(q), with 

ε ∈ {±1} and n ≥ 4. If (p, ε) $= (5, +1), let δ ∈ Cp−ε, viewed as a subgroup of Fq2 , be such that δ = ζ1 in 
case ε = 1 and δ = ξ1 in case ε = −1. Note that |δ| > 4, from the conditions on p. If (p, ε) = (5, +1), let δ
be an element of order 6 in F25. Then in any case, we have δ chosen such that |δ| > 4.

Recall that the class of a semisimple element in GLε
n(q) is determined by its eigenvalues. Let s1 ∈ G̃∗ have 

eigenvalues {δ, δ−1, 1, 1, . . . , 1} and s2 have eigenvalues {δ, δ, δ−1, δ−1, 1, . . . , 1}. Then CG̃∗(s1) ∼= GLε
n−2(q) ×

GLε
1(q)2 and CG̃∗(s2) ∼= GLε

n−4(q) × GLε
2(q)2, unless ε = −1 and q is square or (p, ε) = (5, +) and q is 

nonsquare, in which case CG̃∗(s1) ∼= GLε
n−2(q) ×GL1(q2) and CG̃∗(s2) ∼= GLε

n−4(q) ×GL2(q2). In any case, 
we therefore have |CG̃∗(s1)|p′ $= |CG̃∗(s2)|p′ . Since the graph automorphism acts via inverse-transpose on 
GLn(q) and the generating field automorphism acts on semisimple elements by raising the eigenvalues to 
the power of p, we see that the G̃∗-classes of s1 and s2 are each Aut(G̃∗)-invariant. Further, as s1 and s2
have determinant 1, they are contained in [G̃∗, G̃∗] = SLε

n(q).
Now, in this case, Z(G̃∗) is comprised of matrices of the form µ ·In, where µ is an element of Cq−ε, viewed 

as a subgroup of Fq2 . Since |δ| $= 2, we see by comparing eigenvalues that s1 cannot be conjugate to s1z for 
any nontrivial z ∈ Z(G̃∗). Now, if s2z is conjugate to some z ∈ Z(G̃∗), then there is some µ as above such 
that δµ = δ−1 and δ−1µ = δ, except possibly if n = 6, in which case δµ = 1 is another possibility. In the 
latter case, µ = δ−1, so s2z has eigenvalues {1, 1, δ−2, δ−2, δ−1, δ−1}, so we must have δ−2 = δ, contradicting 
|δ| > 4. Hence we are in the case δµ = δ−1 and δ−1µ = δ. Then µ = δ−2 = δ2, again contradicting |δ| > 4. 
Hence in all cases, we have exhibited the desired elements s1, s2 ∈ G̃∗, and the proof is complete. ✷

We remark that the conclusion of Theorem 4.1 fails for PSL2(q) and PSL3(q) when q is a square. Indeed, 
in these cases, the only option for Aut(G̃∗)-invariant semisimple classes of G̃∗ would be comprised of elements 
with eigenvalues {δ, δ−1} and {δ, δ−1, ±1}, respectively, where δp = δ or δ−1. If q is a square, both options 
would yield δ ∈ Fq, so all corresponding semisimple characters have the same degree. However, we can show 
the following:

Lemma 4.4. Let S ∼= PSL2(q), PSLε
3(q), or PSp4(q) with q a power of a prime p > 3. Then the conclusion 

of Theorem 4.2 holds for S and p. Moreover, if q is not square and further p $= 5 in the case of PSL2(q), 
then the conclusion of Theorem 4.1 holds for S and p.

Proof. Note that since p > 3, the graph and diagonal automorphisms are not in a p-subgroup of Aut(S). In 
particular, the only p-elements of D are induced from field automorphisms of p-power order. Arguing as in 
the proof of Proposition 4.3, it suffices to show that there are two semisimple elements s1, s2 of G̃∗ satisfying 
conditions (1), (2), (3’), and (4’) from Section 4.1.1. Throughout the proof, let q = pa where a = pbm with 
(m, p) = 1.

(i) First suppose that p > 5 and S ∼= PSL2(q). Note that since p > 5, both ζ1 and ξm have order larger 
than 4. Let s1 ∈ G̃∗ have eigenvalues {ζ1, ζ−1

1 }, and s2 have eigenvalues {ξm, ξ−1
m }. Then s1 and s2 satisfy 

conditions (1), (2), (3’), and (4’) from Section 4.1.1. Here CG̃∗(s1) ∼= GL1(q)2, CG̃∗(s2) ∼= GL1(q2), and the 
corresponding semisimple characters have degrees χ1(1) = q+1 and χ2(1) = q−1, respectively. This proves 
the first statement when p > 5 and S ∼= PSL2(q).

(ii) Next let p = 5 and S ∼= PSL2(q). First suppose m > 1. Here we may take s1 ∈ G̃∗ to have eigenvalues 
{ξ1, ξ−1

1 }, and take s2 to have eigenvalues {ζm, ζ−1
m } if 2 ! m and eigenvalues {ξm, ξ−1

m } if 2|m. Then if 2 ! m, 
we have CG̃∗(s1) ∼= GL1(q2) and CG̃∗(s2) ∼= GL1(q)2. When 2 | m, the centralizers of s1 and s2 are reversed. 
In either case, however, we obtain χ1 and χ2 satisfying the required conditions, as above.

Now let m = 1, so q = 55b . Then q ≡ 1 (mod 4) and q ≡ −1 (mod 3). We obtain an Aut(S)-invariant 
character χ1 constructed using s1 as in the case in the previous paragraph. Here χ1(1) = q − 1. Further, we 
see from the generic character table that there is a character of degree (q + 1)/2 which is invariant under 
every field automorphism, completing the proof of the first statement for PSL2(q).
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(iii) Now let S be PSLε
3(q), with p ≥ 5. Notice that an element s ∈ G̃∗ with eigenvalues {δ, δ−1, 1} with 

|δ| ≥ 4 cannot be conjugate to sz for any nontrivial z ∈ Z(G̃∗), as then the sets {δ, δ−1, 1} and {δµ, δ−1µ, µ}
are the same for some µ ∈ Cq−ε, yielding δ3 = 1. Note |ζ1| ≥ 4 since p ≥ 5. Hence we may construct s1 and 
s2 analogously to case (i) above. Namely, let s1 have eigenvalues {ζ1, ζ−1

1 , 1}, and let s2 have eigenvalues 
{ξm, ξ−1

m , 1}. Then s1 and s2 satisfy properties (1), (2), (3’), (4’) of Section 4.1.1. Here CG̃∗(s1) ∼= GL1(q)3 in 
case ε = 1, and CG̃∗(s1) ∼= GL1(q2) ×GU1(q) in case ε = −1. Further, CG̃∗(s2) ∼= GL1(q2) ×GL1(q) in case 
ε = 1 and CG̃∗(s2) ∼= GU1(q)3 in case ε = −1. Hence χ1(1) = (q+1)(q2+εq+1) and χ2(1) = (q−1)(q2+εq+1).

(iv) Now let S = PSp4(q). The character table of G = Sp4(q) and of G̃ = CSp4(q) are available 
in [29] and [4], respectively. From this we see that the characters in the families χ8(k) and χ6(1) with 
k ∈ {1, . . . , (q − 3)/2}, 1 ∈ {1, . . . , (q − 1)/2} in the notation of [29], with degrees (q + 1)(q2 + 1) and 
(q−1)(q2+1), respectively, contain Z(G) in the kernel and extend to G̃. Further, comparing notation shows 
these extensions are invariant under the same field automorphisms as the characters of G. Choosing k and 
1 such that γk = ζ1 and η$ = ξm, where γ generates F×

q and η generates the cyclic group of size q + 1 in 
F×
q2 , we see that χ1 := χ8(k) and χ2 := χ6(1) satisfy the desired properties.
(v) Finally, let q be nonsquare, and further assume p > 5 in the case S ∼= PSL2(q). Let s1 be as in part (i) 

in the case PSL2(q) and as in part (iii) for PSLε
3(q). Let s2 in G̃∗ have eigenvalues {ξ1, ξ−1

1 } or {ξ1, ξ−1
1 , 1}, 

respectively. In this case ξ1 ∈ F×
q2 \ F×

q has order larger than 4. These elements satisfy conditions (1)-(4) 
discussed in Section 4.1.1. In particular, when S ∼= PSL2(q), the semisimple characters corresponding to s1
and s2 have degrees q+1 and q−1, respectively. When S ∼= PSLε

3(q), the semisimple characters corresponding 
to s1 and s2 have degrees (q+ 1)(q2 + εq+ 1) and (q − 1)(q2 + εq+ 1), respectively. Then in these cases, as 
in the proof of Proposition 4.3, the conclusion of Theorem 4.1 holds.

Now let S = PSp4(q). Here we let χ1 be as in (iv), and let χ2 be the character χ6(1), where 1 is now 
chosen so that η$ = ξ1 is a p +1 root of unity in Fq2 \ Fq. Then χ1 and χ2 both extend to Aut(S) and have 
different degrees, completing the proof. ✷

4.2. Non-defining characteristic

In this section, we address the proofs of Theorems 4.1 and 4.2 in the case p ! q.

Proposition 4.5. Let S be a simple group of Lie type defined over Fq not in the list of exclusions of Theo-
rem 4.1, and let p > 3 be a prime dividing |S| but not dividing q. Or let S = 2B2(q2) where q2 := 22m+1

and let p > 3 be a prime dividing |S| but not dividing q2 − 1. Then the conclusion of Theorem 4.1 holds for 
S and p.

Proof. By [19, Theorem 2.4], every unipotent character of S extends to its inertia group in Aut(S), so it 
suffices to find two unipotent characters with different degrees in Irrp′(S) that are invariant under Aut(S). 
Since the Steinberg character StS is one such character, we aim to exhibit another nontrivial unipotent 
character of p′-degree invariant under Aut(S).

Further, [19, Theorem 2.5], yields that every unipotent character of S is invariant under Aut(S) unless 
S is a specifically stated exception for one of Dn(q) with n even, B2(q) with q even, G2(q) with q a power 
of 3, or F4(q) with q even.

The unipotent characters of classical groups are indexed by partitions in case of type An−1 and 2An−1
and by “symbols” in the other types. Discussions of these symbols and the corresponding character degrees 
are available in [6, Section 13.8]. In Table 1, we list two or three unipotent characters for each classical 
type that extend to Aut(S) by [19, Theorems 2.4 and 2.5]. Further, p > 3 cannot divide the degree of all 
characters listed for a given type simultaneously, which can be seen, for example, by an application of [18, 
Lemma 5.2]. Hence taking χ1 = StS and χ2 the character listed whose degree is not divisible by p, the 
desired statement holds in the case of classical types.
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Table 1
Some unipotent characters that extend to Aut(S).

Type Partition/symbol indexing χ χ(1)q′

An−1, n ≥ 4 (n − 1, 1) qn−1−1
q−1

(n − 2, 2) (qn−1)(qn−3−1)
(q−1)(q2−1)

(n − 2, 1, 1) (qn−1−1)(qn−2−1)
(q−1)(q2−1)

2An−1, n ≥ 4 (n − 1, 1) qn−1−(−1)n−1

q+1

(n − 2, 2) (qn−(−1)n)(qn−3−(−1)n−3)
(q+1)(q2−1)

(n − 2, 1, 1) (qn−1−(−1)n−1)(qn−2−(−1)n−2)
(q+1)(q2−1)

Bn or Cn, n ≥ 3 or n = 2 and q odd
(1 n

0
) (qn−1−1)(qn+1)

2(q−1)
(0 n

1
) (qn−1+1)(qn−1)

2(q−1)

B2 with q a power of 2
(0 1 2

−
)

(q − 1)2/2
(0 2

1
)

(q + 1)2/2

Dn, n ≥ 5
(n−1

1
) (qn−1)(qn−2+1)

q2−1
(1 n
0 1

) (qn−1+1)(qn−1−1)
q2−1

D4
(1 3
0 2

) (q+1)3(q3+1)
2

(1 2
0 3

) (q2+1)2(q2+q+1)
2

2Dn, n ≥ 4
(1 n−1

−
) (qn+1)(qn−2−1)

q2−1
(0 1 n

1
) (qn−1+1)(qn−1−1)

q2−1

Similarly, for groups of exceptional type, Suzuki and Ree groups, and 3D4(q), by observing the explicit 
list of unipotent character degrees in [6, Section 13.9], we see that there is likewise always a second unipotent 
character with degree not divisible by p, except in the case of 2B2(q2) or 2G2(q2) with p|(q2 − 1). Further, 
these can again be chosen not to be one of the exceptions listed in [19, Theorem 2.5]. When S = 2G2(q2)
and p | (q2 −1), we may consider instead the unique character of degree q4 −q2+1, which must be invariant 
under Aut(S), and hence extends since Aut(S)/S is cyclic. ✷

Together, note that Propositions 4.3 and 4.5 prove Theorem 4.1. We also note the following, which follows 
from the proof of Lemma 4.4 and ideas from Proposition 4.5, together with the fact that PSLε

3(q) has a 
unipotent character of degree q(q + ε).

Lemma 4.6. Let p > 3 be a prime and let S ∼= PSL2(q) or PSLε
3(q) be simple with q a power of a prime 

r > 3, where r $= p. Then the conclusion of Theorem 4.2 holds for S and p. Moreover, the conclusion of 
Theorem 4.1 holds for S and p in the following situations:

• S = PSL2(q), r > 5, and p ! (q + 1) or q is not square;
• S = PSL3(q) and p ! (q + 1) or q is not square;
• S = PSU3(q).

To complete the proof of Theorem 4.2, we need to consider 2B2(22n+1), PSL2(q), and PSLε
3(q) when q is 

a power of 2 or 3 and p ! q. These are treated in the next two Lemmas.

Lemma 4.7. Let p > 3 be a prime and let S ∼= PSL2(q) or PSLε
3(q) be simple with q a power of 2 or 3. Then 

the conclusion of Theorem 4.2 holds for S and p.

Proof. Let r ∈ {2, 3}. Note that we omit the cases PSL2(r), since S is simple. As before, we take χ1 = StS , 
and show that there exists χ2 satisfying the desired properties.
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First suppose that q = rp
b for some positive integer b. Notice then that p ! (q2 − 1). Indeed, otherwise 

we have p|Φ2pc(r) or p|Φpc(r) for some nonnegative integer c, and hence by [18, Lemma 5.2], we have r
has order 1, 2, or a power of p modulo p. Since the latter is impossible, it follows that p | (r2 − 1), which 
is impossible since p > 3 and r ≤ 3. If S = PSLε

3(q), we may take χ2 to be the unipotent character of 
degree q2 + εq, and in fact the conclusion of Theorem 4.1 holds in this case using [19, Theorems 2.4 & 
2.5]. In the case S = PSL2(q) and r = 3, we have q ≡ −1 (mod 4), and we may take χ2 to be a character 
of degree (q − 1)/2, which is fixed by the field automorphisms. In the case r = 2 and S ∼= PSL2(q), let 
s ∈ G̃∗ have eigenvalues {δ, δ−1} where |δ| = 3. Then the corresponding semisimple character of G̃ restricts 
to SL2(q) ∼= PSL2(q) irreducibly, is fixed by field automorphisms, and has degree q ± 1. Letting χ2 be the 
corresponding irreducible character of S, we are done in this case.

So we may assume q = ra where r ∈ {2, 3}, and a = pbm with m > 1 and (m, p) = 1. Let S = PSLε
3(q). 

If p ! (q + ε), we may again take χ2 to be the unipotent character of degree q2 + εq, and the conclusion of 
Theorem 4.1 holds. So assume that p | (q + ε). Arguing similarly to above, we see that this excludes the 
case (r, m) = (2, 2) if ε = −1, so we may further assume (r, m) $= (2, 2) if ε = −1. Taking s ∈ G̃∗ to have 
eigenvalues {δ, δ−1, 1} with |δ| = rm + ε, we may argue as before to obtain a character χ2 of S with degree 
(q − ε)(q2 + εq + 1), which is not divisible by p, that is invariant under every p-element of Aut(S).

Now let S = PSL2(q). Then taking si ∈ G̃∗ for i = 1, 2 to have eigenvalues {δi, δ−1
i }, with |δ1| = rm − 1

and |δ2| = rm+1, we obtain characters with degree (q+1) and (q−1) of S that are invariant under p-elements 
of Aut(S). Since p > 3 cannot divide both of these character degrees, we may make an appropriate choice 
for χ2, which completes the proof. ✷

Lemma 4.8. Let S be a simple Suzuki group 2B2(q2) with q2 = 22n+1 and let p > 3 be a prime dividing 
q2 − 1. Then the conclusion of Theorem 4.2 holds for S and p.

Proof. As before, we may take χ1 to be the Steinberg character. Now, since Aut(S)/S is cyclic of size 
2n +1, generated by field automorphisms, it suffices to exhibit a character χ2 with degree coprime to p that 
is invariant under field automorphisms of p-power order. Let 2n + 1 = pbm with (m, p) = 1. Arguing as in 
Lemma 4.7, we see m > 1, since p|(q2 − 1). Hence letting s be such that γs has order 2m − 1, where γ has 
order q2 − 1, we may take χ2 to be the character χ5(s) in CHEVIE notation. Then χ2 has degree q4 + 1
and is invariant under p-elements of Aut(S). ✷

Theorem 4.2 now follows by combining Lemmas 4.4, 4.6, 4.7, and 4.8 with Theorem 4.1, which completes 
the proofs of Theorems A–C.
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