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FIELDS OF CHARACTER VALUES FOR
FINITE SPECIAL UNITARY GROUPS

A. A. SCHAEFFER FRY AND C. RYAN VINROOT

Turull has described the fields of values for characters of SLn(q) in terms of
the parametrization of the characters of GLn(q). In this article, we extend
these results to the case of SUn(q).

1. Introduction

It is a problem of general interest to understand the fields of values of the complex
characters of finite groups, as these fields often reflect important or subtle properties
of the group itself. Turull [2001, Section 4] computed the fields of character values of
the finite special linear groups SLn(q) by using properties of Zelevinsky’s degenerate
Gelfand–Graev characters of GLn(q). In this paper, we extend these methods to
compute the fields of character values for the finite special unitary groups SUn(q). In
particular, we use properties of Kawanaka’s generalized Gelfand–Graev characters
of SUn(q) and the full unitary group GUn(q) to get this information. Further, we
frame these methods so that we obtain many results for both SLn(q) and SUn(q)
simultaneously.

Turull also computes the Schur indices of the characters of SLn(q). This appears
to be a much more difficult problem for SUn(q). For example, it is helpful in the
SLn(q) case that the Schur index for every character of GLn(q) is 1. However,
the Schur indices of the characters of GUn(q) are not all explicitly known, but are
known to take values other than 1.

This paper is organized as follows. In Section 2, we establish the necessary
results from character theory that are needed for the main arguments. In Sections 2A
and 2B, we give some tools from Deligne–Lusztig theory and the parametrization of
the characters of GLεn(q), respectively, and we use these to describe the characters
of SLεn(q) in Section 2C. We introduce generalized Gelfand–Graev characters in
Section 2D. In Section 3, we obtain some preliminary results on fields of character
values which follow quickly from the material in Section 2. To deal with the
harder cases, we need some explicit information on unipotent elements in unitary
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groups obtained in Section 4, and we apply this information to generalized Gelfand–
Graev characters in Section 5. Finally, in Section 6 we prove our main results in
Theorem 6.1 and Corollary 6.3, which give explicitly the field of values of any
character of SUn(q) and a description of the real-valued characters of SUn(q). In
particular, these results can be phrased in the same way as the corresponding results
for SLn(q) found in [Turull 2001, Section 4], so that we may state both our results
and Turull’s simultaneously.

Notation. We will often use the notation found in [Turull 2001], for clarity of
analogous statements. For example, the natural action of a Galois automorphism
σ ∈ Gal(Q/Q) on a character χ of a group will be denoted σχ . Here for a group
element g, the value of σχ is given by σχ(g)= σ(χ(g)). We write Q(χ) for the
field obtained from Q by adjoining all values of the character χ .

For an integer n, we will write n = n2n2′ where n2 is a 2-power and n2′ is odd.
Further, for an element x of a finite group Y, we write x = x2x2′ where x2 has
2-power order and x2′ has odd order. We denote by |x | the order of the element x
(we also use this notation for cardinality and size of partitions, which will be clear
from context). We write Irr(Y ) for the set of all irreducible complex characters of
the finite group Y. Given two elements g, x in Y, we write gx

= x−1gx , and for
χ ∈ Irr(Y ), we define χ x by χ x(g)= χ(xgx−1).

For a subgroup X ≤ Y, we write IndY
X (ϕ) for the character of Y induced from

a character ϕ of X, and we write ResY
X (χ) for the character of X restricted from

a character χ of Y. We will further use Irr(Y |ϕ) and Irr(X |χ) to denote the set of
irreducible constituents of IndY

X (ϕ) and ResY
X (χ), respectively.

Throughout the article, let q be a power of a prime p and let G = SLεn(q) and
G̃ = GLεn(q), where ε ∈ {±1}. Here when ε = 1, we mean G̃ = GLn(q) and
G = SLn(q), and when ε =−1, we mean G̃ = GUn(q) and G = SUn(q). We also
write G = SLn(Fq) and G̃ = GLn(Fq) for the corresponding algebraic groups, so
that G̃ = G̃Fε and G = GFε for an appropriate Frobenius morphism Fε : G̃→ G̃.

2. Characters

2A. Lusztig induction. For this section, we let H be any connected reductive
group over Fq with Frobenius map F, and write H = H F. For any F-stable Levi
subgroup L of H, contained in a parabolic subgroup P, we write L = LF and
denote by RH

L = R H
L⊂P the Lusztig (or twisted) induction functor. When P may be

chosen to be an F-stable parabolic, then RH
L becomes Harish-Chandra induction.

When L = T is chosen to be a maximal torus and θ is a character of T = T F,
then RH

T (θ) is the corresponding Deligne–Lusztig (virtual) character. We need the
following basic result regarding actions on characters of finite reductive groups
obtained through twisted induction.
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Lemma 2.1. Let H and H = H F be as above. Let L be an F-stable Levi subgroup
of H, and write L = LF. Let χ be a character of L , σ ∈ Gal(Q/Q), and α a linear
character of H which is trivial on unipotent elements. Then

σ RH
L (χ)= RH

L (σχ) and αRH
L (χ)= RH

L (αχ).

In particular, when L = T is a maximal torus and χ = θ is a character of T = T F,
then we have

σ RH
T (θ)= RH

T (σθ) and αRH
T (θ)= RH

T (αθ).

Proof. From [Digne and Michel 1991, Proposition 11.2], for any g ∈ H we have

RH
L (χ)(g)=

1
|L|

∑
l∈L

Tr((g, l−1)|X)χ(l),

where Tr((g, l−1)|X) is the Lefschetz number corresponding to the H × L-action
on the `-adic cohomology X of the relevant Deligne–Lusztig variety. In particular,
these numbers are rational integers (by [Digne and Michel 1991, Corollary 10.6],
for example). Thus,

σ RH
L (χ)(g)=

1
|L|

∑
l∈L

Tr((g, l−1)|X)σχ(l)= RH
L (σχ)(g).

The statement about α is [Digne and Michel 1991, Proposition 12.6(i)]. �

2B. Parametrization of characters of GLεn(q). We identify GL1(Fq)with F×q , and
so Fε acts on F×q via Fε(a) = aεq. For any integer k ≥ 1, we define Tk to be the
multiplicative subgroup of F×q fixed by Fk

ε , that is,

Tk = (F
×

q )
Fk
ε .

We denote by T̂k the multiplicative group of complex-valued linear characters of Tk .
Whenever d | k, we have the natural norm map Nmk,d =Nm from Tk to Td , and the
transpose map N̂m gives a norm map from T̂d to T̂k , where N̂m(ξ)= ξ ◦Nm. We
consider the direct limit of the character groups T̂k with respect to these norm maps,
lim
−→

T̂k , on which Fε acts through its natural action on the groups Tk . Moreover, the
fixed points of lim

−→
T̂k under Fd

ε can be identified with T̂d . We let 2 denote the set
of Fε-orbits of lim

−→
T̂k . The elements of2 are sometimes called simplices (in [Green

1955; Turull 2001], for example). They are naturally dual objects to polynomials
with roots given by an Fε-orbit of F×q .

For any orbit φ ∈ 2, let |φ| denote the size of the orbit. Let P denote the set
of all partitions of nonnegative integers, where we write |ν| = n if ν is a partition
of n, and let Pn denote the set of all partitions of n. The irreducible characters
of G̃ = GLεn(q) are parametrized by partition-valued functions on 2. Specifically,
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given a function λ :2→ P , define |λ| by

|λ| =
∑
φ∈2

|φ| |λ(φ)|,

and define Fn by
Fn = {λ :2→ P | |λ| = n}.

Then Fn gives a parametrization of the irreducible complex characters of G̃. Given
λ ∈ Fn , we let χ̃λ denote the irreducible character corresponding to it.

We need several details regarding the structure of the character χ̃λ. In the
case ε = 1, these facts all follow from the original work of Green [1955], and also
appear from a slightly different point of view in [Macdonald 1995, Chapter IV]. For
the case ε =−1, the facts we need appear in [Thiem and Vinroot 2007], which con-
tains relevant results from [Digne and Michel 1987; Lusztig and Srinivasan 1977].

First consider some λ ∈ Fn such that λ(φ) is a nonempty partition for exactly
one φ ∈2, and write χ̃λ = χ̃λ,φ . Suppose that |φ| = d , so that |λ(φ)| = n/d . Then
let ωλ(φ) be the irreducible character of the symmetric group Sn/d parametrized
by λ(φ) ∈ Pn/d . We fix this parametrization so that the partition (1, 1, . . . , 1)
corresponds to the trivial character. For any γ = (γ1, γ2, . . . , γ`) ∈ Pn/d , let
ωλ(φ)(γ ) denote the character ωλ(φ) evaluated at the conjugacy class parametrized
by γ (where (1, 1, . . . , 1) corresponds to the identity), and let zγ the size of the
centralizer in Sn/d of the class corresponding to γ . Let Tγ be the torus

Tγ = Tdγ1 × Tdγ2 × · · ·× Tdγ`,

and let θ ∈ φ. Then we have

(1) χ̃λ,φ =±
∑
γ∈Pn/d

ωλ(φ)(γ )

zγ
RG̃

Tγ (θ),

where the sign can be determined explicitly (see the remark after [Thiem and
Vinroot 2007, Theorem 4.3], for example), but the sign will not have any impact
for us. Note that from (1), it follows from our parametrization of characters of the
symmetric group and [Digne and Michel 1991, Proposition 12.13] that the trivial
character of G̃ corresponds to λ(1)= (1, 1, . . . , 1).

For an arbitrary λ ∈Fn , let φ1, φ2, . . . , φr be precisely those elements in 2 such
that λ(φi ) is a nonempty partition, and let di = |φi |. Let ni = di |λ(φi )|, and define
L to be the Levi subgroup L = GLεn1

(q)× · · ·×GLεnr
(q). The character χ̃λ is then

given by

(2) χ̃λ =±RG̃
L (χ̃λ,φ1 × · · ·× χ̃λ,φr ).

The sign only appears in the ε =−1 case, and again can be determined explicitly.
Note that (2) is Harish-Chandra induction in the case ε = 1.
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Remark 2.2. We may also describe the character χ̃λ in terms of Lusztig series and
the Jordan decomposition of characters (see [Digne and Michel 1991, Chapter 13])
as follows. Each φi ∈2 above corresponds to a polynomial with roots given by an
Fε-orbit of F×q , as already mentioned. In this way, the collection

{φi | i = 1, . . . , r}

corresponds to a semisimple class (s) of G̃ (we may identify G̃ with its dual group
in this case), and χ̃λ is an element of the Lusztig series E(G̃, s). Then the centralizer
in G̃ of any element of (s) is of the form

CG̃(s)∼= GLε1
n1/d1

(qd1)× · · ·×GLεr
nr/dr

(qdr ),

where εi = ε
di. The partition λ(φi ) corresponds to a unipotent character ψλ(φi )

of GLεi
ni/di

(qdi ). The character ψλ = ⊗r
i=1ψλ(φi ) is then a unipotent character

of CG̃(s), and the Jordan decomposition of χ̃λ is given by the G̃-conjugacy class
of pairs (s, ψλ).

2C. Restriction to SLεn(q) and actions on the parametrization. We now turn to
the parametrization of the characters of G = SLεn(q) in terms of the characters of G̃
described in the previous section. This is done for the case ε = 1 in [Karkar and
Green 1975; Lehrer 1973], and we adapt the methods there to handle the more
general case of ε =±1.

Consider any Galois automorphism σ ∈ Gal(Q/Q). Through the natural action
of σ on the character values of any θ ∈ T̂d , we have an action of σ on the orbits
φ ∈2. Given any λ ∈ Fn , we define σλ by

σλ(φ)= λ(σ−1φ).

For α ∈ T̂1, define αχ̃ and αθ by the usual product of characters in Irr(G̃) and T̂d ,
where we compose α with determinant and the norm maps, respectively. Then α
acts on the orbits φ ∈2 as well, and we get an action of α on Fn by defining αλ as

αλ(φ)= λ(α−1φ).

We will need the following statements regarding these actions on the characters
of G̃.

Lemma 2.3. Let λ ∈ Fn . For any σ ∈ Gal(Q/Q) and any α ∈ T̂1, we have

σ χ̃λ = χ̃σλ and αχ̃λ = χ̃αλ.

Proof. We proceed in a manner similar to the proof of [Karkar and Green 1975,
Proposition of Section 3], which proves this statement in the ε = 1 case with the T̂1

action. We begin by considering λ ∈ Fn such that λ(φ) is a nonempty partition for
precisely one φ ∈2, and so χ̃λ = χ̃λ,φ is given by (1). Given σ ∈Gal(Q/Q), since
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each ωλ(φ)(γ ) and each zγ is a rational integer, we have

σ χ̃λ,φ =±
∑
γ∈Pn/d

ωλ(φ)(γ )

zγ
σ RG̃

Tγ (θ)=±
∑
γ∈Pn/d

ωλ(φ)(γ )

zγ
RG̃

Tγ (σθ),

by Lemma 2.1. Since σθ ∈ σφ and σλ(σφ)= λ(φ), then we have σ χ̃λ,φ = χ̃σλ,σφ .
Similarly, if α ∈ T̂1, we have by Lemma 2.1

αχ̃λ,φ =±
∑
γ∈Pn/d

ωλ(φ)(γ )

zγ
αRG̃

Tγ (θ)=±
∑
γ∈Pn/d

ωλ(φ)(γ )

zγ
RG̃

Tγ (αθ),

and since αθ ∈ αφ, we have αχ̃λ,φ = χ̃αλ,αφ .
Now consider an arbitrary λ∈Fn , with χ̃λ given by (2). By applying Lemma 2.1,

along with the first case just proved, we have

σ χ̃λ =±RG̃
L (σ (χ̃λ,φ1 × · · ·× χ̃λ,φr ))

=±RG̃
L (σ χ̃λ,φ1 × · · ·× σ χ̃λ,φr )

=±RG̃
L (χ̃σλ,σφ1 × · · ·× χ̃σλ,σφr )

= χ̃σλ.

Similarly, if we replace σ with α ∈ T̂1, we have αχ̃λ = χ̃αλ as claimed. �

Note that we may identify G̃/G with T1, and directly from Clifford theory we
know every character χ of G appears in some multiplicity-free restriction of a
character χ̃λ of G̃. The restrictions of two different irreducible characters of G̃ are
either equal, or have no irreducible constituents of Irr(G) in common. With this,
the next result is all that is needed to parametrize Irr(G).

Lemma 2.4. Let λ,µ ∈ Fn , with corresponding characters χ̃λ, χ̃µ ∈ Irr(G̃). Then

ResG̃
G(χ̃λ)= ResG̃

G(χ̃µ)

if and only if there exists some α ∈ T̂1 such that λ= αµ.

Proof. This follows directly from [Karkar and Green 1975, Theorem 1(i)] and
Lemma 2.3. �

Consider any irreducible character χ of G, so χ is a constituent of ResG̃
G(χ̃λ) for

some λ ∈ Fn . That is, χ ∈ Irr(G|χ̃λ). The other constituents of this restriction are
G̃-conjugates of χ . Note that the field of values of χ is invariant under conjugation
by G̃, and so in studying this field of character values it is not important which
constituent we choose. Since we will see below that Q(χ) is closely related to the
field of values of ResG̃

G(χ̃λ), we give this a name.

Definition 1. We let Fλ :=Q(ResG̃
G(χ̃λ)) denote the field of values of ResG̃

G(χ̃λ).
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Further, given λ ∈ Fn , we define the group I(λ) as

I(λ)=
⋂
{kerα | α ∈ T̂1 such that αλ= λ} ≤ T1.

We collect some basic properties of I(λ) in the following.

Proposition 2.5. Let χ ∈ Irr(G|χ̃λ). Then:

• The stabilizer in G̃ of χ is the set of elements with determinant in I(λ).
• The stabilizer of λ in T̂1 is the set of elements whose kernel contains I(λ).
• The index [T1 : I(λ)] divides gcd(q − ε, n).

Proof. The proof is exactly as in [Turull 2001, Propositions 4.2 and 4.3 and
Corollary 4.4], using Clifford theory and Lemma 2.3. �

2D. Remarks on generalized Gelfand–Graev characters. We recall here some
subgroups described in [Geck 2004, Section 2] used in the construction of the
characters of generalized Gelfand–Graev representations (GGGRs). We introduce
only the essentials for our purposes, and refer the reader to [Geck 2004; Kawanaka
1985; Taylor 2016], for example, for more details.

First, let T and B be an Fε-stable maximal torus and Borel subgroup of G,
respectively, where T ≤ B = TU , with unipotent radical U . Let 8 be the root
system of G with respect to T and 8+ ⊂ 8 the set of positive roots determined
by B.

To each unipotent class C in G (or, equivalently, in G̃), there is associated a
weighted Dynkin diagram d :8→ Z and Fε-stable groups

Ud,i := 〈Xα | α ∈8+, d(α)≥ i〉 ≤ U,

where Xα denotes the root subgroup in B corresponding to α. In particular, Pd :=

NG̃(Ud,1) is an Fε-stable parabolic subgroup of G̃ and Ud,i C Pd for each i =
1, 2, 3, . . . . We will further write Ud,i := U Fε

d,i and Pd := P Fε
d .

Given u ∈ C ∩ Ud,2, the characters of GGGRs (which we will also refer to
as GGGRs) of G̃ (resp. G) are constructed by inducing certain linear characters
ϕu :Ud,2→ C× to G̃ (resp. G). In particular, the values of ϕu are all p-th roots of
unity. Strictly speaking, the GGGRs are actually rational multiples of the induced
character:

0̃u = [Ud,1 :Ud,2]
−

1
2 IndG̃

Ud,2
(ϕu) and 0u = [Ud,1 :Ud,2]

−
1
2 IndG

Ud,2
(ϕu).

The following is [Schaeffer Fry and Taylor 2018, Proposition 10.11], which
is a consequence of [Tiep and Zalesskii 2004, Theorem 1.8, Lemma 2.6, and
Theorem 10.10].

Proposition 2.6. Let 0u be a GGGR of G. Then the following hold.
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(1) If q is a square, or n is odd, or n/(n, q − ε) is even, then the values of 0u are
integers.

(2) Otherwise, the values of 0u lie in Q(
√
ηp), where η ∈ {±1} is such that

p ≡ η mod 4.

Note that case (1) of Proposition 2.6 includes the case that q is even.

3. Initial results on fields of values

Keep the notation from above, so that G=SLεn(q), G̃=GLεn(q), and the characters
of G̃ are denoted by χ̃λ for λ ∈ Fn . For λ ∈ Fn , let Q(λ) denote the field obtained
from Q by adjoining the values of the characters in the orbits φ ∈2 such that λ(φ)
is nonempty.

We define Galg(λ) and Galr(λ) as in [Turull 2001]. That is, Galg(λ) is the
stabilizer of λ in Gal(Q(λ)/Q) and

Galr(λ)= {σ ∈ Gal(Q(λ)/Q) | σλ= αλ for some α ∈ T̂1}.

Theorem 3.1. Let λ ∈ Fn . Then Q(χ̃λ)=Q(λ)Galg(λ) and Fλ =Q(λ)Galr(λ) (recall
Definition 1). That is, the field of values for χ̃λ and its restriction to G are the fixed
fields of Galg(λ) and Galr(λ), respectively.

Proof. Given Lemma 2.3, the proof is exactly the same as that of [Turull 2001,
Propositions 2.8 and 3.4]. �

Note that since the members of φ ∈ 2 are characters of Td for some d, it
follows that Q(λ)=Q(ζm) is the field obtained from Q by adjoining some primitive
m-th root of unity ζm , where gcd(m, p) = 1. Since Fλ ⊆ Q(λ), it follows that
Fλ ∩Q(ζp)=Q for any primitive p-th root of unity ζp.

Remark 3.2. As in the proof of [Turull 2001, Proposition 6.2], the Galois automor-
phism σ−1 :Q(ζm)→Q(ζm) satisfying σ−1(ζm)= ζ

−1
m induces complex conjugation

on Q(λ). Hence χ̃λ (resp. ResG̃
G(χ̃λ)) is real-valued if and only if σ−1 ∈ Galg(λ)

(resp. σ−1 ∈ Galr(λ)).

Proposition 3.3. Let χ ∈ Irr(G|χ̃λ). Keep the notation above. Then:

(1) If q is square, or n is odd, or n/(n, q − ε) is even, then Q(χ)= Fλ.

(2) Otherwise, Fλ ⊆Q(χ)⊆ Fλ(
√
ηp), where η ∈ {±1} is such that p ≡ η mod 4.

In particular, χ is real-valued if and only if ResG̃
G(χ̃λ) is, except possibly when

q ≡ 3 mod 4 and 2≤ n2 ≤ (q − ε)2.

Proof. Write F := Fλ and χ̃ := χ̃λ. First, we remark that certainly F⊆Q(χ), by its
definition, since ResG̃

G(χ̃) is the sum of G̃-conjugates of χ .
Let 0̃ be a GGGR of G̃ such that 〈0̃, χ̃〉G̃ = 1, which exists by a well-known

result of Kawanaka (see [Kawanaka 1985, 3.2.18] for large p or [Taylor 2016, 15.7]).
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Further, there exists a GGGR, 0, of G such that 0̃ = IndG̃
G(0). Then Frobenius

reciprocity yields that there is a unique irreducible constituent χ0 ∈ Irr(G|χ̃) sat-
isfying 〈0, χ0〉G = 1. Without loss, we may assume χ is this χ0, as the field of
values is invariant under G̃-conjugation.

Write K = F(
√
ηp). Let σ ∈ Gal(Q/F) in case (1), and let σ ∈ Gal(Q/K) in

case (2). Then by Proposition 2.6, σχ is also a constituent of 0 = σ0 occurring
with multiplicity 1. As ResG̃

G(χ̃) is invariant under σ , however, we have that σχ
is also a constituent of the restriction ResG̃

G(χ̃). Hence we see that σχ = χ , by
uniqueness, and hence Q(χ)⊆ F in case (1) and Q(χ)⊆ K in case (2). �

In our main results below when q is odd, characters of T1 of 2-power order will
play an important role. In particular, we denote by sgn the unique member of T̂1 of
order 2.

Lemma 3.4. Let q be odd and let χ ∈ Irr(G|χ̃λ) and write I := stabG̃(χ). Then
[G̃ : I ] is even if and only if sgnλ= λ.

Proof. Note that 2 divides [G̃ : I ] if and only if [I : G]2 ≤ 1
2(q − ε)2, if and only

if I(λ) is contained in the unique subgroup of G̃/G of order 1
2(q − ε). But notice

that this is exactly the kernel of sgn as an element of T̂1. �

Lemma 3.5. Let q be odd and let χ ∈ Irr(G|χ̃λ). If sgnλ 6= λ, then Fλ =Q(χ).

Proof. Write F := Fλ and recall that F ⊆ Q(χ) ⊆ F(
√
ηp). Let K = F(

√
ηp),

so that K is a quadratic extension of F. Let τ be the generator of Gal(K/F) and
write I for the stabilizer of χ under G̃. Then note that τ 2 necessarily fixes χ , and
by definition τ fixes ResG̃

G(χ̃), which by Clifford theory is the sum of the [G̃ : I ]
conjugates of χ under the action of G̃.

We prove the contrapositive. Suppose F 6=Q(χ), so that τ does not fix χ . Then
since the field of values is invariant under G̃-conjugation, it follows that the orbit
of χ under G̃ can be partitioned into pairs conjugate to {χ, τχ}. Hence the size of
the orbit, [G̃ : I ], must be even, so sgn λ= λ by Lemma 3.4. �

4. Unipotent elements

To deal with the remaining cases (in particular, when q ≡ η mod 4 is nonsquare,
η ∈ {±1}, ε =−1, and 2≤ n2 ≤ (q + 1)2), we will continue to employ the use of
GGGRs. For this, we will need to analyze certain aspects of conjugacy of unipotent
elements. Here, the observations in [Schaeffer Fry and Vinroot 2016] on this subject
will be useful.

In particular, if a unipotent element of G̃ = GLεn(q) for ε ∈ {±1} has mk Jordan
blocks of size k (that is, mk elementary divisors of the form (t − 1)k), then we may
find a conjugate in G̃ of the form

⊕
k J̃ mk

k , where the sum is over only those k such
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that mk 6= 0 and each J̃k ∈GLεk(q) is a Jordan block of size k. The following lemma
will be useful throughout the section.

Lemma 4.1 [Schaeffer Fry and Vinroot 2016, Lemma 3.2]. Let u be a unipotent
element in G̃ with mk Jordan blocks of size k for each 1≤ k ≤ n. For each k such
that mk 6= 0, let δk ∈ T1 be arbitrary. Then there exists some g ∈ CG̃(u) such that
det(g)=

∏
k δ

k
k .

We now turn our attention to the case ε =−1 for the remainder of this section.
Let ζp be a primitive p-th root of unity in C. In what follows, we let b be a fixed
integer such that Gal(Q(ζp)/Q) is generated by the map τ : ζp 7→ ζ b

p . Note that
(b, p)= 1 and b has multiplicative order p− 1 modulo p. Further, note that τ also
induces the map

√
ηp 7→ −

√
ηp generating Gal(Q(

√
ηp)/Q). Let b̄ denote the

image of b under a fixed isomorphism (Z/pZ)×→ F×p , so that b̄ generates F×p .
Note that by [Tiep and Zalesskii 2004, Theorem 1.9], every unipotent element u

of GUn(q) is conjugate to ub in CG̃(s), where s is a semisimple element in CG̃(u).
We are interested in making precise statements about such a conjugating element.

Let u be a regular unipotent element of GUn(q), identified as in [Schaeffer Fry
and Vinroot 2016, Lemma 5.1]. Employing the same argument as is used there, we
see that an element conjugating u to ub must have diagonal

(b̄n−1β, b̄n−2β, . . . , b̄β, β),

where β ∈ F×q2 and b̄n−1βq+1
=1. Note the determinant of such an element is b̄(

n
2)βn

and that the condition that b̄n−1βq+1
= 1 yields that βq+1 is a (p−1)-root of unity.

Lemma 4.2. Let q ≡ η mod 4 be nonsquare with η ∈ {±1} and let u be a regular
unipotent element of GUn(q). Keep the notation above. Then:

(a) If n is even, then β2 is a primitive (q2
−1)2-root of unity in F×q2 .

(b) There is an element x in GUn(q) such that ux
= ub and |det(x)| is a 2-power.

(c) If n 6≡ 0 mod 4, there is an element x in GUn(q) such that ux
= ub and

|det(x)| = (q + 1)2. Further:

(i) If n ≡ 2 mod 4, then |det(x)|2 = (q + 1)2 for any x ∈ GUn(q) satisfying
ux
= ub.

(ii) If n is odd, there is also an element x ′ ∈ SUn(q) such that ux ′
= ub.

(d) If n ≡ 0 mod 4, there is no element x in GUn(q) such that ux
= ub and

|det(x)| = (q + 1)2.

Proof. For part (a) note that |b̄n−1
| has the same 2-part as |b̄| since n is even, so

|β
q+1
2 | = (p− 1)2 = (q − 1)2 since q is nonsquare. Hence the multiplicative order

of β2 is 2(q − η)2 = (q2
− 1)2.
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To prove the rest, we begin by showing that if n 6≡0 mod 4, then we may find an x
in GUn(q) such that ux

= ub and |det(x)|2 = (q + 1)2, and that this is impossible
for n ≡ 0 mod 4. Let x ∈GUn(q) satisfy ux

= ub, so that x is of the form discussed
before the statement of the lemma.

If n≡ 2 mod 4, then β2 is a primitive (q2
−1)2-root of unity by (a), and hence βn

2
is a (q − η)2-root of unity. Here b̄(

n
2)

2 has the same order as b̄2, since
(n

2

)
is odd. If

η=−1, then since |b̄|2 = 2, we see b̄(
n
2)

2 βn
2 =±β

n
2 . Then any x ∈GUn(q) satisfying

ux
= ub must satisfy |det(x)|2= (q+1)2 in this case. If η= 1, note that (q+1)2= 2,

so we must just show that det(x) has even order. Here |b̄|2 = (q − 1)2, and b̄(
n
2) ·βn

has even order unless b̄(
n
2)

2 ·β
n
2 =1. However, the latter situation, combined with

the fact that b̄n−1
2 β

q+1
2 = 1, yields that β−n

2 = (b̄
n−1
2 )n/2 = (β

−1−q
2 )n/2, and hence

β
n((q+1)/2−1)
2 = 1. But since n2 = 2, this means that βq−1

2 = 1, contradicting that
β2 has order (q2

− 1)2. Then it must be that det(x) has even order, and we again
see that |det(x)|2 = (q + 1)2 in this case.

Now assume n is odd and let x̃ be an element in GUn(q) satisfying u x̃
= ub.

Then certainly det(x̃) ∈ T1, so we may use Lemma 4.1 to replace x̃ with some
x ∈ GUn(q) satisfying det(x)= det(x̃) · δn for any δ ∈ T1. In particular, note that
|δn
| = |δ| for any (q+1)2-root of unity δ, since n is odd. Then we may choose δ

so that det(x̃)2δn is a primitive (q+1)2-root of unity, yielding |det(x)|2 = (q + 1)2.
Alternatively, we may choose δ so that det(x̃)2δn

= 1, yielding |det(x)|2 = 1.
Finally, let n ≡ 0 mod 4. Then note that neither b̄(

n
2)

2 βn
2 nor δn for any δ ∈ T1 can

be a primitive (q+1)2-root of unity, so |det(x)|2 < (q + 1)2.
It remains to show that in all cases, x can be chosen such that |det(x)|2′ = 1.

Since βq+1 is a (p−1)-root of unity, we may decompose the determinant of x into
βn

2 ·β
n
(q+1)2′

· y, where y is a (p−1)-root of unity. However, we also know that the
determinant is a (q+1)-root and an odd prime cannot divide both p− 1 and q + 1.
Hence y must be a 2-power root of unity, and we may replace x with an element of
determinant βn

2 · y, using Lemma 4.1. �

Although there is no x satisfying the conclusion of Lemma 4.2(c) if u is a regular
unipotent element when 4 divides n, we can generalize to the following statement
about more general unipotent elements when 4 - n.

Corollary 4.3. Let q ≡ η mod 4 be nonsquare with η ∈ {±1}. If u is a unipotent
element of GUn(q) satisfying at least one of the following:

(1) u has an odd number of elementary divisors of the form (t − 1)k with k ≡
2 mod 4;

(2) u has an elementary divisor of the form (t − 1)k with k odd,

then u is conjugate to ub by an element x satisfying |det(x)| = (q + 1)2.
In particular, if n is not divisible by 4, any unipotent element is conjugate to ub

by an element x satisfying |det(x)| = (q + 1)2.
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Proof. Indeed, viewing u as
⊕

k J̃ mk
k as in [Schaeffer Fry and Vinroot 2016,

Section 3.2], we may find elements xk for each 1 ≤ k ≤ n as in Lemma 4.2
conjugating each J̃k to J̃ b

k . In case (1), we see that the product
⊕

k xk
mk will satisfy

the statement, after possibly replacing xk with x ′k as in Lemma 4.2(c)(ii) for any
odd k, so |det(x ′k)| = 1.

If (2) holds, but (1) does not hold, y =
⊕

2|k xk
mk will satisfy |det(y)| =

|det(y)|2 < (q+1)2, since the product of an even number of primitive (q+1)2-roots
of unity will no longer be primitive. We may use Lemma 4.2 to obtain xk for
some k odd such that |det(xk)| = (q + 1)2, and replace the remaining xk for odd k
with an element x ′k satisfying |det(x ′k)| = 1. The resulting

⊕
k xk

mk will satisfy the
statement.

The last statement follows, since if n is odd, we must be in case (2), and if
n ≡ 2 mod 4, we must be in case (1) or (2). �

Remark 4.4. At least one of conditions (1) and (2) of Corollary 4.3 must occur
if n ≡ 2 mod 4, and condition (1) implies condition (2) if n ≡ 0 mod 4. Further,
when η = 1, the condition n2 ≤ (q + 1)2 induced from Proposition 3.3 yields that
n ≡ 2 mod 4.

We now address the case that 4 divides n, q ≡ 3 mod 4, and that neither of the
conditions in Corollary 4.3 occur.

Lemma 4.5. Let q ≡ 3 mod 4 and let n ≡ 0 mod 4 such that n2 ≤ (q + 1)2. Let u
be a unipotent element of GUn(q) with no elementary divisors (t − 1)k with k odd.
Then u is conjugate to ub by an element x satisfying |det(x)| = (q2

− 1)2/n2.

Proof. As in the proof of Corollary 4.3, let x̃ =
⊕

k xk
mk , where for each k such

that mk 6= 0, xk is an element of GUk(q) conjugating J̃k to J̃ b
k as in Lemma 4.2.

Now, each xk has determinant ±(βk)2
k , where (βk)2 is a primitive (q2

−1)2-root
of unity in F×q2 , by Lemma 4.2, since the y found there has multiplicative or-
der (p− 1)2 = 2. Then taking δk ∈ F×q2 to be the primitive (q+1)2-root of unity
δk = (βk)

2
2, we may use Lemma 4.1 to replace xk with an element whose determinant

is ±(βk)
k
2δ

rk
k =±(βk)

k(2r+1)
2 for any odd r , yielding that we may replace each xk

with an element whose determinant is ±βk
2 for a fixed primitive (q2

−1)2-root of
unity β2. Hence the resulting x satisfies det(x)=±βn

2 , which has the stated order. �

5. Application to GGGRs

Here we keep the notation of Section 2D and return to the more general case that
G̃ = GLεn(q) and G = SLεn(q) for ε ∈ {±1}. Let C be a fixed unipotent class of G̃.

Lemma 5.1. Let u ∈ C ∩Ud,2 and suppose that x is an element normalizing Ud,2

and conjugating u to ub. Then ϕx
u = ϕ

b
u .
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Proof. This follows from the construction of ϕu in [Taylor 2016, Section 5] or
[Geck 2004, Section 2]. Indeed, for each g in Ud,2, we have ϕx

u (g)= ϕu(xgx−1)=

ϕx−1ux(g)= ϕux (g)= ϕub(g)= ϕu(g)b, where the second equality is noted in [Geck
2004, Remark 2.2]. �

Lemma 5.2. Let u ∈ C ∩ Ud,2 and ε = −1. Then the elements x found in
Corollary 4.3 and Lemma 4.5 are members of Pd , and hence normalize Ud,2.

Proof. First, note that CG̃(u) ≤ Pd . Indeed, this is noted in [Kawanaka 1986,
Theorem 2.1.1] for simply connected groups, and here we have G̃ = GZ(G̃) with
G simply connected. Further, u is conjugate to ub in Pd by [Schaeffer Fry and
Taylor 2018, Lemma 4.6]. So ux

= ub
= u y for some y ∈ Pd , which yields that

xy−1
∈ CG̃(u), and hence x ∈ G̃ ∩ Pd . This shows that x is contained in Pd , which

contains Ud,2 as a normal subgroup. �

Lemma 5.3. Let G=SLεn(q) and G̃=GLεn(q), with ε ∈{±1}. Let χ̃ := χ̃λ ∈ Irr(G̃)
and let

0̃u = [U1,d :U2,d ]
−

1
2 IndG̃

Ud,2
(ϕu)

be a generalized Gelfand–Graev character of G̃ such that 〈0̃u, χ̃〉G̃ = 1. Let
σ ∈ Gal(Q/Fλ) and let x ∈ G̃ normalizing Ud,2 such that σϕu = ϕ

x
u . Then for

χ ∈ Irr(G|χ̃), there is some conjugate χ0 of χ such that σχ0 = χ
x
0 .

Proof. Let 0u be such that 0̃u = IndG̃
G0u and 0u = r · IndG

Ud,2
(ϕu) where r =

[U1,d : U2,d ]
−1/2. Then by Clifford theory and Frobenius reciprocity, there is

a unique conjugate, χ0, of χ such that χ0 ∈ Irr(G|χ̃) and 〈0u, χ0〉G = 1. Since
ResG̃

G(χ̃) is fixed by σ , we also see σχ0 is the unique member of Irr(G|χ̃) satisfying
〈σ0u, σχ0〉G = 1. But note that

σ0u = r · IndG
Ud,2
(σϕu)= r · IndG

Ud,2
(ϕx

u )= 0
x
u .

Then 〈σ0u, χ
x
0 〉G = 〈0

x
u , χ

x
0 〉G = 1, forcing χ x

0 = σχ0 by uniqueness, since χ x
0 ∈

Irr(G|χ̃). �

6. Main results

Our first main result is an extension of [Turull 2001, Theorem 4.8] to the case of
G = SUn(q), describing the field of values Q(χ) for each χ ∈ Irr(G). Recall that
we write Fλ for the field of values of the restriction to G of χ̃λ (see Definition 1).

Theorem 6.1. Let G = SLεn(q) and G̃ = GLεn(q), with ε ∈ {±1}. Let λ ∈ Fn and
let χ ∈ Irr(G|χ̃λ). Then Q(χ)= Fλ unless all of the following hold:

• p is odd.

• q is not square.
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• 2≤ n2 ≤ (q − ε)2.

• αλ= λ for any element α ∈ T̂1 of order n2.

In the latter case, Q(χ)= Fλ(
√
ηp), where η ∈ {±1} and p ≡ η mod 4.

Remark 6.2. In terms of the Jordan decomposition of characters described in
Remark 2.2, the last condition in Theorem 6.1 may be translated as follows. Let χ̃λ
have Jordan decomposition (s, ψλ), and for any α ∈ T̂1 of order n2 in the condition,
let a ∈ T1 correspond to α through some fixed isomorphism. Then the condition is
equivalent to the pair (s, ψλ) being G̃-conjugate to the pair (as, ψαλ).

Taking into consideration Remark 3.2, Theorem 6.1 immediately yields the
following extension of [Turull 2001, Proposition 6.2].

Corollary 6.3. Let G = SLεn(q) and G̃ = GLεn(q), with ε ∈ {±1}. Let λ ∈ Fn and
let χ ∈ Irr(G|χ̃λ). Then the following are equivalent:

• χ is real-valued.

• There exists some α′ ∈ T̂1 such that σ−1λ = α
′λ, and if p is odd, q is not a

square, 2 ≤ n2 ≤ (q − ε)2, and αλ = λ for any element α ∈ T̂1 of order n2,
then p ≡ 1 mod 4.

The remainder of this section will be devoted to proving Theorem 6.1 when
ε =−1. (Recall that Theorem 6.1 in the case ε = 1 is [Turull 2001, Theorem 4.8].)
We begin with an observation that holds in either case ε ∈ {±1}, but in particular
restricts the situation of Corollary 4.3.

Proposition 6.4. Let G = SLεn(q) and G̃ =GLεn(q), with ε ∈ {±1}. Let χ̃ ∈ Irr(G̃)
and let 0̃u be a GGGR of G̃ such that 〈0̃u, χ̃〉G̃ = 1. Further, assume that u has
an elementary divisor of the form (t − 1)k with k odd. Then [G̃ : I ] is odd, where
I = stabG̃(χ) for any χ ∈ Irr(G|χ̃). In particular, in this case, Fλ = Q(χ) by
Lemma 3.5.

Proof. Write 0̃u = [U1,d :U2,d ]
−1/2IndG̃

Ud,2
(ϕu). By Lemma 4.1, there is some

x ∈ CG̃(u) with determinant δk, where δ is a primitive (q−ε)2-root of unity in T1.
In particular, |det(x)| = (q − ε)2 since k is odd, and ϕx

u = ϕu since x normalizes
Ud,2 as in the proof of Lemma 5.1. Then applying Lemma 5.3 with σ trivial yields
that some conjugate χ0 of χ satisfies χ x

0 = χ0. This implies [I : G] is divisible by
(q − ε)2, so that [G̃ : I ] must be odd. �

For the remainder of this section, we will consider the case ε =−1, so that G̃ =
GUn(q) and G = SUn(q). In particular, Remark 4.4 and Proposition 6.4 yield that
when [G̃ : I ] is even and n is divisible by 4, then neither condition in Corollary 4.3
holds. Further, if [G̃ : I ] is even and n ≡ 2 mod 4, then Corollary 4.3(1) holds.
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Proposition 6.5. Let ε = −1 and suppose that q ≡ η mod 4 is nonsquare with
η ∈ {±1} and that n ≡ 2 mod 4. Then the converse of Lemma 3.5 holds. That is, for
χ ∈ Irr(G|χ̃λ), Fλ=Q(χ) if and only if sgn λ 6= λ. Alternatively, Fλ(

√
ηp)=Q(χ)

if and only if sgn λ= λ.

Proof. We must show that if sgn λ = λ, then Fλ 6= Q(χ). First, recall that this
condition on λ is equivalent to the condition that [G̃ : I ] = [T1 : I(λ)] is even, by
Lemma 3.4. Since n2 = 2, Proposition 2.5 yields that [G̃ : I ]2 = 2. This means
that no G̃-conjugate of χ can be fixed by any g̃ ∈ G̃ whose determinant satisfies
|det(g̃)|2 = (q + 1)2.

Abusing notation, we let τ also denote the unique element of Gal(Fλ(ζp)/Fλ) that
restricts to our fixed generator τ of Gal(Q(ζp)/Q). In the notation of Lemma 5.3, we
have ϕx

u =ϕ
b
u = τϕu for some x ∈ Pd satisfying |det(x)| = (q+1)2, by Corollary 4.3

and Lemmas 5.1 and 5.2. Then by Lemma 5.3, there is a conjugate χ0 of χ such
that χ x

0 = τχ0. In particular, note that the condition on the determinant yields
that χ x

0 6= χ0, so τχ0 6= χ0. Since χ and χ0 have the same field of values, we see
τχ 6= χ , and we have Fλ 6=Q(χ). �

Proposition 6.6. Let ε =−1 and suppose that q ≡ 3 mod 4 and 4≤ n2 ≤ (q+1)2,
and let χ ∈ Irr(G|χ̃λ) and I := stabG̃(χ). Then Fλ=Q(χ) if and only if [G̃ : I ]2<n2.

Proof. First, note that [G̃ : I ]2 ≤ n2 by Proposition 2.5. Note that by Lemma 3.5,
we may assume that [G̃ : I ] is even and therefore that χ ∈ Irr(G|0̃u) where u has
no odd-power elementary divisor, by Proposition 6.4. By Lemmas 4.5, 5.1, and 5.2,
there is some x ∈ G̃ such that ϕx

u = ϕ
b
u = τϕu and |det(x)| = 2(q + 1)2/n2, which

is divisible by 2 since n2 ≤ (q + 1)2. By Lemma 5.3, there is a conjugate χ0 of χ
such that χ x

0 = τχ0.
Suppose first that [G̃ : I ]2 = n2, so that x cannot stabilize χ0, since [I : G]2 =

(q+1)2/n2 (and the same is true for the stabilizer of χ0). This yields that χ0 6= τχ0,
so the same holds for χ . Hence if [G̃ : I ]2 = n2, then Fλ 6=Q(χ).

Now suppose [G̃ : I ]2 < n2. That is, [G̃ : I ]2 ≤ n2/2. Then the stabilizer of
χ0 must contain x , since I/G ∼= I(λ) is cyclic and contains the unique subgroup
of G̃/G of size 2(q + 1)2/n2. Then χ0 = τχ0, and the same is true for χ , so
Fλ =Q(χ). �

Proof of Theorem 6.1. For ε = 1, this is [Turull 2001, Theorem 4.8], so we assume
ε =−1. When q is odd, note the case [G̃ : I ]2 = n2, for any n even, is equivalent to
having αλ= λ for any α ∈ T̂1 of order n2. In the case n ≡ 2 mod 4, we remark that
this α is sgn. Hence Propositions 3.3, 6.5, and 6.6 combine to yield the statement. �
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