FIELDS OF CHARACTER VALUES FOR
FINITE SPECIAL UNITARY GROUPS

A. A. SCHAEFFER FRY AND C. RYAN VINROOT

Volume 300 No. 2 June 2019



PACIFIC JOURNAL OF MATHEMATICS
Vol. 300, No. 2, 2019

dx.doi.org/10.2140/pjm.2019.300.473

FIELDS OF CHARACTER VALUES FOR
FINITE SPECIAL UNITARY GROUPS

A. A. SCHAEFFER FRY AND C. RYAN VINROOT

Turull has described the fields of values for characters of SL.,,(¢) in terms of
the parametrization of the characters of GL,(¢q). In this article, we extend
these results to the case of SU, (¢).

1. Introduction

It is a problem of general interest to understand the fields of values of the complex
characters of finite groups, as these fields often reflect important or subtle properties
of the group itself. Turull [2001, Section 4] computed the fields of character values of
the finite special linear groups SL,, (¢) by using properties of Zelevinsky’s degenerate
Gelfand—Graev characters of GL,(g). In this paper, we extend these methods to
compute the fields of character values for the finite special unitary groups SU, (g). In
particular, we use properties of Kawanaka’s generalized Gelfand—Graev characters
of SU,,(¢) and the full unitary group GU, (g) to get this information. Further, we
frame these methods so that we obtain many results for both SL,,(g) and SU, (¢)
simultaneously.

Turull also computes the Schur indices of the characters of SL,,(¢). This appears
to be a much more difficult problem for SU,,(¢g). For example, it is helpful in the
SL,(q) case that the Schur index for every character of GL,(q) is 1. However,
the Schur indices of the characters of GU, (g) are not all explicitly known, but are
known to take values other than 1.

This paper is organized as follows. In Section 2, we establish the necessary
results from character theory that are needed for the main arguments. In Sections 2A
and 2B, we give some tools from Deligne-Lusztig theory and the parametrization of
the characters of GL;,(¢), respectively, and we use these to describe the characters
of SL; (¢) in Section 2C. We introduce generalized Gelfand—Graev characters in
Section 2D. In Section 3, we obtain some preliminary results on fields of character
values which follow quickly from the material in Section 2. To deal with the
harder cases, we need some explicit information on unipotent elements in unitary
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groups obtained in Section 4, and we apply this information to generalized Gelfand—
Graev characters in Section 5. Finally, in Section 6 we prove our main results in
Theorem 6.1 and Corollary 6.3, which give explicitly the field of values of any
character of SU,,(¢) and a description of the real-valued characters of SU,(g). In
particular, these results can be phrased in the same way as the corresponding results
for SL, (¢) found in [Turull 2001, Section 4], so that we may state both our results
and Turull’s simultaneously.

Notation. We will often use the notation found in [Turull 2001], for clarity of
analogous statements. For example, the natural action of a Galois automorphism
o € Gal(Q/Q) on a character x of a group will be denoted o x. Here for a group
element g, the value of o x is given by o x(g) =0 (x(g)). We write Q(x) for the
field obtained from Q by adjoining all values of the character .

For an integer n, we will write n = nyny where nj is a 2-power and ny is odd.
Further, for an element x of a finite group Y, we write x = xpxp» where x; has
2-power order and x has odd order. We denote by |x| the order of the element x
(we also use this notation for cardinality and size of partitions, which will be clear
from context). We write Irr(Y) for the set of all irreducible complex characters of
the finite group Y. Given two elements g, x in ¥, we write g = x ' gx, and for
x € Irr(Y), we define x* by x*(g) = x (xgx™1).

For a subgroup X <Y, we write Ind)y( (¢) for the character of Y induced from
a character ¢ of X, and we write Resff (x) for the character of X restricted from
a character x of Y. We will further use Irr(Y|¢) and Irr(X|x) to denote the set of
irreducible constituents of Indf( (¢) and Resﬁ’(( X ), respectively.

Throughout the article, let ¢ be a power of a prime p and let G = SL; (¢) and
G = GL:(g), where € € {1}. Here when ¢ = 1, we mean G = GL,(¢) and
G =SL,(g), and when € = —1, we mean G = GU,(¢) and G = SU,,(g). We also
write G = SL,, ([F ) and G= GL, ([F ) for the corresponding algebraic groups, so
that G = G and G = G** for an appropriate Frobenius morphism F : G — G.

2. Characters

2A. Lusztig induction. For this section, we let H be any connected reductive
group over R with Frobenius map F, and write H = H’. For any F-stable Levi
subgroup L of H, contained in a parabolic subgroup P, we write L = L’ and
denote by R = R{’C p the Lusztig (or twisted) induction functor. When P may be
chosen to be an F-stable parabolic, then Rf becomes Harish-Chandra induction.
When L = T is chosen to be a maximal torus and 6 is a character of T = TF,
then R? (0) is the corresponding Deligne—Lusztig (virtual) character. We need the
following basic result regarding actions on characters of finite reductive groups
obtained through twisted induction.
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Lemma 2.1. Let H and H = H" be as above. Let L be an F -stable Levi subgroup
of H, and write L = L¥. Let x be a character of L, o € Gal(Q/Q), and o a linear
character of H which is trivial on unipotent elements. Then

ORI (X)=R[ (ox) and aR{(x)=R[ (ax).

In particular, when L = T is a maximal torus and x = 0 is a character of T =T,
then we have

oR¥©)=RE(00) and oR¥(0) = R (w0).
Proof. From [Digne and Michel 1991, Proposition 11.2], for any g € H we have
1

REGO(9) = 7

> Tr((e. THIX) X (),

leL

where Tr((g, I~ ")|X) is the Lefschetz number corresponding to the H x L-action
on the £-adic cohomology X of the relevant Deligne—Lusztig variety. In particular,
these numbers are rational integers (by [Digne and Michel 1991, Corollary 10.6],
for example). Thus,

1 _
R (0)(8) = — Y _Tr((g. 1" HIX)ox () = Rf (0 3)(3)
IL] leL
The statement about « is [Digne and Michel 1991, Proposition 12.6(1)]. O

2B. Parametrization of characters of GL;,(q). We identify GL, ([_Fq) with FX, and
so F. acts on [l_:j; via F¢(a) = a®4. For any integer k > 1, we define T} to be the
multiplicative subgroup of I]_:qX fixed by F¥X, that is,

= k
T, = ([F;)Fe.

We denote by 7‘;{ the multiplicative group of complex-valued linear characters of 7j.
Whenever d | k, we have the natural norm map Nmyg s = Nm from 7% to Ty, and the
transpose map Nm gives a norm map from ﬁl to T”k, where ﬁr\n(é ) =& oNm. We
consider the direct limit of the character groups T with respect to these norm maps,
lim 7}, on which F. acts through its natural action on the groups 7. Moreover, the
fixed points of lim i"\k under F ed can be identified with fd. We let ® denote the set
of F.-orbits of lim fk The elements of ® are sometimes called simplices (in [Green
1955; Turull 2(@], for example). They are naturally dual objects to polynomials
with roots given by an F,-orbit of RX.

For any orbit ¢ € 0, let |¢| denote the size of the orbit. Let P denote the set
of all partitions of nonnegative integers, where we write |v| = n if v is a partition
of n, and let P, denote the set of all partitions of n. The irreducible characters
of G = GL{ (¢) are parametrized by partition-valued functions on ®. Specifically,
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given a function A : ® — P, define |A| by
HEDNAIO]

Pe®
and define F,, by

Fo={rL:0—>P]| Al =n}.

Then F,, gives a parametrization of the irreducible complex characters of G. Given
A € F,, we let X, denote the irreducible character corresponding to it.

We need several details regarding the structure of the character ;. In the
case € = 1, these facts all follow from the original work of Green [1955], and also
appear from a slightly different point of view in [Macdonald 1995, Chapter IV]. For
the case € = —1, the facts we need appear in [Thiem and Vinroot 2007], which con-
tains relevant results from [Digne and Michel 1987; Lusztig and Srinivasan 1977].

First consider some A € F, such that A(¢) is a nonempty partition for exactly
one ¢ € O, and write X, = X5, 4. Suppose that |¢| = d, so that [A(¢)| =n/d. Then
let w*® be the irreducible character of the symmetric group S, /a4 parametrized
by A(¢) € Pn/q. We fix this parametrization so that the partition (1,1,...,1)
corresponds to the trivial character. For any y = (y1, 2, ..., ¥) € Pyja, let
0@ (y) denote the character w*®) evaluated at the conjugacy class parametrized
by y (where (1, 1, ..., 1) corresponds to the identity), and let z, the size of the
centralizer in S, /4 of the class corresponding to y. Let T, be the torus

Ty = Tay, X Tay, X -+ X Tay,,

and let 6 € ¢. Then we have
w)‘(¢)()/)

Y

(1) Bg=% Y RS ©).

Y€Pusa

where the sign can be determined explicitly (see the remark after [Thiem and
Vinroot 2007, Theorem 4.3], for example), but the sign will not have any impact
for us. Note that from (1), it follows from our parametrization of characters of the
symmetric group and [Digne and Michel 1991, Proposition 12.13] that the trivial
character of G corresponds to A(1) = (1,1, ..., 1).

For an arbitrary A € F,, let ¢1, ¢2, ..., ¢, be precisely those elements in ® such
that A(¢;) is a nonempty partition, and let d; = |¢;|. Let n; = d;|A(¢;)|, and define
L to be the Levi subgroup L = GL;, (q) x - -- x GL;, (¢). The character ¥; is then
given by

2) X% =ERT X X+ X )

The sign only appears in the € = —1 case, and again can be determined explicitly.
Note that (2) is Harish-Chandra induction in the case € = 1.
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Remark 2.2. We may also describe the character X, in terms of Lusztig series and
the Jordan decomposition of characters (see [Digne and Michel 1991, Chapter 13])
as follows. Each ¢; € ® above corresponds to a polynomial with roots given by an
Fc-orbit of qu, as already mentioned. In this way, the collection

{pili=1,...,r}

corresponds to a semisimple class (s) of G (we may identify G with its dual group
in this case), and ¥ is an element of the Lusztig series £(G, s). Then the centralizer
in G of any element of (s) is of the form

Ca(s) =GL;! , (™) x---xGLy , (¢,

where €; = €%. The partition A(¢;) corresponds to a unipotent character ¥ (4,
of GLZ Jdi (qd"). The character ¥ = ®/_ ¥, is then a urlipotent character
of Cz(s), and the Jordan decomposition of X is given by the G-conjugacy class
of pairs (s, ¥,).

2C. Restriction to SL (q) and actions on the parametrization. We now turn to
the parametrization of the characters of G = SL; (¢) in terms of the characters of G
described in the previous section. This is done for the case € = 1 in [Karkar and
Green 1975; Lehrer 1973], and we adapt the methods there to handle the more
general case of € = £1.

Consider any Galois automorphism o € Gal(Q/Q). Through the natural action
of o on the character values of any 6 € ?d, we have an action of ¢ on the orbits
¢ € ©. Given any A € F,, we define oA by

or(@) = r(oc'p).

For o € ﬁ, define o)y and @@ by the usual product of characters in Irr(a) and fd,
where we compose o with determinant and the norm maps, respectively. Then o
acts on the orbits ¢ € © as well, and we get an action of « on F,, by defining oA as

ar(p) = Ao ').
WeNWill need the following statements regarding these actions on the characters
of G.
Lemma 2.3. Let A € F,,. Forany o € Gal(Q/Q) and any « € T, we have
OXo = Xos and Xy = Xan-

Proof. We proceed in a manner similar to the proof of [Karkar and Green 1975,
Proposition of Section 3], which proves this statement in the € = 1 case with the Ti
action. We begin by considering A € F, such that A(¢) is a nonempty partition for
precisely one ¢ € ©, and so X, = Xy,¢ is given by (1). Given o € Gal(Q/Q), since
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each wk(‘p)(y) and each z,, is a rational integer, we have

Ao) ~ A(®) ~
~ 3 W™ (y) 3 W™ (y)
OX}».(P::,: TO’R%(G):i TR%(O’@),

Y€Pnja Y€Pnsa

by Lemma 2.1. Since 00 € 0¢ and o A(0¢) = A(¢), then we have 0 X ¢ = Xor.00-
Similarly, if « € T}, we have by Lemma 2.1

~ ( ) " ()/)
WTp=% Y, LarRI @) =% Y TR (a0),
VE€Pnsd Y€Pnsa
and since af € g, we have a X ¢ = Xar ap-
Now consider an arbitrary A € F,,, with ) given by (2). By applying Lemma 2.1,
along with the first case just proved, we have

0% = RGO (Frgy X - X Xo.0,)
= iRE;(U)’ZA,:m X o X O Xog,)
= RS (Frson X+ X Xoioo,)
= Xox-
Similarly, if we replace o with o € Ty, we have a )5 = Xua as claimed. O

Note that we may identify G /G with T7, and directly from Clifford theory we
know every character x of G appears in some multiplicity-free restriction of a
character ¥ of G. The restrictions of two different irreducible characters of G are
either equal, or have no irreducible constituents of Irr(G) in common. With this,
the next result is all that is needed to parametrize Irr(G).

Lemma 2.4. Let A, u € F,, with corresponding characters X, X, € Irr(G). Then

Resg (%) = Resg (X
if and only if there exists some o € T\ such that ). = au.

Proof. This follows directly from [Karkar and Green 1975, Theorem 1(i)] and
Lemma 2.3. O

Consider any irreducible character y of G, so yx is a constituent of Resg()h) for
some A € F,. Thatis, x € Irr(G|¥,). The other constituents of this restriction are
é—conjugates of x. Note that the field of values of x is invariant under conjugation
by G, and so in studying this field of character values it is not important which
constituent we choose. Since we will see below that Q() ) is closely related to the
field of values of Resg (X»), we give this a name.

Definition 1. We let [ := @(Resg(%\)) denote the field of values of Resg ).
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Further, given A € F,,, we define the group Z(4) as
) = ﬂ{kera | @ € ﬁ such that A = A} < Tj.
We collect some basic properties of Z(A) in the following.

Proposition 2.5. Let x € Irr(G|X,.). Then:

e The stabilizer in G of x is the set of elements with determinant in Z()).
e The stabilizer of X in T} is the set of elements whose kernel contains T().).
o The index [T} : Z())] divides gcd(qg — €, n).

Proof. The proof is exactly as in [Turull 2001, Propositions 4.2 and 4.3 and
Corollary 4.4], using Clifford theory and Lemma 2.3. ([

2D. Remarks on generalized Gelfand—Graev characters. We recall here some
subgroups described in [Geck 2004, Section 2] used in the construction of the
characters of generalized Gelfand—Graev representations (GGGRs). We introduce
only the essentials for our purposes, and refer the reader to [Geck 2004; Kawanaka
1985; Taylor 2016], for example, for more details.

First, let T and B be an F,-stable maximal torus and Borel subgroup of G,
respectively, where T < B = T U, with unipotent radical U. Let ® be the root
system of G with respect to T and & C @ the set of positive roots determined
by B.

To each unipotent class C in G (or, equivalently, in 6), there is associated a
weighted Dynkin diagram d : ® — Z and F-stable groups

Usi = (Xy|la€ed, da)>i)<U,

where X, denotes the root subgroup in B corresponding to «. In particular, Py :=
Ng(Uyg,1) is an Fe-stable parabolic subgroup of G and U;; < Py for each i =
1,2,3,.... We will further write Uy ; := Ujfi and P; := Pff.

Given u € C N Uy, 2, the characters of GGGRs (which we will also refer to
as GGGRs) of G (resp. G) are constructed by inducing certain linear characters
oy :Ugp— C*to G (resp. G). In particular, the values of ¢, are all p-th roots of
unity. Strictly speaking, the GGGRs are actually rational multiples of the induced
character:

~ 1 = _1
Ty =[Uq1:Uap] 2Indg, (9) and T =[Uq:: Ug2] 2Indg,, (@u).

The following is [Schaeffer Fry and Taylor 2018, Proposition 10.11], which
is a consequence of [Tiep and Zalesskii 2004, Theorem 1.8, Lemma 2.6, and
Theorem 10.10].

Proposition 2.6. Let ', be a GGGR of G. Then the following hold.
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(1) If q is a square, or n is odd, or n/(n, q — €) is even, then the values of I, are

integers.
(2) Otherwise, the values of Ty, lie in Q(/np), where n € {x1} is such that
p =n mod 4.

Note that case (1) of Proposition 2.6 includes the case that g is even.

3. Initial results on fields of values

Keep the notation from above, so that G = SL; (¢), G= GL{ (), and the characters
of G are denoted by X, for A € F,. For A € F,, let Q(A) denote the field obtained
from Q) by adjoining the values of the characters in the orbits ¢ € ® such that A(¢)
is nonempty.

We define Galg(A) and Galr(A) as in [Turull 2001]. That is, Galg(A) is the
stabilizer of A in Gal(Q()1)/Q) and

Galr(A) = {0 € Gal(Q(%)/Q) | oA = e for some & € T}}.

Theorem 3.1. Let A € F;,. Then Q%) = QL) 5E® and F; = Q1) P (recall
Definition 1). That is, the field of values for X and its restriction to G are the fixed
fields of Galg(A) and Galr()L), respectively.

Proof. Given Lemma 2.3, the proof is exactly the same as that of [Turull 2001,
Propositions 2.8 and 3.4]. (]

Note that since the members of ¢ € © are characters of 7, for some d, it
follows that Q(A) = Q(¢,y,) is the field obtained from @Q by adjoining some primitive
m-th root of unity ¢,, where gcd(m, p) = 1. Since F;, € Q()), it follows that
. NQ(¢p) = Q for any primitive p-th root of unity ¢,.

Remark 3.2. As in the proof of [Turull 2001, Proposition 6.2], the Galois automor-
phism o_; : Q(&,) — Q(gy,) satisfying o_1($n) =¢,,, induces complex conjugation
on Q(A). Hence X, (resp. Resg()ﬁ)) is real-valued if and only if o_; € Galg())
(resp. o1 € Galr(A)).

Proposition 3.3. Let x € Irr(G|X.). Keep the notation above. Then:

(1) If q is square, or n is odd, or n/(n, q — €) is even, then Q(x) = F;.

(2) Otherwise, F;, C Q(x) C Fa(/np), where n € {£1} is such that p = n mod 4.
In particular, x is real-valued if and only if Resg (X») is, except possibly when
g=3mod4and?2 <ny; <(q—¢€),.

Proof. Write [ := [, and X := x,. First, we remark that certainly F € Q(x), by its
definition, since ResG ( X) is the sum of G- -conjugates of x.

Let T be a GGGR of G such that (F X)& = 1, which exists by a well-known
result of Kawanaka (see [Kawanaka 1985, 3.2.18] for large p or [Taylor 2016, 15.7]).
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Further, there exists a GGGR, I', of G such that I'= Ind(G; (I'). Then Frobenius
reciprocity yields that there is a unique irreducible constituent g € Irr(G|)) sat-
isfying (I", x0)¢ = 1. Without loss, we may assume y is this yo, as the field of
values is invariant under C~;—conjugation.

Write K = F(,/7p). Leto € Gal(Q/F) in case (1), and let o € Gal(Q/K) in
case (2). Then by Proposition 2.6, o x is also a constituent of I' = oT" occurring
with multiplicity 1. As Resg (X) is invariant under o, however, we have that o x
is also a constituent of the restriction Resg (X). Hence we see that o x = yx, by
uniqueness, and hence Q(x) C [F in case (1) and Q(x) C K in case (2). O

In our main results below when g is odd, characters of 77 of 2-power order will
play an important role. In particular, we denote by sgn the unique member of 7 of
order 2.

Lemma 3.4. Let g be odd and let x € Irr(G|X,) and write I := stabg(x). Then
[G : I]is even if and only if sgnk = A.

Proof. Note that 2 divides [(~? :I]ifand only if [/ : G], < %(q — €)p, if and only
if Z(X) is contained in the unique subgroup of G/G of order %(q — €). But notice
that this is exactly the kernel of sgn as an element of 7. (]

Lemma 3.5. Let g be odd and let x € Irr(G|X,). If sgnA # A, then ) = Q(x).

Proof. Write [ := [, and recall that F C Q(x) € F(,/np). Let K = F(\/np),
so that KK is a quadratic extension of F. Let t be the generator of Gal(lK/F) and
write I for the stabilizer of x under G. Then note that 72 necessarily fixes x, and
by definition t fixes Resg(f(), which by Clifford theory is the sum of the (G : 1]
conjugates of x under the action of G.

We prove the contrapositive. Suppose F # Q(x), so that T does not fix x. Then
since the field of values is invariant under é—conjugation, it follows that the orbit
of x under G can be partitioned into pairs conjugate to {x, 7 x}. Hence the size of
the orbit, [5 : 1], must be even, so sgn A = A by Lemma 3.4. O

4. Unipotent elements

To deal with the remaining cases (in particular, when ¢ = n mod 4 is nonsquare,
ne{xl}, e=—1,and 2 <ny < (g + 1)), we will continue to employ the use of
GGGRs. For this, we will need to analyze certain aspects of conjugacy of unipotent
elements. Here, the observations in [Schaeffer Fry and Vinroot 2016] on this subject
will be useful.

In particular, if a unipotent element of G = GL{ (g) for € € {£1} has m; Jordan
blocks of size k (that is, mj elementary divisors of the form (r — D)%), then we may
find a conjugate in G of the form D: JNIL"k , where the sum is over only those k such
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that my #~ 0 and each .’]Vk € GL; (¢) is a Jordan block of size k. The following lemma
will be useful throughout the section.

Lemma 4.1 [Schaeffer Fry and Vinroot 2016, Lemma 3.2]. Let u be a unipotent
element in G with my Jordan blocks of size k for each 1 <k < n. For each k such
that my # 0, let §; € Ty be arbitrary. Then there exists some g € Cg(u) such that

det(g) =[], 8.

We now turn our attention to the case € = —1 for the remainder of this section.
Let ¢, be a primitive p-th root of unity in C. In what follows, we let b be a fixed
integer such that Gal(Q(¢,)/Q) is generated by the map 7 : {, > {1[,’ . Note that
(b, p) =1 and b has multiplicative order p — 1 modulo p. Further, note that T also
induces the map ,/np — —./np generating Gal(Q(,/np)/Q). Let b denote the
image of b under a fixed isomorphism (Z/pZ)* — F, so that b generates Fr.

Note that by [Tiep and Zalesskii 2004, Theorem 1.9], every unipotent element u
of GU,,(¢) is conjugate to ub in Cg(s), where s is a semisimple element in Cg (u).
We are interested in making precise statements about such a conjugating element.

Let u be a regular unipotent element of GU,,(g), identified as in [Schaeffer Fry
and Vinroot 2016, Lemma 5.1]. Employing the same argument as is used there, we
see that an element conjugating u to u” must have diagonal

"B, b 2B, ... BB, B,

where B € F*, and 5"~ ! 89+! = 1. Note the determinant of such an element is b B"
and that the condition that 5"~ 89+ = 1 yields that 89*! is a (p—1)-root of unity.

Lemma 4.2. Let g = n mod 4 be nonsquare with n € {1} and let u be a regular
unipotent element of GU,,(q). Keep the notation above. Then:

(a) Ifn is even, then B, is a primitive (q*>—1)2-root of unity in IF;Z.

(b) There is an element x in GU,(q) such that u* = u® and |det(x)| is a 2-power.

(c) If n # 0 mod 4, there is an element x in GU,(q) such that u* = u® and
|det(x)| = (g + 1)2. Further:

(1) Ifn =2 mod 4, then |det(x)|, = (g + 1) for any x € GU,,(q) satisfying
u® =uP.
(ii) If n is odd, there is also an element x' € SU,,(q) such that u® = ub.

(d) If n = 0 mod 4, there is no element x in GU,(q) such that u* = u® and

|det(x)[ = (g + D2

Proof. For part (a) note that [»"~!| has the same 2-part as |b| since n is even, so
| ,Bg +1| = (p —1)2 = (g — 1), since g is nonsquare. Hence the multiplicative order

of B2 is 2(q — m2 = (¢* — 2.
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To prove the rest, we begin by showing that if n 220 mod 4, then we may find an x
in GU,,(¢) such that u* = u” and |det(x)|» = (¢ + 1)», and that this is impossible
for n =0 mod 4. Let x € GU, (q) satisfy u* = u®, so that x is of the form discussed
before the statement of the lemma.

If n=2 mod 4, then B, is a pr1m1t1ve (q —1)2-root of unity by (a), and hence 85
is a (g — n)»-root of unity. Here b 2) has the same order as by, since ( ) is odd. If
n= —1 then since |b|, = 2, we see b(2) B; = £B;. Then any x € GU,(q) satisfying
u* = u® must satisfy |det(x)|» = (g + 1)2 in this case. If n =1, note that (g +1), =2,
so we must just show that det(x) has even order. Here |l3|2 =(g—1),,and HON i
has even order unless b(Z) B5=1. However, the latter situation, combined with
the fact that bg ! g“ =1, yields that g, " (b” hyn/2 — (,3_1 4yn/2 and hence
IBn((qH)/Z Y — 1. But since ny = 2, this means that ﬂ2 —1= = 1, contradicting that
B> has order (q — 1),. Then it must be that det(x) has even order, and we again
see that |det(x)|2 = (¢ + 1), in this case.

Now assume 7 is odd and let X be an element in GU, (¢) satisfying u* = u”.
Then certainly det(x) € T;, so we may use Lemma 4.1 to replace X with some
x € GU,(g) satistying det(x) = det(x) - 8" for any § € T;. In particular, note that
|6"| = |8| for any (g+1),-root of unity 4, since n is odd. Then we may choose &
so that det(x),8" is a primitive (g+1),-root of unity, yielding |det(x)|> = (g + 1)».
Alternatively, we may choose § so that det(x),6" = 1, yielding |det(x)|, = 1.

Finally, let » = 0 mod 4. Then note that neither b(2) B5 nor 8" for any § € T can
be a primitive (g+1);-root of unity, so |det(x)|, < (g + 1)3.

It remains to show that in all cases, x can be chosen such that |det(x)|y = 1.
Since B%! is a (p—1)-root of unity, we may decompose the determinant of x into
B; - ﬁfq +1), Vs where y is a (p—1)-root of unity. However, we also know that the
determinant is a (¢+1)-root and an odd prime cannot divide both p — 1 and ¢ + 1.
Hence y must be a 2-power root of unity, and we may replace x with an element of
determinant g7 - y, using Lemma 4.1. [l

Although there is no x satisfying the conclusion of Lemma 4.2(c) if u is a regular
unipotent element when 4 divides n, we can generalize to the following statement
about more general unipotent elements when 41{n.

Corollary 4.3. Let ¢ = n mod 4 be nonsquare with n € {£1}. If u is a unipotent
element of GU,,(q) satisfying at least one of the following:

(1) u has an odd number of elementary divisors of the form (t — 1) with k =
2 mod 4;

(2) u has an elementary divisor of the form (t — D with k odd,

then u is conjugate to u® by an element x satisfying |det(x)| = (g + 1)».
In particular, if n is not divisible by 4, any unipotent element is conjugate to u”
by an element x satisfying |det(x)| = (g + 1)2.
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Proof. Indeed, viewing u as €, .’I;m" as in [Schaeffer Fry and Vinroot 2016,
Section 3.2], we may find elements x; for each 1 < k < n as in Lemma 4.2
conjugating each J to f,f . In case (1), we see that the product @B, x;* will satisfy
the statement, after possibly replacing x; with x; as in Lemma 4.2(c)(ii) for any
odd k, so |det(x;)| = 1.

If (2) holds, but (1) does not hold, y = @ZIk X will satisfy |det(y)| =
|det(y)|> < (g + 1),, since the product of an even number of primitive (g+1),-roots
of unity will no longer be primitive. We may use Lemma 4.2 to obtain x; for
some k odd such that |det(xg)| = (¢ + 1)2, and replace the remaining x; for odd k&
with an element x, satisfying |det(x;)| = 1. The resulting €, x;""* will satisfy the
statement.

The last statement follows, since if n is odd, we must be in case (2), and if
n =2 mod 4, we must be in case (1) or (2). Ul

Remark 4.4. At least one of conditions (1) and (2) of Corollary 4.3 must occur
if n =2 mod 4, and condition (1) implies condition (2) if n = 0 mod 4. Further,
when n = 1, the condition 7, < (¢ + 1), induced from Proposition 3.3 yields that
n =2 mod4.

We now address the case that 4 divides n, ¢ = 3 mod 4, and that neither of the
conditions in Corollary 4.3 occur.

Lemma 4.5. Let ¢ =3 mod 4 and let n =0 mod 4 such that n, < (g +1)2. Letu
be a unipotent element of GU,(q) with no elementary divisors (t — D* with k odd.
Then u is conjugate to u® by an element x satisfying |det(x)| = (g> — 1)2/no.

Proof. As in the proof of Corollary 4.3, let X = €D, x;"*, where for each k such
that my # 0, x; is an element of GUg(g) conjugating :176 to :I;Z’ as in Lemma 4.2.
Now, each x; has determinant :I:(,Bk)zk, where (B;)2 is a primitive (g%>—1),-root
of unity in I]:;< by Lemma 4.2, since the y found there has multiplicative or-
der (p — 1), = 2. Then taking §; € F* 2 © be the primitive (g+1),-root of unity
(,Bk)Z, we may use Lemma 4.1 to replace x; with an element whose determinant

is i(ﬂk)’;éik = +(B5@ " for any odd r, yielding that we may replace each x;
with an element whose determinant is :I:,B2 for a fixed primitive (¢g>—1),-root of
unity 8,. Hence the resulting x satisfies det(x) = %5, which has the stated order. []

5. Application to GGGRs

Here we keep the notation of Section 2D and return to the more general case that
G =GL;(g) and G = SL; (g) for € € {£1}. Let C be a fixed unipotent class of G.

Lemma 5.1. Let u € CN Uy 2 and suppose that x is an element normalizing Uy 2
and conjugating u to u®. Then @, = (p,ld7 .
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Proof. This follows from the construction of ¢, in [Taylor 2016, Section 5] or
[Geck 2004, Section 2]. Indeed, for each g in Uy 2, we have ¢ (g) = ¢, (x gx_l) =
Oo-10(8) = ux (8) = 0,0 (g) = 0, (g)?, where the second equality is noted in [Geck
2004, Remark 2.2]. U

Lemma 5.2. Let u € C N Uy and € = —1. Then the elements x found in
Corollary 4.3 and Lemma 4.5 are members of P;, and hence normalize Uy ».

Proof. First, note that Cg(u) < P;. Indeed, this is noted in [Kawanaka 1986,
Theorem 2.1.1] for simply connected groups, and here we have G = GZ(&) with
G simply connected. Further, u is conjugate to u” in P; by [Schaeffer Fry and
Taylor 2018, Lemma 4.6]. So u* = u” = u” for some y € P,;, which yields that
xy_1 € Cg(u), and hence x € GN P,. This shows that x is contained in P;, which
contains Uy » as a normal subgroup. (]

Lemma 5.3. Let G =SL¢(q) and G = GL{ (), with € € {£1}. Let ¥ := ¥, € Irr(G)
and let

I —

Ty =[Ura : Uzl 2Indg, , (0u)

be a generalized Gelfand—Graev character of G such that (Fu, X =1 Let
o € Gal(Q/F,) and let x € G normalizing Uy > such that o, = ;. Then for
x € Irr(G|X), there is some conjugate xo of x such that o xo = xj.

Proof. Let I', be such that Fu = IndgFu and I'), = r-Indg“((pu) where r =
[Uiq: Uz,d]_l/ 2. Then by Clifford theory and Frobenius reéiprocity, there is
a unique conjugate, xo, of x such that xo € Irr(G|x) and (I',, xo)¢ = 1. Since
Resg (X) is fixed by o, we also see o y is the unique member of Irr(G|x) satisfying
(oTy, 0 x0)¢ = 1. But note that

ol =r-Indjj, (6@,) =r-Indj, (¢}) =T} .
Then (o Ty, x5)6 = (', x3)c = 1, forcing xy = o xo by uniqueness, since x; €

Irr(G|X). O

6. Main results

Our first main result is an extension of [Turull 2001, Theorem 4.8] to the case of
G =SU, (g), describing the field of values Q(y) for each x € Irr(G). Recall that
we write [, for the field of values of the restriction to G of %5 (see Definition 1).

Theorem 6.1. Let G = SLE(q) and G = GLS(q), with € € {#1}. Let . € F, and
let x € Irr(G|X). Then Q(x) = [y, unless all of the following hold:

e pisodd.

e g is not square.
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*2<ny<(q—€o.
e aA = A for any element o € T, of order n».

In the latter case, Q(x) = Fi(\/np), where n € {1} and p =n mod 4.

Remark 6.2. In terms of the Jordan decomposition of characters described in
Remark 2.2, the last condition in Theorem 6.1 may be translated as follows. Let X,
have Jordan decomposition (s, 1), and for any « € ﬁ of order n, in the condition,
let a € Ty correspond to « through some fixed isomorphism. Then the condition is
equivalent to the pair (s, V) being é—conjugate to the pair (as, ¥y)).

Taking into consideration Remark 3.2, Theorem 6.1 immediately yields the
following extension of [Turull 2001, Proposition 6.2].

Corollary 6.3. Let G =SL{ (q) and G = GL: (), with € € {£1}. Let > € F, and
let x € Irt(G|X,.). Then the following are equivalent:

o x is real-valued.

e There exists some o € Ty such that o_ 1) = o', and if pisodd, q is not a
square, 2 < ny < (q — €), and al = A for any element a € T, of order n»,
then p =1 mod 4.

The remainder of this section will be devoted to proving Theorem 6.1 when
€ = —1. (Recall that Theorem 6.1 in the case € = 1 is [Turull 2001, Theorem 4.8].)
We begin with an observation that holds in either case € € {1}, but in particular
restricts the situation of Corollary 4.3.

Proposition 6.4. Let G = SL{ (¢) and G = GL¢ (q), with € € {+1}. Let ¥ € Irr(G)
and let f'u be a GGGR of G such that (ﬁl, X)& = L. Further, assume that u has
an elementary divisor of the form (t — 1)* with k odd. Then [G : I]is odd, where
I = stabz(x) for any x € Irr(G|X). In particular, in this case, F, = Q(x) by
Lemma 3.5.

Proof. Write T', = [U) 4 : Uz,d]_l/zlndgdz(gou). By Lemma 4.1, there is some
x € Cg(u) with determinant sk where § is a primitive (g —e€);-root of unity in 7.
In particular, |det(x)| = (g — €)» since k is odd, and ¢;, = ¢, since x normalizes
U,z as in the proof of Lemma 5.1. Then applying Lemma 5.3 with o trivial yields
that some conjugate xo of x satisfies x5 = xo. This implies [/ : G] is divisible by
(g — €)2, so that [5 : I'] must be odd. O

For the remainder of this section, we will consider the case € = —1, so that G =
GU,(¢) and G = SU,,(g). In particular, Remark 4.4 and Proposition 6.4 yield that
when [G : I] is even and n is divisible by 4, then neither condition in Corollary 4.3
holds. Further, if [6 : I]is even and n = 2 mod 4, then Corollary 4.3(1) holds.
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Proposition 6.5. Let € = —1 and suppose that ¢ = n mod 4 is nonsquare with
n € {£1} and that n =2 mod 4. Then the converse of Lemma 3.5 holds. That is, for
x €lir(Glxy), Fx=Q(x) if and only if sgn A # L. Alternatively, F; (\/np) =Q(x)
if and only if sgn A = A.

Proof. We must show that if sgnA = A, then F, # Q(yx). First, recall that this
condition on A is equivalent to the condition that [5 :1]1=1[Ty:Z())] is even, by
Lemma 3.4. Since n, = 2, Proposition 2.5 yields that [6 : I, = 2. This means
that no 5—conjugate of x can be fixed by any g € G whose determinant satisfies
|det(g)2 = (g + Da.

Abusing notation, we let T also denote the unique element of Gal([F;,(¢,,) /) that
restricts to our fixed generator T of Gal(Q(¢,)/Q). In the notation of Lemma 5.3, we
have ¢ = (p,’; = t¢, for some x € Py satisfying |det(x)| = (¢ +1),, by Corollary 4.3
and Lemmas 5.1 and 5.2. Then by Lemma 5.3, there is a conjugate yo of x such
that x5 = 7 xo. In particular, note that the condition on the determinant yields
that xj # xo0, S0 T x0 # Xo- Since x and xo have the same field of values, we see
Tx # X, and we have [, # Q(x). O

Proposition 6.6. Let € = —1 and suppose that g =3 mod 4 and 4 <ny < (g +1)2,
and let x €lrr(G|X;) and I :=stabg (x). Then F, =Q(x) if and only if[a 1] <no.
Proof. First, note that [5 : I'], < ny by Proposition 2.5. Note that by Lemma 3.5,
we may assume that [5 : I] is even and therefore that y € Irr(G|Fu) where u has
no odd-power elementary divisor, by Proposition 6.4. By Lemmas 4.5, 5.1, and 5.2,
there is some x € G such that @, = ‘/’3 = 1@, and |det(x)| = 2(g + 1)»/n,, which
is divisible by 2 since ny < (¢ + 1)2. By Lemma 5.3, there is a conjugate xo of x
such that x5 = 7 xo.

Suppose first that [(~? : I, = ny, so that x cannot stabilize xg, since [/ : G], =
(g +1)2/n, (and the same is true for the stabilizer of xg). This yields that xo # 7 xo,
so the same holds for x. Hence if [5 : 1] =ny, then F;, # Q(x).

Now suppose [5 : I]p < ny. That is, [(N} : I, < ny/2. Then the stabilizer of
Xo must contain x, since I/G = Z(}) is cyclic and contains the unique subgroup
of é/G of size 2(q + 1)2/n3. Then xo = 7)o, and the same is true for y, so

Fr=Q00)- U
Proof of Theorem 6.1. For € = 1, this is [Turull 2001, Theorem 4.8], so we assume
€ = —1. When ¢ is odd, note the case [G : I ], = n», for any n even, is equivalent to

having oA = A for any o € Ti of order n>. In the case n =2 mod 4, we remark that
this « is sgn. Hence Propositions 3.3, 6.5, and 6.6 combine to yield the statement. []
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