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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP

JINHO BAIK AND ZHIPENG LIU

1. Introduction

The models in the KPZ universality class are expected to have the 1:2:3 scaling
for the height fluctuations, spatial correlations, and time correlations as time t →
∞. This means that the scaled two-dimensional fluctuation field

(1.1) ht(γ, τ ) :=
H(c1γ(τt)

2/3, τ t)−
(

c2(τt) + c3(τt)
2/3

)

c4(τt)1/3

of the height function H(�, t), where � is the spatial variable and t is time, is
believed to converge to a universal field which depends only on the initial condition.1

Here c1, c2, c3, c4 are model-dependent constants. Determining the limiting two-
dimensional fluctuation field

(1.2) (γ, τ ) �→ h(γ, τ ) := lim
t→∞

ht(γ, τ )

is an outstanding question.
By now there are several results for the one-point distribution. The one-point dis-

tribution of h(γ, τ ) for fixed (γ, τ ) is given by random matrix distributions (Tracy-
Widom distributions) or their generalizations. The convergence is proved for a
quite long list of models including PNG, TASEP, ASEP, q-TASEP, random tilings,
last passage percolations, directed polymers, the KPZ equation, and so on. See,
for example, [1, 2, 6, 26, 41], and the review article [11]. These models were studied
using various integrable methods under standard initial conditions. See also the
recent papers [13, 37] for general initial conditions.

The spatial one-dimensional process, γ �→ h(γ, τ ) for fixed τ , is also well un-
derstood. This process is given by the Airy process and its variations. However,
the convergence is proved rigorously only for a smaller number of models. It was
proved for the determinantal models like PNG, TASEP, last passage percolation,2

but not yet for other integrable models such as ASEP, q-TASEP, finite-temperature
directed polymers, and the KPZ equation.

The two-dimensional fluctuation field, (γ, τ ) �→ h(γ, τ ), on the other hand, is less
well understood. The joint distribution is known only for the two-point distribution.
In 2015, Johansson [28] considered the zero temperature Brownian semidiscrete
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610 JINHO BAIK AND ZHIPENG LIU

directed polymer and computed the limit of the two-point (in time and location)
distribution.3 The limit is obtained in terms of rather complicated series involving
the determinants of matrices whose entries contain the Airy kernel. The formula is
simplified more recently in terms of a contour integral of a Fredholm determinant
in [29] in which the author also extended his work to the directed last passage
percolation model with geometric weights. Two other papers studied qualitative
behaviors of the temporal correlations. Using a variational problem involving two
independent Airy processes, Ferrari and Spohn [20] proved in 2016 the power law of
the covariance in the time direction in the large- and small-time limits, τ1/τ2 → 0
and τ1/τ2 → 1. Here, τ1 and τ2 denote the scaled time parameters. De Nardis and
Le Doussal [14] extended this work further and also, augmented by other physics
arguments, computed the similar limits of the two-time distribution when one of
the arguments is large. It is yet to be seen if one can deduce these results from the
formula of Johansson.

The objective of this paper is to study the two-dimensional fluctuation field of
spatially periodic KPZ models. Specifically, we evaluate the multipoint distribution
of the periodic TASEP (totally asymmetric simple exclusion process) and compute
a large-time limit in a certain critical regime.

We denote by L the period and by N the number of particles per period. Set
ρ = N/L, the average density of particles. The periodic TASEP (of period L
and density ρ) is defined by the occupation function ηj(t) satisfying the spatial
periodicity:

(1.3) ηj(t) = ηj+L(t), j ∈ Z, t ≥ 0.

Apart from this condition, the particles follow the usual TASEP rules.
Consider the limit as t, L,N → ∞ with fixed ρ = N/L. Since the spatial

fluctuations of the usual infinite TASEP is O(t2/3), all of the particles in the periodic
TASEP are correlated when t2/3 = O(L). We say that the periodic TASEP is in
the relaxation time scale if

(1.4) t = O(L3/2).

If t � L3/2, we expect that the system size has negligible effect and, therefore, the
system follows the KPZ dynamics. See, for example, [5]. On the other hand, if
t � L3/2, then the system is basically in a finite system, and hence we expect the
stationary dynamics. See, for example, [15]. Therefore, in the relaxation time scale,
we predict that the KPZ dynamics and the stationary dynamics are both present.

Even though the periodic TASEP is as natural as the infinite TASEP, the one-
point distribution was obtained only recently. Over the last two years, in a physics
paper [36] and, independently, in mathematics papers [4,30], the authors evaluated
the one-point function of the height function in finite time and computed the large-
time limit in the relaxation time scale. The one-point function follows the KPZ
scaling O(t1/3) but the limiting distribution is different from that of the infinite
TASEP.4 This result was obtained for the three initial conditions of periodic step,
flat, and stationary. Some earlier related studies can be found in physics papers

3There are non-rigorous physics papers for the two-time distribution of directed polymers
[16–18]. However, another physics paper [14] indicates that the formulas in these papers are not
correct.

4The formulas obtained in [4,30] and [36] are similar, but different. It is yet to be checked that
these formulas are the same.
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 611

[15,21–24,32,33,35], including results on the large deviation and spectral properties
of the system.

In this paper, we extend the analysis of the papers [4, 30] and compute the
multipoint (in time and location) distribution of the periodic TASEP with a special
initial condition called the periodic step initial condition. Here we allow any number
of points unlike the previous work of Johansson on the infinite TASEP. It appears
that the periodicity of the model simplifies the algebraic computation compared
with the infinite TASEP. In a separate paper we will consider flat and stationary
initial conditions. The main results are the following:

(1) For arbitrary initial conditions, we evaluate finite-time joint distribution
functions of the periodic TASEP at multiple points in the space-time coor-
dinates in terms of a multiple integral involving a determinant of size N .
See Theorem 3.1 and Corollary 3.3.

(2) For the periodic step initial condition, we simplify the determinant to a
Fredholm determinant. See Theorem 4.6 and Corollary 4.7.

(3) We compute the large-time limit of the multipoint (in the space-time coor-
dinates) distribution in the relaxation time scale for the periodic TASEP
with the periodic step initial condition. See Theorem 2.1.

One way of studying the usual infinite TASEP is the following. First, one com-
putes the transition probability using the coordinate Bethe ansatz method. This
means that we solve the Kolmogorov forward equation explicitly after replacing it
(which contains complicated interactions between the particles) by the free evo-
lution equation with certain boundary conditions. In [40], Schütz obtained the
transition probability of the infinite TASEP. Second, one evaluates the marginal or
joint distribution by taking a sum of the transition probabilities. It is important
that the resulting expression should be suitable for the asymptotic analysis. This
is achieved typically by obtaining a Fredholm determinant formula. In [38], Rákos
and Schütz rederived the famous finite-time Fredholm determinant formula of Jo-
hansson [26] for the one-point distribution in the case of the step initial condition
using this procedure. Subsequently, Sasamoto [39] and Borodin, Ferrari, Prähofer,
and Sasamoto [9] obtained a Fredholm determinant formula for the joint distribu-
tion of multiple points with equal time. This was further extended by Borodin and
Ferrari [7] to the points in spatial directions of each other. However, it was not
extended to the case when the points are temporal directions of each other. The
third step is to analyze the finite-time formula asymptotically using the method
of steepest-descent. See [7, 9, 26, 39] and also a more recent paper [31]. In the
KPZ 1:2:3 scaling limit, the above algebraic formulas give only the spatial process
γ �→ h(γ, τ ).

We applied the above procedure to the one-point distribution of the periodic
TASEP in [4]. We obtained a formula for the transition probability, which is a
periodic analogue of the formula of Schütz. Using that, we computed the finite-
time one-point distribution for an arbitrary initial condition. The distribution was
given by an integral of a determinant of size N . We then simplified the determinant
to a Fredholm determinant for the cases of the step and flat initial conditions. The
resulting expression was suitable for the asymptotic analysis. A similar computation
for the stationary initial condition was carried out in [30].

In this paper, we extend the analysis of [4, 30] to multipoint distributions. For
general initial conditions, we evaluate the joint distribution by taking a multiple
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612 JINHO BAIK AND ZHIPENG LIU

sum of the transition probabilities obtained in [4]. The computation can be reduced
to an evaluation of a sum involving only two arbitrary points in the space-time
coordinates (with different time coordinates). The main technical result of this
paper, presented in Proposition 3.4, is the evaluation of this sum in a compact
form. The key point, compared with the infinite TASEP [7,9,31], is that the points
do not need to be restricted to the spatial directions.5 The final formula is suitable
for the large-time asymptotic analysis in relaxation time scale.

If we take the period L to infinity while keeping other parameters fixed, the
periodic TASEP becomes the infinite TASEP. Moreover, it is easy to check (see
Section 8 below) that the joint distributions of the periodic TASEP and the infinite
TASEP are equal even for fixed L if L is large enough compared with the times.
Hence, the finite-time joint distribution formula obtained in this paper (Theorem 3.1
and Corollary 3.3) in fact gives a formula of the joint distribution of the infinite
TASEP; see the equations (8.7) and (8.8). This formula contains an auxiliary
parameter L which has no meaning in the infinite TASEP. From this observation,
we find that if we take the large-time limit of our formula in the subrelaxation
time scale, t � L3/2, then the limit, if it exists, is the joint distribution of the
two-dimensional process h(γ, τ ) in (1.2). However, it is not clear at this moment if
our formula is suitable for the asymptotic analysis in the subrelaxation time scale;
the kernel of the operator in the Fredholm determinant does not seem to converge
in the subrelaxation time scale while it converges in the relaxation time scale. The
question of computing the limit in the subrelaxation time scale, and hence the
multipoint distribution of the infinite TASEP, will be left as a later project.

This paper is organized as follows. We state the limit theorem in Section 2. The
finite-time formula for general initial conditions is in Section 3. Its simplification
for the periodic step initial condition is obtained in Section 4. In Section 5, we
prove Proposition 3.4, the key algebraic computation. The asymptotic analysis of
the formula obtained in Section 4 is carried out in Section 6, proving the result
in Section 2. We discuss some properties of the limit of the joint distribution in
Section 7. In Section 8 we show that the finite-time formulas obtained in Sections 3
and 4 are also valid for infinite TASEP for all large enough L.

2. Limit theorem for multipoint distribution

2.1. Limit theorem. Consider the periodic TASEP of period L with N particles
per period. We set ρ = N/L, the average particle density. We assume that the
particles move to the right. Let ηj(t) be the occupation function of periodic TASEP:
ηj(t) = 1 if the site j is occupied at time t, otherwise ηj(t) = 0, and it satisfies the
periodicity ηj(t) = ηj+L(t). We consider the periodic step initial condition defined
by

ηj(0) =

{

1 for −N + 1 ≤ j ≤ 0,

0 for 1 ≤ j ≤ L−N ,
(2.1)

and ηj+L(0) = ηj(0).

5In the large-time limit, we add a certain restriction when the rescaled times are equal. See
Theorem 2.1. The outcome of the above computation is that we find the joint distribution in terms
of a multiple integral involving a determinant of size N . For the periodic step initial condition,
we simplify the determinant further to a Fredholm determinant.
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 613

Figure 1. The pictures represent the density profile at times t =
0, t = L, and t = 10L when ρ = 1/2. The horizontal axis is scaled
down by L.

Figure 2. The pictures represent the limiting height function at
times t = 0.5nL for n = 0, 1, 2, · · · . The left picture is when
ρ = 1/2 and the right picture is when ρ = 2/5. Both the horizontal
axis (location) and the vertical axis (height) are scaled down by L.

We state the results in terms of the height function

(2.2) �(p), where p = �e1 + te2 = (�, t) ∈ Z× R≥0.

Here e1 = (1, 0) and e2 = (0, 1) are the unit coordinate vectors in the spatial and
time directions, respectively. The height function is defined by

(2.3) �(�e1 + te2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2J0(t) +
�

∑

j=1

(1− 2ηj(t)) , � ≥ 1,

2J0(t), � = 0,

2J0(t)−
0
∑

j=�+1

(1− 2ηj(t)) , � ≤ −1,

where J0(t) counts the number of particles jumping through the bond from 0 to 1
during the time interval [0, t]. The periodicity implies that

(2.4) �((�+ nL)e1 + te2) = �(�e1 + te2) + n(L− 2N)

for integers n.
See Figure 1 for the evolution of the density profile and Figure 2 for the limiting

height function. Note that the step initial condition (2.1) generates shocks.6. By
solving the Burgers’ equation in a periodic domain, one could derive the explicit
formulas of the density profile, the limiting height function and the shock location.
These computations were done in [5].

We represent the space-time position in new coordinates. Let

(2.5) ec := (1− 2ρ)e1 + e2

6These shocks are generated when faster particles from the lower density region enter the
higher density region and are forced to slow down. See, for example, [12, 19] for the study of
similar behaviors in infinite TASEP.
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614 JINHO BAIK AND ZHIPENG LIU

Figure 3. Illustration of the points pj , j = 1, · · · ,m, in the region R.

be a vector parallel to the characteristic directions. If we represent p = �e1 + te2
in terms of e1 and ec, then

(2.6) p = se1 + tec, where s = �− t(1− 2ρ).

Consider the region

R :={�e1 + te2 ∈ Z× R≥0 : 0 ≤ �− (1− 2ρ)t ≤ L}
={se1 + tec ∈ Z× R≥0 : 0 ≤ s ≤ L}.(2.7)

See Figure 3. Due to the periodicity, the height function in R determines the height
function in the whole space-time plane.

The following theorem is the main asymptotic result. We take the limit as
follows. We take L,N → ∞ in such a way that the average density ρ = N/L is fixed,
or more generally ρ stays in a compact subset of the interval (0, 1). We consider m
distinct points pi = sie1 + tiec in the space-time plane such that their temporal
coordinate tj → ∞ and they satisfy the relaxation time scale tj = O(L3/2). The
relative distances of the coordinates are scaled as in the 1:2:3 KPZ prediction:

ti − tj = O(L3/2) = O(ti), si = O(L) = O(t
2/3
i ), and the height at each point is

scaled by O(L1/2) = O(t
1/3
i ).

Theorem 2.1 (Limit of multipoint joint distribution for periodic TASEP). Fix
two constants c1 and c2 satisfying 0 < c1 < c2 < 1. Let N = NL be a sequence
of integers such that c1L ≤ N ≤ c2L for all sufficiently large L. Consider the
periodic TASEP of period L and average particle density ρ = ρL = N/L. Assume
the periodic step initial condition (2.1). Let m be a positive integer. Fix m points
pj = (γj , τj), j = 1, · · · ,m, in the region

(2.8) R := {(γ, τ ) ∈ R× R>0 : 0 ≤ γ ≤ 1}.

Assume that

(2.9) τ1 < τ2 < · · · < τm.
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 615

Let pj = sje1 + tjec be m points7 in the region R shown in Figure 3, where
e1 = (1, 0) and ec = (1− 2ρ, 1), with

sj = γjL, tj = τj
L3/2

√

ρ(1− ρ)
.(2.10)

Then, for arbitrary fixed x1, · · · , xm ∈ R,

lim
L→∞

P

⎛

⎝

m
⋂

j=1

{

�(pj)− (1− 2ρ)sj − (1− 2ρ+ 2ρ2)tj
−2ρ1/2(1− ρ)1/2L1/2

≤ xj

}

⎞

⎠

= F(x1, · · · , xm; p1, · · · , pm),

(2.11)

where the function F is defined in (2.15). The convergence is locally uniform in
xj , τj, and γj. If τi = τi+1 for some i, then (2.11) still holds if we assume that
xi < xi+1.

Remark 2.2. Suppose that we have arbitrary m distinct points pj = (γj , τj) in R.
Then we may rearrange them so that 0 < τ1 ≤ · · · ≤ τm. If τj are all different,
we can apply the above theorem since the result holds for arbitrarily ordered γj .
If some of the τj are equal, then we may rearrange the points further so that xj

are ordered with those τj , and use the theorem if xj are distinct. The only case
which is not covered by the above theorem is when some of the τj are equal and
the corresponding xj are also equal.

The case when m = 1 was essentially obtained in our previous paper [4] (and
also [36]). In that paper, we considered the location of a tagged particle instead of
the height function, but it is straightforward to translate the result to the height
function.

Remark 2.3. We will check that F(x1, · · · , xm; p1, · · · , pm) is periodic with respect
to each of the space coordinates γj in Subsection 2.2. By this spatial periodicity,
we can remove the restrictions 0 ≤ γj ≤ 1 in the above theorem.

Remark 2.4. Since we expect the KPZ dynamics in the subrelaxation scale tj �
L3/2, we expect that the τj → 0 limit of the above result should give rise to a result
for the usual infinite TASEP. Concretely, we expect that the limit
(2.12)

lim
τ→0

F((τ1τ )
1/3x1, · · · , (τmτ )1/3xm; (γ1(τ1τ )

2/3, τ1τ ), · · · , (γm(τmτ )2/3, τmτ ))

exists and it is the limit of the multitime, multilocation joint distribution of the
height function H(s, t) of the usual TASEP with step initial condition,

(2.13) lim
T→∞

P

⎛

⎝

m
⋂

j=1

{

H(γjτ
2/3
j T 2/3, 2τjT )− τjT

−τ
1/3
j T 1/3

≤ xj

}

⎞

⎠ .

In particular, we expect that when m = 1, (2.12) is FGUE(x1 + γ2
1/4), the Tracy-

Widom GUE distribution; we expect that when τ1 = · · · = τm, (2.12) is equal
to the corresponding joint distribution of the Airy2 process [34] A2(γ/2) − γ2/4;

7Since pj should have an integer value for its spatial coordinate, to be precise, we need to
take the integer part of sj + tj(1− 2ρ) for the spatial coordinate. This small distinction does not
change the result since the limits are uniform in the parameters γj , τj . Therefore, we suppress the

integer value notation throughout this paper.
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616 JINHO BAIK AND ZHIPENG LIU

and when m = 2, (2.12) is expected to match the two-time distribution

Ftwo-time(γ1/2, x1+γ2
1/4; γ2/2, x2+γ2

2/4; τ
1/3
1 (τ2− τ1)

−1/3) obtained by Johansson
[28, 29]. See also Section 8.

2.2. Formula of the limit of the joint distribution.

2.2.1. Definition of F.

Definition 2.5. Fix a positive integer m. Let pj = (γj , τj) for each j = 1, · · · ,m,
where γj ∈ R and

(2.14) 0 < τ1 < τ2 < · · · < τm.

Define, for x1, · · · , xm ∈ R,

F (x1, · · · , xm; p1, · · · , pm) =

∮

· · ·
∮

C(z)D(z)
dzm
2πizm

· · · dz1
2πiz1

,(2.15)

where z = (z1, · · · , zm) and the contours are nested circles in the complex plane
satisfying 0 < |zm| < · · · < |z1| < 1. Set x = (x1, · · · , xm), τ = (τ1, · · · , τm),
and γ = (γ1, · · · , γm). The function C(z) = C(z;x, τ ) is defined by (2.21) and it
depends on x and τ but not on γ. The function D(z) = D(z;x, τ ,γ) depends on
all x, τ , and γ, and it is given by the Fredholm determinant D(z) = det(1−K1K2)
defined in (2.38).

The functions in the above definition satisfy the following properties. The proofs
of (P1), (P3), and (P4) are scattered in this section while (P2) is proved later in
Lemma 7.1.

(P1) For each i, C(z) is a meromorphic function of zi in the disk |zi| < 1. It has
simple poles at zi = zi+1 for i = 1, · · · ,m− 1.

(P2) For each i, D(z) is analytic in the punctured disk 0 < |zi| < 1.
(P3) For each i, D(z) does not change if we replace γi by γi + 1. Therefore, F is

periodic, with period 1, in the parameter γi for each i.
(P4) If τi = τi+1, the function F is still well-defined for xi < xi+1.

Remark 2.6. It is not easy to check directly from the formula that F defines a joint
distribution function. Nonetheless, we may check them indirectly. From the fact
that F is a limit of a sequence of joint distribution functions, 0 ≤ F ≤ 1 and F is a
non-decreasing function of xk for each k. It also follows from the fact that the joint
distribution can be majorized by a marginal distribution that F converges to 0 if
any coordinate xk → −∞ since it was shown in (4.10) of [4] that the m = 1 case is
indeed a distribution function; see Lemma 7.5 below. The most difficult property to
prove is the consistency which F should satisfy as a coordinate xk → +∞. We prove
this property in Section 7 by finding a probabilistic interpretation of the formula
of F when the zi-contours are not nested; see Theorem 7.3 and Proposition 7.4.

2.2.2. Definition of C(z). Let log z be the principal branch of the logarithm function
with cut R≤0. Let Lis(z) be the polylogarithm function defined by

(2.16) Lis(z) =
∞
∑

k=1

zk

ks
for |z| < 1 and s ∈ C.

It has an analytic continuation using the formula

(2.17) Lis(z) =
z

Γ(s)

∫ ∞

0

xs−1

ex − z
dx for z ∈ C \ [1,∞) if 
(s) > 0.
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 617

Set

(2.18) A1(z) = − 1√
2π

Li3/2(z), A2(z) = − 1√
2π

Li5/2(z).

For 0 < |z|, |z′| < 1, set
(2.19)

B(z, z′) =
zz′

2

∫∫

ηξ log(−ξ + η)

(e−ξ2/2 − z)(e−η2/2 − z′)

dξ

2πi

dη

2πi
=

1

4π

∑

k,k′≥1

zk(z′)k
′

(k + k′)
√
kk′

,

where the integral contours are the vertical lines 
ξ = a and 
η = b with constants
a and b satisfying −

√

− log |z| < a < 0 < b <
√

− log |z′|. The equality of the
double integral and the series is easy to check (see (9.27)–(9.30) in [4] for a similar
calculation). Note that B(z, z′) = B(z′, z). When z = z′, we can also check that

(2.20) B(z) := B(z, z) =
1

4π

∫ z

0

(

Li1/2(y)
)2

y
dy.

Definition 2.7. Define

C(z) :=

[

m
∏

�=1

z�
z� − z�+1

][

m
∏

�=1

ex�A1(z�)+τ�A2(z�)

ex�A1(z�+1)+τ�A2(z�+1)
e2B(z�)−2B(z�+1,z�)

]

,(2.21)

where we set zm+1 := 0.

Since A1, A2, B are analytic inside the unit circle, it is clear from the definition
that C(z) satisfies property (P1) in Subsubsection 2.2.1.

2.2.3. Definition of D(z). The function D(z) is given by a Fredholm determinant.
Before we describe the operator and the space, we first introduce a few functions.

For |z| < 1, define the function

(2.22) h(ζ, z) = − 1√
2π

∫ ζ

−∞
Li1/2

(

ze(ζ
2−y2)/2

)

dy for 
(ζ) < 0

and

(2.23) h(ζ, z) = − 1√
2π

∫ −ζ

−∞
Li1/2

(

ze(ζ
2−y2)/2

)

dy for 
(ζ) > 0.

The integration contour lies in the half-plane 
(y) < 0, and is given by the union of
the interval (−∞,
(±ζ)] on the real axis and the line segment from 
(±ζ) to ±ζ.

Since |ze(ζ2−y2)/2| < 1 on the integration contour, Li1/2(ze
(ζ2−y2)/2) is well-defined.

Thus, we find that the integrals are well-defined using Li1/2(ω) ∼ ω as ω → 0.
Observe the symmetry

(2.24) h(ζ, z) = h(−ζ, z) for 
(ζ) < 0.

We also have

(2.25) h(ζ, z) =

∫ i∞

−i∞

log(1− zeω
2/2)

ω − ζ

dω

2πi
for 
(ζ) < 0.

This identity can be obtained by the power series expansion and using the fact

that 1√
2π

∫ u

−∞ e−ω2/2dω =
∫ i∞
−i∞

e(−u2+ω2)/2

ω−u
dω
2πi for u with arg(u) ∈ (3π/4, 5π/4);
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618 JINHO BAIK AND ZHIPENG LIU

Figure 4. The pictures represent the roots of the equation

e−ζ2/2 = z (dots) and the contours 
(ζ2) = −2 log |z| (solid curves)
for z = 0.05ei, 0.4ei, 0.8ei, from the left to the right.

see (4.8) of [4]. From (2.24) and (2.25), we find that

(2.26) h(ζ, z) = O(ζ−1) as ζ → ∞ in the region
∣

∣

∣arg(ζ)± π

2

∣

∣

∣ > ε

for any fixed z satisfying |z| < 1.
Let x, τ , and γ be the parameters in Definition 2.5. We set

(2.27) fi(ζ) :=

{

e−
1
3 (τi−τi−1)ζ

3+ 1
2 (γi−γi−1)ζ

2+(xi−xi−1)ζ for 
(ζ) < 0,

e
1
3 (τi−τi−1)ζ

3− 1
2 (γi−γi−1)ζ

2−(xi−xi−1)ζ for 
(ζ) > 0

for i = 1, · · · ,m, where we set τ0 = γ0 = x0 = 0.
Now we describe the space and the operators. For a non-zero complex number

z, consider the roots ζ of the equation e−ζ2/2 = z. The roots are on the contour

(ζ2) = −2 log |z|. It is easy to check that if 0 < |z| < 1, the contour 
(ζ2) =
−2 log |z| consists of two disjoint components, one in 
(ζ) > 0 and the other in

(ζ) < 0. See Figure 4. The asymptotes of the contours are the straight lines of
slope ±1. For 0 < |z| < 1, we define the discrete sets

Lz := {ζ ∈ C : e−ζ2/2 = z} ∩ {
(ζ) < 0},
Rz := {ζ ∈ C : e−ζ2/2 = z} ∩ {
(ζ) > 0}.

(2.28)

For distinct complex numbers z1, · · · , zm satisfying 0 < |zi| < 1, define the sets

(2.29) S1 := Lz1 ∪ Rz2 ∪ Lz3 ∪ · · · ∪
{

Rzm if m is even,

Lzm if m is odd,

and

(2.30) S2 := Rz1 ∪ Lz2 ∪ Rz3 ∪ · · · ∪
{

Lzm if m is even,

Rzm if m is odd.

See Figure 5. Now we define two operators

(2.31) K1 : �
2(S2) → �2(S1), K2 : �

2(S1) → �2(S2)

by kernels as follows. If

(2.32) ζ ∈ (Lzi ∪ Rzi) ∩ S1 and ζ ′ ∈ (Lzj ∪ Rzj ) ∩ S2
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 619

Figure 5. Example of S1 (black dots) and S2 (white dots) when
m = 3. The level sets are shown for visual convenience.

for some i, j ∈ {1, · · · ,m}, then we set

K1(ζ, ζ
′) = (δi(j) + δi(j + (−1)i))

fi(ζ)e
2h(ζ,zi)−h(ζ,zi−(−1)i )−h(ζ′,zj−(−1)j )

ζ(ζ − ζ ′)
Q1(j).

(2.33)

Similarly, if

(2.34) ζ ∈ (Lzi ∪ Rzi) ∩ S2 and ζ ′ ∈ (Lzj ∪ Rzj ) ∩ S1

for some i, j ∈ {1, · · · ,m}, then we set

K2(ζ, ζ
′) = (δi(j) + δi(j − (−1)i))

fi(ζ)e
2h(ζ,zi)−h(ζ,zi+(−1)i )−h(ζ′,zj+(−1)j )

ζ(ζ − ζ ′)
Q2(j).

(2.35)

Here the delta function δi(k) = 1 if k = i or 0 otherwise. We also set z0 = zm+1 = 0
so that

(2.36) e−h(ζ,z0) = e−h(ζ,zm+1) = 1,

and the functions Q1(j) and Q2(j) are defined by

(2.37) Q1(j) = 1− zj−(−1)j

zj
and Q2(j) = 1− zj+(−1)j

zj
.

Definition 2.8. Define

(2.38) D(z) := det (1− K1K2)

for z = (z1, · · · , zm), where 0 < |zi| < 1 and zi are distinct.

In this definition, we temporarily assumed that zi are distinct in order to ensure
that the term ζ − ζ ′ in the denominators in (2.33) and (2.35) does not vanish.
However, as we stated in (P2) in Subsubsection 2.2.1, D(z) is still well-defined
when the zi are equal. See Lemma 7.1.

The definition of Lz and Rz implies that | arg(ζ)| → 3π/4 as |ζ| → ∞ along
ζ ∈ Lz and | arg(ζ)| → π/4 as |ζ| → ∞ along ζ ∈ Rz. Hence, due to the cubic
term ζ3 in (2.27), fi(ζ) → 0 super exponentially as |ζ| → ∞ on the set Lz ∪ Rz if
τ1 < · · · < τm. Hence, using the property (2.26) of h, we see that the kernels decay
super-exponentially fast as |ζ|, |ζ ′| → ∞ on the spaces. Therefore, the Fredholm
determinant is well-defined if τ1 < · · · < τm.
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620 JINHO BAIK AND ZHIPENG LIU

We now check property (P4). If τi = τi+1, the exponent of fi has no cubic term

ζ3. The quadratic term contributes to O(1) since |e−ζ2/2| = |zi| for ζ ∈ Lzi ∪ Rzi ,

and hence |ecζ2 | = O(1). On the other hand, the linear term in the exponent
of fi has a negative real part if xi < xi+1. Hence, if τi = τi+1 and xi < xi+1,
then |fi(ζ)| → 0 exponentially as ζ → ∞ along ζ ∈ S1 ∪ S2 and hence the kernel
decays exponentially fast as |ζ|, |ζ ′| → ∞ on the spaces. Therefore, the Fredholm
determinant is still well-defined if τi = τi+1 and xi < xi+1. This proves (P4).

2.3. Matrix kernel formula of K1 and K2. Due to the delta functions, K1(ζ, ζ
′)

�= 0 only when

(2.39) ζ ∈ Lz2�−1
∪ Rz2� and ζ ′ ∈ Rz2�−1

∪ Lz2�

for some integer �, and similarly K2(ζ, ζ
′) �= 0 only when

(2.40) ζ ∈ Lz2� ∪ Rz2�+1
and ζ ′ ∈ Rz2� ∪ Lz2�+1

for some integer �. Thus, if we represent the kernels as m×m matrix kernels, then
they have 2× 2 block structures.

For example, consider the case when m = 5. Let us use ξi and ηi to represent
variables in Lzi and Rzi , respectively:

(2.41) ξi ∈ Lzi , ηi ∈ Rzi .

The matrix kernels are given by

(2.42) K1 =

⎡

⎢

⎢

⎢

⎢

⎣

k(ξ1, η1) k(ξ1, ξ2)
k(η2, η1) k(η2, ξ2)

k(ξ3, η3) k(ξ3, ξ4)
k(η4, η3) k(η4, ξ4)

k(ξ5, η5)

⎤

⎥

⎥

⎥

⎥

⎦

and

(2.43) K2 =

⎡

⎢

⎢

⎢

⎢

⎣

k(η1, ξ1)
k(ξ2, η2) k(ξ2, ξ3)
k(η3, η2) k(η3, ξ3)

k(ξ4, η4) k(ξ4, ξ5)
k(η5, η4) k(η5, ξ5)

⎤

⎥

⎥

⎥

⎥

⎦

,

where the empty entries are zeros and the function k is given below. When m is
odd, the structure is similar. On the other hand, when m is even, K1 consists only
of 2 × 2 blocks and K2 contains an additional non-zero 1 × 1 block at the bottom
right corner.

We now define k. For 1 ≤ i ≤ m− 1, writing

(2.44) ξ = ξi, η = ηi, ξ′ = ξi+1, η′ = ηi+1,

we define

[

k(ξ, η) k(ξ, ξ′)
k(η′, η) k(η′, ξ′)

]

=

[

fi(ξ)
fi+1(η

′)

]

⎡

⎣

e2h(ξ,zi)

ξeh(ξ,zi+1)

e2h(η
′,zi+1)

η′eh(η
′,zi)

⎤

⎦

[ 1
ξ−η

1
ξ−ξ′

1
η′−η

1
η′−ξ′

]

×
[

1

eh(η,zi+1)

1
eh(ξ

′,zi)

]

[

1− zi+1

zi
1− zi

zi+1

]

.

(2.45)
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 621

This means that

(2.46) k(ξi, ηi) = fi(ξi)
e2h(ξi,zi)

ξieh(ξi,zi+1)

1

ξi − ηi

1

eh(ηi,zi+1)

(

1− zi+1

zi

)

,

(2.47) k(ξi, ξi+1) = fi(ξi)
e2h(ξi,zi)

ξieh(ξi,zi+1)

1

ξi − ξi+1

1

eh(ξi+1,zi)

(

1− zi
zi+1

)

,

and so on. The term k(ξm, ηm) is defined by the (1, 1) entry of (2.45) with i = m,
where we set zm+1 = 0. The term k(η1, ξ1) is defined by the (2, 2) entry of (2.45)
with i = 0, where we set z0 = 0.

2.4. Series formulas for D(z). We present two series formulas for the function
D(z). The first one (2.52) is the series expansion of Fredholm determinant using
the block structure of the matrix kernel. The second formula (2.53) is obtained
after evaluating the finite determinants in (2.52) explicitly.

To simplify formulas, we introduce the following notation.

Definition 2.9 (Notational conventions). For complex vectors W = (w1, · · · ,wn)
and W′ = (w′

1, · · · ,w′
n′), we set

(2.48) Δ(W) =
∏

i<j

(wj − wi) = det
[

w
j−1
i

]

, Δ(W;W′) =
∏

1≤i≤n
1≤i′≤n′

(wi − w′
i′).

For a function h of single variable, we write

(2.49) h(W) =
n
∏

i=1

h(wi).

We also use the notation

(2.50) Δ(S;S′) =
∏

s∈S
s′∈S′

(s− s′), f(S) =
∏

s∈S

f(s)

for finite sets S and S′.

The next lemma follows from a general result whose proof is given in Subsec-
tion 4.3 below.

Lemma 2.10 (Series formulas for D(z)). We have

(2.51) D(z) =
∑

n∈(Z≥0)m

1

(n!)2
Dn(z)

with n! =
∏m

�=1 n�! for n = (n1, · · · , nm), where Dn(z) can be expressed in the
following two ways.
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622 JINHO BAIK AND ZHIPENG LIU

(i) We have, for n = (n1, · · · , nm),

(2.52) Dn(z) = (−1)|n|
∑

U
(�)∈(Lz�

)n�

V
(�)∈(Rz�

)n�

�=1,··· ,m

det
[

K1(ζi, ζ
′
j)
]|n|
i,j=1

det [K2(ζ
′
i, ζj)]

|n|
i,j=1 ,

where U=(U(1), · · · ,U(m)), V=(V(1), · · · ,V(m)) with U(�)=(u
(�)
1 , · · · , u(�)n� ),

V(�) = (v
(�)
1 , · · · , v(�)n� ), and where

(2.53)

ζi =

{

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �,

and
(2.54)

ζ ′i =

{

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �.

Here, we set n0 = 0.
(ii) We also have

(2.55) Dn(z) =
∑

U
(�)∈(Lz�)

n�

V
(�)∈(Rz�)

n�

�=1,··· ,m

dn,z(U,V)

with

dn,z(U,V) :=

[

m
∏

�=1

Δ(U(�))2Δ(V(�))2

Δ(U(�);V(�))2
f̂�(U

(�))f̂�(V
(�))

]

×
[

m
∏

�=2

Δ(U(�);V(�−1))Δ(V(�);U(�−1))e−h(V(�),z�−1)−h(V(�−1),z�)

Δ(U(�);U(�−1))Δ(V(�);V(�−1))eh(U(�),z�−1)+h(U(�−1),z�)

(

1− z�−1

z�

)n�
(

1− z�
z�−1

)n�−1
]

,

(2.56)

where

f̂�(ζ) :=
1

ζ
f�(ζ)e

2h(ζ,z�).(2.57)

Recall (2.22), (2.23), and (2.27) for the definition of h and fj.

Property (P3) in Subsubsection 2.2.1 follows easily from (2.56). Note that γi
only appears in the factor f̂�(U

(�))f̂�(V
(�)) for � = i or i + 1. If we replace γi by

γi+1, then fi(ζ) and fi+1(ζ) are changed by z−1
i fi(ζ) and zi+1fi+1(ζ) if 
(ζ) < 0, or

by zifi(ζ) and z−1
i+1fi+1(ζ) if 
(ζ) > 0. But U(�) has the same number of components

as V(�) for each �. Therefore f̂�(U
(�))f̂�(V

(�)) does not change. We can also check
(P3) from the original Fredholm determinant formula.

The analyticity property (P2) is proved in Lemma 7.1 later using the series
formula.
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3. Joint distribution function for the general initial condition

We obtain the limit theorem of the previous section from a finite-time formula of
the joint distribution. In this section, we describe a formula of the finite-time joint
distribution for an arbitrary initial condition. We simplify the formula further in
the next section for the case of the periodic step initial condition.

We state the results in terms of particle locations instead of the height function
used in the previous section. It is easy to convert one to another; see (6.5). The
particle locations are denoted by �i(t), where

(3.1) · · · < �0(t) < �1(t) < �2(t) < · · · .

Due to the periodicity of the system, we have �i(t) = �i+nN (t)−nL for all integers
n.

The periodic TASEP can be described if we keep track of N consecutive particles,
say �1(t) < · · · < �N (t). If we focus only on these particles, they follow the usual
TASEP rules plus the extra condition that �N (t) < �1(t) + L for all t. Define the
configuration space

(3.2) XN (L) = {(x1, x2, · · · , xN ) ∈ Z
N : x1 < x2 < · · · < xN < x1 + L}.

We call the process of the N particles TASEP in XN (L). We use the same notation
�i(t), i = 1, · · · , N , to denote the particle locations in the TASEP in XN (L). We
state the result for the TASEP in XN (L) first and then for the periodic TASEP as
a corollary.

For z ∈ C, consider the polynomial of degree L given by

(3.3) qz(w) = wN (w + 1)L−N − zL.

Denote the set of the roots by

(3.4) Rz = {w ∈ C : qz(w) = 0}.

The roots are on the level set |wN (w+1)L−N | = |z|L. It is straightforward to check
the following properties of the level set. Set

(3.5) �0 := ρρ(1− ρ)1−ρ,

where, as before, ρ = N/L. The level set becomes larger as |z| increases; see
Figure 6. If 0 < |z| < �0, the level set consists of two closed contours, one in

(w) < −ρ enclosing the point w = −1 and the other in 
(w) > −ρ enclosing the
point w = 0. When |z| = �0, the level set has a self-intersection at w = −ρ. If
|z| > �0, then the level set is a connected closed contour. Now consider the set
of roots Rz. Note that if z �= 0, then −1, 0 /∈ Rz. It is also easy to check that
if a non-zero z satisfies zL �= �

L
0 , then the roots of qz(w) are all simple. On the

other hand, if zL = �
L
0 , then there is a double root at w = −ρ and the remaining

L− 2 roots are simple. For the results in this section, we take z to be any non-zero
complex number. But in the next section, we restrict 0 < |z| < �0.

Theorem 3.1 (Joint distribution of TASEP in XN (L) for the general initial condi-
tion). Consider the TASEP in XN (L). Let Y = (y1, · · · , yN ) ∈ XN (L) and assume
that (�1(0), · · · ,�N (0)) = Y . Fix a positive integer m. Let (k1, t1), · · · , (km, tm)
be m distinct points in {1, · · · , N} × [0,∞). Assume that 0 ≤ t1 ≤ · · · ≤ tm. Let
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624 JINHO BAIK AND ZHIPENG LIU

Figure 6. The pictures represent the roots of the equation
wN (w + 1)L−N = zL and the contours |wN (w + 1)L−N | = |z|L
with N = 8, L = 24 for three different values of z. The value of
|z| increases from the left picture to the right picture. The middle
picture is when z = ρρ(1− ρ)1−ρ, where ρ = N/L = 1/3.

ai ∈ Z for 1 ≤ i ≤ m. Then

PY (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am)

=

∮

· · ·
∮

C(z,k)DY (z,k, a, t)
dzm
2πizm

· · · dz1
2πiz1

,
(3.6)

where the contours are nested circles in the complex plane satisfying 0 < |zm| <
· · · < |z1|. Here z = (z1, · · · , zm), k = (k1, · · · , km), a = (a1, · · · , am), and t =
(t1, · · · , tm). The functions in the integrand are

C(z,k) = (−1)(km−1)(N+1)z
(k1−1)L
1

m
∏

�=2

[

z
(k�−k�−1)L
�

((

z�
z�−1

)L

− 1

)N−1
]

(3.7)

and

DY (z,k, a, t) = det

⎡

⎢

⎢

⎢

⎢

⎣

∑

w1∈Rz1···
wm∈Rzm

wi
1 (w1 + 1)

yi−i
w−j

m
∏m

�=2(w� − w�−1)

m
∏

�=1

G�(w�)

⎤

⎥

⎥

⎥

⎥

⎦

N

i,j=1

(3.8)

with

(3.9) G�(w) =
w(w + 1)

L(w + ρ)

w−k�(w + 1)−a�+k�et�w

w−k�−1(w + 1)−a�−1+k�−1et�−1w
,

where we set t0 = k0 = a0 = 0.

Remark 3.2. The limiting joint distribution F in the previous section was not de-
fined for all parameters: when τi = τi+1, we need to put the restriction xi < xi+1.
See property (P4) in Subsubsection 2.2.1. The finite-time joint distribution does not
require such restrictions. The sums in the entries of the determinant DY (z,k, a, t)
are over finite sets, and hence there is no issue with the convergence. Therefore,
the right-hand side of (3.6) is well-defined for all real numbers ti and integers ai
and ki.

Corollary 3.3 (Joint distribution of periodic TASEP for the general initial condi-
tion). Consider the periodic TASEP with a general initial condition determined by
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Y = (y1, · · · , yN ) ∈ XN (L) and its periodic translations; �j+nN (0) = yj + nL for
all n ∈ Z and j = 1, · · · , N . Then (3.6) holds for all ki ∈ Z without the restriction
that ki ∈ {1, · · · , N}.
Proof. The particles in the periodic TASEP satisfy �j+nN (t) = �j(t)+nL for every
integer n. Hence if k� is not between 1 and N , we may translate it. This amounts
to changing k� to k� + nN and a� to a� + nL for some integer n. Hence it is
enough to show that the right-hand side of (3.6) is invariant under these changes.

Under these changes, the term C(z,k) is multiplied by the factor znNL
� z−nNL

�+1 if

1 ≤ � ≤ m − 1 and by znNL
m if � = m. On the other hand, G�(w�) produces the

multiplicative factor w−nN
� (w� + 1)−nL+nN which is z−nL

� by (3.4). Taking this
factor outside the determinant (3.8), we cancels out the factor znNL

� from C(z,k).
Similarly G�+1(w�+1) produces a factor which cancel out z−nNL

�+1 if 1 ≤ � ≤ m−1. �

Before we prove the theorem, let us comment on the analytic property of the
integrand in the formula (3.6). The function C(z,k) is clearly analytic in each
z� �= 0. Consider the function DY (z,k, a, t). Note that

(3.10)
d

dw
qz(w) =

L(w + ρ)

w(w + 1)
wN (w + 1)L−N .

Hence, if F (w) is an analytic function of w in C \ {−1, 0} and

f(w) = F (w)wN (w + 1)L−N ,

then
∑

w∈Rz

F (w)
w(w + 1)

L(w + ρ)

=
1

2πi

∮

|w|=r

f(w)

qz(w)
dw − 1

2πi

∮

|w+1|=ε1

f(w)

qz(w)
dw − 1

2πi

∮

|w|=ε2

f(w)

qz(w)
dw

(3.11)

for any ε1, ε2 > 0 and r > max{ε1 + 1, ε2} such that all roots of qz(w) lie in the
region {w : ε2 < |w| < r, |w + 1| > ε1}. Note that qz(w) is an entire function of z
for each w. Since we may take r arbitrarily large and ε1, ε2 arbitrarily small and
positive, the right-hand side of (3.11) defines an analytic function of z �= 0. Now
the entries of the determinant in (3.8) are of the form

(3.12)
∑

w1∈Rz1···
wm∈Rzm

F (w1, · · · , wm)
m
∏

�=1

w�(w� + 1)

L(w� + ρ)

for a function F (w1, · · · , wm) which is analytic in each variable in C \ {−1, 0} as
long as w� �= w�−1 for all � = 2, · · · ,m. The last condition is due to the factor
∏m

�=2(w� − w�−1) in the denominator. Note that if w� = w�−1, then z� = z�−1.
Hence by using (3.11) m times, each entry of (3.8), and hence DY (z,k, a, t), is an
analytic function of each z� �= 0 in the region where all z� are distinct.

When m = 1, the product in (3.7) is set to be 1 and the formula (3.6) in this
case was obtained in Proposition 6.1 in [4]. For m ≥ 2, as we mentioned in the
Introduction, we prove (3.6) by taking a multiple sum of the transition probability.
The main new technical result is a summation formula and we summarize it in
Proposition 3.4 below.
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626 JINHO BAIK AND ZHIPENG LIU

The transition probability was obtained in Proposition 5.1 of [4]. Denote by
PX(X ′; t) the transition probability from X = (x1, · · · , xN ) ∈ XN (L) to X ′ =
(x′

1, · · · , x′
N ) ∈ XN (L) in time t,

(3.13) PX(X ′; t) =

∮

det

[

1

L

∑

w∈Rz

wj−i+1(w + 1)−x′
i+xj+i−jetw

w + ρ

]N

i,j=1

dz

2πiz
,

where the integral is over any simple closed contour in |z| > 0 which contains 0
inside. The integrand is an analytic function of z for z �= 0 by using (3.11).

Proof of Theorem 3.1. It is enough to consider m ≥ 2. It is also sufficient to
consider the case when the times are distinct, t1 < · · · < tm, because both sides
of (3.6) are continuous functions of t1, · · · , tm. Note that (3.8) involves only finite
sums.

Denoting by X(�) = (x
(�)
1 , · · · , x(�)

N ) the configuration of the particles at time t�,
the joint distribution function on the left-hand side of (3.6) is equal to
(3.14)

∑

X(�)∈XN (L)∩{x(�)
k�

≥a�}
�=1,··· ,m

PY (X
(1); t1)PX(1)(X(2), t2 − t1) · · ·PX(m−1)(X(m); tm − tm−1).

Applying the Cauchy-Binet formula to (3.13), we have

(3.15) PX(X ′; t) =

∮

∑

W∈(Rz)
N

LX(W )RX′(W )Q(W ; t)
dz

2πiz
,

where, for W = (w1, · · · , wN ) ∈ C,
(3.16)

LX(W ) = det
[

wj
i (wi + 1)xj−j

]N

i,j=1
, RX′(W ) = det

[

w−j
i (wi + 1)−x′

j+j
]N

i,j=1
,

and

(3.17) Q(W ; t) =
1

N !LN

N
∏

i=1

wie
twi

wi + ρ
.

Here the factor N ! in the denominator comes from the Cauchy-Binet formula; it
will eventually disappear since we will apply the Cauchy-Binet identity backward
again at the end of the proof.

We insert (3.15) into (3.14) and interchange the order of the sums and the
integrals. Assuming that the series converges absolutely so that the interchange is
possible, the joint distribution is equal to

∮

dz1
2πiz1

· · ·
∮

dzm
2πizm

∑

W (1)∈(Rz1
)N

···
W (m)∈(Rzm )N

P(W (1), · · · ,W (m)

m
∏

�=1

Q(W (�); t� − t�−1),

(3.18)
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where W (�) = (w
(�)
1 , · · · , w(�)

N ) and

P(W (1), · · · ,W (m)

= LY (W
(1))

[

m−1
∏

�=1

Hk�,a�
(W (�);W (�+1))

]

[

∑

X∈XN (L)
xkm≥am

RX(W (m))

]

.(3.19)

Here we set

(3.20) Hk,a(W ;W ′) :=
∑

X∈XN (L)∩{xk≥a}
RX(W )LX(W ′)

for a pair of complex vectors W = (w1, · · · , wN ) and W ′ = (w′
1, · · · , w′

N ). Let us
now show that it is possible to exchange the sums and integrals if we take the zi-
contours properly. We first consider the convergence of (3.20) and the sum in (3.19).
Note that, shifting the summation variable X to X − (b, · · · , b),

∑

X∈XN (L)∩{xk=b}
RX(W )LX(W ′)

=

⎡

⎣

∑

Y ∈XN (X)∩{yk=0}
RY (W )LY (W

′)

⎤

⎦

⎛

⎝

N
∏

j=1

w′
j + 1

wj + 1

⎞

⎠

b

.

(3.21)

The right-hand side of (3.20) is the sum of the above formula over b ≥ a. Hence

(3.20) converges absolutely and the convergence is uniform for wi, w
′
i if

∏N
j=1

∣

∣

w′
j+1

wj+1

∣

∣

is in a compact subset of [0, 1). Similarly, the sum of RX(W (m)) in (3.19) converges

if
∏N

j=1 |w
(m)
j + 1| > 1. Therefore, (3.19) converges absolutely if the intermediate

variables W (�) = (w
(�)
1 , · · · , w(�)

N ) satisfy

(3.22)

N
∏

j=1

|w(1)
j + 1| >

N
∏

j=1

|w(2)
j + 1| > · · · >

N
∏

j=1

|w(m)
j + 1| > 1.

We now show that it is possible to choose the contours of zi so that (3.22) is

achieved. Since W (�) ∈ (Rz�)
N , w

(�)
j satisfies the equation |wN (w+ 1)L−N | = |zL� |.

Hence |w(�)
j | = |zj |+O(1) as |zj | → ∞. Therefore, if we take the contours |z�| = r�

where r1 > · · · > rm > 0 and r� − r�+1 are large enough (where rm+1 := 0),
then (3.22) is satisfied. Thus, (3.20) and the sum in (3.19) converge absolutely. It
is easy to see that the convergences are uniform. Hence we can exchange the sums
and integrals, and therefore, the joint distribution is indeed given by (3.18) if we
take the contours of zi to be large nested circles.

We simplify (3.18). The terms Hk�,a�
(W (�);W (�+1)) are evaluated in Proposi-

tion 3.4 below. Note that since the zi-contours are the large nested circles, we
have (3.22), and hence the assumptions in Proposition 3.4 are satisfied. On the
other hand, the sum of RX(W (m)) in (3.18) was computed in [4]. Lemma 6.1 in [4]
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628 JINHO BAIK AND ZHIPENG LIU

implies that for W = (w1, · · · , wN ) ∈ RN
z ,

∑

X∈XN (L)
xk=a

RX(W ) = (−1)(k−1)(N+1)z(k−1)L

×

⎡

⎣1−
N
∏

j=1

(wj + 1)−1

⎤

⎦

⎡

⎣

N
∏

j=1

w−k
j (wj + 1)−a+k+1

⎤

⎦det
[

w−i
j

]N

i,j=1
.

(3.23)

Hence, from the geometric series, for W = (w1, · · · , wN ) ∈ RN
z ,

∑

X∈XN (L)
xk≥a

RX(W )

= (−1)(k−1)(N+1)z(k−1)L

⎡

⎣

N
∏

j=1

w−k
j (wj + 1)−a+k+1

⎤

⎦det
[

w−i
j

]N

i,j=1

(3.24)

if
∏N

j=1 |wj + 1| > 1. The last condition is satisfied for W = W (m). We thus find

that (3.19) is equal to an explicit factor times a product of m− 1 Cauchy determi-
nants times a Vandermonde determinant. By using the Cauchy-Binet identity m
times, we obtain (3.6) assuming that the zi-contours are large nested circles.

Finally, using the analyticity of the integrand on the right-hand side of (3.6),
which was discussed before the start of this proof, we can deform the contours of
zi to any nested circles, not necessarily large circles. This completes the proof. �

The main technical part of this section is the following summation formula. We
prove it in Section 5.

Proposition 3.4. Let z and z′ be two non-zero complex numbers satisfying zL �=
(z′)L. Let W = (w1, · · · , wN ) ∈ (Rz)

N and W ′ = (w′
1, · · · , w′

N ) ∈ (Rz′)N . Suppose

that
∏N

j=1 |w′
j +1| < ∏N

j=1 |wj +1|. Consider Hk,a(W ;W ′) defined in (3.20). Then
for any 1 ≤ k ≤ N and integer a,

Hk,a(W ;W ′)

=
( z

z′

)(k−1)L
(

1−
(

z′

z

)L
)N−1

⎡

⎣

N
∏

j=1

w−k
j (wj + 1)−a+k+1

(w′
j)

−k(w′
j + 1)−a+k

⎤

⎦det

[

1

wi − w′
i′

]N

i,i′=1

.

(3.25)

4. Periodic step initial condition

We now assume the following periodic step condition:

(4.1) �i+nN (0) = i−N + nL for 1 ≤ i ≤ N and n ∈ Z.

In the previous section, we obtained a formula for general initial conditions. In
this section, we find a simpler formula for the periodic step initial condition which
is suitable for the asymptotic analysis. We express DY (z,k, a, t) as a Fredholm
determinant times a simple factor. The result is described in terms of two functions
C(z) and D(z). We first define them and then state the result.

Throughout this section, we fix a positive integer m, and fix parameters k1, · · · ,
km, a1, · · · , am, t1, · · · , tm as in the previous section.
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4.1. Definitions. Recall the function qz(w) = wN (w + 1)L−N − zL for complex z
in (3.3) and the set of its roots

(4.2) Rz = {w ∈ C : qz(w) = 0}
in (3.4). Set

(4.3) �0 := ρρ(1− ρ)1−ρ, ρ = N/L,

as in (3.5). We discussed in the previous section that if 0 < |z| < �0, then the
contour |qz(w)| = 0 consists of two closed contours, one in 
(w) < −ρ enclosing
the point w = −1 and the other in 
(w) > −ρ enclosing the point w = 0. Now, for
0 < |z| < �0, set

(4.4) Lz = {w ∈ Rz : 
(w) < −ρ}, Rz = {w ∈ Rz : 
(w) > −ρ}.
It is not difficult to check that

(4.5) |Lz| = L−N, |Rz| = N.

See the left picture in Figure 6 in Section 3. (Note that if z = 0, then the roots
are w = −1 with multiplicity L − N and w = 0 with multiplicity N .) From the
definitions, we have

(4.6) Rz = Lz ∪ Rz.

In Theorem 3.1, we took the contours of zi as nested circles of arbitrary sizes.
In this section, we assume that the circles satisfy

(4.7) 0 < |zm| < · · · < |z1| < �0.

Hence Lzi and Rzi are all well-defined.
We define two functions C(z) and D(z) of z = (z1, · · · , zm), both of which

depend on the parameters ki, ti, ai. The first one is the following. Recall the
notational convention introduced in Definition 2.9. For example, Δ(Rz; Lz) =
∏

v∈Rz

∏

u∈Lz
(v − u).

Definition 4.1. Define

C(z) =

[

m
∏

�=1

E�(z�)

E�−1(z�)

][

m
∏

�=1

∏

u∈Lz�
(−u)N

∏

v∈Rz�
(v + 1)L−N

Δ(Rz� ; Lz�)

]

×
[

m
∏

�=2

zL�−1

zL�−1 − zL�

][

m
∏

�=2

Δ(Rz� ; Lz�−1
)

∏

u∈Lz�−1
(−u)N

∏

v∈Rz�
(v + 1)L−N

]

,

(4.8)

where

(4.9) Ei(z) :=
∏

u∈Lz

(−u)ki−N−1
∏

v∈Rz

(v + 1)−ai+ki−Netiv

for i = 1, · · · ,m, and E0(z) := 1.

It is easy to see that all terms in C(z) other than
∏m

�=2

zL
�−1

zL
�−1−zL

�

are analytic for

z1, · · · , zm within the disk {z; |z| < �0}. Hence C(z) is analytic in the disk except
for the simple poles when zL�−1 = zL� , � = 2, · · · ,m.

We now define D(z). It is given by a Fredholm determinant. Set

Fi(w) := w−ki+N+1(w + 1)−ai+ki−Netiw for i = 1, · · · ,m,

F0(w) := 1.
(4.10)
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630 JINHO BAIK AND ZHIPENG LIU

Figure 7. Example of S1 and S2 when m = 3. The black dots are
S1 and the white dots are S2. The level sets are shown for visual
convenience.

Define

(4.11) fi(w) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fi(w)

Fi−1(w)
for 
(w) < −ρ,

Fi−1(w)

Fi(w)
for 
(w) > −ρ.

Also, set

(4.12) J(w) =
w(w + 1)

L(w + ρ)
.

Define, for 0 < |z| < �0,

(4.13) lz(w) =
1

(w + 1)L−N

∏

u∈Lz

(w − u), rz(w) =
1

wN

∏

u∈Rz

(w − u).

Note that lz(w)rz(w) =
qz(w)

(w+1)L−NwN = wN (w+1)L−N−zL

wN (w+1)L−N . Set

(4.14) Hz(w) :=

{

lz(w) for 
(w) > −ρ,

rz(w) for 
(w) < −ρ.

When z = 0, we define lz(w) = rz(w) = 1 and hence Hz(w) = 1.
Define two sets

(4.15) S1 := Lz1 ∪Rz2 ∪ Lz3 ∪ · · · ∪
{

Lzm if m is odd,

Rzm if m is even,

and

(4.16) S2 := Rz1 ∪ Lz2 ∪Rz3 ∪ · · · ∪
{

Rzm if m is odd,

Lzm if m is even.

See Figure 7. We define two operators

(4.17) K1 : �2(S2) → �2(S1), K2 : �2(S1) → �2(S2)
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by kernels. If w ∈ Rzi ∩ S1 and w′ ∈ Rzj ∩ S2 for some i, j ∈ {1, · · · ,m}, we set

K1(w,w
′) = (δi(j) + δi(j + (−1)i))

J(w)fi(w)(Hzi(w))
2

Hzi−(−1)i
(w)Hzj−(−1)j

(w′)(w − w′)
Q1(j).

(4.18)

Similarly, if w ∈ Rzi ∩ S2 and w′ ∈ Rzj ∩ S1 for some i, j ∈ {1, · · · ,m}, we set

K2(w,w
′) = (δi(j) + δi(j − (−1)i))

J(w)fi(w)(Hzi(w))
2

Hzi+(−1)i
(w)Hzj+(−1)j

(w′)(w − w′)
Q2(j).

(4.19)

Here we set z0 = zm+1 = 0. We also set

(4.20) Q1(j) := 1−
(

zj−(−1)j

zj

)L

, Q2(j) := 1−
(

zj+(−1)j

zj

)L

.

Definition 4.2. Define

(4.21) D(z) = det(I −K1K2).

Remark 4.3. The matrix kernels for K1 and K2 have block structures similar to the
infinite-time case discussed in Subsection 2.3. The only change is that k is replaced
by k which is given as follows. For

(4.22) u ∈ Lzi , v ∈ Rzi , u′ ∈ Lzi+1
, v′ ∈ Rzi+1

,

we have

[

k(u, v) k(u, u′)
k(v′, v) k(v′, u′)

]

=

[

Fi(u)
Fi−1(u)

Fi(v
′)

Fi+1(v′)

]

⎡

⎣

u(u+1)rzi (u)
2

L(u+ρ)rzi+1
(u)

v′(v′+1)lzi+1
(v′)2

L(v′+ρ)lzi (v
′)

⎤

⎦

×
[ 1

u−v
1

u−u′

1
v′−v

1
v′−u′

]

[

1
lzi+1

(v)
1

rzi (u
′)

]

⎡

⎣

1− zL
i+1

zL
i

1− zL
i

zL
i+1

⎤

⎦ .

(4.23)

As in Subsection 2.4, the above Fredholm determinant also has two series for-
mulas. The proof of the following lemma is given in Subsection 4.3.

Lemma 4.4 (Series formulas of D(z)). We have

(4.24) D(z) =
∑

n∈(Z≥0)m

1

(n!)2
Dn(z)

with n! =
∏m

�=1 n�! for n = (n1, · · · , nm) and Dn(z) can be expressed in the follow-
ing two ways. Here we set Dn(z) = 0 if one of n� is larger than N .
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(a) We have
(4.25)

Dn(z1, · · · , zm) = (−1)|n|
∑

U(�)∈(Lz�
)n�

V(�)∈(Rz�
)n�

l=1,··· ,m

det
[

K1(wi, w
′
j)
]|n|
i,j=1

det [K2(w
′
i, wj)]

|n|
i,j=1 ,

where U=(U(1), · · · ,U(m)), V=(V(1), · · · ,V(m)) with U(�)=(u
(�)
1 , · · · , u(�)

n� ),

V(�) = (v
(�)
1 , · · · , v(�)n� ), and where

(4.26)

wi =

{

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �,

and
(4.27)

w′
i =

{

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �.

(b) We have

Dn(z) =
∑

U(�)∈(Lz�
)n�

V(�)∈(Rz�
)n�

�=1,··· ,m

[

m
∏

�=1

(Δ(U(�)))2(Δ(V(�)))2

(Δ(U(�); V(�)))2
f̂�(U

(�))f̂�(V
(�))

]

×

⎡

⎢

⎣

m
∏

�=2

Δ(U(�); V(�−1))Δ(V(�); U(�−1))(1− zL
�

zL
�−1

)n�−1(1− zL
�−1

zL
�

)n�

Δ(U(�); U(�−1))Δ(V(�); V(�−1))rz�−1
(U(�))rz�(U

(�−1))lz�−1
(V(�))lz�(V

(�−1))

⎤

⎥

⎦
,

(4.28)

where

(4.29) f̂�(w) := J(w)f�(w)(Hz�(w))
2 =

{

J(w) F�(w)
F�−1(w) (rz�(w))

2 for w ∈ Lz� ,

J(w)F�−1(w)
F�(w) (lz�(w))

2 for w ∈ Rz� .

Remark 4.5. From (4.28), we can check that Dn(z) is analytic for each z� in 0 <
|z�| < �0, 1 ≤ � ≤ m, just like D(z) of Section 2. The proof for D(z) is in Lemma 7.1.
The proof for Dn(z) is similar, and we skip it.

4.2. Result and proof.

Theorem 4.6 (Joint distribution of TASEP in XN (L) for the step initial condition).
Consider the TASEP in XN (L) with the step initial condition �i(0) = i −N , 1 ≤
i ≤ N . Set ρ = N/L. Fix a positive integer m. Let (k1, t1), · · · , (km, tm) be m
distinct points in {1, · · · , N} × [0,∞). Assume that 0 ≤ t1 ≤ · · · ≤ tm. Let ai ∈ Z

for 1 ≤ i ≤ m. Then

P (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am) =

∮

· · ·
∮

C(z)D(z)
dzm
2πizm

· · · dz1
2πiz1

,(4.30)

where z = (z1, · · · , zm) and the contours are nested circles satisfying

(4.31) 0 < |zm| < · · · < |z1| < �0
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with �0 = ρρ(1 − ρ)1−ρ. The functions C(z) and D(z) are defined in (4.8) and
(4.21), respectively.

Recall that C(z) is analytic in |z�| < �0 except for the poles when zL�−1 = zL� ,
and D(z) is analytic in 0 < |z�| < �0. We point out that Remark 3.2 still applies to
the above theorem; the Fredholm determinant expansion involves only finite sums.

Corollary 4.7 (Joint distribution of periodic TASEP for the periodic step initial
condition). Consider the periodic TASEP with the periodic step initial condition
�i+nN (0) = i−N +nL for 1 ≤ i ≤ N and n ∈ Z. Then (4.30) holds for all integer
indices k1, · · · , km without the restriction that they are between 1 and N .

Proof. As in the proof of Corollary 3.3, it is enough to show that the formulas are
invariant under the changes ki �→ ki ±N and ai �→ ai ± L for some i. This can be
checked easily for C(z) using the identity

∏

u∈Lz
(−u)N =

∏

v∈Rz
(v+1)L−N , which

is easy to prove; see (4.52) below. ForD(z), we use the fact that uN (u+1)L−N = zL�
for u ∈ Lz� and vNi (vi + 1)L−N = zLi for v ∈ Rz� (plus the special structure of K1

and K2.) �

Proof of Theorem 4.6. When m = 1, the result was obtained in Theorem 7.4 of
[4]. We assume m ≥ 2. In Theorem 3.1, C(z,k) does not depend on the initial
condition. Let us denote DY (z,k, a, t) by Dstep when Y = (1 − N, · · · , 1, 0), the
step initial condition. We need to show that Dstep = D(z) C(z)

C(z,k) .

Inserting the initial condition yi = i − N , rewriting G� in terms of F� and J
in (4.10) and (4.12), and reversing the rows, we get

Dstep = (−1)N(N−1)/2 det

[

∑ w−i
1 w−j

m
∏m

�=2(w� − w�−1)

m
∏

�=1

J(w�)
F�(w�)

F�−1(w�)

]N

i,j=1

.

(4.32)

The sum is over all w1 ∈ Rz1 , · · · , wm ∈ Rzm . Using the Cauchy-Binet identity m
times,

(4.33) Dstep =
(−1)N(N−1)/2

(N !)m

∑

W (�)∈(Rz�
)N

�=1,··· ,m

E(W)
m
∏

�=1

J(W (�))
F�(W

(�))

F�−1(W (�))
,

where W (�) = (w
(�)
1 , · · · , w(�)

N ) with w
(�)
i ∈ Rz� for each i, W = (W (1), · · · ,W (m)),

and

E(W) = det
[

(w
(1)
i )−j

]

det

[

1

w
(2)
i − w

(1)
j

]

· · ·det
[

1

w
(m)
i − w

(m−1)
j

]

det
[

(w
(m)
i )−j

]

.

(4.34)

Here all matrices are indexed by 1 ≤ i, j ≤ N . Note that in (4.33), we use the no-

tational convention such as F�(W
(�)) =

∏N
i=1 F�(w

(�)
i ) mentioned in Definition 2.9.

Evaluating the Vandermonde determinants and the Cauchy determinants, Dstep is
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equal to (recall the notation (2.48))

(−1)mN(N−1)/2

(N !)m

∑

W (�)∈(Rz�
)N

�=1,··· ,m

∏m
�=1Δ(W (�))2

∏m
�=2 Δ(W (�);W (�−1))

×
[

N
∏

i=1

(w
(1)
i w

(m)
i )−N

]

m
∏

�=1

J(W (�))
F�(W

(�))

F�−1(W (�))
.

(4.35)

Note that for each �, we may assume that the coordinates of the vector W (�) are
all distinct since otherwise the summand is zero due to Δ(W (�)). Also note that
the summand is a symmetric function of the coordinates of W (�) for each �. Hence
instead of taking the sum over the vectors W (�) ∈ (Rz�)

N , we can take a sum over

the subsets W̃ (�) ⊂ Rz� of size N : Dstep is equal to

(−1)mN(N−1)/2

×
∑

W̃ (�)⊂Rz�

|W̃ (�)|=N
�=1,··· ,m

∏m
�=1 Δ(W̃ (�))2

∏m
�=2Δ(W̃ (�); W̃ (�−1))

[

N
∏

i=1

(w
(1)
i w

(m)
i )−N

]

m
∏

�=1

J(W̃ (�))
F�(W̃

(�))

F�−1(W̃ (�))
,

(4.36)

where w
(1)
i are the elements of W̃ (1) and w

(m)
i are the elements of W̃ (m).

We now change the sum as follows. Since Rz� is the disjoint union of Lz� and

Rz� , some elements of the set W̃ (�) are in Lz� and the rest are in Rz� . (Recall that

|Lz� | = L − N and |Rz� | = N .) Let Ũ (�) = W̃ (�) ∩ Lz� and Ṽ (�) = Rz� \ W̃ (�).

Observe that since |W̃ (�)| = |Rz� |(= N), we have |Ũ (�)| = |Ṽ (�)|. Call this last
number n�. We thus find that the sum in (4.36) can be replaced by the sums

(4.37)
∑

n�=0,··· ,N
�=1,··· ,m

∑

Ũ(�)⊂Lz�
,Ṽ (�)⊂Rz�

|Ũ(�)|=|Ṽ (�)|=n�

�=1,··· ,m

.

We now express the summand in terms of Ũ (�) and Ṽ (�) instead of W̃ (�). First, for
any function h,

(4.38) h(W̃ (�)) = h(Ũ (�))
h(Rz�)

h(Ṽ (�))
.

Now consider Δ(W̃ (�))2. We suppress the dependence on � in the next few sentences

to make the notation light. Tentatively set S̃ = Rz \ Ṽ so that Rz = Ṽ ∪ S̃. Note

that W̃ = Ũ ∪ S̃, a disjoint union. We thus have

(4.39) Δ(W̃ )2 = Δ(Ũ)2Δ(S̃)2Δ(Ũ ; S̃)2, Δ(Rz)
2 = Δ(Ṽ )2Δ(S̃)2Δ(Ṽ ; S̃)2.

Let

(4.40) qz,R(w) :=
∏

v∈Rz

(w − v) = wN rz(w).

Then,

(4.41) qz,R(Ũ) = Δ(Ũ ; Ṽ )Δ(Ũ ; S̃), q′z,R(Ṽ ) = (−1)N(N−1)/2Δ(Ṽ )2Δ(Ṽ ; S̃).
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It is also direct to see that

(4.42) Δ(Rz)
2 = (−1)N(N−1)/2q′z,R(Rz).

From these, after canceling out all terms involving S̃ and inserting the dependence
on �, we find that

Δ(W̃ (�))2 = (−1)N(N−1)/2Δ(Ũ (�))2Δ(Ṽ (�))2(qz�,R(Ũ
(�)))2

Δ(Ũ (�); Ṽ (�))2(q′z�,R(Ṽ
(�)))2

q′z�,R(Rz�).(4.43)

(This computation was also given in (7.48) and (7.50) of [4].) Similarly,
(4.44)

Δ(W̃ (�); W̃ (�−1))

Δ(Rz� ; Rz�−1
)

=
Δ(Ũ (�); Ũ (�−1))Δ(Ṽ (�); Ṽ (�−1))qz�−1,R(Ũ

(�))qz�,R(Ũ
(�−1))

Δ(Ũ (�); Ṽ (�−1))Δ(Ṽ (�); Ũ (�−1))qz�−1,R(Ṽ
(�))qz�,R(Ṽ

(�−1))
.

We express the summands in (4.36) using (4.38), (4.43), and (4.44). We then

change the subsets Ũ (�) ⊂ Lz� and Ṽ (�) ⊂ Rz� to vectors U(�) ∈ (Lz�)
n� and

V(�) ∈ (Rz�)
n� . This has the effect of introducing the factors 1

(n�!)2
. We thus obtain

Dstep = B(z)

⎡

⎣

∑

n∈(Z≥0)m

1

(n!)2
D̂n(z)

⎤

⎦(4.45)

with

B(z) =
[

∏m
�=1 q

′
z�,R

(Rz�)
∏m

�=2 Δ(Rz� ; Rz�−1
)

]

⎡

⎣

∏

v∈Rz1

v−N

⎤

⎦

⎡

⎣

∏

v∈Rzm

v−N

⎤

⎦

[

m
∏

�=1

J(Rz�)
F�(Rz�)

F�−1(Rz�)

]

(4.46)

and

D̂n(z)

=
∑

U(�)∈(Lz�
)n�

V(�)∈(Rz�
)n�

�=1,··· ,m

[

m
∏

�=1

(Δ(U(�)))2(Δ(V(�)))2(qz�,R(U
(�)))2J(U(�))F�(U

(�))F�−1(V
(�))

(Δ(U(�); V(�)))2(q′z�,R(V
(�)))2J(V(�))F�(V(�))F�−1(U(�))

]

×
[

n1
∏

i=1

(

u
(1)
i

v
(1)
i

)−N
][

nm
∏

i=1

(

u
(m)
i

v
(m)
i

)−N
]

×
[

m
∏

�=2

Δ(U(�); V(�−1))Δ(V(�); U(�−1))qz�−1,R(V
(�))qz�,R(V

(�−1))

Δ(U(�); U(�−1))Δ(V(�); V(�−1))qz�−1,R(U
(�))qz�,R(U

(�−1))

]

.

(4.47)

We rewrite (q′z�,R(V
(�)))2 using the identity, q′z,R(v) = vN

J(v)lz(v)
, which we prove

later in (4.51). We also use qz,R(w) = wN rz(w) (see (4.40)). Furthermore, we

re-express rz�(V
(�′)) in terms of lz(V

(�′)) using the identity

(4.48) rz(v) =
1

lz(v)

(

1− zL

(z′)L
)

for v ∈ Rz′

which follows from the fact that rz(w)lz(w) = 1 − zL

wN (w+1)L−N . Then, using the

notation (4.29), we find that D̂n(z) = Dn(z), given by (4.28).
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Thus, the theorem is proved if we show that C(z,k)B(z) = C(z). Before we
prove it, we make the following observations.

• For any v′ ∈ Rz′ , we have 0 = qz′(v′) = (v′)N (v′ + 1)L−N − (z′)L. Hence,
for another complex number z,

(4.49) z′L − zL = (v′)N (v′ + 1)L−N − zL = qz(v
′) =

∏

u∈Lz

(v′ − u)
∏

v∈Rz

(v′ − v).

• As a special case of the above identity, taking z′ = 0 and v′ = 0, we obtain

(4.50) zL = (−1)N−1
∏

u∈Lz

(−u)
∏

v∈Rz

v.

• Setting qz,L(w) =
∏

u∈Lz
(w − u), we have qz,R(w)qz,L(w) = qz(w) =

wN (w + 1)L−N − zL, and hence,

(4.51) q′z,R(v) =
L(v + ρ)

v(v + 1)

vN (v + 1)L−N

qz,L(v)
=

vN

J(v)lz(v)
for v ∈ Rz.

• Since zNL =
∏

u∈Lz
(−u)N

∏

v∈Rz
vN from equality (4.50) and zNL =

∏

v∈Rz
vN (v + 1)L−N by using the definition of Rz, we find that

(4.52)
∏

u∈Lz

(−u)N =
∏

v∈Rz

(v + 1)L−N .

We now prove that C(z,k)B(z) = C(z). Consider C(z,k) defined in (3.7). Us-
ing (4.49),

(−1)(km−1)(N+1)z
(k1−1)L
1

m
∏

�=2

z
(k�−k�−1)L
�

=

⎡

⎣

∏

u∈Lz1

(−u)k1−1
∏

v∈Rz1

v(k1−1)

⎤

⎦ ·
m
∏

�=2

⎡

⎣

∏

u∈Lz�

(−u)k�−k�−1

∏

v∈Rz�

v(k�−k�−1)

⎤

⎦ .

Using (4.50) and (4.49),

m
∏

�=2

(

(

z�
z�−1

)L

− 1

)N

=

m
∏

�=2

Δ(Rz� ; Lz�−1
)Δ(Rz� ; Rz�−1

)
∏

u∈Lz�−1
(−u)N

∏

v∈Rz�−1
vN

=

[

m
∏

�=2

Δ(Rz� ; Rz�−1
)

][

m
∏

�=2

Δ(Rz� ; Lz�−1
)

∏

u∈Lz�−1
(−u)N

∏

v∈Rz�
(v + 1)L−N

]

×

⎡

⎣

m
∏

�=2

∏

v∈Rz�

(v + 1)L−N

⎤

⎦

⎡

⎣

m−1
∏

�=1

∏

v∈Rz�

v−N

⎤

⎦ .
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Now consider B(z). Using (4.51), the fact that
∏

v∈Rz
qz,L(v) = Δ(Rz; Lz), and

(4.52), we see that

q′z,R(Rz)J(Rz) =

∏

v∈Rz
(v + 1)L−N

Δ(Rz; Lz)

[

∏

v∈Rz

vN

]

=

[
∏

v∈Rz
(v + 1)L−N

] [
∏

u∈Lz
(−u)N

]

Δ(Rz; Lz)

[

∏

v∈Rz

vN

][

∏

v∈Rz

(v + 1)−L+N

]

.

This implies that

m
∏

�=1

q′z�,R(Rz�)J(Rz�)

=
m
∏

�=1

[

∏

v∈Rz�
(v + 1)L−N

] [

∏

u∈Lz�
(−u)N

]

Δ(Rz� ; Lz�)
⎡

⎣

m
∏

�=1

∏

v∈Rz�

vN

⎤

⎦

⎡

⎣

m
∏

�=2

∏

v∈Rz�

(v + 1)−L+N

⎤

⎦

⎡

⎣

∏

u∈Lz1

(−u)−N

⎤

⎦ .

From these calculations, we find that C(z,k)B(z) = C(z).
�

4.3. Equivalence of the Fredholm determinant and series formulas. We
presented three formulas ofD(z) in Subsection 4.1; see Lemma 4.4. One of them is a
Fredholm determinant (4.21) and the other two are series formulas (4.24) with (4.25)
and (4.28). In this subsection, we prove the equivalence of these formulas. The proof
is general, and the same argument also gives a proof of Lemma 2.10, which states
the equivalence of three formulas of D(z), a limit of D(z).

First, we prove Lemma 4.4(a) and Lemma 2.10(i). These are special cases of the
next general result which follows from the series definition of Fredholm determinant
together with a block structure of the operator.

Lemma 4.8. Let Σ1, · · · ,Σm be disjoint sets in C and let H = L2(Σ1∪· · ·∪Σm, μ)
for some measure μ. Let Σ′

1, · · · ,Σ′
m be another collection of disjoint sets in C and

let H′ = L2(Σ′
1 ∪ · · · ∪ Σ′

m, μ′) for some measure μ′. Let A be an operator from
H′ to H and B an operator from H to H′, both of which are defined by kernels.
Suppose the following block structures:

• A(w,w′) = 0 unless there is an index i such that w ∈ Σ2i−1 ∪ Σ2i and
w′ ∈ Σ′

2i−1 ∪ Σ′
2i,

• B(w′, w) = 0 unless there is an index i such that w′ ∈ Σ′
2i ∪ Σ′

2i+1 and
w ∈ Σ2i ∪ Σ2i+1.
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Assume that the Fredholm determinant det(1−AB) is well-defined and is equal to
the usual Fredholm determinant series expansion. Then

det(1−AB) =
∑

n∈(Z≥0)m

(−1)|n|

(n!)2

∫

Σ
n1
1 ×···×Σnm

m

∫

(Σ′
1)

n1×···×(Σ′
m)nm

det
[

A(wi, w
′
j)
]|n|
i,j=1

det [B(w′
i, wj)]

|n|
i,j=1

|n|
∏

i=1

dμ′(w′
i)

|n|
∏

i=1

dμ(wi),

(4.53)

where n = (n1, · · · , nm).

Proof. From the standard Fredholm determinant series expansion,

det(1−AB) =
∑

n∈(Z≥0)m

(−1)|n|

n!

∫

Σ
n1
1 ×···×Σnm

m

det [(AB)(wi, wj)]
|n|
i,j=1

|n|
∏

i=1

dμ(wi),

where among |n| variables wi, the first n1 are in Σ1, the next n2 are in Σ2, and so
on. By the Cauchy-Binet formula, for given n,

det [(AB)(wi, wj)]
|n|
i,j=1

=
1

|n|!

∫

(Σ′
1∪···∪Σ′

m)|n|

det
[

A(wi, w
′
j)
]|n|
i,j=1

det [B(w′
i, wj)]

|n|
i,j=1

|n|
∏

i=1

dμ′(w′
i)

=
∑

n
′∈(Z≥0)

m

|n′|=|n|

1

(n′)!

∫

(Σ′
1)

n′
1×···×(Σ′

m)n
′
m

det
[

A(wi, w
′
j)
]|n|
i,j=1

× det [B(w′
i, wj)]

|n|
i,j=1

|n|
∏

i=1

dμ′(w′
i).

From the structure of the kernels, we find that the matrix A(wi, w
′
j) has a natural

block structure of block sizes n1 + n2, n3 + n4, and so on for the rows and of sizes
n′
1+n′

2, n
′
3+n′

4, and so on for the columns. The matrix has non-zero entries only in
the diagonal blocks, which have sizes (n1+n2)×(n′

1+n′
2), (n3+n4)×(n′

3+n′
4), · · · .

Similarly, the matrix B(wi, w
′
j) has non-zero entries only on the diagonal blocks,

which have sizes n1 × n′
1, (n2 + n3) × (n′

2 + n′
3), (n4 + n5) × (n′

4 + n′
5), · · · . From

these structures, we find that the determinant of A(wi, w
′
j) times the determinant

of B(wi, w
′
j) is zero unless n′ = n. Hence

det [(AB)(wi, wj)]
|n|
i,j=1

=
1

n!

∫

(Σ′
1)

n1×···×(Σ′
m)nm

det
[

A(wi, w
′
j)
]|n|
i,j=1

det [B(w′
i, wj)]

|n|
i,j=1

|n|
∏

i=1

dμ′(w′
i).

This implies (4.53). �

Now, we prove Lemma 4.4(b) by showing that (4.25) and (4.28) are the same.
We prove Lemma 2.10(ii) similarly. For this purpose, we use the following general
result.
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Lemma 4.9. Let U = (u1, · · · , um), V = (v1, · · · , vm), U′ = (u′
1, · · · , u′

n), and
V′ = (v′1, · · · , v′n) be four complex vectors. Then for any single-variable functions
F , G, I, and J ,

Δ(U)Δ(V)Δ(U′)Δ(V′)Δ(U′; V)Δ(V′; U)

Δ(U;V)Δ(U′; V′)Δ(U′; U)Δ(V′; V)
F(U)G(V)I(U′)J (V′)

= (−1)(
n+m

2 )+n+mn det

⎡

⎢

⎢

⎣

[

F(ui)G(vj)
ui−vj

]

m×m

[F(ui)I(u′
j)

ui−u′
j

]

m×n

[

J (v′
i)G(vj)

v′
i−vj

]

n×m

[J (v′
i)I(u′

j)

v′
i−u′

j

]

n×n

⎤

⎥

⎥

⎦

.

(4.54)

Proof. It follows directly from the Cauchy determinant formula. �

Consider (4.28). We can write it as

(4.55) Dn(z) =
∑

U(�)∈(Lz�
)n�

V(�)∈(Rz�
)n�

l=1,··· ,m

D̃0 · · · D̃m,

where

D̃0 =
Δ(U(1))Δ(V(1))

Δ(U(1); V(1))
f̂1(V

(1)), D̃m =
Δ(U(m))Δ(V(m))

Δ(U(m); V(m))
f̂m(U(m)),(4.56)

and

D̃� =
Δ(U(�))Δ(V(�))Δ(U(�+1))Δ(V(�+1))Δ(U(�+1); V(�))Δ(V(�+1); U(�))

Δ(U(�); V(�))Δ(U(�+1); V(�+1))Δ(U(�+1); U(�))Δ(V(�+1); V(�))

×
f̂�(U

(�))(1− zL
�+1

zL
�

)n�(1− zL
�

zL
�+1

)n�+1 f̂�(V
(�+1))

rz�+1
(U(�))lz�+1

(V(�))rz�(U
(�+1))lz�(V

(�+1))

(4.57)

for 1 ≤ � ≤ m − 1. For 1 ≤ � ≤ m − 1, we apply Lemma 4.9 with m = n�,

n = n�+1, F(u) = f̂�(u)
rz�+1

(u) , G(v) = 1
lz�+1

(v) (1−
zL
�+1

zL
�

), I(u′) = 1
rz� (u

′) (1−
zL
�

zL
�+1

), and

J (v′) = f̂�+1(v
′)

lz� (v
′) . Then, recalling (4.29),

D̃� = (−1)(
n�+n�+1

2 )+n�+1+n�n�+1

× det

⎡

⎢

⎢

⎣

[

K1(u
(�)
i , v

(�)
j )

]

n�×n�

[

K1(u
(�)
i , u

(�+1)
j )

]

n�×n�+1

[

K1(v
(�+1)
i , v

(�)
j )

]

n�+1×n�

[

K1(v
(�+1)
i , u

(�+1)
j )

]

n�+1×n�+1

⎤

⎥

⎥

⎦

if � is odd, and

D̃� = (−1)(
n�+n�+1

2 )+n�+1+n�n�+1

× det

⎡

⎢

⎢

⎣

[

K2(u
(�)
i , v

(�)
j )

]

n�×n�

[

K2(u
(�)
i , u

(�+1)
j )

]

n�×n�+1

[

K2(v
(�+1)
i , v

(�)
j )

]

n�+1×n�

[

K2(v
(�+1)
i , u

(�+1)
j )

]

n�+1×n�+1

⎤

⎥

⎥

⎦
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if � is even. On the other hand, using the Cauchy determinant formula,

(4.58) D̃0 = (−1)(
n1
2 )+n1 det

[

K2(v
(1)
i , u

(1)
j )

]n1

i,j=1

and

(4.59) D̃m =

⎧

⎪

⎨

⎪

⎩

(−1)(
nm
2 ) det

[

K1(u
(m)
i , v

(m)
j )

]nm

i,j=1
if m is even,

(−1)(
nm
2 ) det

[

K2(u
(m)
i , v

(m)
j )

]nm

i,j=1
if m is odd.

The formula (4.25) follows by combining the product of D̃� for odd � as a single

determinant of a block diagonal matrix, and combining the product D̃� for even
indices as another single determinant, we obtain (4.25). This proves Lemma 4.4(b).
The proof of Lemma 2.10(ii) is similar.

5. Proof of Proposition 3.4

As we mentioned before, Proposition 3.4 is the key technical result of this paper.
We prove it in this section.

Let z and z′ be two non-zero complex numbers satisfying zL �= (z′)L. Let
W = (w1, · · · , wN ) ∈ (Rz)

N and W ′ = (w′
1, · · · , w′

N ) ∈ (Rz′)N be two complex

vectors satisfying
∏N

j=1 |w′
j + 1| < ∏N

j=1 |wj + 1|. Let
(5.1)

LY (W ) = det
[

wj
i (wi + 1)yj−j

]N

i,j=1
, RX(W ) = det

[

w−j
i (wi + 1)−xj+j

]N

i,j=1
.

The goal is to evaluate

(5.2) Hk,a(W ;W ′) =
∑

X∈XN (L)∩{xk≥a}
RX(W )LX(W ′)

and show that it is equal to the right-hand side of (3.25).
We first reduce the general k case to the k = 1 case.

Lemma 5.1. Under the same assumptions as in Proposition 3.4,

(5.3) Hk,a(W ;W ′) =
( z

z′

)(k−1)L

⎡

⎣

N
∏

j=1

(

(wj + 1)w′
j

wj(w′
j + 1)

)k−1
⎤

⎦H1,a(W ;W ′).

Proof. The sum in (5.2) is over the discrete variables x1 < · · · < xN < x1 + L
with xk ≥ a. The first condition is equivalent to xk < · · · < xN < x1 + L < · · · <
xk−1 + L < xk + L. Hence, if we set x′

j = xj+k−1 for j = 1, · · · , N − k + 1 and
x′
j = xj+k−1−N + L for j = N − k + 2, · · · , N , then the sum is over x′

1 < · · · <
x′
N < x′

1 + L with x′
1 ≥ a. Consider

RX(W ) = det
[

w−j
i (wi + 1)−xj+j

]N

i,j=1
.

If we move the first k − 1 columns to the end of the matrix and use the variables
x′
j , then RX(W ) is equal to (−1)(k−1)(N−1) times the determinant of the matrix

whose (i, j)-entry is w−j−k+1
i (wi + 1)−x′

j+j+k−1 for the first N − k + 1 columns

and is w−j−k+1+N
i (wi + 1)−x′

j+L+j+k−1−N for the remaining k− 1 columns. Since
wN

i (wi + 1)L−N = zL for wi ∈ Rz, the entries of the last k − 1 columns are zL

times w−j−k+1
i (wi + 1)−x′

j+j+k−1. Thus, the row i of the matrix has the common
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multiplicative factor w−k+1
i (wi+1)k−1. Factoring out zL from the last k−1 columns

and also the common row factors, we find that, setting X ′ = (x′
1, · · · , x′

N ),

RX(W ) = (−1)(k−1)(N−1)z(k−1)L

⎡

⎣

N
∏

j=1

(

wj + 1

wj

)k−1
⎤

⎦RX′(W ).(5.4)

Similarly,

LX(W ′) = (−1)(k−1)(N−1)(z′)−(k−1)L

⎡

⎣

N
∏

j=1

(

w′
j + 1

w′
j

)−k+1
⎤

⎦LX′(W ′).(5.5)

Hence the sum (5.2) is a certain explicit constant times the sum
∑

X′∈XN (L)∩{x′
1≥a}

RX′(W )LX′(W ′)

which is H1,a(W ;W ′). Checking the multiplicative constant factor explicitly, we
obtain the lemma. �

It is thus enough to prove Proposition 3.4 for k = 1. Set

(5.6) Ha(W ;W ′) := H1,a(W ;W ′)−H1,a+1(W ;W ′) =
∑

X∈XN (L)
x1=a

RX(W )LX(W ′).

We prove the following result in this section.

Proposition 5.2. Let z, z′ ∈ C \ {0} such that zL �= (z′)L. Then for every W =
(w1, · · · , wN ) ∈ (Rz)

N , W ′ = (w′
1, · · · , w′

N ) ∈ (Rz′)N , and integer a,

Ha(W ;W ′) = −
(

(

z′

z

)L

− 1

)N−1

×

⎛

⎝

N
∏

j=1

w′
j(w

′
j + 1)a−1

wj(wj + 1)a−2
−

N
∏

j=1

w′
j(w

′
j + 1)a

wj(wj + 1)a−1

⎞

⎠ det

[

1

w′
i′ − wi

]N

i,i′=1

.

(5.7)

Note that the sum (5.6) is over the finite set a < x2 < · · · < xN < a+ L. Since
it is a finite sum, there is no issue of convergence, and hence we do not need to

assume that
∏N

j=1 |w′
j+1| < ∏N

j=1 |wj+1|. Now, if we assume this extra condition,

then the sum of Hb(W ;W ′) over b = a, a + 1, a + 2, · · · converges and is equal to
H1,a(W ;W ′), and the resulting formula is
(5.8)

H1,a(W ;W ′) = −
(

(

z′

z

)L

− 1

)N−1
⎡

⎣

N
∏

j=1

w′
j(w

′
j + 1)a−1

wj(wj + 1)a−2

⎤

⎦ det

[

1

w′
i′ − wi

]N

i,i′=1

.

This is precisely Proposition 3.4 when k = 1. Hence, by Lemma 5.1, Proposition 3.4
is obtained if we prove Proposition 5.2. The rest of this section is devoted to the
proof of Proposition 5.2.

The proof is split into four steps. The condition that W ∈ (Rz)
N , W ′ ∈ (Rz′)N

is used only in step 4. Steps 1, 2, and 3 apply to any complex vectors.
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5.1. Step 1. We expand RX(W ) and LX(W ′) as sums and interchange the order
of summation.

Let SN be the symmetric group of order N . Let sgn(σ) denote the sign of
permutation σ ∈ SN . Expanding the determinant of RX(W ) and LX(W ′), we
have

(5.9) Ha(W ;W ′) =
∑

σ,σ′∈SN

sgn(σσ′)

⎡

⎣

N
∏

j=1

(

w′
σ′(j)

wσ(j)

)j
⎤

⎦Sσ,σ′(W ;W ′),

where

(5.10) Sσ,σ′(W ;W ′) =
∑

X∈XN (L)
x1=a

N
∏

j=1

(

w′
σ′(j) + 1

wσ(j) + 1

)xj−j

.

We rewrite the last sum using the following formula.

Lemma 5.3. For complex numbers fj, set

(5.11) Fm,n =

n
∏

j=m

fj for 1 ≤ m ≤ n.

Then

∑

X∈XN (L)
x1=a

N
∏

j=1

(fj)
xj−j =

N−1
∑

k=0

∑

1<s1<···<sk≤N

(F1,s1−1)
a−1

∏s1−1
j=2 (1− Fj,s1−1)

×
k
∏

i=1

(Fsi,si+1−1)
a+L−N−1

(1− (Fsi,si+1−1)−1)
∏si+1−1

j=si+1(1− Fj,si+1−1)
,

(5.12)

where we set sk+1 = N + 1. When k = 0, the summand is
(F1,N )a−1

∏N
j=2(1−Fj,N )

.

Proof. The sum is over a < x2 < · · · < xN < a + L. We evaluate the repeated
sums in the following order: xN , xN−1, · · · , x2. For xj the summation range is
xj−1 + 1 ≤ xj ≤ a+ L−N + j − 1. Hence the sum is over

a+L−N+1
∑

x2=a+1

· · ·
a+L−2
∑

xN−1=xN−2+1

a+L−1
∑

xN=xN−1+1

.

For the sum over xj , we use the simple identity

(5.13)

a+L−N+j−1
∑

xj=xj−1+1

Axj−j =
Axj−1−(j−1)

1−A
+

Aa+L−N−1

1− A−1
.

Note that the first term of the right-hand side involves xj−1 and the second term
does not. Applying (5.13) repeatedly, the left-hand side of (5.12) is equal to a sum
of 2N−1 terms. Each term is a product of N − 1 terms, some of which are from
the first term of (5.13) and the rest are from the second term. We combine the

summand into groups depending on how many times the second term Aa+L−N−1

1−A−1 is
used. This number is represented by k: 0 ≤ k ≤ N − 1. For given 1 ≤ k ≤ N − 1,
we denote by 1 ≤ s1 < · · · < sk < N the indices j such that we had chosen the
second term when we take the sum over xj (5.13). The result then follows after a
simple algebra. �
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We apply the lemma to Sσ,σ′(W ;W ′) and exchange the summation orders. Then,

Ha(W ;W ′) =
N−1
∑

k=0

∑

1<s1<···<sk≤N

∑

σ,σ′∈SN

sgn(σσ′)
k
∏

i=0

Ui,(5.14)

where

U0 =
P1(s1 − 1) (Q1(s1 − 1))

a−1

∏s1−1
j=2 (1−Qj(s1 − 1))

(5.15)

and, for 1 ≤ i ≤ k,

Ui =
Psi(si+1 − 1) (Qsi(si+1 − 1))

a+L−N−1

(

1− (Qsi(si+1 − 1))
−1

)

∏si+1−1
j=si+1 (1−Qj(si+1 − 1))

(5.16)

with

(5.17) Qm(n) :=
n
∏

j=m

w′
σ′(j) + 1

wσ(j) + 1
, Pm(n) :=

n
∏

j=m

(

w′
σ′(j)

wσ(j)

)j

for 1 ≤ m ≤ n ≤ N . Here we set sk+1 := N + 1.
We now rewrite the last two sums in (5.14) for fixed k. Given s1, · · · , sk and

σ, σ′, let Ii = σ({si, · · · , si+1 − 1}) and I ′i = σ′({si, · · · , si+1 − 1}) for 0 ≤ i ≤ k,
where we set s0 := 1. With this notation,

Qsi(si+1 − 1) =

∏

j′∈I′
i
(w′

j′ + 1)
∏

j∈Ii
(wj + 1)

.(5.18)

Consider the restriction of the permutation σ on {si, · · · , si+1 − 1}. This gives rise
to a bijection σi from {1, · · · , |Ii|} to Ii by setting σi(�) = σ(si + �− 1). Similarly
we obtain a bijection σ′

i from σ. Then we have

Qsi+j(si+1 − 1) =

|Ii|
∏

�=j

(

w′
σ′
i(�)

+ 1

wσi(�) + 1

)

(5.19)

for j = 1, · · · , |Ii|, and

Psi(si+1 − 1) =

⎡

⎣

|Ii|
∏

j=1

(

w′
σ′
i(j)

wσi(j)

)j
⎤

⎦

(∏

j′∈I′
i
w′

j′
∏

j∈Ii
wj

)|I0|+···+|Ii−1|

.(5.20)

We now reorganize the summations over s1, · · · , sk and σ, σ′ in (5.14) as follows.
We first decide on two partitions I0, · · · , Ik and I ′0, · · · , I ′k of {1, · · · , N} satisfying
|Ii| = |I ′i| �= 0 for all i. Then for each Ii, we consider a bijection σi from {1, · · · , |Ii|}
to Ii and a bijection σ′

i from {1, · · · , |Ii|} to Ii. The collection of σ0, · · · , σk is
equivalent to a permutation σ. Note that the sign becomes

(5.21) sgn(σ) = (−1)#(I0,··· ,Ik)
k
∏

i=0

sgn(σi),

where

(5.22) #(I0, · · · , Ik) := |{(m,n) ∈ Ii × Ij : m < n, i > j}| .
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It is easy to see that summing over the partitions and then over the bijections σi

and σ′
i is equivalent to summing over s1, · · · , sk and σ, σ′ in (5.14). Hence we obtain

Ha(W ;W ′)

=

N−1
∑

k=0

∑

I,I′

(−1)#(I)+#(I′)

⎡

⎣

k
∏

i=1

(∏

j′∈I′
i
w′

j′
∏

j∈Ii
wj

)|I0|+···+|Ii−1|
⎤

⎦ G̃(I0, I ′0)
k
∏

i=1

G(Ii, I ′i),

(5.23)

where the second sum is over two partitions I = (I0, · · · , Ik) and I ′ = (I ′0, · · · , I ′k)
of {1, · · · , N} such that |Ii| = |I ′i| �= 0 for all 0 ≤ i ≤ k. The function G(I; I ′) on
two subsets of {1, · · · , N} of equal cardinality is defined by

G(I, I ′) =

⎡

⎢

⎢

⎣

∑

σ:{1,··· ,|I|}→I
σ′:{1,··· ,|I′|}→I′

sgn(σσ′)
P (σ, σ′)

∏|I|
j=2 (1−Qj(σ, σ′))

⎤

⎥

⎥

⎦

Q(I, I ′)a+L−N−1

1−Q(I, I ′)−1
.

(5.24)

Here the sum is over bijections σ and σ′, and

P (σ, σ′) =

|I|
∏

�=1

(

w′
σ′(�)

wσ(�)

)�

, Qj(σ, σ
′) =

|I|
∏

�=j

(

w′
σ′(�) + 1

wσ(�) + 1

)

,

Q(I, I ′) =

∏

�′∈I′(w′
�′ + 1)

∏

�∈I(w� + 1)
.

(5.25)

Note that Q1(σ, σ
′) does not depend on σ, σ′ and is equal to Q(I, I ′). On the other

hand,

G̃(I, I ′) =

⎡

⎢

⎢

⎣

∑

σ:{1,··· ,|I|}→I
σ′:{1,··· ,|I′|}→I′

sgn(σσ′)
P (σ, σ′)

∏|I|
j=2 (1−Qj(σ, σ′))

⎤

⎥

⎥

⎦

Q(I, I ′)a−1.(5.26)

5.2. Step 2. We simplify G̃(I, I ′) and G(I, I ′). They have a common sum. We
claim that this sum is equal to

(5.27)

(
∏

i′∈I′ w′
i′

∏

i∈I wi

)

(

∏

i∈I

(wi + 1)−
∏

i′∈I′

(w′
i′ + 1)

)

det

[

1

wi − w′
i′

]

i∈I,i′∈I′

.

This implies that

G̃(I, I ′) =
(
∏

i′∈I′(w′
i′ + 1)

∏

i∈I(wi + 1)

)a−1(∏

i′∈I′ w′
i′

∏

i∈I wi

)

×
(

∏

i∈I

(wi + 1)−
∏

i′∈I′

(w′
i′ + 1)

)

det

[

1

wi − w′
i′

]

i∈I,i′∈I′

(5.28)

and

G(I, I ′) = −
(
∏

i′∈I′(w′
i′ + 1)

)a+L−N

(
∏

i∈I(wi + 1)
)a+L−N−1

(
∏

i′∈I′ w′
i′

∏

i∈I wi

)

det

[

1

wi − w′
i′

]

i∈I,i′∈I′

.

(5.29)

Licensed to Univ of Michigan. Prepared on Tue May 26 16:24:18 EDT 2020 for download from IP 141.211.4.224.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 645

We now prove (5.27). This follows from the next lemma. This lemma assumes
that I = I ′ = {1, · · · , n} but the general case is obtained if we relabel the indices.

Lemma 5.4. For complex numbers wi and w′
i, i = 1, · · · , n,

∑

σ,σ′∈Sn

sgn(σσ′)
∏n

i=1

(w′
σ′(i)

wσ(i)

)i−1

∏n
j=2

(

1−∏n
i=j

w′
σ′(i) + 1

wσ(i) + 1

)

=

⎛

⎝

n
∏

j=1

(wj + 1)−
n
∏

j=1

(w′
j + 1)

⎞

⎠det

[

1

wi − w′
i′

]n

i,i′=1

.

(5.30)

Proof. We use an induction in n. It is direct to check that the identity holds for
n = 1.

Let n ≥ 2 and assume that the identity holds for index n − 1. We now prove
the identity for index n. We consider the sum according to different values of σ(1)
and σ′(1). Setting σ(1) = l and σ′(1) = l′, and then renaming the shifted version
of the rest of σ and σ′ by again σ and σ′, respectively, the left-hand side of (5.30)
is equal to

n
∑

�,�′=1

(−1)�+�′

w�

w′
�′

∏n
k=1

(

w′
k

wk

)

1− w� + 1

w′
�′ + 1

∏n
k=1

(

w′
k + 1

wk + 1

)

×

⎡

⎢

⎢

⎢

⎣

∑

σ:{1,··· ,n−1}→{1,··· ,n}\{�}
σ′:{1,··· ,n−1}→{1,··· ,n}\{�′}

sgn(σ)sgn(σ′)
∏n−1

i=2

(

w′
σ′(i)

wσ(i)

)i−1

∏n−1
j=2

(

1−∏n−1
i=j

w′
σ′(i) + 1

wσ(i) + 1

)

⎤

⎥

⎥

⎥

⎦

.

From the induction hypothesis, the bracket term is equal to

(

n
∏

j=1
j �=�

(wj + 1)−
n
∏

j=1
j �=�′

(w′
j + 1)

)

det

[

1

wi − w′
i′

]

1≤i,i′≤n
i �=�,i′ �=�′

.

Hence the sum is equal to
n
∑

�,�′=1

(−1)�+�′
(

∏

1≤k′≤n
k′ �=�′

w′
k′

)(

∏

1≤k≤n
k �=�

wk + 1

wk

)

det

[

1

wi − w′
i′

]

1≤i,i′≤n
i �=�,i′ �=�′

.

This is the same as
(

n
∏

k=1

w′
k(wk + 1)

wk

)

⎛

⎝

n
∑

i,i′=1

(−1)�+�′ w�

(w� + 1)w′
�′
det

[

1

wi − w′
i′

]

1≤i,i′≤n
i �=�,i′ �=�′

⎞

⎠ .

Lemma 5.5 below implies that the sum in the second parentheses is equal to
(

n
∏

k=1

wk

w′
k(wk + 1)

)(

n
∏

i=1

(wi + 1)−
n
∏

i=1

(w′
i + 1)

)

det

[

1

wi − w′
i′

]n

i,i′=1

.

This completes the proof. �
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Lemma 5.5. For distinct complex numbers x1, · · · , xn and y1, · · · , yn, let C be the
n × n Cauchy matrix with entries 1

xi−yj
. Let C�,k be the matrix obtained from C

by removing row � and column k. Define the functions

(5.31) A(z) =

n
∏

i=1

(z − xi), B(z) =

n
∏

i=1

(z − yi).

Then

(5.32)
n
∑

�,k=1

(−1)l+k x�

(x� + 1)yk
det [C�,k] =

A(0)

B(0)

(

1− B(−1)

A(−1)

)

det [C] .

Proof. Recall the Cauchy determinant formula,

det [C] =

∏

i<j(xi − xj)(yj − yi)
∏

i,j(xi − yj)
.

Note that C�,k is also a Cauchy matrix. Hence we find that

(5.33)
det [C�,k]

det [C]
= (−1)�+k+1 B(x�)A(yk)

(x� − yk)A′(x�)B′(yk)
.

Let f and g be meromorphic functions with finitely many poles and consider the
double integral

(5.34)
1

(2πi)2

∮

|ξ|=r2

∮

|z|=r1

f(z)g(ξ)
B(z)A(ξ)

(z − ξ)A(z)B(ξ)
dzdξ.

Here we take r1 < r2 large so that the poles of f(z)
A(z) are inside |z| < r1 and the poles

of g(ξ)
B(ξ) are inside |ξ| < r2. Consider f(z) = z

z+1 and g(ξ) = 1
ξ . By changing the

order of integration and noting that the integrand is O(ξ−2) as ξ → ∞ for fixed z,
the double integral is zero by taking the ξ contour to infinity. On the other hand,
we also evaluate the double integral by residue calculus. For given ξ, the integral
in z is equal to

A(ξ)B(−1)

ξ(ξ + 1)B(ξ)A(−1)
+

n
∑

�=1

x�A(ξ)B(x�)

(x� + 1)ξ(x� − ξ)B(ξ)A′(x�)
.

The first term is O(ξ−2) and hence the integral with respect to ξ is zero. The
integral of the second term is, by residue calculus,

[

n
∑

�=1

B(x�)

(x� + 1)A′(x�)

]

A(0)

B(0)
+

n
∑

�,k=1

x�B(x�)A(yk)

(x� + 1)yk(x� − yk)A′(x�)B′(yk)
.

Since the double integral is zero, the above expression is zero. Now the sum inside

the bracket can be simplified to 1− B(−1)
A(−1) by considering the integral of B(z)

(z+1)A(z) .

Therefore, we obtain

n
∑

�,k=1

x�B(x�)A(yk)

(x� + 1)yk(x� − yk)A′(x�)B′(yk)
= −

(

1− B(−1)

A(−1)

)

A(0)

B(0)
.

Using (5.33), we obtain the lemma. �

Licensed to Univ of Michigan. Prepared on Tue May 26 16:24:18 EDT 2020 for download from IP 141.211.4.224.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 647

Remark 5.6. Note that, using the rank one property and Hadamard’s formula for
the inverse of a matrix,

det

[

1

xi − yj
+ f(xi)g(yj)

]n

i,j=1

= det[C]

⎛

⎝1 +
n
∑

�,k=1

g(yk)(C
−1)k,�f(x�)

⎞

⎠

= det[C] +
n
∑

�,k=1

(−1)�+k det[C�,k]f(x�)g(yk).

(5.35)

Hence, the above lemma implies that
(5.36)

det

[

1

xi − yj
+

xi

(xi + 1)yj

]n

i,j=1

=

(

1 +
A(0)

B(0)
− A(0)B(−1)

B(0)A(−1)

)

det

[

1

xi − yj

]n

i,j=1

.

We will need the following variation of the above lemma in the next subsection.

Lemma 5.7. Using the same notation as in Lemma 5.5,

(5.37) det

[

1

xi − yj
+

u

xj

]n

i,j=1

=

(

1 + u

(

1− B(0)

A(0)

))

det [C] .

Proof. The proof is similar to the previous lemma using f(z) = u
z and g(ξ) = 1

in (5.34) instead. We also use (5.35). �

5.3. Step 3. We insert the formulas (5.28) and (5.29) into (5.23), and then reorga-
nize the sum as follows. For the partitions I = (I0, · · · , Ik) and I ′ = (I ′0, · · · , I ′k),
we consider the first parts I0 and I ′0 separately. Set Ĩ = (I1, · · · , Ik) and Ĩ ′ =
(I ′1, · · · , I ′k). Note that

#(I) = #(I0, I
c
0) + #(Ĩ), #(I ′) = #(I ′0, (I

′
0)

c) + #(Ĩ ′),

where Ic0 = {1, · · · , N}\ I0 and (I ′0)
c = {1, · · · , N}\ I ′0. Then (5.23) can be written

as

Ha(W ;W ′) =
∑

I0,I
′
0⊆{1,··· ,N}

|I0|=|I′
0|�=0

(−1)#(I0,I
c
0)+#(I′

0,(I
′
0)

c)G̃(I0, I ′0)

×

⎡

⎢

⎣

(

∏

i′∈(I′
0)

c(w′
i′ + 1)

)a+L−N

(

∏

i∈Ic
0
(wi + 1)

)a+L−N−1

⎤

⎥

⎦
S(I0, I

′
0),

(5.38)

where

S(I0, I
′
0) =

N−|I0|
∑

k=1

∑

Ĩ,Ĩ′

(−1)k+#(Ĩ)+#(Ĩ′)

×
k
∏

j=1

⎡

⎣

(
∏

i′∈I′
j
w′

i′
∏

i∈Ij
wi

)|I0|+···+|Ij−1|+1

det

[

1

wi − w′
i′

]

i∈Ij ,i′∈I′
j

⎤

⎦ .

(5.39)

Here the second sum in (5.39) is over all partitions Ĩ = (I1, · · · , Ik) of {1, · · · , N}\I0
and partitions Ĩ ′ = (I ′1, · · · , I ′k) of {1, · · · , N} \ I ′0 satisfying |Ii| = |I ′i| �= 0 for all
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1 ≤ i ≤ k. When |I0| = N , we understand that S(I0, I
′
0) = 1. The following lemma

simplifies S(I0, I
′
0).

Lemma 5.8. Let n ≥ 1. Let wi and w′
i, 1 ≤ i ≤ n, be complex numbers. Then

n
∑

k=1

∑

J ,J ′

(−1)k+#(J )+#(J ′)
k
∏

j=1

(
∏

i′∈J′
j
w′

i′

∏

i∈Jj
wi

)1+
∑j−1

�=1 |J�|

det

[

1

wi − w′
i′

]

i∈Jj ,i′∈J′
j

=

⎡

⎣

n
∏

j=1

(

w′
j

wj

)n
⎤

⎦det

[

1

−wi + w′
i′

]

1≤i,i′≤n

.

(5.40)

Here the second sum is over all partitions J = (J1, · · · , Jk) and J ′ = (J ′
1, · · · , J ′

k)
of {1, · · · , n} such that |Ji| = |J ′

i | �= 0 for all 1 ≤ i ≤ k.

Proof. We use an induction in n. When n = 1 the identity is trivial. Now we prove
that the identity holds for index n assuming that it holds for all indices less than
n. We fix J1 = J and J ′

1 = J ′ with |J | = |J ′| �= 0 and then apply the induction
hypothesis on the remaining sum with index n − |J |. Then, the left-hand side
of (5.40) is equal to

−
∑

J,J′⊆{1,··· ,n}
|J|=|J′|�=0

(−1)#(J,Jc)+#(J′,(J′)c)

(
∏

i′∈J′ w′
i′

∏

i∈J wi

)

(
∏

i′∈(J′)c w
′
i′

∏

i∈Jc wi

)n

× det

[

1

wi − w′
i′

]

i∈J,i′∈J′

det

[

1

−wi + w′
i′

]

i∈Jc,i′∈(J′)c
.

(5.41)

Here the minus sign comes from (−1)k, where k, the number of parts of partition
J , is reduced by 1 when we apply the induction hypothesis since we remove J1 in
the counting. Now, note that the right-hand side of (5.40) is the summand of (5.41)

when |J | = |J ′| = 0. Hence, after dividing by
∏n

j=1

(w′
j

wj

)n
, we find that (5.40) is

obtained if we show that

∑

J,J′⊆{1,··· ,n}
|J|=|J′|

(−1)#(J,Jc)+#(J′,(J′)c)

(
∏

i′∈J′ w′
i′

∏

i∈J wi

)1−n

× det

[

1

wi − w′
i′

]

i∈J,i′∈J′

det

[

1

−wi + w′
i′

]

i∈Jc,i′∈(J′)c

is equal to 0. Here the sum is over all J, J ′ ⊆ {1, · · · , n} with |J | = |J ′|, including
the case when |J | = |J ′| = 0. By Lemma 5.9 below, this sum is equal to

det

[

(wi)
n−1

(w′
i′)

n−1

1

wi − w′
i′
+

1

−wi + w′
i′

]n

i,i′=1

.

Hence it is enough to show that

det

[

(w′
i′)

n−1 − wn−1
i

w′
i′ − wi

]n

i,i′=1

= 0.
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Using an−1−bn−1

a−b = an−2 + an−3b+ · · ·+ bn−2, this last determinant is a sum of the
determinants of the form

det
[

(w′
i′)

αiwn−2−αi
i

]n

i,i′=1
= det [(w′

i′)
αi ]

n
i,i′=1

n
∏

i=1

wn−2−αi
i

for some αi ∈ {0, 1, · · · , n−2}. The last determinant is zero since at least two rows
are equal. This completes the proof. �

Lemma 5.9. For two n× n matrices A and B,

∑

J,J′⊆{1,··· ,n}
|J|=|J′|

(−1)#(J,Jc)+#(J′,(J′)c) det [A(i, i′)]i∈J,i′∈J′ det [B(i, i′)]i∈Jc,i′∈(J′)c

= det[A+B],

(5.42)

where the sum is over all subsets J and J ′ of equal size, including the case when
J = J ′ = ∅.
Proof. It is direct to check by expanding all determinants by sums using definition.

�

We apply Lemma 5.8 to S(I0, I
′
0). Note that the power of the products of w′

i′

and wi in (5.39) is |I0|+ |I1|+ · · ·+ |Ik|+1 while the corresponding products have
power |J1|+ · · ·+ |Jk|+ 1 in the lemma. We find that

S(I0, I
′
0) =

(
∏

i′∈(I′
0)

c w′
i′

∏

i∈Ic
0
wi

)N

det

[

1

wi − w′
i′

]

i∈Ic
0 ,i

′∈(I′
0)

c

.(5.43)

Using this formula and also the formula (5.28) for G̃(I0, I ′0), the equation (5.38)
becomes

Ha(W ;W ′) =
∑

I0,I
′
0⊆{1,··· ,N}

|I0|=|I′
0|�=0

(−1)#(I0,I
c
0)+#(I′

0,(I
′
0)

c)

×
[
∏

i′∈I′
0
w′

i′(w
′
i′ + 1)a

∏

i∈I0
wi(wi + 1)a−1

][
∏

i′∈(I′
0)

c(w′
i′)

N (w′
i′ + 1)a+L−N

∏

i∈Ic
0
wN

i (wi + 1)a+L−N−1

]

×
(

∏

i∈I0
(wi + 1)

∏

i′∈I′
0
(w′

i′ + 1)
− 1

)

det

[

1

wi − w′
i′

]

i∈I0,i′∈I′
0

det

[

1

−wi + w′
i′

]

i∈Ic
0 ,i

′∈(I′
0)

c

,

(5.44)

where we added the zero partitions |I0| = |I ′0| = 0 in the sum since the summand
is zero in that case.

5.4. Step 4. We evaluate the sum (5.44). So far wi and w′
i′ were any complex

numbers. We now use the assumption that wi ∈ Rz and w′
i′ ∈ Rz′ . This means

that

wN
i (wi + 1)L−N = zL, (w′

i′)
N (w′

i′ + 1)L−N = (z′)L

for all i and i′, and hence the second square bracket in (5.44) can be simplified.
We then separate the formula of Ha(W ;W ′) into two terms using the two terms
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in the big parentheses. The second term, which comes from the term 1 in the big
parenthesis, can be written as

⎡

⎣

N
∏

j=1

(w′
j + 1)a

(wj + 1)a−1

⎤

⎦

{

∑

I0,I
′
0⊆{1,··· ,N}
|I0|=|I′

0|

(−1)#(I0,I
c
0)+#(I′

0,(I
′
0)

c)

[
∏

i′∈I′
0
w′

i′
∏

i∈I0
wi

]

×
[∏

i′∈(I′
0)

c(z′)L
∏

i∈Ic
0
zL

]

det

[

1

wi − w′
i′

]

i∈I0,i′∈I′
0

det

[

1

−wi + w′
i′

]

i∈Ic
0 ,i

′∈(I′
0)

c

}

.

The sum is, after inserting the terms in the products into the determinants, of the
form in Lemma 5.9 above, and hence is equal to

det

[

w′
i′

wi(wi − w′
i′)

−
(

z′

z

)L
1

wi − w′
i′

]

1≤i,i′≤N

.

The first term is also similar, and we obtain

Ha(W ;W ′) =

⎡

⎣

N
∏

j=1

(w′
j + 1)a

(wj + 1)a−1

⎤

⎦ (D1 −D2),(5.45)

where, for k = 1, 2,

Dk = det

⎡

⎣

fk(w
′
i′
)

fk(wi)

wi − w′
i′
− q

wi − w′
i′

⎤

⎦

N

i,i′=1

(5.46)

with

(5.47) f1(w) =
w

w + 1
, f2(w) = w, q =

(

z′

z

)L

.

The entries of the determinants Dk are of the form

f(w′
i′
)

f(wi)
− 1

wi − w′
i′

+
1− q

wi − w′
i′
= (1− q)

(

1

wi − w′
i′
+

f(w′
i′)− f(wi)

(1− q)f(wi)(wi − w′
i′)

)

,

where f represents either f1 or f2. For f(w) = f2(w) = w, the last term is − 1
(1−q)wi

and

D2 = (1− q)N det

[

1

wi − w′
i′
− 1

(1− q)wi

]

= (1− q)N
(

1− 1

1− q

(

1−
N
∏

i=1

w′
i′

wi

))

det

[

1

wi − w′
i′

]N

i,i′=1

,

(5.48)

where we used Lemma 5.7 for the second equality. On the other hand,

D1 = (1− q)N det

[

1

wi − w′
i′
− 1

(1− q)wi(w′
i′ + 1)

]

.
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We may evaluate this determinant by finding a variation of Lemma 5.7. Alterna-
tively, we set wi =

1
xi−1 and w′

i′ =
1

yi′−1 , and use Lemma 5.7 to obtain

D1 =
(1− q)N

∏N
i=1(wiw′

i)
det

[

1

yi′ − xi
− 1

(1− q)yi′

]

= (1− q)N
(

1− 1

1− q

(

1−
N
∏

j=1

(wj + 1)w′
j

wj(w′
j + 1)

))

det

[

1

wi − w′
i′

]N

i,i′=1

.

(5.49)

From (5.45), (5.48), and (5.49), we obtain

Ha(W ;W ′) =

(

1−
(

z′

z

)L)N−1
⎡

⎣

N
∏

j=1

w′
j

wj

⎤

⎦

( N
∏

j=1

(w′
j + 1)a−1

(wj + 1)a−2
−

N
∏

j=1

(w′
j + 1)a

(wj + 1)a−1

)

det

[

1

wi − w′
i′

]N

i,i′=1

.

This completes the proof of Proposition 5.2.

6. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 starting from Corollary 4.7.

6.1. Parameters. We evaluate the limit of

(6.1) P (�(p1) ≥ b1, · · · ,�(pm) ≥ bm)

as L → ∞, where pj = sje1 + tjec = �je1 + tje2 with sj = �j − (1− 2ρ)tj ,

(6.2) tj = τj
L3/2

√

ρ(1− ρ)
+O(L),

(6.3) �j = (1− 2ρ)tj + γjL+O(L1/2),

and

(6.4) bj = 2ρ(1− ρ)tj + (1− 2ρ)�j − 2xjρ
1/2(1− ρ)1/2L1/2

for fixed 0 < τ1 < · · · < τm, γj ∈ [0, 1], and xj ∈ R. The analysis needs small
changes if τi = τi+1 and xi < xi+1 for some i. We will comment on such changes
in the footnotes throughout the analysis.

It is tedious but easy to check in the analysis that the convergence is uniform for
the parameters τj , γj , and xj in compact sets. In order to keep the writing light,
we do not keep track of the uniformity.

The height function and the particle location have the following relation:

(6.5) �(�e1 + te2) ≥ b if and only if �N− b−�
2 +1(t) ≥ �+ 1

for all b− 2� ∈ 2Z satisfying b ≥ �(�e1). Hence,

(6.6) P (�(p1) ≥ b1, · · · ,�(pm) ≥ bm) = P (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am) ,

where tj are the same as above,

(6.7) aj = �j + 1,
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and

(6.8) kj = N − bj − �j
2

+ 1.

From Corollary 4.7, we thus need to evaluate the limit of

P (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am) =

∮

· · ·
∮

C(Z)D(Z)
dZ1

2πiZ1
· · · dZm

2πiZm
,(6.9)

where the contours are nest circles satisfying 0 < |Zm| < · · · < |Z1| < �0. Here we
use the notation Zj instead of zj . The notation zj will be reserved for the rescaled
parameter of Zj in the asymptotic analysis.

In [4] and [30], we analyzed the case when m = 1. The case when m ≥ 2 is
similar and we follow the same strategy. The results and analysis of the above two
papers are used heavily in this section.

We change the variables Zj to zj defined by

(6.10) zj = (−1)N
ZL
j

�L0

.

Then
dZj

Zj
=

dzj
Lzj

, but the simple closed circle of Zj becomes a circle with multiplicity

L of zj . Note that C(Z) and D(Z) depend on Zj through the set of the roots of the

equation wN (w + 1)L−N = ZL
j , which is unchanged if Zj is changed to Zje

2πik/L

for integer k. Hence the above integral is the same as

P (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am) =

∮

· · ·
∮

C(Z)D(Z)
dz1
2πiz1

· · · dzm
2πizm

,(6.11)

where the integrals are nested simple circles such that 0 < |zm| < · · · < |z1| < 1
on the contours, and for given zj , Zj is any one of the L roots of the equation
ZL
j = (−1)L�L0 zj .

Remark 6.1. We note that the analysis in this section does not depend on the fact
that |zi| are ordered in a particular way. It is easy to check in each step of the
analysis that we only require that |zi| are distinct. Hence, if we fix 0 < rm < · · · <
r1 < 1, and |zj | = rσ(j) for a permutation σ of 1, · · · ,m, then the asymptotics and
error estimates of C(Z), D(Z) and the integral on the right-hand side of (6.11) still
hold (with different constants ε, c, C in the error estimates). This fact is used in an
important way in the next section; see the proof of Theorem 7.3.

6.2. Asymptotics of C(Z).

Lemma 6.2 ([30]). Let N = NL be a sequence of integers such that ρ = ρL := N
L

stays in a compact subset of (0, 1) for all L. Fix ε ∈ (0, 1/2). Fix a complex number
z such that 0 < |z| < 1 and let Z satisfy ZL = (−1)N�L0 z. Assume that for fixed
τ > 0, γ ∈ [0, 1), and x ∈ R,

(6.12) t =
τ

√

ρ(1− ρ)
L3/2 +O(L), a = �+ 1, k = N − b− �

2
+ 1,

where
(6.13)

� = (1−2ρ)t+γL+O(L1/2), b = 2ρ(1−2ρ)t+(1−2ρ)�−2xρ1/2(1−ρ)1/2L1/2.
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Recall the definition of E(Z) in (4.9):

(6.14) E(Z) = E(Z; a, k, t) :=
∏

u∈LZ

(−u)k−N−1
∏

v∈RZ

(v + 1)−a+k−Netv.

Then

(6.15) E(Z) = exA1(z)+τA2(z)
(

1 +O(N ε−1/2)
)

,

where A1(z) and A2(z) are polylogarithm functions defined in (2.18).

Proof. This follows from (4.25) and (4.26) of Section 4.3 of [30]: we have E(Z; a, k, t)

= C(2)
N,2(Z; k−N, a) in terms of the notation used in [30]. (Note that the limit there

is eτ
1/3xA1(z)+τA2(z), but in this paper, we use the scale of the height function so

that τ1/3x is changed to x.) It is easy to check that the conditions (4.1), (4.2), and
(4.3) in [30] are satisfied, and hence we obtain the above lemma. The analysis was
based on the integral representation of log E(Z) (see (4.28) of [30]) and applying
the method of the steepest-descent. Indeed, by the residue theorem (w = 0 is the
case we need),

(6.16) log

(

∏

u∈LZ

(w − u)

)

= (L−N) log(w + 1) +
LZL

2πi

∮

(u+ ρ) log(w − u)

u(u+ 1)qZ(u)
du

for 
(w) > −ρ, where the contour is a simple closed curve in 
(u) < −ρ which
contains LZ inside. We can find a similar formula for the product of v. �

Lemma 6.3. Let N , L, and ε be as in the previous lemma. Fix complex numbers
z1, z2 such that 0 < |z1|, |z2| < 1. Then for Z1, Z2 satisfying ZL

1 = (−1)N�
L
0 z1,

ZL
2 = (−1)N�

L
0 z2,

(6.17)

∏

v∈RZ1
(v + 1)L−N

∏

u∈LZ2
(−u)N

Δ(RZ1
; LZ2

)
= e2B(z1,z2)(1 +O(N ε−1/2)),

where B(z1, z2) is defined in (2.19).

Proof. The case when Z1 = Z2 was obtained in [4]: take the square of (8.17) in
Lemma 8.2, whose proof was given in Section 9.2. The case of general Z1 and Z2

is almost the same, which we outline here. From the residue theorem,

(L−N)
∑

v∈RZ1

log(v + 1) +N
∑

u∈LZ2

log(−u)−
∑

v∈RZ1

∑

u∈LZ2

log(v − u)

= ZL
1 Z

L
2

∫ −ρa+i∞

−ρa−i∞

∫ −ρb+i∞

−ρb−i∞
log

(

N1/2(v − u)

ρ
√
1− ρ

)

L(v + ρ)

v(v + 1)qZ1
(v)

× L(u+ ρ)

u(u+ 1)qZ2
(u)

du

2πi

dv

2πi
,

(6.18)

where the contours for u and v are two vertical lines 
(u) = −ρa := −ρ +
aρ

√
1− ρN−1/2 and 
(v) = −ρb := −ρ + bρ

√
1− ρN−1/2 with constants a and

b satisfying −
√

− log |z2| < a < 0 < b <
√

− log |z1|. This formula is similar to
(9.26) in [4] and the proof is also similar. We divide the double integral (6.18) into
two parts: |u + ρa|, |v + ρa| ≤ N ε/3 and the rest. It is direct to check that the
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formula (6.18) where the integral is restricted to |u + ρa|, |v + ρa| ≤ N ε/3 is equal
to

z1z2

∫

�ξ=a

∫

�ζ=b

ξζ log(ζ − ξ)
(

e−ξ2/2 − z2
) (

e−ζ2/2 − z1
)

dξ

2πi

dζ

2πi

(

1 +O(N ε−1/2)
)

,(6.19)

where we used the change of variables u = −ρ + ξρ
√
1− ρN−1/2 and v = −ρ +

ζρ
√
1− ρN−1/2. On the other hand, if |u + ρa| ≥ N ε/3 or |v + ρb| ≥ N ε/3, the

integrand decays exponentially fast and hence the integral in these regions is ex-
ponentially small. See Section 9.2 of [4] for more discussions. From (2.19), we
obtain (6.17). �

Recalling the definitions (4.8) and (2.21), and using Lemma 6.2 and Lemma 6.3,
we find that

C(Z) = C(z)
(

1 +O(N ε−1/2)
)

.(6.20)

6.3. Analysis of D(Z). We can obtain the limit of D(Z) using either the Fredholm
determinant or its series expansion (4.25). Both are suitable for the asymptotic
analysis. Here we use the series expansion. From (4.25), we have

D(Z) =
∑

n∈(Z≥0)m

1

(n!)2
Dn(Z)(6.21)

with

(6.22) Dn(Z) = (−1)|n|
∑

U(�)∈(LZ�
)n�

V(�)∈(RZ�
)n�

l=1,··· ,m

det
[

K1(wi, w
′
j)
]|n|
i,j=1

det [K2(w
′
i, wj)]

|n|
i,j=1 ,

where U = (U(1), · · · ,U(m)), V = (V(1), · · · ,V(m)) with U(�) = (u
(�)
1 , · · · , u(�)

n� ),

V(�) = (v
(�)
1 , · · · , v(�)n� ), and where

(6.23)

wi =

{

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �,

and
(6.24)

w′
i =

{

v
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with odd integer �,

u
(�)
k if i = n1 + · · ·+ n�−1 + k for some k ≤ n� with even integer �.

We prove the convergence of this series to the series (2.51) with (2.52).

6.3.1. Strategy. To be able to cite easily later, let us state the following simple fact.

Lemma 6.4. Suppose that

(A) for each fixed n, Dn(Z) → Dn(z) as L → ∞, and
(B) there is a constant C > 0 such that |Dn(Z)| ≤ C |n| for all n and for all

large enough L.

Then D(Z) → D(z) as L → ∞.

Proof. It follows from the dominated convergence theorem. �
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We are going to show that conditions (A) and (B) are satisfied. To be precise,
we need to show that (A) and (B) hold locally uniformly in z so that the conclusion
holds locally uniformly. The local uniformity is easy to check throughout the proof.
To make the presentation light, we do not state the local uniformity explicitly and,
instead, state only the pointwise convergence for each z in the rest of this section.

Let us discuss the strategy of verifying the conditions (A) and (B). Suppose
for a moment that N/L = ρ is fixed. If ZL = (−1)N�

L
0 z for a fixed z, then

the contour |wN (w + 1)|L−N = |Z|L, on which the roots of qZ(w) lie, converges
to the self-crossing contour |wρ(w + 1)1−ρ| = �0 as L,N → ∞ since |Z| → �0

(see Figure 6). The point of self-intersection is w = −ρ. For large L,N and the
parameters satisfying the conditions of Theorem 2.1, it turns out that the main
contribution to the sum Dn(Z) comes from the points U(�) and V(�) near the self-
crossing point w = −ρ. As L → ∞, qZ(w) has more and more roots. We scale the
roots near the point w = −ρ in such a way that the distances between the scaled
roots are O(1); this is achieved if 8 we take N1/2(w+ ρ) �→ w. Under this scale, for
each w on the set LZ∪RZ (which depends on L and N ; see (4.4)) in a neighborhood
of the point −ρ, there is a unique point ζ on the set Lz ∪Rz (which is independent
of L and N ; see (2.28)), and vice versa. See Lemma 6.5 for the precise statement.
We show that K1 and K2 converge to K1 and K2 pointwise for the points near −ρ.
We then estimate the kernels when one of the arguments is away from −ρ. These
two calculations are enough to prove conditions (A) and (B). See Lemma 6.6 for
the precise statement. The fact that we only assume that N/L = ρ is in a compact
subset of (0, 1) for all L does not change the analysis.

The following lemma is from [4].

Lemma 6.5 (Lemma 8.1 of [4]). Let 0 < ε < 1/2. Fix a complex number z
satisfying 0 < |z| < 1 and let Z be a complex number satisfying ZL = (−1)N�

L
0 z.

Recall the definitions of the sets LZ and RZ in (4.4), and the sets Lz and Rz

in (2.28). Let MN,L be the map from LZ ∩
{

w : |w + ρ| ≤ ρ
√
1− ρN ε/4−1/2

}

to Lz
defined by

(6.25) MN,L(w) = ξ, where ξ ∈ Lz and

∣

∣

∣

∣

ξ − (w + ρ)N1/2

ρ
√
1− ρ

∣

∣

∣

∣

≤ N3ε/4−1/2 logN.

Then for all large enough N the following hold:

(a) MN,L is well-defined.
(b) MN,L is injective.

(c) Setting L
(c)
z := Lz ∩ {ξ : |ξ| ≤ c} for c > 0, we have

(6.26) L(N
ε/4−1)

z ⊆ I(MN,L) ⊆ L(N
ε/4+1)

z ,

where I(MN,L) := MN,L

(

LZ ∩ {w : |w + ρ| ≤ ρ
√
1− ρN ε/4−1/2}

)

, the im-
age of the map MN,L.

If we define the mapping MN,R in the same way but replace LZ and Lz by RZ and
Rz, respectively, the same results hold for MN,R.

Before we go further, we conjugate the kernels which leaves the determinants
in (6.22) unchanged. We use the conjugated kernels in the rest of this subsection.

8The roots are less dense near the self-crossing point w = −ρ than elsewhere. A typical distance
between two neighboring roots is O(N−1), but near w = −ρ this distance is O(N−1/2).
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This makes the necessary convergences possible. For w ∈ Rzi∩S1 and w′ ∈ Rzj∩S2,
we change (4.18) to

K̃1(w,w
′) = −

(

δi(j) + δi
(

j + (−1)i
)) J(w)

√

fi(w)
√

fj(w′)(Hzi(w))
2

Hzi−(−1)i
(w)Hzj−(−1)j

(w′)(w − w′)
Q1(j),

(6.27)

and for w ∈ Rzi ∩ S2 and w′ ∈ Rzj ∩ S1, we change (4.19) to

K̃2(w,w
′) = −

(

δi(j) + δi
(

j − (−1)i
)) J(w)

√

fi(w)
√

fj(w′)(Hzi(w))
2

Hzi+(−1)i
(w)Hzj+(−1)j

(w′)(w − w′)
Q2(j),

(6.28)

where we set (note the change from fj(w) in (4.11))

(6.29) fj(w) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fj(w)Fj−1(−ρ)

Fj−1(w)Fj(−ρ)
for 
(w) < −ρ,

Fj−1(w)Fj(−ρ)

Fj(w)Fj−1(−ρ)
for 
(w) > −ρ

with (see (4.10))

(6.30) Fi(w) := w−ki+N+1(w + 1)−ai+ki−Netiw.

We multiplied by −1 to remove a minus sign in the limit. The square-root function
is defined as follows: for a complex number w = reiθ with r ≥ 0 and −π < θ ≤ π,
we set

√
w = r1/2eiθ/2. Note that

√
w is not continuous when w is a negative real

number, and hence K̃1(w,w
′) and K̃2(w,w

′) may be discontinuous for some w and

w′. However, the product of det
[

K̃1(wi, w
′
j)
]|n|
i,j=1

and det
[

K̃2(w
′
i, wj)

]|n|
i,j=1

is still

continuous at the branch cuts since each of
√

fi(w) is multiplied twice. We also
note that the change from fj to fj has the effect of conjugating the matrices in the

determinants det
[

K1(wi, w
′
j)
]|n|
i,j=1

and det
[

K2(w
′
i, wj)

]|n|
i,j=1

and multiplying both

by (−1)|n|. Hence Dn(Z) in (6.22) is unchanged if we replace K1 and K2 by K̃1

and K̃2.
We also conjugate the limiting kernels. For ζ∈(Lzi∪Rzi)∩S1 and ζ ′∈(Lzj∪Rzj )

∩ S2 for some i, j, we change (2.33) to

K̃1(ζ, ζ
′) =(δi(j) + δi(j + (−1)i))

×
√

fi(ζ)
√

fj(ζ ′)e
2h(ζ,zi)−h(ζ,zi−(−1)i )−h(ζ′,zj−(−1)j )

ζ(ζ − ζ ′)
Q1(j),

(6.31)

and for ζ ∈ (Lzi ∪ Rzi) ∩ S2 and ζ ′ ∈ (Lzj ∪ Rzj ) ∩ S1, we change (2.35) to

K̃2(ζ, ζ
′) =(δi(j) + δi(j − (−1)i))

×
√

fi(ζ)
√

fj(ζ ′)e
2h(ζ,zi)−h(ζ,zi+(−1)i )−h(ζ′,zj+(−1)j )

ζ(ζ − ζ ′)
Q2(j).

(6.32)

Recall the definition of fi in (2.27).
The next lemma shows how we prove the strategy mentioned above.
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Lemma 6.6. Fix 0 < ε < 1/(1 + 2m). Let

(6.33) Ω = ΩN :=

{

w ∈ C : |w + ρ| ≤ ρ
√
1− ρ

N1/2−ε/4

}

be a disk centered at −ρ. Suppose the following:

(i) We have

|K̃1(w,w
′)| = |K̃1(ζ, ζ

′)|+O(N ε−1/2 logN),

|K̃2(w
′, w)| = |K̃2(ζ

′, ζ)|+O(N ε−1/2 logN)
(6.34)

as L → ∞, uniformly for w ∈ S1 ∩ Ω and w′ ∈ S2 ∩ Ω, where ζ ∈ S1 and
ζ ′ ∈ S2 are the unique points corresponding to w and w′ under either the
map MN,L or MN,R in Lemma 6.5.

(ii) For each n,

det
[

K̃1(wi, w
′
j)
]|n|

i,j=1
→ det

[

K̃1(ζi, ζ
′
j)
]|n|

i,j=1
,

det
[

K̃2(w
′
i, wj)

]|n|

i,j=1
→ det

[

K̃2(ζ
′
i, ζj)

]|n|

i,j=1

as L → ∞, where for wi ∈ S1 ∩Ω and w′
i ∈ S2 ∩Ω, ζi ∈ S1 and ζ ′i ∈ S2 are

the unique points corresponding to w and w′ under either the map MN,L

or MN,R in Lemma 6.5.
(iii) There are positive constants c and α such that

|K̃1(w,w
′)| = O(e−cNα

), |K̃2(w
′, w)| = O(e−cNα

)

as L → ∞, uniformly for w ∈ S1∩Ωc and w′ ∈ S2, and also for w′ ∈ S2∩Ωc

and w ∈ S1.

Then conditions (A) and (B) in Lemma 6.4 hold, and therefore, D(Z) → D(z).

If the absolute values in (i) are removed, then (i) will imply (ii). However, due

to the discontinuity of the branch cuts of the square-root functions, K̃1(w,w
′) may

converge to −K̃1(ζ, ζ
′) if the points are at the branch cuts. Nevertheless, the branch

cuts do not affect the determinants as we discussed before. To emphasize this point,
we state (ii) separately.

Proof. It is direct to check that due to the term fi (see (2.27)) the kernels
9 K̃1(ζ, ζ

′)

= O(e−c1|ζ|3) for some positive constant c1 as |ζ| → ∞ along ζ ∈ S1 uniformly for

ζ ′ ∈ S2, and also K̃1(ζ, ζ
′) = O(e−c1|ζ′|3) as |ζ ′| → ∞ along ζ ′ ∈ S2 uniformly for

ζ ∈ S1. There are similar estimates for K̃2(ζ
′, ζ). This implies, in particular, that

K̃1(ζ, ζ
′) and K̃2(ζ

′, ζ) are bounded for ζ ∈ S1 and ζ ′ ∈ S2.
Since S1 and S2 have O(Nm) number of points, assumption (iii) implies that

(6.35)
∑

w′∈S2

|K̃1(w,w
′)|2 = O(e−

1
2 cN

αε

),
∑

w′∈S2

|K̃2(w
′, w)|2 = O(e−

1
2 cN

αε

)

9If τi = τi+1 and xi < xi+1 for some i, then we have O(e−c1|ζ|) and O(e−c1|ζ
′|), which are

enough for the analysis.
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uniformly for w ∈ S1 ∩ Ωc and, similarly,

(6.36)
∑

w∈S1

|K̃1(w,w
′)|2 = O(e−

1
2 cN

αε

),
∑

w∈S1

|K̃2(w
′, w)|2 = O(e−

1
2 cN

αε

)

uniformly for w′ ∈ S2 ∩ Ωc.
We now show that there is a positive constant C1 such that

(6.37)
∑

w∈S1

√

∑

w′∈S2

|K̃1(w,w′)|2 ≤ C1

for all large enough L. The inequality is obtained if

∑

w∈S1∩Ωc

√

∑

w′∈S2

|K̃1(w,w′)|2,

∑

w∈S1∩Ω

√

∑

w′∈S2∩Ωc

|K̃1(w,w′)|2,

∑

w∈S1∩Ω

√

∑

w′∈S2∩Ω

|K̃1(w,w′)|2

are all O(1). The first two terms are bounded from assumption (iii) and the fact
that S1 and S2 have O(Nm) points. For the third term, we use assumption (i). It
is direct to check that there are O(Nmε) number of points in S1 ∩ Ω and S2 ∩ Ω.
Hence the third term is bounded by

2
∑

ζ∈S1

√

∑

ζ′∈S2

|K̃1(ζ, ζ ′)|2 +O(N (m+1/2)ε−1/2 logN).

This is bounded since |K̃1(ζ, ζ
′)| decays fast as |ζ| → ∞ or |ζ ′| → ∞ on S1, S2 and

ε < 1/(1 + 2m). Hence we proved (6.37). Similarly, we have

(6.38)
∑

w′∈S2

√

∑

w∈S1

|K̃2(w′, w)|2 ≤ C1.

We now show that (B) in Lemma 6.4 holds. Consider the formula (6.22) of

Dn(Z). As we mentioned before, we change K1 and K2 to K̃1 and K̃2 without
changing the determinants. From Hadamard’s inequality, for all different w′

j ,

∣

∣

∣

∣

det
[

K̃1(wi, w
′
j)
]|n|

i,j=1

∣

∣

∣

∣

≤
|n|
∏

i=1

√

√

√

√

|n|
∑

j=1

|K̃1(wi, w′
j)|2 ≤

|n|
∏

i=1

√

∑

w′∈S2

|K̃1(wi, w′)|2

(6.39)

and, similarly, for all different wj ,

∣

∣

∣

∣

det
[

K̃2(w
′
i, wj)

]|n|

i,j=1

∣

∣

∣

∣

≤
|n|
∏

i=1

√

√

√

√

|n|
∑

j=1

|K̃2(w′
i, wj)|2 ≤

|n|
∏

i=1

√

∑

w∈S1

|K̃2(w′
i, w)|2.

(6.40)
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Hence,

|Dn(Z)| ≤
∑

wi∈S1

w′
i∈S2

i=1,··· ,|n|

⎛

⎝

|n|
∏

i=1

√

∑

w′∈S2

|K̃1(wi, w′)|2
⎞

⎠

⎛

⎝

|n|
∏

i=1

√

∑

w∈S1

|K̃2(w′
i, w)|2

⎞

⎠

=

⎛

⎝

∑

w∈S1

√

∑

w′∈S2

|K̃1(w,w′)|2
⎞

⎠

|n| ⎛

⎝

∑

w′∈S2

√

∑

w∈S1

|K̃2(w′, w)|2
⎞

⎠

|n|

.

Using (6.37) and (6.38), we obtain (B) with C = C2
1 .

We now prove that (A) in Lemma 6.4 holds. Fix n. We divide the sum in the

formula of Dn(Z) into two parts: the part that all u
(�)
j , v

(�)
j are in Ω and the rest.

By assumption (ii) and Lemma 6.5(c), the first part converges, as L → ∞, to

(−1)|n|
∑

U
(�)∈(Lz�

)n�

V
(�)∈(Rz�

)n�

�=1,··· ,m

det
[

K̃1(ζi, ζ
′
j)
]|n|

i,j=1
det

[

K̃2(ζ
′
i, ζj)

]|n|

i,j=1

which is equal to Dn(z) in (2.52). On the other hand, for the second part, note
that (6.37) and (6.38) imply, in particular, that there is a positive constant C2 such
that

(6.41)

√

∑

w′∈S2

|K̃1(w,w′)|2 ≤ C2,

√

∑

w∈S1

|K̃2(w′, w)|2 ≤ C2

uniformly for w ∈ S1 for the first inequality, and for w′ ∈ S2 for the second in-
equality. Now, by Hadamard’s inequality (see (6.39) and (6.40)) and the esti-
mates (6.35), (6.36), and (6.41), we find that for the second part,

∣

∣

∣

∣

det
[

K̃1(wi, w
′
j)
]|n|

i,j=1
det

[

K̃2(w
′
i, wj)

]|n|

i,j=1

∣

∣

∣

∣

≤ C
2|n|
2 C3e

−cNα

(6.42)

for a positive constant C3, since one of the variables is in Ωc. Since there are only
O(Nm) points in S1 and S2, we find that the second part converges to zero. Hence,
we obtain (A). �

6.3.2. Asymptotics of rZ , lZ , and fj. In the remainder of this section, we verify
assumptions (i), (ii), and (iii) of Lemma 6.6. The kernels contain lZ(w), rZ(w), and
fj . We first find the asymptotics of these functions.

The following asymptotic result was proved in [4].

Lemma 6.7 ([4]). Let z be a complex number satisfying 0 < |z| < 1. Let Z be a
complex number such that ZL = (−1)N�

L
0 z. For a complex number ω̂, set

(6.43) w = −ρ+
ρ
√
1− ρ

N1/2
ω̂.

There is a positive constant C such that the following hold:

(a) If 
(ω̂) > c for some c > 0, then, uniformly in ω̂,

(6.44) lZ(w) = eh(ω̂,z)(1 +O(N ε/2−1 logN)) for |ω̂| ≤ N ε/4
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and

(6.45) e−CN−ε/4 ≤ |lZ(w)| ≤ eCN−ε/4

for |ω̂| ≥ N ε/4.

(b) If 
(ω̂) < −c for some c < 0, then, uniformly in ω̂,

(6.46) rZ(w) = eh(ω̂,z)(1 +O(N ε/2−1 logN)) for |ω̂| ≤ N ε/4

and

(6.47) e−CN−ε/4 ≤ |rZ(w)| ≤ eCN−ε/4

for |ω̂| ≥ N ε/4.

The errors are uniform for z in a compact subset of 0 < |z| < 1. The function h is
defined in (2.22) and (2.23).

Proof. The case when |ω̂| ≤ N ε/4 is in Lemma 8.2(a) and (b) in [4], where we used
the notation qZ,L(w) = (w + 1)L−N lZ(w), qZ,R(w) = wN rZ(w), hL(ω̂, z) = h(ω̂, z)
for ω̂ < 0, and hR(ω̂, z) = h(ω̂, z) for ω̂ > 0.

The upper bounds of lZ(w) and rZ(w) when |ω̂| ≥ N ε/4 were computed in the

proof of Lemma 8.4(c) of the same paper: (9.57) shows |rZ(w)| = | qZ,R(w)
wN | =

O(eCN−ε/4

). (There is a typo in that equation: the denominator on the left-hand
side should be uN instead of uL−N .) This upper bound was obtained from an upper
bound of log |rZ(w)|. Indeed, in the analysis between (9.52) and (9.57) in [4], we
first write (there is another typo in (9.52): (L−N) log(−u) should be N log(−u))

log |rZ(w)| = 

[

∑

v∈Rz

log(−w + v)−N log(−w)

]

= 

[

−LZL

∫

−ρ+iR

log

(

v − w

−ρ− w

)

(v + ρ)

v(v + 1)qZ(v)

dv

2πi

]

.

After estimating the integral in an elementary way, we obtain | log |rZ(w)|| ≤
CN−ε/4. This implies both the upper and the lower bounds, e−N−ε/4 ≤ |rZ(w)| ≤
eN

−ε/4

. The estimate of lZ(w) is similar. �

Now we consider fj(w). The following result applies to Fj(w) (recall (6.30)),
and hence fj , for w near −ρ.

Lemma 6.8 ([30]). Assume the same conditions for k, t, a as in Lemma 6.2. Set

(6.48) g(w) = w−k+N+1(w + 1)−a+k−Netw.

Then, for

(6.49) w = −ρ+
ρ
√
1− ρ

N1/2
ω̂

with ω̂ = O(N ε/4), we have

(6.50)
g(w)

g(−ρ)
= exω̂+ 1

2γω̂
2− 1

3 τω̂
3

(1 +O(N ε−1/2)).

Proof. If we set k′ = k −N + 1 and �′ = a + 2, then g(w) is the same as g̃2(w) in
(4.41) of [30] with k′ and �′ instead of k and � (and τ1/3x replaced by x). Since

�′ = a+ 2 = � + 3 satisfies condition (6.13), we see that g(w)
g(−ρ) is equal to g2(w) in

(4.40) of [30] with j = 0. The asymptotics of g2(w) was obtained in (4.46) of [30],
which is the same as (6.50), under the conditions on t, k′, and �′ satisfying (4.1),
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(4.2), and (4.3) of [30]. From (6.12) and (6.13), we find that these conditions are
satisfied, and hence we obtain the lemma. �

The next lemma is about fj(w) when w is away from −ρ.

Lemma 6.9. Suppose xj ∈ R, γj ∈ [0, 1], and τj ∈ R≥0 are fixed constants, and
assume that10 τ1 < · · · < τm. Let tj, �j , and bj satisfy (6.2), (6.3), and (6.4). Let

(6.51) aj = �j + 1, kj = N − bj − �j
2

+ 1

as defined in (6.7) and (6.8). Then, for w ∈ LZ ∪ RZ satisfying |w + ρ| ≥
ρ
√
1− ρN ε/4−1/2,

(6.52) fj(w) = O(e−cN3ε/4

).

The errors are uniform for z in a compact subset of 0 < |z| < 1.

Proof. The proof is similar to the first part of the proof of Lemma 8.4(c) in [4],
which is given in Section 9.4 of the same paper. We prove the case when w ∈ LZ .
The case when w ∈ RZ is similar. Recall from (6.29) and (6.30) that for w ∈ LZ ,

fj(w) =
Fj(w)Fj−1(−ρ)
Fj−1(w)Fj(−ρ) and

Fj(w)

Fj−1(w)
= wkj−1−kj (w + 1)−aj+kj+aj−1−kj−1e(tj−tj−1)w.

We start with the following Claim. This is similar to a claim in Section 9.4 part
(c).

Claim. Suppose m, n, and � are positive integers and ρ ∈ (0, 1) satisfying

(6.53) −m

ρ
+

n

1− ρ
+ � ≥ 0.

Then the function

(6.54)
∣

∣wm(w + 1)ne�w
∣

∣

increases as 
(w) increases along any fixed contour

(6.55)
∣

∣wρ(w + 1)1−ρ
∣

∣ = const.

If (6.53) is not satisfied, then (6.54) increases as 
(w) increases along the part of
the contour (6.55) satisfying

(6.56) |w + ρ|2 ≥ −ρ(1− ρ)

�

(

−m

ρ
+

n

1− ρ
+ �

)

.

Proof of Claim. Set

c = −ρn− (1− ρ)m

ρ�
.

We have c ≤ 1− ρ from condition (6.53). Note that
∣

∣wm(w + 1)ne�w
∣

∣ = const ·
∣

∣

∣(w + 1)n−
1−ρ
ρ me�w

∣

∣

∣ = const ·
∣

∣(w + 1)−cew
∣

∣

�

by using the condition that w is on the contour (6.55). It is direct to check by pa-
rameterizing the contour and taking the derivatives that the function |(w + 1)−cew|
increases as 
(w) increases along the contour (6.55); see the Claim in Section 9.4

10If τj−1 = τj and xj−1 < xj , then the errors change to O(e−cNε/4
). In the proof, this change

comes when we conclude the error term from (6.62).
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part (c) of [4]. If (6.53) is not satisfied, then c > 1 − ρ, and in this case, again it
is direct to check that the function |(w + 1)−cew| increases as 
(w) increases along
the contour (6.55) if w is restricted to |w + ρ|2 ≥ ρ(c− 1 + ρ). The last condition
is (6.56). �

We continue the proof of Lemma 6.9. We prove that the function
∣

∣

∣

Fj(w)
Fj−1(w)

∣

∣

∣

increases as 
(w) increases along parts of the contour

(6.57)
∣

∣wρ(w + 1)1−ρ
∣

∣ = �0|z|1/L

with the restriction

(6.58) |w + ρ| ≥ ρ
√

1− ρN ε/4−1/2.

Recall that LZ ∪ RZ is a discrete subset of the contour (6.57). By the Claim, it is
sufficient to show that

(

ρ
√

1− ρN ε/4−1/2
)2

≥ − ρ(1− ρ)

tj − tj−1

(

−−kj + kj−1

ρ
+

−aj + kj + aj−1 − kj−1

1− ρ
+ tj − tj−1

)

.
(6.59)

From (6.51), and (6.2), (6.3), and (6.4), the right-hand side is equal to

− 1

2ρ(1− ρ)(tj − tj−1)

×
(

(bj − bj−1)− 2ρ(1− ρ)(tj − tj−1)− (1− 2ρ)(�j − �j−1) +O(t
2/3
j )

)

.

This is O(N−1). Thus (6.59) holds for sufficiently large N , and we obtain the

monotonicity of
∣

∣

∣

Fj(w)
Fj−1(w)

∣

∣

∣
.

The monotonicity implies that

(6.60)

∣

∣

∣

∣

Fj(w)

Fj−1(w)

∣

∣

∣

∣

≤
∣

∣

∣

∣

Fj(uc)

Fj−1(uc)

∣

∣

∣

∣

with uc on the contour satisfying

(6.61) uc = −ρ+ ρ
√

1− ρξcN
−1/2

for a complex number ξc satisfying |ξc| = N ε/4. Now by Lemma 6.8,
∣

∣

∣

∣

Fj(uc)Fj−1(−ρ)

Fj−1(uc)Fj(−ρ)

∣

∣

∣

∣

=
∣

∣

∣e(xj−xj−1)ξc+
1
2 (γj−γj−1)ξ

2
c− 1

3 (τj−τj−1)ξ
3
c

∣

∣

∣

(

1 + O(N ε−1/2)
)

.

(6.62)

The point uc is on the contour (6.57) and the contour is close to the contour
∣

∣wρ(w + 1)1−ρ
∣

∣ = �0 exponentially, which is self-intersecting at w = −ρ like an x.

This implies that arg(ξc) converges to either 3π
4 or − 3π

4 . Since τj − τj−1 is positive,

we find that the right-hand side of (6.62) decays fast and is of order e−cN3ε/4

. This
proves (6.52) when w ∈ LZ . The case when w ∈ RZ is similar. �
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From Lemmas 6.8 and 6.9, we obtain the following asymptotics of fj(w).

Lemma 6.10. Recall fj(w) introduced in (6.29) and fj(w) defined in (2.27). As-
sume the same conditions on the parameters as in Lemma 6.9. Then11 there is a
positive constant c such that for w ∈ LZ ∪ RZ ,

(6.63) fj(w) =

{

fj(ω̂)(1 +O(N ε−1/2)) if |ω̂| ≤ N ε/4,

O(e−cN3ε/4

) if |ω̂| ≥ N ε/4,

where for given w, ω̂ is defined by the relation

(6.64) w = −ρ+
ρ
√
1− ρ

N1/2
ω̂.

In particular, fj(w) is bounded uniformly for w ∈ LZ ∪RZ as N → ∞.

6.3.3. Verification of conditions (i) and (ii) of Lemma 6.6. Let w ∈ RZi
∩ S1 and

w′ ∈ RZj
∩ S2. Let ζ and ζ ′ be the image of w and w′ under either the map MN,L

or MN,R in Lemma 6.5, depending on whether the point is on Lz or Rz. We also
set

(6.65) ω̂ :=
N1/2

ρ
√
1− ρ

(w + ρ), ω̂′ :=
N1/2

ρ
√
1− ρ

(w′ + ρ).

Then, by Lemma 6.5,

(6.66) |ω̂ − ζ|, |ω̂′ − ζ ′| ≤ N3ε/4−1/2 logN.

We have

K̃1(w,w
′) =−

(

δi(j) + δi
(

j + (−1)i
))

× J(w)
√

fi(w)
√

fj(w′)(HZi
(w))2

HZi−(−1)i
(w)HZj−(−1)j

(w′)(w − w′)
Q1(j).

(6.67)

Clearly, Q1(j) = Q1(j). Assume that w,w′ ∈ Ω. Then

(6.68) J(w) = −ρ
√
1− ρ

ω̂N1/2

(

1 +O(N ε/4−1/2)
)

.

The overall minus sign in K̃1(w,w
′) cancels the minus sign from J(w). For other

factors in (6.67), we use Lemma 6.7 and Lemma 6.10. Here, we recall from (4.14)
that Hz(w) = lz(w) for 
(w) < −ρ and Hz(w) = rz(w) for 
(w) > −ρ. We obtain

(6.69) |K̃1(w,w
′)| = |K̃1(ω̂, ω̂

′)|(1 +O(N ε−1/2 logN)).

We then take the approximate ω̂ and ω̂′ by ζ and ζ ′ using (6.66). Since the deriva-

tives of K̃1(ω̂, ω̂
′) are bounded (which is straightforward to check), we find that

(6.70) |K̃1(w,w
′)| = |K̃1(ζ, ζ

′)|(1 +O(N ε−1/2 logN)) +O(N3ε/4−1/2 logN).

Recall that |K̃1(ζ, ζ
′)| are bounded; see the first paragraph of the proof of Lemma

6.6. Therefore, we obtain the first equation of (6.34). The estimate of |K̃2(w,w
′)|

is similar, and we obtain (i) of Lemma 6.6. Part (ii) of the lemma is similar.

11If τj−1 = τj and xj−1 < xj , then the error changes to O(e−cNε/4
) for |ω̂| ≥ Nε/4.
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6.3.4. Verification of condition (iii) of Lemma 6.6. Consider |K̃1(w,w
′)| when w

or w′ is in Ωc. Here w ∈ S1 and w′ ∈ S2. We estimate each of the factors on the
right-hand side of (6.67). We have the following. The estimates are all uniform
in w or w′ in the domain specified. The positive constants C, C ′, and c may be
different from line to line.

(1) N1/2|w + ρ| ≥ C for w ∈ S1 ∪ S2. This follows from Lemma 6.5.
(2) N1/2|w − w′| ≥ C for w ∈ S1 and w′ ∈ S2.
(3) |J(w)| ≤ CN−1/2 for w ∈ S1 ∪ S2. Recall (4.12) for the definition of J(w).
(4) |fi(w)| ≤ C for w ∈ S1 ∪ S2 by Lemma 6.10.

(5) |fi(w)| ≤ Ce−cN3ε/4

for w ∈ Ωc ∩ (S1 ∪ S2) by Lemma 6.10.
(6) C ≤ |HZi

(w)| ≤ C ′ for w ∈ S1∪S2 by Lemma 6.7. For the upper bound, we
also use the decay property of h(ω̂, z) = O(ω̂−1) from (2.26). Recall (4.14)
for the definition of HZ .

(7) |Q1(i)| ≤ C and |Q2(i)| ≤ C.

By combining these facts we obtain12 that |K̃1(w,w
′)|=O(e−cN3ε/4

) and |K̃2(w
′, w)|

= O(e−cN3ε/4

) if w or w′ is in Ωc. Hence we obtain (iii) of Lemma 6.6. This com-
pletes the proof of Theorem 2.1.

7. Properties of the limit of the joint distribution

In this section, we discuss a few properties of the function

(7.1) F(x1, · · · , xm; p1, · · · , pm)

introduced in Section 2, which is a limit of the joint distribution. In order to
emphasize that this is a function of m variables with m parameters, let us use the
notation

(7.2) F
(m)(x;p) = F(x1, · · · , xm; p1, · · · , pm),

where

(7.3) x = (x1, · · · , xm), p = (p1, · · · , pm).

We also use the notation

(7.4) x[k] = (x1, · · · , xk−1, xk+1, · · · , xm), p[k] = (p1, · · · , pk−1, pk+1, · · · , pm)

for vectors of size m− 1 with xk and pk removed, respectively.
Recall the formula

F
(m)(x;p) =

∮

· · ·
∮

C(m)(z;x,p)D(m)(z;x,p)
dzm
2πizm

· · · dz1
2πiz1

,(7.5)

where z = (z1, · · · , zm), and the contours are nest circles satisfying

(7.6) 0 < |zm| < · · · < |z1| < 1.

We wrote C(z) and D(z) by C(m)(z;x,p) and D(m)(z;x,p) to emphasize that they
are functions of m variables z1, · · · , zm and depend on x and p. Recall from prop-
erty (P1) in Subsubsection 2.2.1, which we proved in Subsubsection 2.2.2, that for
each i, C(m)(z) is a meromorphic function of zi in the disk |zi| < 1 and the only
simple poles are zi = zi+1 for i = 1, · · · ,m−1. Part (i) of the next lemma shows the
analytic property of D(m)(z;x,p) and proves property (P2) in Subsubsection 2.2.1.
Part (ii) is used later.

12If τj−1 = τj and xj−1 < xj , then the error terms in (5) and the kernels are O(e−cNε/4
).
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Lemma 7.1. (i) D(m)(z;x,p) is analytic in each of the variables zk in the
deleted disk 0 < |zk| < 1.

(ii) For 1 ≤ k ≤ m− 1,

(7.7) lim
zk→zk+1

D(m)(z;x,p) = D(m−1)(z[k];x[k],p[k]),

where z[k] = (z1, · · · , zk−1, zk+1, · · · , zm).

Proof. Recall the series formula (2.55):
(7.8)

D(m)(z;x,p) =
∑

n∈(Z≥0)m

1

(n!)2
D(m)

n
(z;x,p), D(m)

n
(z;x,p) =

∑

d(m)
n,z (U,V;x,p),

where the last sum is over U(�) ∈ (Lz�)
n� and V(�) ∈ (Rz�)

n� , � = 1, · · · ,m. Here
(recall the notational convention in Definition 2.9),

d(m)
n,z (U,V;x,p) =

[

m
∏

�=1

Δ(U(�))2Δ(V(�))2

Δ(U(�);V(�))2
f̂�(U

(�))f̂�(V
(�))

]

×
[

m
∏

�=2

Δ(U(�);V(�−1))Δ(V(�);U(�−1))e−h(V(�),z�−1)−h(V(�−1),z�)

Δ(U(�);U(�−1))Δ(V(�);V(�−1))eh(U(�),z�−1)+h(U(�−1),z�)

(

1− z�−1

z�

)n�
(

1− z�
z�−1

)n�−1
]

,

(7.9)

where U = (U(1), · · · ,U(m)), V = (V(1), · · · ,V(m)) with U(�) = (u
(�)
1 , · · · , u(�)n� ),

V(�) = (v
(�)
1 , · · · , v(�)n� ). Note that we may take the components of U(�) and V(�)

to be all distinct due to the factors Δ(U(�)) and Δ(V(�)). Recall that f̂�(ζ) :=
1
ζ f�(ζ)e

2h(ζ,z�), where h and fj are defined in (2.22), (2.23), and (2.27).

The points u
(�)
j and v

(�)
j are roots of the equation e−ζ2/2 = z�, and hence they

depend on z� analytically (if we order them properly). Note that the only denom-
inators in (7.9) which can vanish are Δ(U(�);U(�−1)) and Δ(V(�);V(�−1)). They
vanish only when z�−1 = z�. Hence the only possible poles of D(m)(z;x,p) are
zk = zk+1 for k = 1, · · · ,m− 1. Hence (ii) implies (i).

We now prove (ii). We may assume that z1, · · · , zm are all distinct and take
the limit as zk → zk+1; otherwise, we may take successive limits. Let us consider
which terms in (7.9) vanish when zk = zk+1. Clearly, (1 − zk

zk+1
)nk+1(1 − zk+1

zk
)nk

vanishes. On the other hand, when zk = zk+1, U
(k) and U(k+1) are from the same

set. If there is a non-zero overlap between the pair of vectors, then Δ(U(k+1);U(k)),
which is in the denominator in (7.9), vanishes. Similarly, Δ(V(k+1);V(k)) may also

vanish. Hence d
(m)
n,z (U,V;x,p) is equal to

(7.10)
(zk+1 − zk)

nk+1+nk

Δ(U(k+1);U(k))Δ(V(k+1);V(k))

times a non-vanishing factor as zk → zk+1. Now, note that if u
(k)
i → u

(k+1)
j for

some i and j, then from e−(u
(k+1)
j )2/2 = zk+1,

(7.11) lim
u
(k)
i →u

(k+1)
j

zk+1 − zk

u
(k+1)
j − u

(k)
i

=
dzk+1

du
(k+1)
j

= −u
(k+1)
j zk+1.
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Since Δ(U(k+1);U(k)) has at most min{nk+1, nk} vanishing factors u
(k+1)
j − u

(k)
i

(because the components of U(k) are all distinct, and so are U(k+1)) and, similarly,

Δ(V(k+1);V(k)) has at most min{nk+1, nk} vanishing factors v
(k+1)
j − v

(k)
i , we find,

by looking at the degree of the numerator, that (7.10) is non-zero only if (a) nk =
nk+1, (b) U(k) converges to a vector whose components are a permutation of the
components of U(k+1), and (c) V(k) converges to a vector whose components are a
permutation of the components of V(k+1). When nk = nk+1, U

(k) → U(k+1), and
V(k) → V(k+1), the term (7.10) converges to

z
2nk+1

k+1

∏nk+1

i=1 u
(k+1)
i v

(k+1)
i

Δ(U(k+1))2Δ(V(k+1))2
.

Hence, using the fact that (see (2.27))

fk(w)fk+1(w) =

{

e−
1
3 (τk+1−τk−1)ζ

3+ 1
2 (γk+1−γk−1)ζ

2+(xk+1−xk−1)ζ for 
(w) < 0,

e
1
3 (τk+1−τk−1)ζ

3− 1
2 (γk+1−γk−1)ζ

2−(xk+1−xk−1)ζ for 
(w) > 0,

we find that d
(m)
n,z (U,V;x,p) converges to

d
(m−1)

n[k],z[k](U
[k],V[k];x[k],p[k]),

where n[k], U[k], V[k] are the same as n,U,V with nk, U
(k), V(k) removed. We obtain

the same limit if nk = nk+1, U
(k) converges to a vector whose components are a

permutation of the components of U(k+1), and V(k) converges to a vector whose
components are a permutation of the components of V(k+1). Hence,

lim
zk→zk+1

D(m)
n

(z;x,p) = (nk!)
2
∑

d
(m−1)

n[k],z[k](U
[k],V[k];x[k],p[k]),

where the sum is over U(�) ∈ (Lz�)
n� and V(�) ∈ (Rz�)

n� , � = 1, · · · , k − 1,
k + 1, · · · ,m. This implies (7.7). This completes the proof of (ii), and hence
(i), too. �

The next lemma shows what happens if we interchange two consecutive contours
in the formula (7.5) of F(m)(x;p). Although we do not state it explicitly, we can
also obtain an analogous formula for the finite-time joint distribution from a similar
computation.

Lemma 7.2. For every 1 ≤ k ≤ m− 1,

F
(m)(x;p) =F

(m−1)(x[k];p[k])

+

∮

· · ·
∮

C(m)(z;x,p)D(m)(z;x,p)
dzm
2πizm

· · · dz1
2πiz1

,
(7.12)

where the contours are nested circles satisfying

(7.13) 0 < |zm| < · · · < |zk+1| < |zk−1| < · · · < |z1| < 1 and 0 < |zk| < |zk+1|.
Proof. We start with the formula (7.5). We fix all other contours and deform the
zk-contour so that |zk| is smaller than |zk+1|. Then the integral (7.5) is equal to a
term due to the residue plus the same integral with the contours changed to satisfy

0 < |zm| < · · · < |zk+2| < |zk| < |zk+1| < |zk−1| < · · · < |z1| < 1.

Since the integrand has poles only at zi = zi+1, i = 1, · · · ,m − 1, it is analytic at
zk = zi for i ≥ k + 2. Hence the conditions that |zk| > |zi|, i ≥ k + 2, are not
necessary, and we can take the contours as (7.13).
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It remains to show that the residue term is F(m−1)(x[k];p[k]). It is direct to check
from the definition (2.21) that

(7.14) lim
zk→zk+1

(zk − zk+1)C
(m)(z;x,p) = zk+1C

(m−1)(z[k];x[k],p[k]),

where we set z[k] = (z1, · · · , zk−1, zk+1, · · · , zm). On the other hand, from Lemma

7.1(ii), D(m)(z;x,p) converges to D(m)(z[k];x[k],p[k]). Thus, noting dzk
2πizk

in (7.5),

the residue term is equal to F(m−1)(x[k];p[k]). �

The multiple integral in (7.12) has a natural probabilistic interpretation. The
following theorem gives an interpretation for more general choices of contours.

Theorem 7.3. Assume the same conditions as Theorem 2.1. Let E±
j be the events

defined by

(7.15) E−
j =

{

�(pj)− (1− 2ρ)sj − (1− 2ρ+ 2ρ2)tj
−2ρ1/2(1− ρ)1/2L1/2

≤ xj

}

and

(7.16) E+
j =

{

�(pj)− (1− 2ρ)sj − (1− 2ρ+ 2ρ2)tj
−2ρ1/2(1− ρ)1/2L1/2

> xj

}

.

Then
(7.17)

lim
L→∞

P
(

E±
1 ∩ · · · ∩E±

m−1 ∩E−
m

)

= (−1)#
∮

· · ·
∮

C(z)D(z)
dzm
2πizm

· · · dz1
2πiz1

,

where # denotes the number of appearances of + in E±
1 ∩ · · · ∩ E±

m−1, and the
contours are circles of radii between 0 and 1 such that for each 1 ≤ j ≤ m− 1,

(7.18) |zj | > |zj+1| if we have E−
j and |zj | < |zj+1| if we have E+

j .

Proof. Theorem 2.1 is the special case when we take E−
j for all j. The general

case follows from the same asymptotic analysis starting with a different finite-time
formula. We first change Theorem 3.1. Let Ẽ+

j :=
{

�kj
(tj) ≥ aj

}

and Ẽ−
j :=

{

�kj
(tj) < aj

}

be events of TASEP in XN (L). Then we claim that

PY

(

Ẽ±
1 ∩ · · · ∩ Ẽ±

m−1 ∩ Ẽ−
m

)

= (−1)#
∮

· · ·
∮

C(z,k)DY (z,k, ã, t)
dzm
2πizm

· · · dz1
2πiz1

,
(7.19)

where the contours are circles of radii between 0 and 1 such that for each 1 ≤ j ≤
m− 1, |zj | > |zj+1| if we have Ẽ−

j and |zj | < |zj+1| if we have Ẽ+
j . Here # denotes

the number of appearances of + in Ẽ±
1 ∩ · · · ∩ Ẽ±

m−1 and ã = (ã1, · · · , ãm) with

ãj = aj or aj − 1 depending on whether we have Ẽ−
j or Ẽ+

j , respectively. The

identity (7.19) follows from the same proof of Theorem 3.1 with a small change.
The contour condition is used in the proof when we apply Proposition 3.4. Now,

in Proposition 3.4, if we replace the assumption13
∏N

j=1 |w′
j + 1| < ∏N

j=1 |wj + 1|

13See the paragraph including the equation (3.22) for a discussion about how the condition
∏N

j=1 |w
′
j + 1| <

∏N
j=1 |wj + 1| is related to the condition |z′| < |z|.
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by
∏N

j=1 |w′
j + 1| > ∏N

j=1 |wj + 1|, then the conclusion changes to

∑

X∈XN (L)∩{xk<a}
RX (W )LX (W ′) = −

( z

z′

)(k−1)L
(

1−
(

z′

z

)L
)N−1

×

⎡

⎣

N
∏

j=1

w−k
j (wj + 1)−a+k+2

(w′
j)

−k(w′
j + 1)−a+k+1

⎤

⎦det

[

1

wi − w′
i′

]N

i,i′=1

.

(7.20)

Note the change in the summation domain from xk ≥ a to xk < a. This identity
follows easily from Proposition 5.2 and the geometric series formula. The probabil-
ity of the event Ẽ±

1 ∩ · · · ∩ Ẽ±
m−1 ∩ Ẽ−

m is then obtained from the same calculation
as before using, for each i, either Proposition 3.4 or (7.20) depending on whether

we have Ẽ+
i or Ẽ−

i .
For the periodic step initial condition, Theorem 4.6 showed that C(z,k) times

DY (z,k, ã, t) is equal to C(z)D(z). This proof does not depend on how the zi-
contours are nested. Hence we obtain

(7.21) P

(

Ẽ±
1 ∩ · · · ∩ Ẽ±

m−1 ∩ Ẽ−
m

)

= (−1)#
∮

· · ·
∮

C(z)D(z)
dzm
2πizm

· · · dz1
2πiz1

,

where C(z) andD(z) are the same as that in Theorem 4.6 except that the parameter
a is replaced by ã. The contours are the same as that in (7.19). Now, the asymptotic
analysis follows from Section 6. Recall that the analysis of Section 6 does not depend
on the ordering of |zi|; see Remark 6.1. �

We now prove the consistency of F(m)(x;p) when one of the variables tends to
positive infinity.

Proposition 7.4 (Consistency). We have

(7.22) lim
xk→+∞

F
(m)(x;p) = F

(m−1)(x[k];p[k]).

Proof. We consider the case when k = m first and then the case when k < m.
(a) Assume k = m. When m = 1, we showed in Section 4 of [4] that F(1)(x1; p1)

is a distribution function. Hence,

(7.23) lim
x1→+∞

F
(1)(x1; p1) = 1.

Now we assume that m ≥ 2 and take xm → +∞. Recall the formula (7.5) in which
the zm-contour is the smallest contour. From the definition (see (2.21)),

C(m)(z;x,p) =C(m−1)(z[m];x[m],p[m])
zm−1

zm−1 − zm

× exmA1(zm)+τmA2(zm)

exm−1A1(zm)+τm−1A2(zm)
e2B(zm)−2B(zm,zm−1).

We choose the contour for zm given by zm = 1
x2
m
eiθ, θ ∈ [0, 2π). Since Ai(z) = O(z),

B(z) = O(z), and B(z, w) = O(z) as z → 0, we have

(7.24) C(m)(z;x,p) = C(m−1)(z[m];x[m],p[m]) +O(x−1
m )

as xm → ∞.
We now show that

(7.25) D(m)(z;x,p) = D(m−1)(z[m];x[m],p[m]) +O(e−cxm)
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as xm → ∞, where we had chosen |zm| = 1
x2
m
. From the series formula (2.51),

(7.26) D(m)(z;x,p)− D(m−1)(z[m];x[m],p[m]) =
∑

nm≥1

∑

n1,··· ,nm−1≥0

1

(n!)2
Dn(z).

We need to show that the sum is exponentially small. From (2.55) and (2.56),

(7.27) Dn(z) =
∑

U
(�)∈(Lz�)

n�

V
(�)∈(Rz�)

n�

�=1,··· ,m−1

[

∑

U
(m)∈(Lzm )nm

V
(m)∈(Rzm )nm

dn,z(U,V)

]

,

where for each U and V, dn,z(U,V) is equal to

Δ(U(m))2Δ(V(m))2

Δ(U(m);V(m))2
f̂m(U(m))f̂m(V(m))

× Δ(U(m);V(m−1))Δ(V(m);U(m−1))e−h(V(m),zm−1)−h(V(m−1),zm)

Δ(U(m);U(m−1))Δ(V(m);V(m−1))eh(U(m),zm−1)+h(U(m−1),zm)

×
(

1− zm−1

zm

)nm
(

1− zm
zm−1

)nm−1

(7.28)

times

(7.29) dn[m],z[m](U[m],V[m]),

a factor which does not depend on zm, and hence also on U(m) and V(m) (and xm

and pm). The term (7.29) is the same as dn,z(U,V) when m is replaced by m− 1.
Since nm ≥ 1 in the sum (7.26), the inside sum in (7.27) is not over an empty set.
We show that for each U and V, (7.28) is

(7.30) O(e−cxm|U(m)|−cxm|V(m)|)

for a constant c > 0, where |U(m)| is the sum of the absolute values of U(m), and
|V(m)| is similarly defined. This proves (7.25).

To show the decay of (7.28), we first note that every component u of U(m) is

a solution of the equation e−u2/2 = zm satisfying 
(u) < 0. As |zm| = 1
x2
m

→ 0,


(u2) → ∞. Since 
(u2) = (
(u))2 − (�(u))2, this implies that 
(u) → −∞, and
hence |u| → ∞. Similarly, every component v of V(m) satisfies 
(v) → ∞ and
|v| → ∞. It is also easy to check (see Figure 4) that the solutions of the equation

e−ζ2/2 = z lie in the sectors −π/4 < arg(ζ) < π/4 or 3π/4 < arg(ζ) < 5π/4 for

any 0 < |z| < 1. Hence |u| ≤
√
2
(u), |v| ≤

√
2
(v), and

√
2|u− v| ≥ |u|+ |v|. We

now consider each term in (7.28). Considering the degrees,

Δ(U(m))2Δ(V(m))2

Δ(U(m);V(m))2
= O(1),

Δ(U(m);V(m−1))Δ(V(m);U(m−1))

Δ(U(m);U(m−1))Δ(V(m);V(m−1))
= O(1).

From the formula of h in (2.25), and using (2.24),

h(V(m), zm−1), h(U
(m), zm−1), h(V

(m−1), zm), h(U(m−1), zm) = O(1).

Recall from (2.57) that f̂m(ζ) = 1
ζ f�(ζ)e

2h(ζ,zm). As above,

h(V(m), zm), h(U(m), zm) = O(1).
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On the other hand, from the definition (2.27),

|f�(u)| ≤ e−cxm|u|, |f�(v)| ≤ e−cxm|v|

for the components u and v of U(m) and V(m), implying that

|̂fm(U(m))f̂m(V(m))| = O(e−cxm|U(m)|−cxm|V(m)|).

This term dominates the factor
(

1− zm−1

zm

)nm

= O(x2nm
m ).

Combining together, we obtain the decay (7.30) of (7.28), and hence we obtain
(7.25).

We insert (7.24) and (7.25) in (7.5), and integrating over θ, we obtain

F
(m)(x;p) = F

(m−1)(x[m],p[m]) +O(x−1
m )

for all large xm. Hence we proved (7.22) for k = m.
(b) Assume that k < m. Let us denote the integral in (7.17) with the con-

tours (7.18) by

F̃
(m)(x±

1 , · · · , x±
m−1, x

−
m;p).

Note that

F̃
(m)(x−

1 , · · · , x−
m−1, x

−
m;p) = F

(m)(x1, · · · , xm−1, xm;p).

Fix k such that 1 ≤ k ≤ m− 1. By Lemma 7.2, we obtain (7.22) if we show that

(7.31) lim
xk→+∞

F̃
(m)(x−

1 , · · · , x−
k−1, x

+
k , x

−
k+1, · · · , x−

m;p) = 0.

Now, from the joint probability function interpretation stated in Theorem 7.3,

F̃
(m)(· · · , x±

i−1, x
±
i , x

±
i+1, · · · ;p) ≤ F̃

(m−1)(· · · , x±
i−1, x

±
i+1, · · · ;p[i])(7.32)

for any 1 ≤ i ≤ m (for any choice of ±-sign for xi, 1 ≤ i ≤ m − 1, and the choice
of − sign for xm). Using (7.32) m− 1 times, we find that

F̃
(m)(x−

1 , · · · , x−
k−1, x

+
k , x

−
k+1, · · · , x−

m;p) ≤ F̃
(1)(x+

k ; pk) = 1− F
(1)(xk; pk).(7.33)

The one-point function F(1)(xk; pk) converges to 1 as xk → +∞ from (7.23). Hence
we obtain (7.31), and this completes the proof of (7.22) when 1 ≤ k ≤ m− 1. �

In the opposite direction, we have the following result.

Lemma 7.5. We have

(7.34) lim
xk→−∞

F
(m)(x;p) = 0.

Proof. Since a joint probability is smaller than a marginal distribution and
F
(m)(x;p) is a limit of joint probabilities,

(7.35) F
(m)(x;p) ≤ F

(1)(xk; pk).

As mentioned before, the function F(1)(xk; pk) = F(xk; pk) is shown to be a distri-
bution function in Section 4 of [4]. This implies the lemma. �
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8. Infinite TASEP

If we take L → ∞ while keeping all other parameters fixed, the periodic TASEP
becomes the infinite TASEP with N particles. In terms of the joint distribution,
this is still true if L is fixed but large enough.

Lemma 8.1. Consider the infinite TASEP on Z with N particles and let x̃i(t)
denote the location of the ith particle (from left to right) at time t. Assume that the
infinite TASEP has the initial condition given by x̃i(0) = yi, where y1 < · · · < yN .
Also consider the TASEP in XN (L) and denote by �i(t) the location of the ith
particle. Assume that

(8.1) L > yN − y1

and let �i(t) have the same initial condition given by �i(0) = yi. Fix a positive
integer m. Let k1, · · · , km be integers in {1, · · · , N}, let a1, · · · , am be integers,
and let t1, · · · , tm be positive real numbers. Then for any integer L satisfying (in
addition to (8.1))

(8.2) L > max{a1 − k1, · · · , am − km} − y1 +N + 1,

we have

(8.3) P (x̃k1
(t1) ≤ a1, · · · , x̃km

(tm) ≤ am) = P (�k1
(t1) ≤ a1, · · · ,�km

(tm) ≤ am) .

Proof. 14 We first observe that the particles �i(t) are in the configuration space
XN (L), while the particles x̃i(t) are in the configuration spaceWN := {(x1, · · · , xN )
∈ Z

N : x1 < · · · < xN}. The only difference between these two configuration spaces
is that XN (L) has an extra restriction xN ≤ x1+L−1. Therefore, if this restriction
does not take an effect before time t, i.e., �N (s) < �1(s) + L− 1 for all 0 < s < t,
then the dynamics of the TASEP on XN (L) is the same as that of the infinite
TASEP (with the same initial condition) before time t. Furthermore, if we focus
on the ith particle in the TASEP in XN (L), there exists a smallest random time
Ti such that the dynamics of this particle are the same in both the TASEP XN (L)
and the infinite TASEP before time Ti. The times Ti are determined inductively
as follows. First, TN is the smallest time such that �N (t) = �1(t) + L − 1. Next,
TN−1 is the smallest time that satisfies t ≥ TN and �N−1(t) = �N (t) − 1. For
general index 1 ≤ i ≤ N − 1, Ti is the smallest time that satisfies t ≥ Ti+1 and
�i(t) = �i+1(t)− 1. Note that T1 ≥ T2 ≥ · · · ≥ TN and for 1 ≤ i ≤ N − 1,

(8.4) �i(Ti) = �i+1(Ti)− 1 ≥ �i+1(Ti+1)− 1.

The same consideration shows that if we consider m particles �k1
(t1), · · · ,

�km
(tm) of the TASEP in XN (L) at possibly different times, their joint distri-

bution is the same as that of the infinite TASEP if ti < Tki
for all i. Therefore, we

obtain (8.3) if we show that under the condition (8.2), the event that �ki
(ti) ≤ ai

for all 1 ≤ i ≤ m is a subset of the event that ti < Tki
for all 1 ≤ i ≤ m. Now,

suppose that ti ≥ Tki
for some i. Then, writing � = ki and using (8.4),

��(ti) ≥ ��(T�) ≥ ��+1(T�+1)− 1 ≥ · · · ≥ �N (TN )− (N − �).

14This lemma can be seen easily from the directed last passage percolation interpretation of
the TASEP.
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Since xN (τN ) = �1(TN )+L− 1 and �1(TN ) ≥ �1(0) = y1, this implies that (recall
that � = ki)

��(ti) ≥ y1 + L− 1− (N − �) > a�

using the condition (8.2). Hence we are not in the event that �ki
(ti) ≤ ai for all

1 ≤ i ≤ m. This completes the proof. �

The above result implies, using the inclusion-exclusion principle,

(8.5) P (x̃k1
(t1) ≥ a1, · · · , x̃km

(tm) ≥ am) = P (�k1
(t1) ≥ a1, · · · ,�km

(tm) ≥ am)

for L satisfying

(8.6) L > max{a1 − k1, · · · , am − km, yN −N} − y1 +N.

Therefore, Theorem 3.1 implies that

(8.7) P (x̃k1
(t1) ≥ a1, · · · , x̃km

(tm) ≥ am) = the right-hand side of (3.6)

for any L satisfying (8.6). In particular, for the initial condition x̃i(0) = i − N ,
i = 1, · · · , N , by Theorem 4.6, we find that

(8.8) P (x̃k1
(t1) ≥ a1, · · · , x̃km

(tm) ≥ am) = the right-hand side of (4.30)

for any integer L satisfying

(8.9) L ≥ 2N +max{a1 − k1, · · · , am − km,−N}.
Note that since the particles move only to the right, the above joint probability is
the same as that of the infinite TASEP (with infinitely many particles) with the step
initial condition. Hence we obtained a formula for the finite-time joint distribution
in multiple times and locations of the infinite TASEP with the step initial condition.
Actually we have infinitely many formulas, one for each L satisfying (8.9). Since
the infinite TASEP does not involve the parameter L, all these formulas should
give an equal value for all L satisfying (8.9).

Now, if we want to compute the large-time limit of the joint distribution of the
infinite TASEP under the KPZ scaling, we need to take ai = O(t). The above
restriction on L implies that L ≥ O(t). This implies that t � L3/2, which cor-
responds to the subrelaxation time scale. Hence the large-time limit of the joint
distribution of the infinite TASEP is equal to the large-time limit, if it exists, of the
joint distribution of the periodic TASEP in the subrelaxation time scale. However,
it is not immediately clear if the formula (4.30) is suitable for the subrelaxation
time scale when m ≥ 2. In particular, the kernels K1(w,w

′) and K2(w,w
′) do

not seem to converge. We leave the analysis of the multipoint distribution of the
infinite TASEP as a future project.
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