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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP

JINHO BAIK AND ZHIPENG LIU

1. INTRODUCTION

The models in the KPZ universality class are expected to have the 1:2:3 scaling
for the height fluctuations, spatial correlations, and time correlations as time ¢t —
0o. This means that the scaled two-dimensional fluctuation field

H(cyy(1t)2/3,7t) — (ca(rt) + c3(rt)?/3

(11) ht(’%T) = (1/3 )

Cy (Tt)

of the height function H(¢,t), where ¢ is the spatial variable and ¢ is time, is
believed to converge to a universal field which depends only on the initial condition.!

Here cq, c2, c3,cq4 are model-dependent constants. Determining the limiting two-
dimensional fluctuation field

(12) (’Y, T) = h(’Ya T) = tllglo ht(/% T)

is an outstanding question.

By now there are several results for the one-point distribution. The one-point dis-
tribution of h(v, 7) for fixed (v, 7) is given by random matrix distributions (Tracy-
Widom distributions) or their generalizations. The convergence is proved for a
quite long list of models including PNG, TASEP, ASEP, ¢-TASEP, random tilings,
last passage percolations, directed polymers, the KPZ equation, and so on. See,
for example, [1,2,6,26,41], and the review article [11]. These models were studied
using various integrable methods under standard initial conditions. See also the
recent papers [13,37] for general initial conditions.

The spatial one-dimensional process, v — h(v,7) for fixed 7, is also well un-
derstood. This process is given by the Airy process and its variations. However,
the convergence is proved rigorously only for a smaller number of models. It was
proved for the determinantal models like PNG, TASEP, last passage percolation,?
but not yet for other integrable models such as ASEP, ¢-TASEP, finite-temperature
directed polymers, and the KPZ equation.

The two-dimensional fluctuation field, (v, 7) — h(v,7), on the other hand, is less
well understood. The joint distribution is known only for the two-point distribution.
In 2015, Johansson [28] considered the zero temperature Brownian semidiscrete

Received by the editors October 18, 2017, and, in revised form, October 26, 2018.

2010 Mathematics Subject Classification. Primary 60K35; Secondary 82C22.

The first author was supported in part by NSF grants DMS-1361782, DMS-1664531, and DMS-
1664692, and the Simons Fellows program. The work was done in part when the second author
was at Courant Institute, New York University.
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610 JINHO BAIK AND ZHIPENG LIU

directed polymer and computed the limit of the two-point (in time and location)
distribution.? The limit is obtained in terms of rather complicated series involving
the determinants of matrices whose entries contain the Airy kernel. The formula is
simplified more recently in terms of a contour integral of a Fredholm determinant
in [29] in which the author also extended his work to the directed last passage
percolation model with geometric weights. Two other papers studied qualitative
behaviors of the temporal correlations. Using a variational problem involving two
independent Airy processes, Ferrari and Spohn [20] proved in 2016 the power law of
the covariance in the time direction in the large- and small-time limits, 71 /75 — 0
and 71 /75 — 1. Here, 71 and 75 denote the scaled time parameters. De Nardis and
Le Doussal [14] extended this work further and also, augmented by other physics
arguments, computed the similar limits of the two-time distribution when one of
the arguments is large. It is yet to be seen if one can deduce these results from the
formula of Johansson.

The objective of this paper is to study the two-dimensional fluctuation field of
spatially periodic KPZ models. Specifically, we evaluate the multipoint distribution
of the periodic TASEP (totally asymmetric simple exclusion process) and compute
a large-time limit in a certain critical regime.

We denote by L the period and by N the number of particles per period. Set
p = N/L, the average density of particles. The periodic TASEP (of period L
and density p) is defined by the occupation function 7;(t) satistying the spatial
periodicity:

(1.3) n;(t) =nj+c(t),  JE€Z, t=0.
Apart from this condition, the particles follow the usual TASEP rules.

Consider the limit as ¢,L,N — oo with fixed p = N/L. Since the spatial
fluctuations of the usual infinite TASEP is O(t2/3), all of the particles in the periodic

TASEP are correlated when t*/3 = O(L). We say that the periodic TASEP is in
the relazation time scale if

(1.4) t=O0(L*?).

If t < L?/?, we expect that the system size has negligible effect and, therefore, the
system follows the KPZ dynamics. See, for example, [5]. On the other hand, if
t > L3/2, then the system is basically in a finite system, and hence we expect the
stationary dynamics. See, for example, [15]. Therefore, in the relaxation time scale,
we predict that the KPZ dynamics and the stationary dynamics are both present.

Even though the periodic TASEP is as natural as the infinite TASEP, the one-
point distribution was obtained only recently. Over the last two years, in a physics
paper [36] and, independently, in mathematics papers [4,30], the authors evaluated
the one-point function of the height function in finite time and computed the large-
time limit in the relaxation time scale. The one-point function follows the KPZ
scaling O(t'/?) but the limiting distribution is different from that of the infinite
TASEP.# This result was obtained for the three initial conditions of periodic step,
flat, and stationary. Some earlier related studies can be found in physics papers

3There are non-rigorous physics papers for the two-time distribution of directed polymers
[16-18]. However, another physics paper [14] indicates that the formulas in these papers are not
correct.

4The formulas obtained in [4,30] and [36] are similar, but different. It is yet to be checked that
these formulas are the same.
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[15,21-24,32,33,35], including results on the large deviation and spectral properties
of the system.

In this paper, we extend the analysis of the papers [4,30] and compute the
multipoint (in time and location) distribution of the periodic TASEP with a special
initial condition called the periodic step initial condition. Here we allow any number
of points unlike the previous work of Johansson on the infinite TASEP. It appears
that the periodicity of the model simplifies the algebraic computation compared
with the infinite TASEP. In a separate paper we will consider flat and stationary
initial conditions. The main results are the following:

(1) For arbitrary initial conditions, we evaluate finite-time joint distribution
functions of the periodic TASEP at multiple points in the space-time coor-
dinates in terms of a multiple integral involving a determinant of size N.
See Theorem 3.1 and Corollary 3.3.

(2) For the periodic step initial condition, we simplify the determinant to a
Fredholm determinant. See Theorem 4.6 and Corollary 4.7.

(3) We compute the large-time limit of the multipoint (in the space-time coor-
dinates) distribution in the relaxation time scale for the periodic TASEP
with the periodic step initial condition. See Theorem 2.1.

One way of studying the usual infinite TASEP is the following. First, one com-
putes the transition probability using the coordinate Bethe ansatz method. This
means that we solve the Kolmogorov forward equation explicitly after replacing it
(which contains complicated interactions between the particles) by the free evo-
lution equation with certain boundary conditions. In [40], Schiitz obtained the
transition probability of the infinite TASEP. Second, one evaluates the marginal or
joint distribution by taking a sum of the transition probabilities. It is important
that the resulting expression should be suitable for the asymptotic analysis. This
is achieved typically by obtaining a Fredholm determinant formula. In [38], Rékos
and Schiitz rederived the famous finite-time Fredholm determinant formula of Jo-
hansson [26] for the one-point distribution in the case of the step initial condition
using this procedure. Subsequently, Sasamoto [39] and Borodin, Ferrari, Prahofer,
and Sasamoto [9] obtained a Fredholm determinant formula for the joint distribu-
tion of multiple points with equal time. This was further extended by Borodin and
Ferrari [7] to the points in spatial directions of each other. However, it was not
extended to the case when the points are temporal directions of each other. The
third step is to analyze the finite-time formula asymptotically using the method
of steepest-descent. See [7,9,26,39] and also a more recent paper [31]. In the
KPZ 1:2:3 scaling limit, the above algebraic formulas give only the spatial process
v = h(y, 7).

We applied the above procedure to the one-point distribution of the periodic
TASEP in [4]. We obtained a formula for the transition probability, which is a
periodic analogue of the formula of Schiitz. Using that, we computed the finite-
time one-point distribution for an arbitrary initial condition. The distribution was
given by an integral of a determinant of size N. We then simplified the determinant
to a Fredholm determinant for the cases of the step and flat initial conditions. The
resulting expression was suitable for the asymptotic analysis. A similar computation
for the stationary initial condition was carried out in [30].

In this paper, we extend the analysis of [4,30] to multipoint distributions. For
general initial conditions, we evaluate the joint distribution by taking a multiple
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612 JINHO BAIK AND ZHIPENG LIU

sum of the transition probabilities obtained in [4]. The computation can be reduced
to an evaluation of a sum involving only two arbitrary points in the space-time
coordinates (with different time coordinates). The main technical result of this
paper, presented in Proposition 3.4, is the evaluation of this sum in a compact
form. The key point, compared with the infinite TASEP [7,9,31], is that the points
do not need to be restricted to the spatial directions.® The final formula is suitable
for the large-time asymptotic analysis in relaxation time scale.

If we take the period L to infinity while keeping other parameters fixed, the
periodic TASEP becomes the infinite TASEP. Moreover, it is easy to check (see
Section 8 below) that the joint distributions of the periodic TASEP and the infinite
TASEP are equal even for fixed L if L is large enough compared with the times.
Hence, the finite-time joint distribution formula obtained in this paper (Theorem 3.1
and Corollary 3.3) in fact gives a formula of the joint distribution of the infinite
TASEP; see the equations (8.7) and (8.8). This formula contains an auxiliary
parameter L which has no meaning in the infinite TASEP. From this observation,
we find that if we take the large-time limit of our formula in the subrelaxation
time scale, t < L3/2, then the limit, if it exists, is the joint distribution of the
two-dimensional process h(v,7) in (1.2). However, it is not clear at this moment if
our formula is suitable for the asymptotic analysis in the subrelaxation time scale;
the kernel of the operator in the Fredholm determinant does not seem to converge
in the subrelaxation time scale while it converges in the relaxation time scale. The
question of computing the limit in the subrelaxation time scale, and hence the
multipoint distribution of the infinite TASEP, will be left as a later project.

This paper is organized as follows. We state the limit theorem in Section 2. The
finite-time formula for general initial conditions is in Section 3. Its simplification
for the periodic step initial condition is obtained in Section 4. In Section 5, we
prove Proposition 3.4, the key algebraic computation. The asymptotic analysis of
the formula obtained in Section 4 is carried out in Section 6, proving the result
in Section 2. We discuss some properties of the limit of the joint distribution in
Section 7. In Section 8 we show that the finite-time formulas obtained in Sections 3
and 4 are also valid for infinite TASEP for all large enough L.

2. LIMIT THEOREM FOR MULTIPOINT DISTRIBUTION

2.1. Limit theorem. Consider the periodic TASEP of period L with N particles
per period. We set p = N/L, the average particle density. We assume that the
particles move to the right. Let n;(t) be the occupation function of periodic TASEP:
n;(t) = 1 if the site j is occupied at time ¢, otherwise n;(t) = 0, and it satisfies the
periodicity n;(t) = n;4+(t). We consider the periodic step initial condition defined

by
1 for —-N+1<75<0,
(2.1) 0y(0) = {

0 for1<j<L-N,

and 7;4.(0) = 1;(0).

5In the large-time limit, we add a certain restriction when the rescaled times are equal. See
Theorem 2.1. The outcome of the above computation is that we find the joint distribution in terms
of a multiple integral involving a determinant of size N. For the periodic step initial condition,
we simplify the determinant further to a Fredholm determinant.
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FIGURE 1. The pictures represent the density profile at times t =
0,t= L, and t = 10L when p = 1/2. The horizontal axis is scaled
down by L.
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FIGURE 2. The pictures represent the limiting height function at
times ¢t = 0.5nL for n = 0,1,2,---. The left picture is when
p = 1/2 and the right picture is when p = 2/5. Both the horizontal
axis (location) and the vertical axis (height) are scaled down by L.

We state the results in terms of the height function
(2.2) h(p), where p = le; + tes = (¢,t) € Z x Rxq.

Here e; = (1,0) and e3 = (0,1) are the unit coordinate vectors in the spatial and
time directions, respectively. The height function is defined by

¢
=1
(2.3) h(le; + teg) = { 2Jo(t), {=0,
0
200(t) = Y (1—2n;(t)), £<-1,
j=0+1

where Jy(t) counts the number of particles jumping through the bond from 0 to 1
during the time interval [0, ¢]. The periodicity implies that

(2.4) h((¢ 4+ nL)e; + tes) = h(ley + tes) + n(L — 2N)

for integers n.

See Figure 1 for the evolution of the density profile and Figure 2 for the limiting
height function. Note that the step initial condition (2.1) generates shocks.’. By
solving the Burgers’ equation in a periodic domain, one could derive the explicit
formulas of the density profile, the limiting height function and the shock location.
These computations were done in [5].

We represent the space-time position in new coordinates. Let

(2.5) e.:=(1—2p)e; + e
6These shocks are generated when faster particles from the lower density region enter the

higher density region and are forced to slow down. See, for example, [12,19] for the study of
similar behaviors in infinite TASEP.
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L= (1-2p)t

space: /¢

(=(1-2p)t+1L

FIGURE 3. Illustration of the points p;, 7 =1,--- ,m, in the region R.

be a vector parallel to the characteristic directions. If we represent p = le; + tes
in terms of e; and e., then

(2.6) p = se; + teg, where s = £ — t(1 — 2p).
Consider the region

R:={le; +tes €Z xR5¢:0<{—(1—2p)t <L}

2.7
(2.7) ={se; +te. € Z xR>p:0<s <L}

See Figure 3. Due to the periodicity, the height function in R determines the height
function in the whole space-time plane.

The following theorem is the main asymptotic result. We take the limit as
follows. We take L, N — oo in such a way that the average density p = N/L is fixed,
or more generally p stays in a compact subset of the interval (0,1). We consider m
distinct points p; = s;e; + t;e. in the space-time plane such that their temporal
coordinate t; — oo and they satisfy the relaxation time scale t; = O(L?/?). The
relative distances of the coordinates are scaled as in the 1:2:3 KPZ prediction:
ti —t; = O(L*?) = O(t;), s, = O(L) = O(tf/?’), and the height at each point is
scaled by O(L/?) = O(tg/g).

Theorem 2.1 (Limit of multipoint joint distribution for periodic TASEP). Fix
two constants ¢y and co satisfying 0 < ¢; < cg < 1. Let N = Ny, be a sequence
of integers such that oL < N < coL for all sufficiently large L. Consider the
periodic TASEP of period L and average particle density p = pr, = N/L. Assume

the periodic step initial condition (2.1). Let m be a positive integer. Fiz m points
pj = (v5,75), j=1,---,m, in the region

(2.8) R:={(y,7) €eRxRsp:0<~y<1}.
Assume that

(2.9) T <Tg < < T
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MULTIPOINT DISTRIBUTION OF PERIODIC TASEP 615
Let p; = sje; +1t;e. be m points” in the region R shown in Figure 3, where
e; =(1,0) and e. = (1 — 2p, 1), with
L3/2

Ve(l=p)

(210) Sj = ’Yij tj =Tj
Then, for arbitrary fized x1, -+ , Ty € R,

: ~ [ h(p;) — (1 =2p)s; — (1 —2p +2p°)t;
< .
(2.11) ngr;OP ﬂ { —2p1/2(1 — p)1/2L1/2 =T

j=1
:F(xlv" ‘5 Tms P1, apm)a

where the function F is defined in (2.15). The convergence is locally uniform in
xj,Tj, and vj. If 7, = 41 for some i, then (2.11) still holds if we assume that
T < Tijy1-

Remark 2.2. Suppose that we have arbitrary m distinct points p; = (v;,7;) in R.
Then we may rearrange them so that 0 < 7 < --- < 7,,. If 7; are all different,
we can apply the above theorem since the result holds for arbitrarily ordered +;.
If some of the 7; are equal, then we may rearrange the points further so that z;
are ordered with those 7;, and use the theorem if x; are distinct. The only case
which is not covered by the above theorem is when some of the 7; are equal and
the corresponding x; are also equal.

The case when m = 1 was essentially obtained in our previous paper [4] (and
also [36]). In that paper, we considered the location of a tagged particle instead of
the height function, but it is straightforward to translate the result to the height
function.

Remark 2.3. We will check that F(z1,- - ,Zm;p1,- -, Pm) is periodic with respect
to each of the space coordinates y; in Subsection 2.2. By this spatial periodicity,
we can remove the restrictions 0 < «; <1 in the above theorem.

Remark 2.4. Since we expect the KPZ dynamics in the subrelaxation scale ¢; <
L3/2 we expect that the 7; — 0 limit of the above result should give rise to a result
for the usual infinite TASEP. Concretely, we expect that the limit

(2.12)

hH%) IF((7—17-)1/31‘15 R (TmT)l/Sxm; (71 (TlT)Q/Sv TIT)7 R (er(T’mT)2/3a TmT))
T—

exists and it is the limit of the multitime, multilocation joint distribution of the
height function $(s,t) of the usual TASEP with step initial condition,

m 2/3m2/3

T T 21T — T

(2.13) lim P () 207 — ) =7 < x;
_Tj/ T1/3

T—o00

j=1

In particular, we expect that when m = 1, (2.12) is Fgyg(x1 + v#/4), the Tracy-
Widom GUE distribution; we expect that when 71 = -+ = 7, (2.12) is equal
to the corresponding joint distribution of the Airys process [34] A2(v/2) — v2/4;

7Since p; should have an integer value for its spatial coordinate, to be precise, we need to
take the integer part of s; 4+ ¢;(1 — 2p) for the spatial coordinate. This small distinction does not
change the result since the limits are uniform in the parameters v;, 7;. Therefore, we suppress the
integer value notation throughout this paper.
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616 JINHO BAIK AND ZHIPENG LIU

and when m = 2, (2.12) is expected to match the two-time distribution
Fiwo-time(71/2, 1+ 72 /45 72/2, 20 +73 /4; 7'11/3(7'2 —71)~/3) obtained by Johansson
[28,29]. See also Section 8.

2.2. Formula of the limit of the joint distribution.
2.2.1. Definition of F.

Definition 2.5. Fix a positive integer m. Let p; = (;,7;) for each j =1,--- ,m,
where v; € R and
(2.14) 0<T << < Ty
Define, for zq,- -,z € R,
dz dz;
2.15 F SDq e —¢--- ¢ C(z)D mo, ..
( ) (xla s Tms P1, ;pm) f % (Z) (Z) 27T12’m 27Ti21 5
where z = (21, , zy,) and the contours are nested circles in the complex plane
satisfying 0 < |zp,| < -+ < |z1] < 1. Set x = (21, ,&m), T = (T4, , Tm),

and v = (71, ,¥m). The function C(z) = C(z;x,7) is defined by (2.21) and it
depends on x and 7 but not on 4. The function D(z) = D(z;x, 7,-) depends on
all x, 7, and =, and it is given by the Fredholm determinant D(z) = det(1 — K;Kj)
defined in (2.38).

The functions in the above definition satisfy the following properties. The proofs
of (P1), (P3), and (P4) are scattered in this section while (P2) is proved later in
Lemma 7.1.

(P1) For each i, C(z) is a meromorphic function of z; in the disk |z;| < 1. It has
simple poles at z; = z;41 fori=1,--- ,m — 1.

(P2) For each ¢, D(z) is analytic in the punctured disk 0 < |z;| < 1.

(P3) For each i, D(z) does not change if we replace v; by 7; + 1. Therefore, F is
periodic, with period 1, in the parameter ~; for each .

(P4) If 7, = 741, the function F is still well-defined for z; < x;11.

Remark 2.6. It is not easy to check directly from the formula that F defines a joint
distribution function. Nonetheless, we may check them indirectly. From the fact
that F is a limit of a sequence of joint distribution functions, 0 <F <1 and F is a
non-decreasing function of x for each k. It also follows from the fact that the joint
distribution can be majorized by a marginal distribution that F converges to 0 if
any coordinate xy — —oo since it was shown in (4.10) of [4] that the m = 1 case is
indeed a distribution function; see Lemma 7.5 below. The most difficult property to
prove is the consistency which F should satisfy as a coordinate x; — 4+00. We prove
this property in Section 7 by finding a probabilistic interpretation of the formula
of F when the z;-contours are not nested; see Theorem 7.3 and Proposition 7.4.

2.2.2. Definition of C(z). Let log z be the principal branch of the logarithm function
with cut R<g. Let Lis(z) be the polylogarithm function defined by

©  _k
z
2.16 Lig(z) =Y — f 1 and s € C.
(2.16) is(2) ;ks or |2/ <landsé€
It has an analytic continuation using the formula
o0 s—1
(2.17) Lis(z) = ﬁ/o ;—_Zdac for z € C\ [1,00) if R(s) > 0.
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Set
1 1

(2.18) Ai(z) = —\/%Lig/g(z), As(z) = —\/%Li5/2(2).

For 0 < |z|,|2'| < 1, set
(2.19)

(2. 2') 22 // nélog(—& +n) dg¢dp 1 Z 2R ()
(€2 —z)(e®2 —2)2mi2mi  4m S (k+ KWK

where the integral contours are the vertical lines R¢ = a and Ry = b with constants

a and b satisfying —y/—log|z| < a < 0 < b < /—1log|z|. The equality of the

double integral and the series is easy to check (see (9.27)—(9.30) in [4] for a similar
calculation). Note that B(z,z") = B(z2',z). When z = 2/, we can also check that

2
1 [* (Liya(y))
2.20 B =B = — =" dy.
(220) (2)i= B = o [ 2Ly
Definition 2.7. Define
o - < . ere )t da(z) 2B(z¢)—2B(ze+1,2¢)
(2.21) C(Z) B H e — Z€+1‘| Ll_[1 eTeA1(ze41)+TeA2(2e41) ¢ o

where we set zp,41 := 0.

Since A1, As, B are analytic inside the unit circle, it is clear from the definition
that C(z) satisfies property (P1) in Subsubsection 2.2.1.

2.2.3. Definition of D(z). The function D(z) is given by a Fredholm determinant.
Before we describe the operator and the space, we first introduce a few functions.
For |z| < 1, define the function

(2.22) h(¢,z) = — Liy /o (ze(CQ*yQ)/Q)dy for R(¢) <0

1
V2T
and

(2.23) h(C,2) = —

—<
\/LQ_T(‘ . Liy /o (ze(<27y2)/2)dy for R({) >0
The integration contour lies in the half-plane R(y) < 0, and is given by the union of
the interval (—oo, R(£()] on the real axis and the line segment from R(+() to +C.
Since |ze(C v )/2| < 1 on the integration contour, Lll/g(ze( - )/2) is well-defined.
Thus, we find that the integrals are well-defined using Li; /o(w) ~ w as w — 0.
Observe the symmetry

(2.24) h(¢,z) = h(=(,2) for R(¢) <0
We also have
 Jog(1 — ze**/?) d
(2.25) h(C,2) = /_ - Og(Tzz)z—; for R(C) < 0

This identity can be obtained by the power series expansion and using the fact
that —f e’ 2dw = I D o oy with arg(u) € (3w/4,5m/4);

—ioco w—u 27i
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FIGURE 4. The pictures represent the roots of the equation
e=¢"/2 = 7 (dots) and the contours R(¢2) = —2log |z| (solid curves)
for z = 0.05¢',0.4¢',0.8¢', from the left to the right.

see (4.8) of [4]. From (2.24) and (2.25), we find that
(2.26) h(¢,2) =O0(¢™') as ¢ — oo in the region ‘arg(@) + g‘ > €

for any fixed z satisfying |z| < 1.
Let x, 7, and ~ be the parameters in Definition 2.5. We set

e 3 (TimTic)¢ 5 (vi—yi—1) (@i —wio1)¢ for R(¢) < 0,

(2.27) fi(C) = {

e%(Ti_Ti—1)<3_%(')’i_'y'i—l)g2_(xi_mi—l)< for %(C) >0

fori=1,---,m, where we set 7p = vy = x¢p = 0.

Now we describe the space and the operators. For a non-zero complex number
z, consider the roots ¢ of the equation e=¢*/2 = 2. The roots are on the contour
R(¢%) = —2log|z|. Tt is easy to check that if 0 < |z| < 1, the contour R(¢?) =
—2log |z| consists of two disjoint components, one in (¢) > 0 and the other in
R(¢) < 0. See Figure 4. The asymptotes of the contours are the straight lines of
slope 1. For 0 < |z| < 1, we define the discrete sets

L.:={CeC:e /2 =2} n{R(C) <0},

(2.28) .
R.:={CeCrem /2 =2} {R() > 0}
For distinct complex numbers zy, - - - , 2, satisfying 0 < || < 1, define the sets
R if m is even
2.29 S;:=L, UR, UL, U---U{ = )
( ) 1 zZ1 22 z3 {Lzm i m s 0dd7
and
(2.30) S, —R. UL. UR. U...u4Lem ifmiseven,
. o - - R., if mis odd.

See Figure 5. Now we define two operators
(231) Ky : 82(52) — 52(51), Ks : 62(51) — 62(52)
by kernels as follows. If

(2.32) ¢e(L,UR,;)NSyand ¢ e (L;, UR,,)NS;
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| R S S

FIGURE 5. Example of S; (black dots) and S, (white dots) when
m = 3. The level sets are shown for visual convenience.

for some 7,5 € {1,--+ ,m}, then we set

(2.33)
f,(Oe?h(C,zi)—h(in_(_l)i)—h(C’vzj,(,Uj)

Ki(¢¢) = (0i(7) +6:(G + (1))~ = Q1(4)-
Similarly, if
(2.34) ¢e(L, UR,)NSyand ¢ € (L;, UR.;)NS;
for some i,5 € {1, -+, m}, then we set
(2.35)

Qs ) HC )
Ka(C,¢') = (8:(5) + 6. (G — (~1)")) 0 Q()-

Here the delta function ¢;(k) = 1 if k = ¢ or 0 otherwise. We also set 29 = 2,41 =0

so that

(2.36) e"(Cm0) = emh(GEmin) = 1

and the functions Qi (j) and Qz(j) are defined by

(2.37) Ql(j)zl_w and QQ(j):l_M'
Zj Zj

Definition 2.8. Define

(2.38) D(z) := det (1 — K;K3)

for z = (21, -, #m), where 0 < |z;| < 1 and z; are distinct.

In this definition, we temporarily assumed that z; are distinct in order to ensure
that the term ¢ — ¢’ in the denominators in (2.33) and (2.35) does not vanish.
However, as we stated in (P2) in Subsubsection 2.2.1, D(z) is still well-defined
when the z; are equal. See Lemma 7.1.

The definition of L, and R, implies that |arg(¢)| — 37/4 as || — oo along
¢ €L, and |arg(¢)| — /4 as || — oo along ¢ € R,. Hence, due to the cubic
term ¢ in (2.27), f;(¢) — 0 super exponentially as |¢| — oo on the set L, UR, if
71 < -+ < T;n. Hence, using the property (2.26) of h, we see that the kernels decay
super-exponentially fast as |C|,|¢’| — oo on the spaces. Therefore, the Fredholm
determinant is well-defined if 71 < -+ - < 7p,.
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620 JINHO BAIK AND ZHIPENG LIU

We now check property (P4). If 7, = 7,41, the exponent of f; has no cubic term
(3. The quadratic term contributes to O(1) since |e=¢*/2| = |z]| for ¢ € L., UR.,,
and hence |ec<2| = O(1). On the other hand, the linear term in the exponent
of f; has a negative real part if x; < x;11. Hence, if 7; = 7,41 and z; < x;41,
then |f;(¢)| — 0 exponentially as { — oo along ¢ € S; US, and hence the kernel
decays exponentially fast as |(|,|¢’| — oo on the spaces. Therefore, the Fredholm
determinant is still well-defined if 7; = 7,41 and x; < x;41. This proves (P4).

2.3. Matrix kernel formula of K; and K. Due to the delta functions, Ky (¢, ")
# 0 only when

(2.39) (€ls, ,UR,, and ' €R,,, , UL,,,
for some integer ¢, and similarly K»(¢,¢’) # 0 only when
(2.40) ¢el.,,UR,,,  and (' €R;, UL,,,,

for some integer £. Thus, if we represent the kernels as m x m matrix kernels, then
they have 2 x 2 block structures.

For example, consider the case when m = 5. Let us use &; and 7; to represent
variables in L,, and R,,, respectively:

(241) gl € in, n; € Rz7
The matrix kernels are given by

k(§1,m)  k(&1,62)
k(nz2,m) k(n2,&2)
(2.42) Ky = k(§3,m3)  k(&3,84)
k(n4,m3)  k(n4,&4)
k(&s,ms5)

and

k(7717§1)
k(§2,m2)  k(§2,83)
(2.43) Ko = k(ns,n2) k(ns,8&3) ;
k(€a,m4)  k(64,65)
k(ns,m4)  k(ns,85)

where the empty entries are zeros and the function k is given below. When m is
odd, the structure is similar. On the other hand, when m is even, K; consists only
of 2 x 2 blocks and K, contains an additional non-zero 1 x 1 block at the bottom
right corner.

We now define k. For 1 <i < m — 1, writing

(2.44) E=8&, n=mn, & =&, 10 =41,
we define
(2.45)
, e2h(&,25) 1 1
k(€m) k(&€ q _ {fi(ﬁ) ] E {5— ﬁ]
k(n'sm)  k(',€) fira(n') % Ton T

1 1— Zit1
h(n,2; —
x| € (n,2;41) L |: 24 1 :| .
eh(&”,2;) Zit1
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This means that

e2h(&i,zi) 1 1 Zig1
(2.46) k(& mi) = fi(&)&eh(gi,ziﬂ) & D (1 - ) ;
th({,‘,,z,;) 1 1 Z
(247) k(§ia€i+1) = fi(fi)gieh(gi’ziJrl) gl _ £i+1 eh(fi+1azi) (1 - Zi+1) 3

and so on. The term k(&,,, n,,) is defined by the (1,1) entry of (2.45) with i = m,
where we set 2,11 = 0. The term k(n;, &) is defined by the (2,2) entry of (2.45)
with 7 = 0, where we set zy = 0.

2.4. Series formulas for D(z). We present two series formulas for the function
D(z). The first one (2.52) is the series expansion of Fredholm determinant using
the block structure of the matrix kernel. The second formula (2.53) is obtained
after evaluating the finite determinants in (2.52) explicitly.

To simplify formulas, we introduce the following notation.

Definition 2.9 (Notational conventions). For complex vectors W = (wy, -+ ,wy,)
and W = (w},--- ,w/,), we set

(248)  AW) = [ J(w; — w;) = det [WZ”} cAWW) = T (wi —w).
i<j 1<i<n
1<i'<n/

For a function h of single variable, we write
(2.49) h(W) = ] i(wi).

We also use the notation

(2.50) AS;S) =T (s=5) £ =]] fs)
sES seS
s'es’

for finite sets S and S’.

The next lemma follows from a general result whose proof is given in Subsec-
tion 4.3 below.

Lemma 2.10 (Series formulas for D(z)). We have

(2.51) D) = 3 nl Da(2)

ne(Zso)™

with n! = [[,2, ng! for n = (nq,--- ,ny), where Dy(z) can be expressed in the
following two ways.
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622 JINHO BAIK AND ZHIPENG LIU

(i) We have, forn = (ny, -+ ,Nm),
n In]
(252)  Da(z)= (-1 >~ det [Ka(G, ()]}, det [Ka(¢h G
U (L, )me
V(”G(Rzl)"f
l=1,---,m

where U= (UM, UMy V= (VD o V) with UO = (ul? - ull)),

v = (vg), e v%)), and where
(2.53)
i ngf) ifi=n1+ - +ne_1+k for some k < ng with odd integer ¢,
! V,(f) ifi=n1+ - +ne_1+k for some k < ng; with even integer ¢,
and
(2.54)
y V,(f) ifi=mny+---+ng_1+k for some k < ny with odd integer ¢,
! u,(f) ifi=mn1+ - +ng_1+k for some k < ny with even integer £.

Here, we set ng = 0.
(ii) We also have

(2.55) Dn(z)= Y  dnz(U,V)

U e(L,, )™
V(R
=1,
with
(2.56)
T AU® 2A( )2 R
nZUV: fU(ffv(l
H AV UV )
m (U(é Z 1))A(V(£);U(Zfl))efh(v(lf)’Zz_l),h(v(l—l)’w)
x zl_[ A(U®; Y- 1))A(v(f);v(é—l))eh(U“>,z471)+h(U<H>,zn
(-2) (-5) ]
¢ Ze-1 ’
where
- 1
(2.57) f0(0) := sz(C)ezh(c’Z£)~

Recall (2.22), (2.23), and (2.27) for the definition of h and f;.

Property (P3) in Subsubsection 2.2.1 follows easily from (2.56). Note that ~;
only appears in the factor fy(U@)f,(V®) for £ = i or i + 1. If we replace v; by
;i +1, then f;(¢) and f;41 () are changed by z; 'f;(¢) and 2;41fi+1(¢) if R(¢) < 0, or
by zf;(¢) and z;rllfl+1(§) if R(¢) > 0. But U®) has the same number of components
as VO for each ¢. Therefore fg(U(Z))Fg(V(Z)) does not change. We can also check
(P3) from the original Fredholm determinant formula.

The analyticity property (P2) is proved in Lemma 7.1 later using the series
formula.
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3. JOINT DISTRIBUTION FUNCTION FOR THE GENERAL INITIAL CONDITION

We obtain the limit theorem of the previous section from a finite-time formula of
the joint distribution. In this section, we describe a formula of the finite-time joint
distribution for an arbitrary initial condition. We simplify the formula further in
the next section for the case of the periodic step initial condition.

We state the results in terms of particle locations instead of the height function
used in the previous section. It is easy to convert one to another; see (6.5). The
particle locations are denoted by x;(t), where

(3.1) < xo(t) < xp(t) < xot) <--- .

Due to the periodicity of the system, we have x;(t) = x;1,n(t) —nL for all integers
n.

The periodic TASEP can be described if we keep track of N consecutive particles,
say x1(t) < -+ < xn(t). If we focus only on these particles, they follow the usual
TASEP rules plus the extra condition that xn(t) < x;(¢) + L for all ¢. Define the
configuration space

(3.2) An(L) = {(x1,22, - ,zN) €N ir <wo < <ay <1 +L}.

We call the process of the N particles TASEP in Xn(L). We use the same notation
x;(t), ¢ =1,--- , N, to denote the particle locations in the TASEP in Xn(L). We
state the result for the TASEP in Xy (L) first and then for the periodic TASEP as
a corollary.

For z € C, consider the polynomial of degree L given by

(3.3) ¢.(w) = w™ (w4 )N — 2L,
Denote the set of the roots by
(3.4) R.={weC:q.(w) =0}

The roots are on the level set [w™ (w+1)L=N| = |z|F. Tt is straightforward to check
the following properties of the level set. Set

(3.5) ro = pP(1 — p)'=*,

where, as before, p = N/L. The level set becomes larger as |z| increases; see
Figure 6. If 0 < |z] < g, the level set consists of two closed contours, one in
R(w) < —p enclosing the point w = —1 and the other in R(w) > —p enclosing the
point w = 0. When |z| = 1o, the level set has a self-intersection at w = —p. If
|z] > 1o, then the level set is a connected closed contour. Now consider the set
of roots R,. Note that if z # 0, then —1,0 ¢ R,. It is also easy to check that
if a non-zero z satisfies 2z # r}, then the roots of ¢,(w) are all simple. On the
other hand, if 2% = r}, then there is a double root at w = —p and the remaining
L — 2 roots are simple. For the results in this section, we take z to be any non-zero
complex number. But in the next section, we restrict 0 < |z| < ro.

Theorem 3.1 (Joint distribution of TASEP in Xy (L) for the general initial condi-
tion). Consider the TASEP in Xn(L). LetY = (y1,--- ,yn) € Xn(L) and assume
that (x1(0),--- ,xn(0)) =Y. Fiz a positive integer m. Let (ki,t1), -+, (km,tm)
be m distinct points in {1,--- N} x [0,00). Assume that 0 <t < -+ < t,,. Let
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0.5 0.5 0.5

0.0 O 0.0 0.0

-1.5 -1.0 -0.5 0.0 -15 -1.0 -0.5 0.0 -15 -1.0 -0.5 0.0

FIGURE 6. The pictures represent the roots of the equation
w¥ (w + 1)L~ = 2L and the contours |w™ (w + 1)E=N| = |2|L
with N = 8, L = 24 for three different values of z. The value of
|z| increases from the left picture to the right picture. The middle
picture is when z = p?(1 — p)'=*, where p = N/L = 1/3.

a; €Z for1 <i<m. Then

Py (xk, (t1) > a1, -+ Xk, (tm) > am)
3.6 dzp, d
(3.6) f j{Cszyzkat) %1,
27z, 2mizy
where the contours are nested circles in the complex plane satisfying 0 < |z,| <
- < |z1]. Herez = (21, ,2m), k = (k1, -+ ,km), a = (a1, -+ ,am), and t =
(t1,- -+ ,tm). The functions in the integrand are
m 2 L N-1
(3.7) C(z,k) = (— )(k m—1)(N+1) (kl—l)LH [Zékeke—l)L<< 4 > _1> ‘|
Ze—1
(=2
and
N
i 1 Yi—1 7' m
(3.8) Dy (z,k,a,t) = det Z wi (w1 + Ge(wy)

w1 ER 2, Hl 2(w£_w€ 1 =1
wmeRzm i,j=1
with
w(w+1 wke (w4 1) e thegtew
(39) Gow) = Wt D) v twd 7Rt

L(U) + p) w 271(w + 1) ag_1+ke—1pte—1w

where we set tg = kg = ag = 0.

Remark 3.2. The limiting joint distribution F in the previous section was not de-
fined for all parameters: when 7; = 7,41, we need to put the restriction z; < z;41.
See property (P4) in Subsubsection 2.2.1. The finite-time joint distribution does not
require such restrictions. The sums in the entries of the determinant Dy (z,k, a, t)
are over finite sets, and hence there is no issue with the convergence. Therefore,
the right-hand side of (3.6) is well-defined for all real numbers ¢; and integers a;
and k;.

Corollary 3.3 (Joint distribution of periodic TASEP for the general initial condi-
tion). Consider the periodic TASEP with a general initial condition determined by
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Y = (y1,--- ,yn) € An(L) and its periodic translations; xj1,n(0) = y; + nL for
allneZ and j=1,--- ,N. Then (3.6) holds for all k; € Z without the restriction
that k; € {1,--- ,N}.

Proof. The particles in the periodic TASEP satisfy x;,n(t) = x;(t) +nL for every
integer n. Hence if k; is not between 1 and N, we may translate it. This amounts
to changing k, to k; + nN and ay to ay + nL for some integer n. Hence it is
enough to show that the right-hand side of (3.6) is invariant under these changes.
Under these changes, the term C(z,k) is multiplied by the factor 2V Lz[le Lot
1</ <m-—1and by 2Nl if { = m. On the other hand, Gy(w,) produces the
multiplicative factor w, ™ (w, + 1)7"5*+"N swhich is 2, ™* by (3.4). Taking this
factor outside the determinant (3.8), we cancels out the factor z;V* from C(z, k).

Similarly Gyy1(wey1) produces a factor which cancel out zZJr”lNL ifl1<i<m-1. O

Before we prove the theorem, let us comment on the analytic property of the
integrand in the formula (3.6). The function C(z,k) is clearly analytic in each
z¢ # 0. Consider the function Dy (z,k, a,t). Note that

(3.10) =) = T

Hence, if F(w) is an analytic function of w in C\ {—1,0} and
fw) = F(w)w™ (w+1)*7,

w (w+ 1),

then
(w+1)
Fw)ZX T2
(3.11) wEZRZ Liw+e)
1 w1 fw) L dw)
2mi |w|=r 9z (w) 2mi |lw+1]|=€1 qz(w) 2mi |w|=e2 qz(w)

for any €1,e2 > 0 and r > max{e; + 1,2} such that all roots of ¢.(w) lie in the
region {w : €2 < |w| < r,Jw+ 1| > €1}. Note that g,(w) is an entire function of z
for each w. Since we may take r arbitrarily large and €7, €5 arbitrarily small and
positive, the right-hand side of (3.11) defines an analytic function of z # 0. Now
the entries of the determinant in (3.8) are of the form

ik ’wg(’wg + 1)
(3.12) > F(wy,wn) [[ 77—
w1 ER~, i Lwe+p)
wwnéﬁ}zz-m
for a function F'(wy,--- ,wy,) which is analytic in each variable in C\ {—1,0} as
long as wp # wy_q for all £ = 2,--- 'm. The last condition is due to the factor

[T/ 5(we — we—1) in the denominator. Note that if w, = we_1, then z; = zp_1.
Hence by using (3.11) m times, each entry of (3.8), and hence Dy (z,k, a, t), is an
analytic function of each z; # 0 in the region where all z, are distinct.

When m = 1, the product in (3.7) is set to be 1 and the formula (3.6) in this
case was obtained in Proposition 6.1 in [4]. For m > 2, as we mentioned in the
Introduction, we prove (3.6) by taking a multiple sum of the transition probability.
The main new technical result is a summation formula and we summarize it in
Proposition 3.4 below.
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The transition probability was obtained in Proposition 5.1 of [4]. Denote by
Px(X';t) the transition probability from X = (z1,---,2n) € Xn(L) to X' =
(@, ,2y) € Xn(L) in time ¢,

1 Z wj*iJrl(w_’_l)*IéJrIjJri*jetw N dz

(3.13) IP’X(X';t):?{det 7

w+p 27iz’

wWER . i,j=1

where the integral is over any simple closed contour in |z| > 0 which contains 0
inside. The integrand is an analytic function of z for z # 0 by using (3.11).

Proof of Theorem 3.1. It is enough to consider m > 2. It is also sufficient to

consider the case when the times are distinct, t; < --- < t,,,, because both sides
of (3.6) are continuous functions of ¢y, - ,t,,. Note that (3.8) involves only finite
sums.

Denoting by X = (acgz), e (Z)) the configuration of the particles at time ¢,
the joint distribution function on the left-hand side of (3.6) is equal to
(3.14)

]P)y(X(l); t1)]P)X(1) (X(Q), tg - tl) s I[DX(m,—l) (X(m); tm - tm—l)-
X(“EXN(L)Q{:E“’)>W}
=1,

Applying the Cauchy-Binet formula to (3.13), we have

dz
/. pr— .
(3.15) Py (X';4) _j{ S Lx(W)Rx (W)QW: 1)
wWe(RHY
where, for W = (wy,--- ,wn) € C,
(3.16)
N ) , . AN
Lx(W) = det [ I (w; + 1) J} , Ry (W) = det [w?(wi 4 1) ,
1,j=1 i,5=1
and
1 t)
(3.17) Q(W;t) N'LN H s

Here the factor N! in the denominator comes from the Cauchy-Binet formula; it
will eventually disappear since we will apply the Cauchy-Binet identity backward
again at the end of the proof.

We insert (3.15) into (3.14) and interchange the order of the sums and the
integrals. Assuming that the series converges absolutely so that the interchange is
possible, the joint distribution is equal to

(3.18)
7{ dz f dzm Z P(W(l),-“ ,W(m)ﬁQ(W(D;tg—teq),
2mizy 2z, WO e Y P
W E(R.,, )Y
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¢ ¢
where W) = (wg ), e w§v)) and

PWO ... wim)

(3.19) y (WD) 1—[%%&Z WO, )y ] { Z Rxc(W ]

XeXn(L)
Thypy = Am
Here we set
(3.20) Hpa W; W) 1= > Rx(W)Lx (W)
XEXN(L)ﬁ{aZkZQ}
for a pair of complex vectors W = (w1, ,wn) and W’ = (w{,--- ,w}). Let us

now show that it is possible to exchange the sums and integrals if we take the z;-
contours properly. We first consider the convergence of (3.20) and the sum in (3.19).
Note that, shifting the summation variable X to X — (b,--- ,b),

> Rx(W)Lx (W)

XeXn(L)Nn{z,=b}
(3.21) b

/

, N w; +1
= > Reeym)| T 2
j=1"

YeXn(X)N{yr=0}

The right-hand side of (3.20) is the sum of the above formula over b > a. Hence
w41
w;Jrl
is in a compact subset of [0, 1). Similarly, the sum of R x (W (™) in (3.19) converges

if H§V=1 \w§-m) + 1| > 1. Therefore, (3.19) converges absolutely if the intermediate

(3.20) converges absolutely and the convergence is uniform for w;, w;, if vazl ’

variables W) = (wy), e ,w%)) satisfy
N N N

(3.22) [T + 10> I 1l + 1) > - > [T ™ +1] > 1.
e , i

We now show that it is possible to choose the contours of z; so that (3.22) is
achieved. Since W) € (R_,)V, wy) satisfies the equation [w™ (w + 1)E=N| = |2F].
Hence |w](.€)| = |z;| + O(1) as |z;| — oco. Therefore, if we take the contours |z¢| = 7,
where 71 > -+ > 1, > 0 and ry — 7p41 are large enough (where 7,11 := 0),
then (3.22) is satisfied. Thus, (3.20) and the sum in (3.19) converge absolutely. It
is easy to see that the convergences are uniform. Hence we can exchange the sums
and integrals, and therefore, the joint distribution is indeed given by (3.18) if we
take the contours of z; to be large nested circles.

We simplify (3.18). The terms Hg, q, (W WEHD) are evaluated in Proposi-
tion 3.4 below. Note that since the z;-contours are the large nested circles, we
have (3.22), and hence the assumptions in Proposition 3.4 are satisfied. On the
other hand, the sum of Rx (W (™) in (3.18) was computed in [4]. Lemma 6.1 in [4]
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628 JINHO BAIK AND ZHIPENG LIU

implies that for W = (wl, L wy) €RY,
Z Ry (W) = (—1) =D+ (k=D)L
XeXn(L)
323

N
- H(wj + 1)t H w; Flwj +1)7¢FF 1] det [wj_l]j\;:l .
j=1

Hence, from the geometric series, for W = (wy,--- ,wy) € RY,

> Rx(W

XeXn (L)
T >a

(3.24) N
= (=1)k= DN+ (k-1)L H Flwj 4+ 1)7 | det [w;i]?’j:l

if H;vzl |w; + 1] > 1. The last condition is satisfied for W = W (™). We thus find
that (3.19) is equal to an explicit factor times a product of m — 1 Cauchy determi-
nants times a Vandermonde determinant. By using the Cauchy-Binet identity m
times, we obtain (3.6) assuming that the z;-contours are large nested circles.
Finally, using the analyticity of the integrand on the right-hand side of (3.6),
which was discussed before the start of this proof, we can deform the contours of
z; to any nested circles, not necessarily large circles. This completes the proof. O

The main technical part of this section is the following summation formula. We
prove it in Section 5.

Proposition 3.4. Let z and 2’ be two non-zero complex numbers satisfying z* #
(L. Let W = (w1, ,wn) € (RN and W' = (w), - ,wly) € (R.)N. Suppose
that vazl | +1] < H;VZI |wj +1]. Consider Hy o (W;W') defined in (3.20). Then
for any 1 <k < N and integer a,

(3.25)
Hio(W; W)
T\ z e (wf)~F(w) + 1)—a+k ¢ Wi = Wi |y

4. PERIODIC STEP INITIAL CONDITION
We now assume the following periodic step condition:
(4.1) Xitnn(0)=i—N+nL for 1 <i< N and n € Z.

In the previous section, we obtained a formula for general initial conditions. In
this section, we find a simpler formula for the periodic step initial condition which
is suitable for the asymptotic analysis. We express Dy (z,k,a,t) as a Fredholm
determinant times a simple factor. The result is described in terms of two functions
C(z) and D(z). We first define them and then state the result.

Throughout this section, we fix a positive integer m, and fix parameters ky, - - -
Km, @1, ,Qm, t1,- -+ ,t;m as in the previous section.

)
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4.1. Definitions. Recall the function ¢, (w) = w™ (w + 1)¥=N — 2L for complex 2
n (3.3) and the set of its roots

(4.2) R, ={weC:q,(w)=0}

n (3.4). Set

(4-3) ro:=p’(1-p)'"",  p=N/L,

as in (3.5). We discussed in the previous section that if 0 < |z| < r¢, then the
contour |g,(w)| = 0 consists of two closed contours, one in f(w) < —p enclosing

the point w = —1 and the other in R(w) > —p enclosing the point w = 0. Now, for
0 < |z] < o, set

(4.4) L,={weR,: R(w) < —p}, R, ={weR,: R(w)>—p}.

It is not difficult to check that

(4.5) L=L-N, |R|=N

See the left picture in Figure 6 in Section 3. (Note that if z = 0, then the roots

are w = —1 with multiplicity L — N and w = 0 with multiplicity N.) From the
definitions, we have

(4.6) R, =L,UR..

In Theorem 3.1, we took the contours of z; as nested circles of arbitrary sizes.
In this section, we assume that the circles satisfy

(4.7 0<|zm| <--- <]z < ro.

Hence L., and R, are all well-defined.

We define two functions C(z) and D(z) of z = (21, - ,2m), both of which
depend on the parameters k;,t;,a;. The first one is the following. Recall the
notational convention introduced in Definition 2.9. For example, A(R,;L,) =

HveRz HUELZ (v—wu).
Definition 4.1. Define

m By ] [ Taer, (-0 Taen,, (0 + )
Cle) = LH Ezfi(i)z)] lH : ;

(=1 A(RZZ;LZZ)

(4.8) : )

" AR, L., ,

X )

}TQ B ] lH Mocr,, (0" Myer,, (v + 1>L—N]
where
(4.9) Ei(z) == [ (~wh N7 [ (w4 1) mthiNeto

u€eLl, vER,

fori=1,---,m, and Eq(z) := 1.

L
It is easy to see that all terms in C'(z) other than [;~, - T —r are analytic for
-1
21, , Zm within the disk {z;|z| < r¢}. Hence C(z) is analytlc in the disk except
for the simple poles when 2} | = 2f, £ =2,--- ,m.
We now define D(z). It is given by a Fredholm determinant. Set
Fl(w) = w—kH—N-&-l(w + 1)—(li+k’i—Neti'w for i = 1, ,m,

(4.10) Fo(w) := 1.
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630 JINHO BAIK AND ZHIPENG LIU

FIGURE 7. Example of S; and So when m = 3. The black dots are
S;1 and the white dots are So. The level sets are shown for visual

convenience.

Define

FFZ(?};) for R(w) < —p,
(4.11) filw) =y (w

Fi(w) for R(w) > —p
Also, set
w(w + 1)

4.12 J =

Define, for 0 < |z| < ro,

@13) L) = gy [Jw-w. nw) = op [[w-u.
ueER,

uel,
N L-N_,L
Note that 1, (w)r,(w) = (er‘l];ngva = ww(ﬁarulll)L_N . Set
1 (w) for R(w) > —p,
4.14 H.(w) =
(4.14) (w) {rz(w) for R(w) < —p.

When z = 0, we define 1, (w) =r,(w) = 1 and hence H,(w) = 1.
Define two sets

L. if m is odd,
(4.15) S1:=L, UR,,UL,,U---U 1 m TS ©
R, if m is even,
and
R, ~ if mis odd,
(4.16) Se:=R,, UL, UR,, U---U 1 mn %S ©
L., if miseven.
See Figure 7. We define two operators
(417) Ky : 62(82) — 62(81)7 K> : f2(51) — fz(SQ)
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by kernels. If w € R., NSy and w’ € R, NS, for some 4, j € {1, ,m}, we set

(4.18)
, , , ; J(w) fi(w)(H, (w))? ,
Ki(w,w') = (6:(5) + 6:(j + (=1)")) o ~ Q1))
e H. _ (wH,__ (w)w—w)
Similarly, if w € R., NSy and w’ € R.; NS, for some 4, j € {1,--- ,m}, we set
(4.19)
, : , ; J(w) fi(w) (H., (w))? ,
Ky (w,w') = (6:(j) + 6i(j — (=1)")) s 7~ Q2(7)
ne et @ s @ =)

Here we set 2y = 2,41 = 0. We also set
\L ' AL
(4.20) Q(j) =1~ (M> . Qi) i=1-— (M)
Zj Zj
Definition 4.2. Define
(4.21) D(z) = det(I — K1 K5).

Remark 4.3. The matrix kernels for K7 and K5 have block structures similar to the
infinite-time case discussed in Subsection 2.3. The only change is that k is replaced
by k which is given as follows. For

(4.22) u€L,, v E€R,,, u' el v eR.,,,,
we have
(4.23)
Fi(u) _u(utrs, (w?
k(u,v) k(u,ul) _ J ) L(u+p)rzi+1(u)
ko' v) k(o) () VDL, )
P @) T
L
1 1 1 1 — Zitt
% |:u1'u uiu’ :| 12¢+1 (v) 1 Zf‘ L
v —v v —u’ rz, (u') 1- Z_Ll
i1

As in Subsection 2.4, the above Fredholm determinant also has two series for-
mulas. The proof of the following lemma is given in Subsection 4.3.

Lemma 4.4 (Series formulas of D(z)). We have

1
(4.24) D(z) = CIE Dy (z)
ne(Zxzo)™
with n! = TT,;~, ne! form = (n1,--+ ,nm) and Dy(z) can be expressed in the follow-

ing two ways. Here we set Dy(z) = 0 if one of ng is larger than N.
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(a) We have
(4.25
Da(zr,yzm) = (DI ST det [Ky (w, w;)]Lf‘j‘:l det [Ks (w), w))|"_
U(l)e(LZZ)ng
V(Z)E(Rzz)ng
=1, ,m
where U= (UM ... UMY V=D ... V) uigh UO =P ... ),
v = (u@, e ,vy(f;)), and where
(4.26)
ugf) ifi=mn1 4+ -+ ne_1+k for some k < ng with odd integer ¢,
w; =
v,(f) ifi=mn1 4+ -+ ne_1+k for some k < ng with even integer £,
and
(4.27)
, v,(f) ifi=ni4+---+ng_1+k for some k < ny with odd integer ¥,
wi -
ugf) ifi=ni4+---+ne_1+k for some k < ny with even integer £.
(b) We have
(4.28)
m
(AU ANVD))? 2 o7 o)
Dn()= " 3 lH B, voyz SV V)
U e(L,,)me Le=1 ’
VO eR,, )"
l=1,---.m
L
m A(UO; VEDA VO, UE-D) (1 — %)nu(l _ ZT;)W
X

AU, U ANVE; VED)r,_ (U0, (UED)L, (V)L (VED) |

where

J(w)Fff(ﬁl)u) (rz(w)®  forw e L,

f =J(w w w Z=
(429) fulw) = J(w) i(w)(He, (w) {J(w)pézéi?)(lzz(w))z forwe k.

Remark 4.5. From (4.28), we can check that Dy(z) is analytic for each z¢ in 0 <
|z¢| < rp, 1 <€ <'m, just like D(z) of Section 2. The proof for D(z) is in Lemma 7.1.
The proof for Dy, (z) is similar, and we skip it.

4.2. Result and proof.

Theorem 4.6 (Joint distribution of TASEP in X (L) for the step initial condition).
Consider the TASEP in Xy (L) with the step initial condition x;(0) =i — N, 1 <
i < N. Set p = N/L. Fiz a positive integer m. Let (k1,t1), -+, (km,tm) be m
distinct points in {1,--+ ,N} x [0,00). Assume that 0 <t; <--- <t,,. Let a; €Z
for 1 <i<m. Then

(430) B, (1) 2 a1, 50, (tn) 2 an) = § oo+ § Cl@)D(2)

where z = (21, -+ , z;m) and the contours are nested circles satisfying

dz,, dz;

omizy,  2mizy
(4.31) 0<‘Zm|<---<‘21|<1['0
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with Tg = p?(1 — p)'=P. The functions C(z) and D(z) are defined in (4.8) and
(4.21), respectively.

Recall that C(z) is analytic in |z¢| < To except for the poles when z} | = z},

and D(z) is analytic in 0 < |z¢| < ro. We point out that Remark 3.2 still applies to
the above theorem; the Fredholm determinant expansion involves only finite sums.

Corollary 4.7 (Joint distribution of periodic TASEP for the periodic step initial
condition). Consider the periodic TASEP with the periodic step initial condition
Xi+nN(0) =i —=N+nL for1 <i< N andn € Z. Then (4.30) holds for all integer
indices ky, - -+, ky, without the restriction that they are between 1 and N.

Proof. As in the proof of Corollary 3.3, it is enough to show that the formulas are
invariant under the changes k; — k; = N and a; — a; = L for some i. This can be
checked easily for C(z) using the identity [T,cp_ (—u)™ = [T er, (v+ 1%, which
is easy to prove; see (4.52) below. For D(z), we use the fact that u™ (u+1)L=N = 2F
for u € L,, and v} (v; + 1)2=N = 2F for v € R,, (plus the special structure of K
and K».) O

Proof of Theorem 4.6. When m = 1, the result was obtained in Theorem 7.4 of
[4]. We assume m > 2. In Theorem 3.1, C(z,k) does not depend on the initial
condition. Let us denote Dy (z,k,a,t) by Dgep when ¥ = (1 — N,---,1,0), the
step initial condition. We need to show that Dgiep, = D(2) cfz(%

Inserting the initial condition y; = ¢ — N, rewriting Gy in terms of Fy and J

n (4.10) and (4.12), and reversing the rows, we get

(4.32)

- i Fy(we)
Dyep = (—1)VV-D/2 et v w S
tep = (=1) angwe we11;[ Fe Fy_1(wy)

i,5=1
The sum is over all w; € R,,, -+ ,wm € R,,,. Using the Cauchy-Binet identity m
times,
(-pNw-ne . W) F,(W®)
(4.33) Dstep = ' Z H Iy
(N)m W‘“e(Rzl)N P Fz 1(W @)
=1, ,m

where W) = (wgz), e ,w%)) with wy) € R., for each i, W = (W) ... W)

and
(4.34)
. 1 1 ‘
S(W) = det (’U}(l))_-] det _ ] .. det - det (w(m))_J .
[ ' } wgz) — w(l) wl(m) _ w§_m71) [ i }

Here all matrices are indexed by 1 < i,7 < N. Note that in (4.33), we use the no-

tational convention such as Fy(W®)) = Hfil Fg(wy)) mentioned in Definition 2.9.
Evaluating the Vandermonde determinants and the Cauchy determinants, Dgtey, is
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equal to (recall the notation (2.48))
(1N -1z Iy, AW )2
1\m m 0). -1
(V) w®e(r., )N Heze AV WD)
(4.35) £=1,-,m

N
Fy(W®)
(1) g) é
x Jwl :
Ll;[l( ] [ Fz Fra(WO)
Note that for each ¢, we may assume that the coordinates of the vector W are
all distinct since otherwise the summand is zero due to A(W®)). Also note that
the summand is a symmetric function of the coordinates of W) for each ¢. Hence
instead of taking the sum over the vectors W® € (R.,)Y, we can take a sum over

the subsets W® ¢ R, of size N: Dgcp is equal to

(4.36)
(_1)mN(N—1)/2

I, AW9? 5 sy Fd(W®)
% Z I, ; AW O, W (E=1)) [1_[1( ]H W) Fzé1(VV(f))7

WEOCR., =1
|v”v<@>\:N
¢=1,---,m

where wgl) are the elements of W) and wgm) are the elements of T (™),

We now change the sum as follows. Since R, is the disjoint union of L., and
R.,, some elements of the set W) are in L., and the rest are in R,,. (Recall that
L.,/ = L — N and |R.,| = N.) Let U®) = w® NL,, and V) = R,, \ W®
Observe that since [IW®| = |R,,|(= N), we have |[U®| = [V®)|. Call this last
number n,. We thus find that the sum in (4.36) can be replaced by the sums

(4.37) > >

ne=0,-,\N  g®cr, V®CR,
{=1,---,m 50 ZL(Z) ¢
U=V |=n,

l=1,---,m

We now express the summand in terms of U® and V® instead of W®. First, for
any function h,

(4.38) (W) = h(U®)

Now consider A(W (e)) We suppress the dependence on £ in the next few sentences
to make the notation light. Tentatively set S = R, \ V so that R, = V U S. Note
that W = U U S, a disjoint union. We thus have

(439)  A(W)? = AU)A(SA(U;5)%,  AR.)* = A(V)*A(S)*A(V; )%
Let
(4.40) g r(w) = H (w—v) = w™r,(w).
vER
Then,

(441) @:r(0) =AU V)AU;S),  ¢Lr(V) = (=)YEVEAW)2AWV;S).
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It is also direct to see that
(4.42) A(R.)? = (-)NV=D2¢ L (R.).

From these, after canceling out all terms involving S and inserting the dependence
on ¢, we find that

7 _y2 AUDPAVO)(g:, v (TN))?
A (N2 1 N(N-1)/2 _ a zz,R~ / )
(443) (W ) ( ) A(U“),V(@)Q(q;z R(V(e)))Q qze7R(Rze)

(This computation was also given in (7.48) and (7.50) of [4].) Similarly,
(4.44)

AW WD) ACOTENAWVOVE g, m(O9)g:, m(UD)
AR:;Rz, ) AUO; VENAWVO;TED) g, g(VEO)g,, g(VED)
We express the summands in (4.36) using (4.38), (4.43), and (4.44). We then

change the subsets UY) c L., and V¥ c R., to vectors U(e) € (L.,)™ and

v e (R.,)™. This has the effect of introducing the factors nE . We thus obtain
1 ~
(4.45) Daep = B(z) | > m ~Din(2)
HE(Zzo)m
with
(4.46)

H;nZI q;g,R(RZZ)
HZL:2 A(RZE;R’ZZ—I)

_ _ - FZ(RZZ)
H v N H v N [HJ(RZZ)iF[_l(RZ[)

vER:, vER.,, =1
and
(4.47)
Dn(z)
. fi tﬂ“ 2(AVD))2 (g2, r(UD)2I(UD) F(UD) Fpy (V)
U e,y L1 ‘) s VEN)2(q, g (V))2I(VO) F (V) F_y (UW)
VOe(R,,)m

l=1,---,m
ni u<1))N n,,L( (m))N
>< K3
() | [Ies
Auﬂ>w2”muh<vwmuﬂvwnﬂ

) ,
)A(V(6)7 v 1))qze—1,R(U(€))q2e,R(U(Z_l))

We rewrite (q’zl_],R(V(z)))2 using the identity, ¢, g (v) = WJZ(U), which we prove
later in (4.51). We also use ¢, r(w) = w™r,(w) (see (4.40)). Furthermore, we
re-express 1., (V(*)) in terms of 1,(V(¢)) using the identity

1 2L

(4.48) r:(v) = m(l - W)

for v € R,

which follows from the fact that r,(w)l,(w) =1 — W Then, using the
notation (4.29), we find that Dy (z) = Dy(z), given by (4.28).

Licensed to Univ of Michigan. Prepared on Tue May 26 16:24:18 EDT 2020 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



636 JINHO BAIK AND ZHIPENG LIU

Thus, the theorem is proved if we show that C(z,k)B(z) = C(z). Before we
prove it, we make the following observations.

e For any v/ € R/, we have 0 = ¢,/ (v') = (v/)V(v' + 1)L~ — (2/)L. Hence,
for another complex number z,

(4.49) ZF—2E = @)YV +D)EN k=g, () = H (v —u) H (v — ).
uel, vER,

e As a special case of the above identity, taking 2z’ = 0 and v’ = 0, we obtain

(4.50) A= (—1)N! H (—u) H v.

u€L, veER,

o Setting g.1(0) = [lyer, (W — ), we have gun(w)gsr(w) = ¢:(w) =
w (w+ 1)E=N — 2L and hence,

L(v+p)vN(v+1)EN oV
4.51 L r(v) = = for v € R,.
R S R (N ()
e Since 2Nt = [T,cp () [T e, vV from equality (4.50) and zNI =

[loer. v™ (v + 1)E=N by using the definition of R, we find that
(4.52) Iy =] @w+1)=r.
u€l, vER,
We now prove that C(z,k)B(z) = C(z). Consider C(z,k) defined in (3.7). Us-
ing (4.49),

(_1)(km—1)(N+1)Z§k171)L H Zékz—ke—l)L

(=2

— H (_u)lﬁ*l H U(klfl) ﬁ H (_u)kﬂfkﬂ—l H ,U(kﬂ*ke—l)

u€Lz, vER,, =2 uesz UERZZ

Using (4.50) and (4.49),

(=) )

i AR ;L ) AR, R, )
(—wN Tler

=2 HueL

Ze—1 Ze—1

[m AR, Lz, )

H AR:,;; Rz, ) 4:1_[2 Lo (—u)N H’UERZZ (v+1)L-N

£=2

T e o= | TT I

(=2 v€R., =1 veR,,

Ze—1
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Now consider B(z). Using (4.51), the fact that [[,cg_¢:1(v) = A(R;;L;), and
(4.52), we see that

v+ 1N
¢-.r(R:)I(R:) = HUEX&{ILJ) lg UN]
v L—N _u)N
_ [Moen.( +1A>(RZ;}L[21)L6LZ< ™ lH UN] ng(wl)wv].
This implies that

H Q,/z(,R(RZz)J(RZe)

=1

_ ﬁ [HveRz,Z (v + 1)L7N} [HUGLZE(_U)N]

=1 A(RZ/ ) LZ/)

IT 1T »| (I1 IT ===} | IT (-0
¢(=1v€ER;, ¢=2v€ER;, u€L .,

From these calculations, we find that C(z,k)B(z) = C(z).

4.3. Equivalence of the Fredholm determinant and series formulas. We
presented three formulas of D(z) in Subsection 4.1; see Lemma 4.4. One of them is a
Fredholm determinant (4.21) and the other two are series formulas (4.24) with (4.25)
and (4.28). In this subsection, we prove the equivalence of these formulas. The proof
is general, and the same argument also gives a proof of Lemma 2.10, which states
the equivalence of three formulas of D(z), a limit of D(z).

First, we prove Lemma 4.4(a) and Lemma 2.10(i). These are special cases of the
next general result which follows from the series definition of Fredholm determinant
together with a block structure of the operator.

Lemma 4.8. Let ¥y, -+, %, be disjoint sets in C and let H = L*(X1U---U%,,, i)
for some measure p. Let XY, -+ ;3. be another collection of disjoint sets in C and
let H' = L2(Z) U--- U, 1) for some measure y'. Let A be an operator from
H' to H and B an operator from H to H', both of which are defined by kernels.
Suppose the following block structures:

o A(w,w") = 0 unless there is an index i such that w € Xg;_1 U Xo; and
w' € Xy; 1 UXh,,

e B(w',w) = 0 unless there is an index i such that w' € X5 U X5 | and
w E Yo UXgiyg.
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Assume that the Fredholm determinant det(1 — AB) is well-defined and is equal to
the usual Fredholm determinant series expansion. Then

(4.53)
det(1 — AB) > =y / /
e — =
neizmpyn (D oo Jepym s x (g, e
n| n|
det [A(wi,w;-)}‘ ! L det [B(w ” L Hdu Hd,u(wi),
where n = (nq, -+ ,Ny,).

Proof. From the standard Fredholm determinant series expansion,

In|

—1)Iml
det(1— AB) = Z (=1 / det [(AB)(w;, w;)] LHJI 1 Hd,u w;),
ST X xXpm

n!
nc (ZZO)TH

where among |n| variables w;, the first ny are in 31, the next nsy are in s, and so
on. By the Cauchy-Binet formula, for given n,
det [(AB) (w;, wy)I"_,

In|

_ ! BRI
W/m sy g S0 LA UD] 5, det [B(w - IHdu

1 n
= Z i ~ det [A(w;, w})HJLl

n|

x det [B(w}, w;)] ” 1r[d,u

From the structure of the kernels, we find that the matrix A(w;, w;) has a natural
block structure of block sizes ny + ns, n3 + n4, and so on for the rows and of sizes
nj +nb, ns+n/, and so on for the columns. The matrix has non-zero entries only in
the diagonal blocks, which have sizes (n1+ng) X (n]+nb), (n3+n4) x (n+mnj), -
Similarly, the matrix B(w;,w}) has non-zero entries only on the diagonal blocks,
which have sizes ny x nf, (ng2 + ng) x (nh + nj), (na + ns) x (n) +ng),---. From
these structures, we find that the determinant of A(w;,w}) times the determinant
of B(w;,w}) is zero unless n’ = n. Hence

det [(AB)(w;, w;)]™

1,7=1
In|
1 In| o
== det [A(w;,w’)]|  det[B(w dy’ (w
Il! (2/1)771 X...x(zfm)nnl [ J :Il’j Zj 1H
This implies (4.53). O

Now, we prove Lemma 4.4(b) by showing that (4.25) and (4.28) are the same.
We prove Lemma 2.10(ii) similarly. For this purpose, we use the following general
result.
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Lemma 4.9. Let U = (ug, - ,um), V= (v1,-+ ,vm), U = (uf, -+ ,ul), and

V' = (v, -+ ,vl) be four complex vectors. Then for any single-variable functions
F,G, I, and J,

AUANM)AU)ANV)AU; V)AV

A(U; VAU, VAU U)A(VY )

F(ui)G(v; ]:(ul)l'(us)
(4.54) Flulgtv) }mm [W

e g T
{J(v;)g(vj)} [J(vé)l(u;)]
V= nxm VU nxn

Proof. 1t follows directly from the Cauchy determinant formula. O

Y F )6z 7 (V')

Consider (4.28). We can write it as

(4.55) Dn(z)= Y. Do+ Dp,
U([')E(Lze)"e
V(E)E(Rze)ng
1=1,---,m
where
S AUDANVD) L s AUCHANVE)
and

. AUDANVEO)AUED)A(VED)AUED, VOY)A(VEED, U@)
£= A(U(z);V(z))A(U(”l)' V(Z+1))A(U(Z+1). U(Z))A(V(Hl);v(o)
fe(U“))(l—Z‘“) f(1- )”‘“f( (t+1)

r22+1 (U(Z))lzurl (V(Z)) (U(“_l))lzz (V(Z+1))

(4.57)

X

for1 </ <m-1. Forl </{<m-—1, we apply Lemma 4.9 with m = ny,
Z L

n = nep, Flu) = (u(—)m G(v) = (1= "), Z(W) = iy (1 — ), and
L 0+1

T, zz+1( v) Tzg

JW) = fl“l(( . Then, recalling (4.29),

D, = (—1)("”;”“)Jrnwﬁnmwl

[ 1(u (0 0

Z ) j

{Kl( (0) (5+1))

’L ? j

}nl_zxn[ }WXWH

x det
41 0 l+1 /+1
K10l o) R, )

Ng41 XNy :|ﬂe+1 XKNg41

if £ is odd, and

By = (—1) ("I e e

|:K2( (£) (f))} ) [K2( (€) (“‘1))
e X1

’L ? Z ? :|
'7 j T XMp41

x det
[K2(U§£+1) (z))

’ ]

{K2(U(e+1) (£+1))

’ :|
i|n€+1 XNy ] Np41 XNp41
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if £ is even. On the other hand, using the Cauchy determinant formula,

N . .
(4.58) Do = (=) det [ KooV, uf’ ))szl
and

(—1)(?’) det [K1(u§m), j(m))]nm if m is even,
(4.59) D,, = N ;Fl

(- '")det[ 5(u Em),vj(m))}ij:l if m is odd.

The formula (4.25) follows by combining the product of Dy for odd ¢ as a single
determinant of a block diagonal matrix, and combining the product D, for even
indices as another single determinant, we obtain (4.25). This proves Lemma 4.4(b).
The proof of Lemma 2.10(ii) is similar.

5. PROOF OF PROPOSITION 3.4

As we mentioned before, Proposition 3.4 is the key technical result of this paper.
We prove it in this section.
Let z and 2’ be two non-zero complex numbers satisfying 2% # (/). Let

W = (wi, - ,wy) € (R)N and W' = (w}, -+ ,wly) € (R./)" be two complex
vectors satisfying H;vzl | + 1| < vazl |w; + 1|. Let
(5.1)
N . AN
Ly (W) = det [ I (w; + 1)¥i~ J} . Rx (W) = det [wi I (w; + 1)*%‘+ﬂ] .
ij=1 ij=1
The goal is to evaluate
(5.2) Hio(W; W) = > Rx(W)Lx (W)
XeXy(L)Nn{zr>a}

and show that it is equal to the right-hand side of (3.25).
We first reduce the general k case to the k =1 case.

Lemma 5.1. Under the same assumptions as in Proposition 3.4,

(wj + Dw

w](w +1

k-1L | N AN
(5.3)  Hpa(W; W) = (Z,) H( 3) Hyo(W; W),

Proof. The sum in (5.2) is over the discrete variables 7 < -+ < zny < x1 + L
with zx > a. The first condition is equivalent to x; < -+ - < zy <z + L < --- <
Tp_1 + L < zp + L. Hence, if we set x; = Zjyp—1 for j=1,--- N —k+1 and
v = xjyp1-y+ Lfor j = N—Fk+2--- N, then the sum is over 27 < --- <
xy <z} + L with ] > a. Consider

. AN

Rx (W) = det [w;J (w; + 1)*%‘*]} .
ij=1

If we move the first K — 1 columns to the end of the matrix and use the variables

a, then Rx (W) is equal to (—=1)*~D®O=1) times the determinant of the matrix

whose (i, j)-entry is w; 7~ * ! (w; + 1)"% T+~ for the first N — k 4 1 columns

i k+1+N( w; + 1)_xf+L+j+k_1_N for the remaining k¥ — 1 columns. Since
L

and is w;
wN(wl + 1)L’N = 2l for w; € R,, the entries of the last k — 1 columns are z
times w; 7~ * (w; + 1)7% 451 Thus, the row i of the matrix has the common
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multiplicative factor w; ~k+1 (w;4-1)*—1. Factoring out z” from the last k—1 columns

and also the common row factors, we find that, setting X’ = (2, ,2'),
N\
(5.4) Rx (W) = (=)= DNV=D (=08 II(‘L__> R (W).
W
=1 !
Similarly,

N w4+ 1 —k+1
(5:5)  Lx(W') = (-)E-DETD ()= II( pw ) Lxr(W).

w .
j=1 J

Hence the sum (5.2) is a certain explicit constant times the sum
> Rx/(W)Lx (W)
X'eXn(L)N{z}>a}

which is Hj o(W;W’). Checking the multiplicative constant factor explicitly, we
obtain the lemma. O

It is thus enough to prove Proposition 3.4 for k = 1. Set

(5.6) Ho(W;W'):=Hy o Wi W') = Hyga (W; W) = Z Rx(W)Lx (W").

XeXn(L)
Tr1=a

We prove the following result in this section.

Proposition 5.2. Let 2,2’ € C\ {0} such that zL' # (2/)F. Then for every W =

(wi,-+ ,wn) € (RN, W = (wh, -+ ,wly) € (Ro)N, and integer a,
(5.7)
T N-1
W, W' =— — -1
(Wi W) ((Z) )
N (1 a—1 N ! (! a N
(w41 (W + 1
« ij(wj ) — _H wj(wj )_1 det{ / 1 ]
=1 w;j(w; + 1)@ =1 wj(wj + 1)@ Wir = Wil 2

Note that the sum (5.6) is over the finite set a < z2 < --- < xx < a + L. Since
it is a finite sum, there is no issue of convergence, and hence we do not need to
assume that vazl |l +1| < H§V=1 |w; +1|. Now, if we assume this extra condition,
then the sum of Hy(W;W’) over b = a,a + 1,a + 2,--- converges and is equal to
H1,o(W;W’), and the resulting formula is
(5.8)

N\ L N-1[ N a—1 N
o (N (w +1) 1
Hl,a(W7 w ) - (( Z) 1) H wj —+ 1 det w,IL-, —W; |, .

= i,4'=1

This is precisely Proposition 3.4 when k = 1. Hence, by Lemma 5.1, Proposition 3.4
is obtained if we prove Proposition 5.2. The rest of this section is devoted to the
proof of Proposition 5.2.

The proof is split into four steps. The condition that W € (R.)N, W' € (RN
is used only in step 4. Steps 1, 2, and 3 apply to any complex vectors.
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642 JINHO BAIK AND ZHIPENG LIU

5.1. Step 1. We expand Rx (W) and Lx(W’) as sums and interchange the order
of summation.

Let Sy be the symmetric group of order N. Let sgn(o) denote the sign of
permutation ¢ € Sy. Expanding the determinant of Rx (W) and Lx(W'), we

have
N ,w/l ) J
(5.9 HW:wW)= Y sgn(oo) [[[ (=22 ) | Sour (W W),
=y i—1 wa'(])
0,0 N J
where

N 'I.U,, o+ 1 zj—j
(5.10) Seo ;W= Y ] <L> .

Xermny 1 \ Wo) 1
We rewrite the last sum using the following formula.

Lemma 5.3. For complex numbers f;, set

(5.11) Fon=[[f  fori<m<n.
j=m
Then
N N-1 _
> Mur-y  y el
J - Hslfl(l _ F )
XeXn(L)j=1 k=0 1<s;<---<sp<N l1lj=2 Jrs1—1
(5.12) T1=a
k _N—
% (F5i75i+1_1)a+L Nt
_ Sit1—1 )
i=1 (1 - (F5i75i+1_1) 1) Hj:JrsliJrl(l - Fj;5i+1_1)
a—1
where we set sy+1 = N + 1. When k =0, the summand is J(VFIN—)
j:2(1_Fj»N)
Proof. The sum is over a < zo < -+ < zxy < a + L. We evaluate the repeated
sums in the following order: xn,zn—1, -+ ,%2. For z; the summation range is
zjo1+1<x; <a+L—-N+j—1. Hence the sum is over
a+L—N+1 a+L—2 a+L—1
T2=a+1 TN-1=TN-2+lzNn=zN_1+1

For the sum over z;, we use the simple identity

at+L—N+j—1 (e _N-—
) Azi—1 (7—1) AetL—N-1
Ti—] —
(5.13) Y4 - +

rij=xj 1+1

Note that the first term of the right-hand side involves x;_; and the second term
does not. Applying (5.13) repeatedly, the left-hand side of (5.12) is equal to a sum
of 2V=1 terms. Each term is a product of N — 1 terms, some of which are from
the first term of (5.13) and the rest are from the second term. We combine the
summand into groups depending on how many times the second term % is
used. This number is represented by k: 0 <k < N — 1. For given 1 <k < N — 1,
we denote by 1 < 57 < -+ < s < N the indices j such that we had chosen the
second term when we take the sum over x; (5.13). The result then follows after a
simple algebra. O
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We apply the lemma to S, o (W; W') and exchange the summation orders. Then,

(5.14) Z Z Z sgn(oo’ HU

=0 1<81 < <sp <N o,0'€SN =0
where
Pi(s; — 1) (Qu(s1 — 1))
L' (1= Qi(s1 = 1))

(5.15) Uo =

and, for 1 <i <k,

Polsts 1) @ (51— )"V

(5.16) Ui = SR ge——
(1= (@u(sien = 1)) TLTE (1= Qilsian — 1)

with
(5.17) ﬁw Wl g ﬁ )’

. m(n) 1=

imm Wo) +17 i=m \ Woi)

for 1 <m <n < N. Here we set sg41:= N + 1.

We now rewrite the last two sums in (5.14) for fixed k. Given s1,---, s and
o0’ let I; = o({ss, - ,8i41 — 1}) and I} = o' ({84, -+ , 841 — 1}) for 0 < i < K,

where we set sg := 1. With this notation,

Hj/61£ (w;/ + 1)

(5.18) Quilsir—1) = =
[es, (w; +1)

Consider the restriction of the permutation o on {s;, -, s;+1 — 1}. This gives rise

to a bijection o; from {1,--- ,|L;|} to I; by setting o;(£) = o(s; + £ — 1). Similarly

we obtain a bijection o] from o. Then we have

L, o+ 1
ol (e
(5.19) Qsirj(sin—1) =[] <#>

5 \Woso) +1

for j=1,---,|I;|, and

11l /! J H w [Lo[+-+[Ii-1]

oi(j) J'El]

(5.20) P, (siy1—1) = L =rel 7 .

]1;[1 Wo(5) jer, wi
We now reorganize the summations over si,---, s and 0,0’ in (5.14) as follows.
We first decide on two partitions Iy, --- , I and I)),--- , I of {1,---, N} satisfying
|I;| = |I}| # 0 for all 4. Then for each I;, we consider a bijection o; from {1,--- , ||}
to I; and a bijection o} from {1,---,|L;|} to I;. The collection of oq,- -, 0% is
equivalent to a permutation . Note that the sign becomes

k
(5.21) sen(o) = (~1)#o ) [T sen(oy),
i=0

where
(5.22) #(Lo, - Ip) = |{(m,n) € ; x I; :m <n,i>j}.
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It is easy to see that summing over the partitions and then over the bijections o;

and o, is equivalent to summing over s1,-- - , s and o, 0’ in (5.14). Hence we obtain
(5.23)
Ho(W; W)
N—1 k ooy w [To|+-—+[Ti—1] ) k
= 3 S (EDHE ] <HJ€7[U;J> GIo, 1) [[ 91, 1),
k=0 Z,T/ i=1 jer, Wi i=1
where the second sum is over two partitions Z = (Iy,--- ,I) and Z' = (I3, --- , I},)

of {1,---, N} such that |I;| = |I/| # 0 for all 0 < ¢ < k. The function G(I;I’) on
two subsets of {1,---, N} of equal cardinality is defined by

(5.24)

P ’ I.T a+L—N-1
G(I,I') = > sgn(oo’) — .7) ) Ql(_, Q)(I -1
o {1 T} =T [[;=2 1= Qj(o,0") ’
o' {1l |} =T

Here the sum is over bijections o and ¢’ and

ﬁ W ) ‘ ﬁ w’ (o t1

P(U> UI) = <0—> ) Qj(a> UI) = < z ) )

(5.25) =1 \ We® =5\ Wor) +1
ou. 1) = UrerWe +1)

, HZGI(wZ + 1)

Note that Q1(o,0’) does not depend on o,¢’ and is equal to Q(I,I’). On the other
hand,

5 P(o,0")
(5.26) G(I,I') = > sgn(0o’) —
o {1, 1)} T H‘j:‘2 (1-Qj(0,0"))
o {1, ||} =T

QL I')*~ 1.

5.2. Step 2. We simplify G(I,I’) and G(I,I’). They have a common sum. We
claim that this sum is equal to

H’I I/ w/I / ].
(5.27) <M (w; +1) — (wy, +1) | det | ——— .
[Licr wi g ' ZI;II ' Wi =Wy Jiepier
This implies that

(5.28) )
i+ 1) — '+ 1) | det | ———
><<’ (wi+1) = T] () + )) tlotor|
el irel’ i dieli’el
and
(5.29)

y .
i } i€l i'el’

g, 1) = - Wearlil + DT (Hifew wé’) det[ :
, (ITies (wi + 1))G+L_N_1 [Licrwi w; — W
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We now prove (5.27). This follows from the next lemma. This lemma assumes
that I =1' = {1,--- ,n} but the general case is obtained if we relabel the indices.

Lemma 5.4. For complex numbers w; and wj, i =1,--- ,n,
(o) Ty ()™
sgn(oo i (—)
! We (1)
w o+ 1
oo €Sy 11 (1 — TT" . L)
(5.30) I (1 -1, p—
n n 1 n
= H(w] +1)— H(w; +1) | det [—wi — w{,} -
j=1 j=1 v dg'=1
Proof. We use an induction in n. It is direct to check that the identity holds for

n=1.

Let n > 2 and assume that the identity holds for index n — 1. We now prove
the identity for index n. We consider the sum according to different values of o(1)
and ¢'(1). Setting o(1) =1 and ¢'(1) = I’, and then renaming the shifted version
of the rest of o and ¢’ by again o and ¢, respectively, the left-hand side of (5.30)
is equal to

'LU/ L 7—1
sen(o)sgn(o”) [T (#)

W (4)

w . +1
o {1, n—1}3= {1, n}\{€} n-1(,  yyn-1 _o'()
UI:{I»"' »nfl}*’{l"" 7”}\{”} Hj:2 ( HZ:] wo-(z) + ].

From the induction hypothesis, the bracket term is equal to

n n
1
i+1)— ARES | )d t | — .
(-Hl(wJ #1 - 1Lwi+n)de [w — ] 1< <n
I
Hence the sum is equal to
n
’ Wi + ]. ].
0 (T o) (T Yo [ ]
Z;l 1<£[<n 1<1k1<n Wk wi — 'LU;/ 1SZib/ﬁ’nll
) Wt il i#£L,1 £

This is the same as

T wi(we +1) - o+ we 1
—_ -1 det
<H W Z (=1) (we + D)wy, ¢ w; — wj, |1<ii’<n

k=1 i,i/=1 i#l,i £
Lemma 5.5 below implies that the sum in the second parentheses is equal to
k 1
_ (w;+1) — | |(w; +1) ] det [7}
(kll w (wk + 1)> (E Z };[1 Z Wi = Wi ]
This completes the proof. (|
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Lemma 5.5. For distinct complex numbers x1,- -+ , &y and y1,- -+ ,Yn, let C be the

n x n Cauchy matriz with entries 7 iy . Let Cyp 1, be the matriz obtained from C
J

by removing row £ and column k. Define the functions

(5:31) AG) =T[G =), B =T[C-w.
Then
- _ A(0) B(-1)

Z,k::l
Proof. Recall the Cauchy determinant formula,
Hi<j(xi —z;)(yj — ¥i)
IL (@i — v;)
Note that Cyj, is also a Cauchy matrix. Hence we find that

det [Cy k] _ (_1)g+k+1 B(ze)A(yx)
det [C] (we — y)A'(x0) B' (yx)

Let f and g be meromorphic functions with finitely many poles and consider the
double integral

1 e BEAE
(534 S ﬁm f/iz|—n FE0E) g e gy 246

Here we take r; < 72 large so that the poles of % are inside |z| < 71 and the poles

det [C] =

(5.33)

of % are inside [§] < r2. Consider f(2) = ;%5 and g(¢§) = % By changing the
order of integration and noting that the integrand is O(£72) as & — oo for fixed z,
the double integral is zero by taking the £ contour to infinity. On the other hand,
we also evaluate the double integral by residue calculus. For given &, the integral

in z is equal to

A©BCD i zeA(§) B(zy)
SE+DBEOAL) = (we+ DE(we = BE)A ()

The first term is O(£72) and hence the integral with respect to ¢ is zero. The
integral of the second term is, by residue calculus,

i B(l‘g)
[Z (1’[ —+ 1)14/(:[:5

(=1

A(0) weB(l‘e)A(yk)
50+ > (e Donoe — s A @B )

Ekl

Since the double integral is zero, the above expression is zero. Now the sum inside

the bracket can be simplified to 1 — BE 1; by considering the integral of %.
Therefore, we obtain

i l‘gB(,Tg)A(yk) _ (1 _ B(_l)) A(O)

=y @+ Dyr(we — yr) A (20) B (yr) A(-1)) B(0)
Using (5.33), we obtain the lemma. O
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Remark 5.6. Note that, using the rank one property and Hadamard’s formula for
the inverse of a matrix,

(5.35)
det Lﬂ — —I—f(a?i)g(yj)} =det[C] | 1+ Y g(ur)(C™ nef ()
L i,j=1 k=1

= det[C] + Z D% det[Cor] f(we)g(yr)-

£k=1

Hence, the above lemma implies that
(5.36)

det [xl 1yj e fl)yj]n - (1 i gggg - gig))ig:ﬂ) o [x’ iy]r

i,j=1 ,j=1
We will need the following variation of the above lemma in the next subsection.
Lemma 5.7. Using the same notation as in Lemma 5.5,

(5.37) det [m i s %y - (1 +u (1 - %)) det [C].

i,j=1

Proof. The proof is similar to the previous lemma using f(z) = % and g(¢§) = 1
n (5.34) instead. We also use (5.35). O

5.3. Step 3. We insert the formulas (5.28) and (5.29) into (5.23), and then reorga-
nize the sum as follows. For the partitions Z = (Iy,--- ,I}) and Z' = (Iy,--- , I1,),
we consider the first parts Iy and I} separately. Set 7= (I, ,I;) and 7/ =
(I1,--- ,1I},). Note that

#(I) = #Io, I§) + #(D),  #(T') = #I5, (1)) + #(T),
where I§ = {1, -+ ,N}\ Ip and (I§)¢ = {1,--- , N}\ I}. Then (5.23) can be written

as
HaWi W)= 37 (~)#fss i ong n, )
Io,I,C{1, ,N}
[To|=|15]7#0
(5.38) a+L-N
(Hi’e([é)C(wg’ + 1)) ,
at+L— S(IO,I()),
(Iiess (wi + 1))
where
N—|Ip|
S(Io, I(,)) _ Z( 1)k+#(I)+#(I)
k=1 17
(5.39) kT /Loy )\ ol )
(B [ L]
i [Lics, wi Wi = Wy Lier; irer;
Here the second sum in (5.39) is over all partitions Z = (Iy,--- , Iz) of {1,--- , N}\Io

and partitions Z' = (I{,--- ,I,) of {1,---, N} \ Ij) satisfying |I;| = |I!| # 0 for all
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1 <i < k. When |Iy| = N, we understand that S(Iy, Ij) = 1. The following lemma
simplifies S(Ip, I})).

Lemma 5.8. Letn > 1. Let w; and wg, 1 <1 < n, be complex numbers. Then

(5.40)
n k o s el
3 (CF OO T M dot |—1
. [c; wi W — Wy |y e
k=17,7' j=1 i€J; o died;,i GJj
n ,w/‘ n 1
= H (—j> det {—/ } )
j=1 \Wj —Wi + Wy J 1< <n
Here the second sum is over all partitions J = (J1,---,J) and J" = (J{, -+, J}.)

of {1,--- ,n} such that |J;| = |J!| #0 for all 1 < i< k.

Proof. We use an induction in n. When n = 1 the identity is trivial. Now we prove
that the identity holds for index n assuming that it holds for all indices less than
n. We fix J; = J and J| = J' with |J| = |J'| # 0 and then apply the induction
hypothesis on the remaining sum with index n — [J|. Then, the left-hand side
of (5.40) is equal to

/ n
- ) (FpRETORRILEDY (Hi’eJ’ wé) (Hi'e(J’)“ “’)

J,J'C{1,- ,n} HieJ Wi HieJc Wi
(5.41) |J|=|" |0

1

1
et | L

7 - 7 :
—w; + wy } ieJeire(Jr)e

] det [
Wi — Wy e gire

Here the minus sign comes from (—1)*, where k, the number of parts of partition
J, is reduced by 1 when we apply the induction hypothesis since we remove J; in
the counting. Now, note that the right-hand side of (5.40) is the summand of (5.41)
when |J| = |J'| = 0. Hence, after dividing by []}_; (3*)", we find that (5.40) is
obtained if we show that

1—-n

Z (_1)#(J,J“)+#(J',(J’)“) (Hi’eJ’ wé)

J,J'C{1, n} [Licswi
[J]1=]J"|

x det [ det [

w; w’i/ :| iEJ,i/EJ/ w; + wi/ :| iEJC,i/E(J/)C

is equal to 0. Here the sum is over all J,J' C {1,--- ,n} with |J| = |J'|, including

the case when |J| = |J'| = 0. By Lemma 5.9 below, this sum is equal to
det (U)i)n71 1 N 1 n
(W)=t w; —w),  —w; +w ’
Z/ 1 Z/ 1 Z, Z7i,:1
Hence it is enough to show that
/\n—1 __ ,(L,1 n
det {(wzl) ; i ] =0.
Wy — Wi ii'=1
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Using % =a"" 24+ a"3b+---+b"2, this last determinant is a sum of the

determinants of the form

n

n
det [(wgl)aiw?_2_ai]i,i’=1 — det [(wé’)ai]?,ile Hw?_Q_(’i
i=1

for some «; € {0,1,---,n—2}. The last determinant is zero since at least two rows
are equal. This completes the proof. |
Lemma 5.9. For two n X n matrices A and B,
(5.42)

Z (_1)#(J,JC)+#(J'7(J/)C) det [A(i, ilﬂieJ.i/eJ’ det [B(i, il)]iEJC e

JJ C{1, n}
[J]1=1J"

= det[A + B],

where the sum is over all subsets J and J' of equal size, including the case when

J=J =0.

Proof. 1t is direct to check by expanding all determinants by sums using definition.
O

We apply Lemma 5.8 to S(lo, I}). Note that the power of the products of w,
and w; in (5.39) is [Io| + [I1| + - - - + [Ix| + 1 while the corresponding products have
power |J1| + -+ |Jg| + 1 in the lemma. We find that
Hi’e([é)c wj > { }

——— | det | — .
Hie]g Wi Wi = Wy Lierg,ire(ry)e

Using this formula and also the formula (5.28) for G(Iy, I5), the equation (5.38)

(5.43) S(Io, I}) = (

becomes
(5.44)
H,(W;W') = Z (_1)#(10715)-%#(167(16)”)
Io,I)C{1, ,N}
[o|=|15|0

[Lye wl(uly + 1)
[Lics, wiw; +1)2~*

Hile(lé)c(w;/)N(w;/ + 1)a+L7N
[Licg wN (w; + 1)a+L—N-1

er(w; + 1 1 1
o (Lien(wit D) 3 [7} det [—} ,
[Liery (wir +1) Wi = Wy Jiepg,iverny ~Wi + Wy Jiere ire(1y)e

where we added the zero partitions |Iy| = |Ij| = 0 in the sum since the summand
is zero in that case.

5.4. Step 4. We evaluate the sum (5.44). So far w; and w} were any complex
numbers. We now use the assumption that w; € R, and w}, € R,,. This means
that

wl (wi + D)FV =28 (i) N (wh + )P = (2)*
for all 4 and ¢/, and hence the second square bracket in (5.44) can be simplified.
We then separate the formula of H,(W;W’) into two terms using the two terms
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in the big parentheses. The second term, which comes from the term 1 in the big
parenthesis, can be written as

/

e ey | Lier Wi

H H ; >, 1 .
’U} + HiEIO wy

Io,IgC{1, - ,N}
[Tol=|15]

det| | .
Wi T Wy Liere ire(rg)e

The sum is, after inserting the terms in the products into the determinants, of the
form in Lemma 5.9 above, and hence is equal to

L
/ !
et [w__ <_) ;1
! ! °
2( 2 z’) ? i’ 1<i,i' <N

The first term is also similar, and we obtain

1
w; — W
i — Wi licry ey,

N w 1)e
(5.45) H,(W;W') = H ﬁ (D1 — Dy),
j=1+"

where, for k =1, 2,

Fr(w)) N
(5.46) Dy, =det | Lelwd 9
w; —w,, w; — w,,
ii=1
with
w 2\ "

(5.47) fi(w) = Wil fo(w) = w, q= <;> .
The entries of the determinants Dy, are of the form

f(w;/)

Fw) ~ ', l-q _ (1—q) 1 flw) = fw)

w; —wl,  w; —w), w; —wl, (1= q)f(w;)(w; —wl,) )’
where f represents either f; or fo. For f(w) = fao(w) = w, the last term is —m
and

1 1
Dy = (1 —q)" det -
= (- e | - o

(5.48) N

=(1-q" P 1—H“’Z/" det | —— !
o 9 1—gq L wy w; — wl, “.,:1’

where we used Lemma 5.7 for the second equality. On the other hand,

1
w; — wl, B (1 - q)w;(w}, + 1)] '

D, = (1—q)Ndet[
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We may evaluate this determinant by finding a variation of Lemma 5.7. Alterna-

tively, we set w; = —— and w}, = ——, and use Lemma 5.7 to obtain
’ x;—1 ? Y —17

1—q)V 1 1
D = (N %) det [ — }
[1;=; (wiwy) vy —xi (1= q)yw

N / N
1 (wj + 1w 1
—(1—q N(l——(l—H—J)>det [7] .
) 1_g i (wf + 1) wi —wl |

From (5.45), (5.48), and (5.49), we obtain

(5.49)

j=1

N (wf +1)*t N (w} +1)¢ 1 N

H a—2 H a—1 det

ot (w; +1) =1 (wj +1) Wi = Wy | 50—
This completes the proof of Proposition 5.2.

6. PROOF OF THEOREM 2.1
In this section, we prove Theorem 2.1 starting from Corollary 4.7.
6.1. Parameters. We evaluate the limit of
(6.1) P(h(p1) > b1, -, h(Pm) > bim)
as L — oo, where p; = s;je1 +tje. = {je1 +tjes with s; = £; — (1 — 2p)t;,
L3/2
(6.2) tj :Tj7+O(L),
Vel =p)

(6.3) 0 = (1=2p)t; + L+ O(L'?),
and
(6.4) bj = 2p(1 = p)t; + (1 = 2p)t; — 29" (1 — p)' /2 L1/

for fixed 0 < 71 < -+ < Ty, 75 € [0,1], and z; € R. The analysis needs small
changes if 7; = 7,41 and x; < x;41 for some i. We will comment on such changes
in the footnotes throughout the analysis.

It is tedious but easy to check in the analysis that the convergence is uniform for
the parameters 7;,v;, and z; in compact sets. In order to keep the writing light,
we do not keep track of the uniformity.

The height function and the particle location have the following relation:

(6.5) h(le; + teg) > b if and only if XN7¥+1(15) >0+1

for all b — 2¢ € 27Z satistying b > h(le;). Hence,

(66) ]P)(Ih(pl) Z bla T 7]h(pm) Z b'ln) - ]P)(Xkl (tl) Z a17 tee aka (tm) Z am) K
where ¢; are the same as above,

(67) a; = fj + 1,
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and
2

From Corollary 4.7, we thus need to evaluate the limit of

(6.8) kj =N — +1.

dz, dZ,,

omiZy 2wl

(6.9) P (k. (t1) > a1, 5. () > am) = f---fC(Z)D(Z)

where the contours are nest circles satisfying 0 < |Z,,| < -+ < |Z1| < ro. Here we
use the notation Z; instead of z;. The notation z; will be reserved for the rescaled
parameter of Z; in the asymptotic analysis.

In [4] and [30], we analyzed the case when m = 1. The case when m > 2 is
similar and we follow the same strategy. The results and analysis of the above two
papers are used heavily in this section.

We change the variables Z; to z; defined by

L
~nZ;

.
To

(6.10) 2= (1)

Then dzi = %, but the simple closed circle of Z; becomes a circle with multiplicity
L of z;. Note that C(Z) and D(Z) depend on Z; through the set of the roots of the
equation w™ (w + 1)F=N = ZJL, which is unchanged if Z; is changed to Zjez’fik/L
for integer k. Hence the above integral is the same as

dz; dz,,

o2mizy  2mizy,

(6.11) B, (1) 2 ar, -+ 5, (tn) 2 0) = § -+ f C@)D(2)

where the integrals are nested simple circles such that 0 < |z, < -+ < |z1] < 1
on the contours, and for given z;, Z; is any one of the L roots of the equation
ZF = (~1)lrbe;.

Remark 6.1. We note that the analysis in this section does not depend on the fact
that |z;| are ordered in a particular way. It is easy to check in each step of the
analysis that we only require that |z;| are distinct. Hence, if we fix 0 < rpp, < -+ <
r1 < 1, and |zj| = r4(;) for a permutation o of 1,---,m, then the asymptotics and
error estimates of C(Z), D(Z) and the integral on the right-hand side of (6.11) still
hold (with different constants €, ¢, C' in the error estimates). This fact is used in an
important way in the next section; see the proof of Theorem 7.3.

6.2. Asymptotics of C(Z).

Lemma 6.2 ([30]). Let N = N, be a sequence of integers such that p = py, = %
stays in a compact subset of (0,1) for all L. Fixe € (0,1/2). Fix a complex number
z such that 0 < |z| < 1 and let Z satisfy Z* = (=1)Nvkz. Assume that for fived
7>0,v€]0,1), and x € R,

(612) 1= I3240(L), a—=t+1, k=N-""fi1
p(1—p) 2

where

(6.13)

0= (1=2p)t+~7L+O(LY?),  b=2p(1—2p)t+(1—2p)l—2xp"/?(1—p)/2 L}/
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Recall the definition of E(Z) in (4.9):

(6.14) E(Z) =E(Z;a,k,t) := H (—u)k—N-1 H (v + 1)"a+h—Nete,
u€Lz vERZ

Then

(6.15) B(Z) = "1 (+742(2) (1 i O(Ne—l/Q)) ,

where A1(z) and Aa(z) are polylogarithm functions defined in (2.18).

Proof. This follows from (4.25) and (4.26) of Section 4.3 of [30]: we have E(Z;a, k,t)
= C](\?,)Q(Z ;k— N, a) in terms of the notation used in [30]. (Note that the limit there

is eTl/S”Al(zHTA?(Z), but in this paper, we use the scale of the height function so
that 71/3z is changed to z.) It is easy to check that the conditions (4.1), (4.2), and
(4.3) in [30] are satisfied, and hence we obtain the above lemma. The analysis was
based on the integral representation of log E(Z) (see (4.28) of [30]) and applying
the method of the steepest-descent. Indeed, by the residue theorem (w = 0 is the
case we need),

LZE [ (u+ p)log(w — u)
2mi j{ u(u+ 1)gz(u) du

(6.16) log ( I (w- u)) = (L - N)log(w+1) +

u€Ly
for #(w) > —p, where the contour is a simple closed curve in (u) < —p which

contains Ly inside. We can find a similar formula for the product of v. O

Lemma 6.3. Let N, L, and € be as in the previous lemma. Fix complex numbers
21,2 such that 0 < |z1|,|22| < 1. Then for Zi,Zs satisfying ZE¥ = (=1)Nvk 2z,
Zy = (=)N1fz,

H’UERZl (U + 1)L7N HuEL22 (_U)N
ARz;Lz,)
where B(z1,z2) is defined in (2.19).

(617) — 623(21722)(1 + O(]\[571/2))7

Proof. The case when Z; = Zy was obtained in [4]: take the square of (8.17) in
Lemma 8.2, whose proof was given in Section 9.2. The case of general Z; and Z,
is almost the same, which we outline here. From the residue theorem,

(L —N) Z log(v+1)+ N Z log(—u) — Z Z log(v — u)

vERzZ, u€Lz, vERz, u€lz,
—patico —pp+ico N1/2 _ L
(6.18) = ZlLZQL/ / log ( (v “)) (v+p)
—pa—ioco —pp —ioco 14, 1- P ’U(’U + 1)qZ1 (’U)
Liu+p) du dv
u(u + 1)qz, (u) 2mi 271’
where the contours for u and v are two vertical lines R(u) = —p, = —p +
apy/T = pN—Y2 and R(v) = —pp := —p + bpy/T — pN~'/? with constants a and

b satisfying —y/—log|z2| < a < 0 < b < /—log|z1|. This formula is similar to

(9.26) in [4] and the proof is also similar. We divide the double integral (6.18) into
two parts: |u + pal, [v + pa| < N3 and the rest. It is direct to check that the
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formula (6.18) where the integral is restricted to |u + pq|, |v + pa| < N¢/3 is equal

to
§Clog(¢ —¢€) d¢ d¢ -1/
(619) 172 /mg_a /ERC—E) (6*52/2 — ZQ) (67(:2/2 — 21) %ﬁ (1 + O(N 1 2)) ’

where we used the change of variables u = —p + ép/T — pN~ /2 and v = —p +
Cpy/T = pN—2. On the other hand, if |u + pa| > N3 or |v + py| > N/3, the
integrand decays exponentially fast and hence the integral in these regions is ex-
ponentially small. See Section 9.2 of [4] for more discussions. From (2.19), we

obtain (6.17). O
Recalling the definitions (4.8) and (2.21), and using Lemma 6.2 and Lemma 6.3,

we find that

(6.20) C(Z) = C(z) (1 + O(N“1/2)).

6.3. Analysis of D(Z). We can obtain the limit of D(Z) using either the Fredholm
determinant or its series expansion (4.25). Both are suitable for the asymptotic
analysis. Here we use the series expansion. From (4.25), we have

1
(6.21) D(Z)= ), g ()

ne(Zxo)™
with
(6.22) Dy(Z) = (—1) Z det [Kl(wi,w;)]y}lzl det [Kg(wg,wj)]yljlzl ,
U(“E(Lze)"‘ 7
V([)E(Rze)"f
l=1,---,m

where U = (UM,... UM), Vv = (VO ... V) with UO = {9 ... o)),
v® = (vy), e ,v%)), and where
(6.23)
ugf) ifi=n; 4+ --+ng_1+k for some k < ny with odd integer ¢,
w; =
v,(f) ifi=ny 4+ --+ng_1+k for some k < ny with even integer ¢,

and
(6.24)

, v,(f) ifi=ny+4+---+mng_1+k for some k < ny with odd integer ¢,
e {ug) ifi=ny+4+---+ng_1+k for some k < ny with even integer /.
We prove the convergence of this series to the series (2.51) with (2.52).
6.3.1. Strategy. To be able to cite easily later, let us state the following simple fact.

Lemma 6.4. Suppose that

(A) for each fized n, Dy(Z) — Dn(2z) as L — oo, and
(B) there is a constant C > 0 such that |Dyn(Z)] < C™®! for all n and for all
large enough L.

Then D(Z) — D(z) as L — oc.

Proof. Tt follows from the dominated convergence theorem. O
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We are going to show that conditions (A) and (B) are satisfied. To be precise,
we need to show that (A) and (B) hold locally uniformly in z so that the conclusion
holds locally uniformly. The local uniformity is easy to check throughout the proof.
To make the presentation light, we do not state the local uniformity explicitly and,
instead, state only the pointwise convergence for each z in the rest of this section.

Let us discuss the strategy of verifying the conditions (A) and (B). Suppose
for a moment that N/L = p is fixed. If Z¥' = (=1)Nrlz for a fixed 2, then
the contour |w™ (w + 1)|*=N = |Z|F, on which the roots of qz(w) lie, converges
to the self-crossing contour |w?(w + 1)!=°| = rg as L,N — oo since |Z| — 19
(see Figure 6). The point of self-intersection is w = —p. For large L, N and the
parameters satisfying the conditions of Theorem 2.1, it turns out that the main
contribution to the sum Dy(Z) comes from the points U®) and V() near the self-
crossing point w = —p. As L — 00, gz(w) has more and more roots. We scale the
roots near the point w = —p in such a way that the distances between the scaled
roots are O(1); this is achieved if® we take N'/2(w + p) — w. Under this scale, for
each w on the set Lz URz (which depends on L and N see (4.4)) in a neighborhood
of the point —p, there is a unique point ¢ on the set L, UR, (which is independent
of L and N; see (2.28)), and vice versa. See Lemma 6.5 for the precise statement.
We show that K7 and K5 converge to Ky and Kj pointwise for the points near —p.
We then estimate the kernels when one of the arguments is away from —p. These
two calculations are enough to prove conditions (A) and (B). See Lemma 6.6 for
the precise statement. The fact that we only assume that N/L = p is in a compact
subset of (0,1) for all L does not change the analysis.

The following lemma is from [4].

Lemma 6.5 (Lemma 8.1 of [4]). Let 0 < € < 1/2. Fiz a complex number z
satisfying 0 < |z| < 1 and let Z be a complex number satisfying Z¥ = (—=1)Nrk 2.
Recall the definitions of the sets Lz and Rz in (4.4), and the sets L, and R,
in (2.28). Let My 1, be the map from Lz N{w : |w+ p| < py/T— pN/4=1/2} 1o L,
defined by

(w+p)N'/2

S N3€/471/2 IOgN
pv1l—p

(6.25) My p(w)=¢, wheree€l, and |€—

Then for all large enough N the following hold:
(a) My 1 is well-defined.
(b) M1, is injective.
(c) Setting L =1L.n {&:1¢] < ¢} for ¢ >0, we have
(6.26) LIV =1 € [(Myr) € LIV D),
where My 1) == My 1 (LZ N{w : jw+p| < pyT-= pN€/4’1/2}), the im-
age of the map My 1,.

If we define the mapping My r in the same way but replace Lz and L, by Rz and
R., respectively, the same results hold for My R.

Before we go further, we conjugate the kernels which leaves the determinants
in (6.22) unchanged. We use the conjugated kernels in the rest of this subsection.

8The roots are less dense near the self-crossing point w = —p than elsewhere. A typical distance
between two neighboring roots is O(N 1), but near w = —p this distance is O(N~1/2).
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This makes the necessary convergences possible. For w € R,,NS; and w’ € sz NSa,
we change (4.18) to

(6.27)

% . ivy W)V Ei(w) /£ (W) (H, (w))?

Falww) = =)0 U+ CUN == e, (i — o) 29
and for w € R, NSy and w' € R, NS, we change (4.19) to
(6.28)

Row.w') = — (8,0) + 8 (j - (-1)7)) WV EOVE WD q ()

H

Zip(—1yi (w)HzH(fl)j (w')(w —w’)

where we set (note the change from f;(w) in (4.11))

Ej(w)Fj—1(=p)
L
F;E;)iji(—p) for R(w) > —p
with (see (4.10))
(6.30) Fy(w) 1= w RN (g 4 1) etk N gt

We multiplied by —1 to remove a minus sign in the limit. The square-root function
is defined as follows: for a complex number w = re? withr > 0 and —7 < 0 <,
we set \/w = r/2¢1%/2, Note that y/w is not continuous when w is a negative real
number, and hence K (w,w’) and Ky(w,w') may be discontinuous for some w and

w'. However, the product of det [K; (w;, wé)]ir;‘zl and det [ K (w/, w;)] ln,‘zl is still

i,J
continuous at the branch cuts since each of y/f;(w) is multiplied twice. We also
note that the change from f; to £; has the effect of conjugating the matrices in the

determinants det [K7 (w;, wé)]‘zrjzl and det [Ka(w!, wj)]‘;;l:l and multiplying both
by (—~1)|“‘. Hence Dy(Z) in (6.22) is unchanged if we replace K; and Ky by K,
and KQ.

We also conjugate the limiting kernels. For ¢ € (L., UR.,)NS; and ¢’ € (L., UR.,)
NS, for some ¢, j, we change (2.33) to
Ki(¢,¢) =(0i(5) + 8:(G + (=1)")
(631) fZ(C) fj(C/)ezh(C,Zi)*h(Casz(,l)i)*h(C’,Zj,(,l)]) Q )
X )
(C=10) 10
and for ¢ € (L., UR.,) NSy and ¢’ € (L., UR;,) NSy, we change (2.35) to

Ka(¢,¢) =(6:(§) + 0:(5 — (—=1)"))

(632) y \/%\/fj(—cl)ezh(gzzzh(zer(l)i)h(CI’ZjJr(l)j)

Q2(4)-
Recall the definition of f; in (2.27).

The next lemma shows how we prove the strategy mentioned above.
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Lemma 6.6. Fiz 0 <e<1/(1+2m). Let

1—
(6.33) Q=Qy = {we«:;|w+p|§p7”p}

N1/2—¢/4

be a disk centered at —p. Suppose the following:
(i) We have

|K1(w,w)| = Ky (¢, )|+ O(N 2 1og N),

6.34 N .
(039 | Ko (w',w)| = [Ka({',¢)[ + O(N 2 log N)

as L — oo, uniformly for w € S1NQ and w' € So N, where { € Sy and
¢’ € Sy are the unique points corresponding to w and w' under either the
map My 1, or MR in Lemma 6.5.
(ii) For each n,
~ | . [n]
det {Kl(wi’w;)}uﬂ — det [Kl(@,(})]
n|

ij=1

L. b
1,j=1
]

det [Kg(wg,wj)} — det [Rz(gvgj)}

i,j=1
as L — oo, where for w; € S1NQ and w}, € SoNQ, ; €Sy and { € Sy are
the unique points corresponding to w and w' under either the map My 1,
or My R in Lemma 6.5.

(iii) There are positive constants ¢ and « such that

[Ki(w,w)] = O0(e™™"),  [Ka(w',w)| = O(e™"")

as L — oo, uniformly for w € S1NQ°¢ and w’ € Sz, and also for w' € SoNNE
and w € Sy.

Then conditions (A) and (B) in Lemma 6.4 hold, and therefore, D(Z) — D(z).

If the absolute values in (i) are removed, then (i) will imply (ii). However, due
to the discontinuity of the branch cuts of the square-root functions, K (w,w’) may
converge to —Ky (¢, ¢’) if the points are at the branch cuts. Nevertheless, the branch
cuts do not affect the determinants as we discussed before. To emphasize this point,
we state (ii) separately.

Proof. Tt is direct to check that due to the term f; (see (2.27)) the kernels® Ky (¢, )
= O(efcl‘cp) for some positive constant ¢; as |(| — oo along ¢ € Sy uniformly for
¢ €Sy, and also Ky (¢, (') = O(e_cl‘ms) as |¢'| — oo along ¢’ € S, uniformly for
¢ € S;. There are similar estimates for Ky (¢, ¢). This implies, in particular, that
K1(¢,¢") and Ky (¢, ¢) are bounded for ¢ € S; and ¢’ € S,.

Since Sy and Sg have O(N™) number of points, assumption (iii) implies that

(635) Y [Ki(ww) =0 N, Y Ko, w)f? = O(e 3N

w’ €82 w’ €82

91f 7; = 7541 and @; < @41 for some i, then we have O(e~1l¢l) and O(e’cl‘g/‘)7 which are
enough for the analysis.
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uniformly for w € S; N Q¢ and, similarly,
(6:36) D [Ki(w,u)P =0 2N), Y7 Ks(w w)* = 02 N")
wESy wWES

uniformly for w’ € So N Q°.
We now show that there is a positive constant C7 such that

(6.37) S0 IK(ww)]? < Cy

wES, w’ €S9

for all large enough L. The inequality is obtained if

Yo D Ki(ww)P

weS;NQe w’' €Sy

> S Ki(w,w),

weES1NN w’ €So,NNE

S Y IR

weS1 NN w’E€SaNN

are all O(1). The first two terms are bounded from assumption (iii) and the fact
that S; and Sy have O(N™) points. For the third term, we use assumption (i). It
is direct to check that there are O(N™¢) number of points in S; N Q2 and Sp N 2.
Hence the third term is bounded by

23 I3 RGO + O 2 100 N),
eS| ¢'eSs

This is bounded since |K;(¢,¢")| decays fast as |¢| — oo or |¢’| = oo on S1,S, and
€ < 1/(1+ 2m). Hence we proved (6.37). Similarly, we have

(6.38) S D IKa(w! w)? < Ch.

w’' €S2 || weS

We now show that (B) in Lemma 6.4 holds. Consider the formula (6.22) of
Dn(Z). As we mentioned before, we change K; and K» to K1 and K2 without
changing the determinants. From Hadamard’s inequality, for all different wj,

(6.39)
R In| [n| | |n| n|
det {Kl(wiaw; } ; < H Z\Kl wi, w2 < H Z | K (wi, w
i=1 w’ €Sy
and, similarly, for all different w;,
(6.40)
R In| In| | |n] n|
det [Kg(wg, ] < H Z | Ko (w),w;)|? < H Z | K (w
wESy
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Hence,
In| ~ In| ~
Dn@) < > | IL) Do E(wiwn)? ) | TT, /D0 1Ka(w),w)l?
w; €8, i=1 \| w’' €S, i=1 \| wes,
w; 2
=1, ,|n|
[n] In|
= 2 X K] (D [ K w)P
wES w’ €Sy w’ €Sy wES

Using (6.37) and (6.38), we obtain (B) with C' = C?%.

We now prove that (A) in Lemma 6.4 holds. Fix n. We divide the sum in the
formula of Dy, (Z) into two parts: the part that all uy), Uj(-e) are in ) and the rest.
By assumption (ii) and Lemma 6.5(c), the first part converges, as L — oo, to

CoR S det [Ra(cn )
U@e(L.,)me
VOE(R., )"
l=1,---,m

In|

_ det [Ra(¢l, )]

,J

n|

ij=1

which is equal to Dy(z) in (2.52). On the other hand, for the second part, note
that (6.37) and (6.38) imply, in particular, that there is a positive constant Cy such
that

(6.41) > K (w,w)[? < Cy, K (w w)? < Cy

w’ €82 weES

uniformly for w € S; for the first inequality, and for w’ € Sy for the second in-
equality. Now, by Hadamard’s inequality (see (6.39) and (6.40)) and the esti-
mates (6.35), (6.36), and (6.41), we find that for the second part,

n|

~ [n| ~ o
(6.42) det [Kl (w;, w;)} det [KQ(wg, wj)] < 022'“‘03@*51\[

,J=1

ij=1
for a positive constant C3, since one of the variables is in 2¢. Since there are only

O(N™) points in S; and Sa, we find that the second part converges to zero. Hence,
we obtain (A). O

6.3.2. Asymptotics of rz, 1z, and £;. In the remainder of this section, we verify
assumptions (i), (ii), and (iii) of Lemma 6.6. The kernels contain 1z (w), rz(w), and
f;. We first find the asymptotics of these functions.

The following asymptotic result was proved in [4].

Lemma 6.7 ([4]). Let z be a complex number satisfying 0 < |z| < 1. Let Z be a
complex number such that Z* = (—=1)Nvkz. For a complex number &, set

pVI—p.
—NiE @
There is a positive constant C' such that the following hold:

(6.43) w=—p+

(a) If R(®) > ¢ for some ¢ > 0, then, uniformly in o,
: z(w) = e"@ (1 + O(N/?>"log or |&] < N°
6.44 1 h(@:2) (1 + O(N/?>11og N))  f Ne/4
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and
(6.45) e ON T < (w)| < eV for @] > N/
(b) If R(w) < —c for some ¢ < 0, then, uniformly in &,
(6.46) rz(w) = e"@A (1 + O(N/*tlog N)) for |&] < N¢/*
and
(6.47) e ON T < rg(w) < N for @] > N4
The errors are uniform for z in a compact subset of 0 < |z| < 1. The function h is
defined in (2.22) and (2.23).
Proof. The case when || < N4 is in Lemma 8.2(a) and (b) in [4], where we used
the notation gz, (w) = (w 4+ 1)* "Nz (w), gz r(w) = wNrz(w), (@, 2) = h(®, 2)
for @ < 0, and hr(®, 2) = h(®, 2) for & > 0.
The upper bounds of 1z(w) and rz(w) when |&| > N/* were computed in the
proof of Lemma 8.4(c) of the same paper: (9.57) shows |rz(w)| = |(12ij57”)| =

O(eCN%M). (There is a typo in that equation: the denominator on the left-hand
side should be u” instead of u*~".) This upper bound was obtained from an upper
bound of log|rz(w)|. Indeed, in the analysis between (9.52) and (9.57) in [4], we
first write (there is another typo in (9.52): (L — N)log(—u) should be N log(—u))

log vz (w)| = 8%[ Z log(—w 4+ v) — Nlog(—w)}
veER,

— R {—LZL [ . log (fp__ww) v(v(i ;Z(v) %} '

After estimating the integral in an elementary way, we obtain |log|rz(w)|

<
CN~¢/4. This implies both the upper and the lower bounds, e~ " < [rz(w)] <
Ne/4
e |

. The estimate of 1z (w) is similar.

Now we consider f;(w). The following result applies to F;(w) (recall (6.30)),
and hence £, for w near —p.

Lemma 6.8 ([30]). Assume the same conditions for k,t,a as in Lemma 6.2. Set

(6.48) g(w) = w FTNFL(y 4 1)7ath=Netw,
Then, for
pV1—p.
(649) w=—-p+ WW
with & = O(N/*), we have
(6.50) g(w) _ em+§ya2—§m3(l + O(Ns_l/Q)).

9(=p)
Proof. If we set k' =k — N + 1 and ¢ = a + 2, then g(w) is the same as go(w) in
(4.41) of [30] with &' and ¢ instead of k and ¢ (and 7'/3z replaced by z). Since
¢ = a+ 2 = { + 3 satisfies condition (6.13), we see that gg((i”lz) is equal to g2(w) in
(4.40) of [30] with j = 0. The asymptotics of ga(w) was obtained in (4.46) of [30],
which is the same as (6.50), under the conditions on ¢, K/, and ¢’ satisfying (4.1),
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(4.2), and (4.3) of [30]. From (6.12) and (6.13), we find that these conditions are
satisfied, and hence we obtain the lemma. ([l

The next lemma is about £;(w) when w is away from —p.

Lemma 6.9. Suppose z; € R,v; € [0,1], and 7; € R>q are fized constants, and

assume that'® 7 < -+ < 7,. Let t;, {;, and b; satisfy (6.2), (6.3), and (6.4). Let
bj —4;

(6.51) a; =4; +1, kj:N_JT3+1

as defined in (6.7) and (6.8). Then, for w € Lz U Ry satisfying |w + p| >

pVT=pN/AIS,

(6.52) £5(w) = O(e~N"").

The errors are uniform for z in a compact subset of 0 < |z| < 1.

Proof. The proof is similar to the first part of the proof of Lemma 8.4(c) in [4],

which is given in Section 9.4 of the same paper. We prove the case when w € L.
The case when w € Ry is similar. Recall from (6.29) and (6.30) that for w € Ly,

F7‘ w)F;_1(—
£5(w) = Fr g and
F](w) — wk‘jfl—k‘j (w + 1)—aj+kj+aj,1—kj,1e(tj—tj,l)'w'
Fj_1(w)

We start with the following Claim. This is similar to a claim in Section 9.4 part
().

Claim. Suppose m, n, and ¢ are positive integers and p € (0,1) satisfying

(6.53) Pe R osiso
p 1=p

Then the function

(6.54) |w™ (w + 1)"6&1}’

increases as R(w) increases along any fixed contour

(6.55) |w”(w + 1) 77| = const.

If (6.53) is not satisfied, then (6.54) increases as R(w) increases along the part of
the contour (6.55) satisfying

1-p) m n
6.56 2 PL=p) ((m ¢).
(6.56) gz 2 (2 )
Proof of Claim. Set
e _pn—(—p)m
pl '

We have ¢ < 1 — p from condition (6.53). Note that
’wm(w + 1)"elw| = const - ’(w + 1)"_177137"6[“” = const - ’(w + 1)7Cew|e

by using the condition that w is on the contour (6.55). It is direct to check by pa-
rameterizing the contour and taking the derivatives that the function |(w + 1)~ “e¥|
increases as $(w) increases along the contour (6.55); see the Claim in Section 9.4

7cN€/4)

101f Tj—1 = 7j and z;_1 < x;, then the errors change to O(e . In the proof, this change

comes when we conclude the error term from (6.62).
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part (c) of [4]. If (6.53) is not satisfied, then ¢ > 1 — p, and in this case, again it
is direct to check that the function |(w 4 1)~ %e"| increases as f(w) increases along
the contour (6.55) if w is restricted to |w + p|?> > p(c — 1 + p). The last condition
is (6.56). O

Fj(w) ‘

We continue the proof of Lemma 6.9. We prove that the function ‘F T
T

increases as R(w) increases along parts of the contour
(6.57) |w?(w+ 1) 77| = ro|z|M/*
with the restriction

(6.58) [+ p| > py/T— pN/4Y2,

Recall that Lz URy is a discrete subset of the contour (6.57). By the Claim, it is
sufficient to show that

(p 1 _pNE/471/2)2

(659) p(]. — p) —kj + kjfl —aj; + k‘j + aj—1 — kj,1
Z - - + + tj - tj—l .
tj —tj1 P L—=p
From (6.51), and (6.2), (6.3), and (6.4), the right-hand side is equal to

1
2p(1=p)(t; — t5-1)
x ((bj —bj1) =2p(1 = p)(t; —tj1) = (1 =2p)(¢; = £j1) + O(ti/g)) :

This is O(N~1). Thus (6.59) holds for sufficiently large N, and we obtain the
Fj(w)

Fjil(w) .

The monotonicity implies that

| <[

monotonicity of

(6.60)

with u. on the contour satisfying

(6.61) Ue = —p + py/1 — pE.N~Y/2

for a complex number £, satisfying |£.] = N/%. Now by Lemma 6.8,

‘ Ej(ue) Fj1(=p)
Fj1(uc)Fj(—p)

_ ’e(ﬁj_a:jfl)fc-'r%("/j_'Yj—l)fg_%(Tj_ijl)fg

(6.62)

(14012,

The point u. is on the contour (6.57) and the contour is close to the contour

’wp(w + 1)1_”’ = ro exponentially, which is self-intersecting at w = —p like an x.

This implies that arg(¢.) converges to either ‘%’T or —?jf. Since 7; — 71 is positive,
3e/4

we find that the right-hand side of (6.62) decays fast and is of order e =<V " This

proves (6.52) when w € L. The case when w € Ry is similar. O
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From Lemmas 6.8 and 6.9, we obtain the following asymptotics of £;(w).

Lemma 6.10. Recall £;(w) introduced in (6.29) and f;j(w) defined in (2.27). As-
sume the same conditions on the parameters as in Lemma 6.9. Then'! there is a

positive constant ¢ such that for w € Ly URyz,
[@)(1+O0N12) if o] < N/,

(6.63) £iw) =" L s
O(e™™ ) if o] = N7,

where for given w, & is defined by the relation

pVI—p.
In particular, £;(w) is bounded uniformly for w € Ly URz as N — oo.

6.3.3. Verification of conditions (i) and (ii) of Lemma 6.6. Let w € Rz, N'S; and
w’ € Rz; NSz. Let ¢ and ¢’ be the image of w and w’ under either the map My L
or My R in Lemma 6.5, depending on whether the point is on L, or R,. We also

set
N1/2 N1/2
6.65 @ i= ———(w+p), &= ——(w' + p).
(6.65) P p( ) i p( )
Then, by Lemma 6.5,
(6.66) o —¢], |& =] < N3/4=1210g N,
We have

Ki(w,w') = — (6:;(5) + 8 (j + (=1)7))

(6.67) o @ VE@ G H @) o

Hy, () (w)(w—w)
Clearly, Q1(j) = Q1(j). Assume that w,w’ € Q. Then

(6.68) J(w) = _%v]\lj;f (1+ over-1ry).

i=(=1)d

The overall minus sign in K (w,w’) cancels the minus sign from J(w). For other
factors in (6.67), we use Lemma 6.7 and Lemma 6.10. Here, we recall from (4.14)
that H,(w) = 1,(w) for R(w) < —p and H,(w) = r,(w) for R(w) > —p. We obtain

(6.69) | K (w, w')] = |Ky (@, 0)](1+ O(N1/21og N)).

We then take the approximate & and @’ by ¢ and ¢’ using (6.66). Since the deriva-
tives of Ky (@, &’) are bounded (which is straightforward to check), we find that

(6.70)  |Ki(w,w")| = [Ki(¢, ¢)](14+ O(N2log N)) + O(N3</4=1/21og N).

Recall that |Ky(¢,¢’)| are bounded; see the first paragraph of the proof of Lemma
6.6. Therefore, we obtain the first equation of (6.34). The estimate of |Ka(w,w")]
is similar, and we obtain (i) of Lemma 6.6. Part (ii) of the lemma is similar.

11f 7;_1 = 7; and zj_1 < z;, then the error changes to O(e*CNe/Al) for || > N¢/4,
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6.3.4. Verification of condition (iii) of Lemma 6.6. Consider |K;(w,w’)| when w

or w' is in Q°. Here w € S; and w’ € So. We estimate each of the factors on the

right-hand side of (6.67). We have the following. The estimates are all uniform
in w or w in the domain specified. The positive constants C, C’, and ¢ may be
different from line to line.

(1) N'Y2jw + p| > C for w € S; US,. This follows from Lemma 6.5.

2) N'/2jw —w'| > C for w € S; and w’ € S,.

) [J(w)] < CN7Y2 for w € S; USs. Recall (4.12) for the definition of J(w).

) |fi(w)| < C for w € S; USs by Lemma 6.10.

) fi(w)| < Ce=N""" for w € QN (S1US2) by Lemma 6.10.

) C < |Hgz,(w)|] < C'for w € S;USy by Lemma 6.7. For the upper bound, we
also use the decay property of h(@,2) = O(&™1) from (2.26). Recall (4.14)
for the definition of H.

(7) Q) < C and Q)] < C.

By combining these facts we obtain'? that |K; (w,w’)|= O(e_CN3€/4) and | Ko (w', w)]
= O(e_CN3€/4) if w or w' is in Q°. Hence we obtain (iii) of Lemma 6.6. This com-
pletes the proof of Theorem 2.1.

(
(3
(4
(5
(6

7. PROPERTIES OF THE LIMIT OF THE JOINT DISTRIBUTION

In this section, we discuss a few properties of the function

(71) ]F(xly"' yTm; P1y - apm)

introduced in Section 2, which is a limit of the joint distribution. In order to
emphasize that this is a function of m variables with m parameters, let us use the
notation

(72) F(m)(xap) = F(xla' Ty Pyt ,pm)a
where
(73) X:(l‘l,"' ,J?m), p:(p17 7pm)

We also use the notation
[k] = (pl, ct Sy PE—1,PE41, 0 apm)

for vectors of size m — 1 with x; and py removed, respectively.
Recall the formula

(7.5) F(m) (x;p) = %---%C(m) (z;x,p)D(m)(z;x7 p)

where z = (21, , 2m ), and the contours are nest circles satisfying

(74) X[k] = (1'1;"' y Lh—1y Lh4-1y " " ,l'm), p

dzm, dz

2miz,,  2mizy’

(7.6) 0< |zm| < <l|m| <L

We wrote C(z) and D(z) by C™)(z;x, p) and D™ (z; x, p) to emphasize that they
are functions of m variables z1,-- - , z;,;, and depend on x and p. Recall from prop-
erty (P1) in Subsubsection 2.2.1, which we proved in Subsubsection 2.2.2, that for
each i, C'™(z) is a meromorphic function of z; in the disk |z;| < 1 and the only
simple poles are z; = z;41 fori = 1,--- ,m—1. Part (i) of the next lemma shows the
analytic property of D(")(z; x, p) and proves property (P2) in Subsubsection 2.2.1.
Part (ii) is used later.

12If r;_1 = 7; and xj_1 < z;, then the error terms in (5) and the kernels are O(e_CNEM).
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Lemma 7.1. (i) D™ (z;x,p) is analytic in each of the variables zj, in the
deleted disk 0 < |z| < 1.
(ii) For1<k<m-—1,

(7.7) lim D™ (z;x,p) = D" D (z*;xM plt),
2k Zk+1
where Z[k] = (Zl)"' y Rk—15 Rk+1, """ 7Z’m)'

Proof. Recall the series formula (2.55):

(7.8)
1
D™ (z;x,p) = Y COE (zx,p), D{™(zx,p)=>Y d7)(U,V;x,p),
HE(Zzo)m
where the last sum is over U¥) € (L,,)" and V) € (R,,)™, £ =1,--- ,m. Here

(recall the notational convention in Deﬁmtlon 2.9),

A(UO; V()2

T AUO VI AVO; YU eV Oz )
[1 A(UO; UED)A(VO; V(E=1))eh(U 2 ) +h(UF D 2)

(=2
(-5) (-=5) ]
7 201 ’
where U = (UM, ... UM) v = (VO ... v) with UO = @ ... ul)),
VO = (ng),”. v%)) Note that we may take the components of U®) and V()

to be all distinct due to the factors A(U®) and A(V®). Recall that f,(¢) :=
%fg(g)e%(@z@, where h and f; are defined in (2.22), (2.23), and (2.27).

The points u§- ) and v§ ) are roots of the equation /2 = z¢, and hence they
depend on z, analytically (if we order them properly). Note that the only denom-
inators in (7.9) which can vanish are A(U®;U¢D) and A(VE);VE-D), They
vanish only when z,_; = z,. Hence the only possible poles of D" (z;x,p) are
2k = zg+1 for k=1,--- ,m — 1. Hence (ii) implies (i).

We now prove (ii). We may assume that zq,--- , 2, are all distinct and take
the limit as 2z — 2p4+1; otherwise, we may take successive limits. Let us consider

which terms in (7.9) vanish when z, = z;41. Clearly, (1 — %)"Hl(l - %)”k

vanishes. On the other hand, when 2z = 241, U®) and U*+D are from the same
set. If there is a non-zero overlap between the pair of vectors, then A(U(k“); U(k)),
which is in the denominator in (7.9), vanishes. Similarly, A(V*+D: V) may also

m OV2A(VO)2, )
d{™ (U, V;x, p) = [H AUT) AV fo(UOYF, (V)
=1

(7.9) ~

vanish. Hence d,(arf;)(U, V;x,p) is equal to

— Ng+1+Nk
A(U (k+1). U(k))A( (k+1);\/(k))
times a non-vanishing factor as zy — zp+1. Now, note that if ugk) — u§k+1) for

. ) (R D2
some ¢ and j, then from e ()72 = Zk+1,
. Zh41 — Zk dzgq1 (k+1)
(7.11) lim = =—u ' zpy1.
ugk)—)u§k+1) u§k+1) _ ugk) du§k+1) J
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Since A(U*+1; U®)) has at most min{ny,1,ns} vanishing factors u; (k1) _ Ek)

(because the components of U®) are all distinct, and so are U(k+1) ) and, similarly,

A(VEEDVE)) has at most min{ng 1,7, } vanishing factors v(kH) z(k), we find,
by looking at the degree of the numerator, that (7.10) is non-zero only if (a) nj =
Nng+1, (b) U®) converges to a vector whose components are a permutation of the
components of U¥+D and (c) V) converges to a vector whose components are a
permutation of the components of VEED - When ny, = Nk+1, uk — U("‘H)7 and
V) — VEHD Cthe term (7.10) converges to

2nk+1 an+1 k‘+1 (k‘+1)
k+1 3 1

A(UGFD)2A (VD)2
Hence, using the fact that (see (2.27))

e—%(7k+1_Tk—1)<3+%(’Yk+1_'Yk—l)<2+(xk+1_x’€*1)< for ER(U))
f(w)fk1 (W) = 3 1 r ) L e — 1) (a1 01 )C
e5 (Th1=T-1)¢" =5 (Yrt1 =701 kb1 =1 for R(w) >0

we find that d,([f?z)(U, V;x,p) converges to
dim=h) (] VI, k] pl),

nlkl z[k
where nl#, UK V5] are the same as n, U, V with ng, U, V*) removed. We obtain
the same limit if nj, = npy1, U*) converges to a vector whose components are a
permutation of the components of U**1D and V) converges to a vector whose
components are a permutation of the components of V(E+1), Hence,

Zk *}Zk+1

where the sum is over U) € (L.,)"™ and V(e) e (R,)"™, ¢ =1,k —1,
kE+ 1,---,m. This implies (7.7). This completes the proof of (ii), nd hence
(i), too. O

The next lemma shows what happens if we interchange two consecutive contours
in the formula (7.5) of F(™)(x;p). Although we do not state it explicitly, we can
also obtain an analogous formula for the finite-time joint distribution from a similar
computation.

Lemma 7.2. For every 1 <k <m —1,
F™ (x; p) =F" =1 (xM; pl#])

(7.12) d: =
o € (g%, p)D (2 R
+% f{ CEx P E X P)y e g

where the contours are nested circles satisfying
(7.13) 0 < |zm| <+ <|zkg1] < |2zp—1]l < - <|z1| <1 and 0 < |z| < |zk+1]-
Proof. We start with the formula (7.5). We fix all other contours and deform the

zi-contour so that |zx| is smaller than |z;11|. Then the integral (7.5) is equal to a
term due to the residue plus the same integral with the contours changed to satisfy

0 <lzm| < <|zkt2| < |2zk] <|zkt1| < |2R—1| < - <]z < 1.

Since the integrand has poles only at z; = 2,41, ¢ = 1,--- ,m — 1, it is analytic at
z = #z; for i > k + 2. Hence the conditions that |zx| > |z;|, ¢+ > k + 2, are not
necessary, and we can take the contours as (7.13).
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It remains to show that the residue term is F(»~ 1 (x[¥l; p[F)). Tt is direct to check
from the definition (2.21) that

(7.14) lim (2 — 2641)C" (2%, p) = 2641 C D (2] xF] plk]y,

Zk—rZk+1
where we set zlFl = (21, s Zk—1, Zk+1, " * » Zm). On the other hand, from Lemma
7.1(ii), D™ (z; x, p) converges to D) (z[¥; x[* pl*]), Thus, noting de’“k in (7.5),
the residue term is equal to F(—1 (x[¥l; p[k]). O

The multiple integral in (7.12) has a natural probabilistic interpretation. The
following theorem gives an interpretation for more general choices of contours.

Theorem 7.3. Assume the same conditions as Theorem 2.1. Let E]i be the events

defined by
~_ [h(py) — (1 —=2p)s; — (1 =2p+2p°)t;
(7.15) By = { —2p1/2(1 — p)1/2L1/2 <
and
h(p;) — (1 —2p)s; — (1 —2p+2p*)t;
+ _ j j j ‘
(7.16) Ef = { 2,12 (1 = )L > x50
Then
(7.17)
lim P (BN -NEX | NE;) f %c gy dom . da
L—oo 27nzm 2mizy

where # denotes the number of appearances of + in Eli n---N Ei_l, and the
contours are circles of radii between 0 and 1 such that for each 1 < j < m —1,

(7.18) 2j| > |zj41] if we have E; and |zj| < |zj41] if we have Ej'Ir
Proof. Theorem 2.1 is the special case when we take E; for all j. The general
case follows from the same asymptotic analysis starting with a different finite-time

formula. We first change Theorem 3.1. Let E’;r : {xk ) > a]} and E
{xk, (t;) < a;} be events of TASEP in Xy (L). Then we clalm that

Py(EimmmEi,lmE*)
(7.19)
f j{cszY a¢)m .. 451

27z, 2mizy

where the contours are circles of radii between 0 and 1 such that for each 1 < j <

—1, |zj] > |zj41] if we have E and |zj| < |z]+1| if we have E+ Here # denotes
the number of appearances of + in EXf N ... N EZ -1 and a = (a1, -+ ,am) with
aj = a; or a; — 1 depending on whether we have Ej or E , respectively. The
identity (7.19) follows from the same proof of Theorem 3.1 Wlth a small change.
The contour condition is used in the proof when we apply Proposition 3.4. Now,
in Proposition 3.4, if we replace the assumption®? H§V=1 lw’ + 1] < H;VZI lw; + 1]

138ee the paragraph including the equation (3.22) for a discussion about how the condition
H;\;l | + 1] < H;V:I |w; + 1] is related to the condition |z’| < |z].
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by H§V=1 |w; +1| > H;\I:l |w; + 1|, then the conclusion changes to

2\ (k=1)L AN
3 Rx (W)Lx (W') =~ (;) (1 B <;) )

XeXnN(L rp<a
( ' ) €Xn(L)N{zr<a}
. 1)_a+k+2

N N
o |T] I
(w))~F(w) + 1)—etk+ w; — w,

Note the change in the summation domain from zp > a to xp < a. This identity
follows easily from Proposition 5.2 and the geometric series formula. The probabil-
ity of the event Eif N---N EX | N E. is then obtained from the same calculation
as before using, for each 4, either Proposition 3.4 or (7.20) depending on whether
we have E~z+ or E~;.

For the periodic step initial condition, Theorem 4.6 showed that C(z,k) times
Dy (z,k,a,t) is equal to C(z)D(z). This proof does not depend on how the z;-
contours are nested. Hence we obtain

(7.21) P (E;i n---nEx_ N E,,;) = (-1)* f : --j{c(z)p(z)

where C'(z) and D(z) are the same as that in Theorem 4.6 except that the parameter
aisreplaced by a. The contours are the same as that in (7.19). Now, the asymptotic
analysis follows from Section 6. Recall that the analysis of Section 6 does not depend
on the ordering of |z;|; see Remark 6.1. O

dz,, dz;

2miz, 2wz’

We now prove the consistency of F(™)(x; p) when one of the variables tends to
positive infinity.

Proposition 7.4 (Consistency). We have
(7.22) lim F(x;p) = Fm=(x*; plkly,

X —+00

Proof. We consider the case when & = m first and then the case when k < m.

(a) Assume k = m. When m = 1, we showed in Section 4 of [4] that F™®) (z1;p;)
is a distribution function. Hence,

i M (D) =

(7.23) xllggoolﬁ‘ (x1;p1) = 1.
Now we assume that m > 2 and take z,, — +00. Recall the formula (7.5) in which
the zn,-contour is the smallest contour. From the definition (see (2.21)),

C(™) (2 x, p) =C(m=V) (glm]; x ) plmly =l
Zm—1 — Zm

a:mAl(zm)+TmA2(Zm)
¢ 02B(zm)=2B(2m zm—1)_

x eTm—141(2m)+Tm—142(2m)
We choose the contour for z,, given by z,, = —-¢?, 6 € [0,27). Since 4;(z) = O(z2),
B(z) = O(z), and B(z,w) = O(z) as z — 0, we have
(7.24) Cm)(z;x,p) = Cm=V (gl x[m plmly L O(2, 1)

as T, — 00.
‘We now show that

(7.25) D(m)(z;x,p) = D(m_l)(z[m];x[m]7p[m]) + O(e—cwm)
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as @, — 00, where we had chosen |z,,| = -+-. From the series formula (2.51),
m— m m m 1
(7.26)  D™(z;x,p) — DU D (gl xIm] plmly = %= %~ (a2 On (2

N 1Ny, Ny 120
We need to show that the sum is exponentially small. From (2.55) and (2.56),

(7.27) Du(z)= Y. [ > dn,z(va):|>

UOe(Ls,)" Tume(L,,, )
VOe(R., )" VIMER., )"
=1, m—1

where for each U and V, dy, ,(U, V) is equal to

AUIMRANVM2L
AU yim)2 frm (U™ (V™))

AU Vm=1) A (V) U(m—l))e—h(V(m),szl)—h(V(”"”,zm)

(7.28) 1%
AU Um=D) A (V(m); Vm=1))eh(Um) 2 —)+h(UI 1 20)
Nom MNm—1
« 1_ Zm—1 1_ Zm
Zm Zm—1
times
(7.29) dpimi gt (U VI

a factor which does not depend on z,,, and hence also on U™ and V(™) (and x,,
and p,,). The term (7.29) is the same as dy (U, V) when m is replaced by m — 1.
Since ny, > 1 in the sum (7.26), the inside sum in (7.27) is not over an empty set.
We show that for each U and V, (7.28) is
(7.30) O(eermlV™ I=eem V™)
for a constant ¢ > 0, where |[U(™)| is the sum of the absolute values of U™ and
V™) is similarly defined. This proves (7.25).
To show the decay of (7.28), we first note that every component u of U(™) is
a solution of the equation e v /2 = Zm satisfying R(u) < 0. As |z,| = m% — 0,
R(u?) — co. Since N(u?) = (R(u))? — (S(u))?, this implies that R(u) — —oo, and
hence |u| — co. Similarly, every component v of V(™ satisfies R(v) — oo and
|v| = oo. Tt is also easy to check (see Figure 4) that the solutions of the equation
e=¢"/2 = 2 lie in the sectors —7/4 < arg(¢) < 7/4 or 37/4 < arg(¢) < 5m/4 for
any 0 < |z| < 1. Hence |u| < v2R(u), [v] < V2R(v), and v2|u — v| > |u| + |v]. We
now consider each term in (7.28). Considering the degrees,
A(u(m))QA(V(m))Q A(u(m); V(m_l))A(V(m); U(m—l))
AU V)2~ o), AU, Um=D) A (Vm); Vm—1))
From the formula of h in (2.25), and using (2.24),
h(VI™, 20 _1), h(UT™ 2 1), RV 20), RUOD 20) = O(1).
Recall from (2.57) that f,,(¢) = %fg(()e%(c’z’"). As above,
h(VI™, 2,), h(UU™ ) = O(1).

= 0(1).
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On the other hand, from the definition (2.27),
filw)] < e, o) < el
for the components u and v of U™ and V(™) implying that
[ (U (V)] = O crmlV I em VL),

This term dominates the factor

(1 - Zm_l) = O(a2m).

Zm

Combining together, we obtain the decay (7.30) of (7.28), and hence we obtain
(7.25).
We insert (7.24) and (7.25) in (7.5), and integrating over 6, we obtain

F) (i) = FD (x7, pl) 4 O(a )

for all large z,,,. Hence we proved (7.22) for k = m.
(b) Assume that & < m. Let us denote the integral in (7.17) with the con-
tours (7.18) by

]Fl(m)(xitv e ,1’;&171,1‘7—”; p)
Note that
]I}(m) (xl_v T )x’y_rl—:[?x;],; p) = IF("L)(xla o ,$m_1,$m;p).
Fix k such that 1 <k <m — 1. By Lemma 7.2, we obtain (7.22) if we show that

(7.31) xkliﬁoo FO™ (1, T _qs a:;:,m,;rl, <z p) =0.

Now, from the joint probability function interpretation stated in Theorem 7.3,

(7.32) fp(m)(... e I‘i’xi%rl"" :p) < ]F(mfl)(... ’Iihxﬁl?... ;p[i])

»Hi—10"g

for any 1 < i < m (for any choice of £-sign for x;, 1 < i < m — 1, and the choice
of — sign for z,,). Using (7.32) m — 1 times, we find that

(733) ]F(m) (JI;, U 7x];_17xz>x]:+17 o 7x7_na p) < ]Fl(l) (l’z, pk) =1- ]F(l) (:L.ka pk)

The one-point function F™M) (zy; pr) converges to 1 as xj, — 400 from (7.23). Hence
we obtain (7.31), and this completes the proof of (7.22) when 1 <k <m—1. O

In the opposite direction, we have the following result.

Lemma 7.5. We have

(7.34) lim F('”)(x; p) =0.

Tp—>—00

Proof. Since a joint probability is smaller than a marginal distribution and
F(™) (x; p) is a limit of joint probabilities,

(7.35) F™ (x; p) < FY (@ p).-

As mentioned before, the function F(Y (x; py) = F(xy; pg) is shown to be a distri-
bution function in Section 4 of [4]. This implies the lemma. O
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8. INFINITE TASEP

If we take L — oo while keeping all other parameters fixed, the periodic TASEP
becomes the infinite TASEP with N particles. In terms of the joint distribution,
this is still true if L is fixed but large enough.

Lemma 8.1. Consider the infinite TASEP on Z with N particles and let T;(t)
denote the location of the ith particle (from left to right) at time t. Assume that the
infinite TASEP has the initial condition given by &;(0) = y;, where y; < -+ < yn.
Also consider the TASEP in Xn(L) and denote by x;(t) the location of the ith
particle. Assume that

(8.1) L>yn—wun

and let x;(t) have the same initial condition given by x;(0) = y;. Fiz a positive
integer m. Let ky, -+, ky be integers in {1,--- N}, let ay, -+ ,am be integers,
and let ty,- -+ ,t,, be positive real numbers. Then for any integer L satisfying (in

addition to (8.1))

(8.2) L>max{a; — ki, - ,am —km}—y1 + N+1,
we have
(83) P (i'kl (tl) <ap,- - aikm (tm) < am) =P (xkl (tl) <ag,- - y Xy, (tm) < am) .

Proof. * We first observe that the particles x;(t) are in the configuration space
Xn (L), while the particles Z;(¢) are in the configuration space Wy := {(z1, - ,zn)
€ZN 1z < --- <y} The only difference between these two configuration spaces
is that X'x (L) has an extra restriction x < x1+ L —1. Therefore, if this restriction
does not take an effect before time ¢, i.e., xn(s) < xi(s) + L —1forall 0 < s < ¢,
then the dynamics of the TASEP on Xy (L) is the same as that of the infinite
TASEP (with the same initial condition) before time ¢. Furthermore, if we focus
on the ith particle in the TASEP in Xn (L), there exists a smallest random time
T; such that the dynamics of this particle are the same in both the TASEP Xy (L)
and the infinite TASEP before time 7;. The times T; are determined inductively
as follows. First, T is the smallest time such that xy(t) = x1(¢) + L — 1. Next,
Txn_1 is the smallest time that satisfies ¢ > T and xy_1(t) = xn(¢) — 1. For
general index 1 < i < N — 1, T; is the smallest time that satisfies t > T;;1 and
x;(t) =x;41(t) — 1. Note that Ty >To > --- >Ty and for 1 <i < N —1,

(8.4) xi(T;) = xi11(Th) = 1 2 xi41(Tig1) — 1.

The same consideration shows that if we consider m particles xy, (¢1), -,
Xp,, (tm) of the TASEP in Xy (L) at possibly different times, their joint distri-
bution is the same as that of the infinite TASEP if ¢; < T}, for all ¢. Therefore, we
obtain (8.3) if we show that under the condition (8.2), the event that xg, (¢;) < a;
for all 1 <4 < m is a subset of the event that t; < T}, for all 1 < ¢ < m. Now,
suppose that ¢; > Ty, for some i. Then, writing ¢ = k; and using (8.4),

x¢(ti) > xo(Ty) 2 xp41(Tpgr) =1 2> - 2 xn(Tn) — (N = £).

14 This lemma can be seen easily from the directed last passage percolation interpretation of
the TASEP.
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Since zn(7n) = x1(Tv) + L — 1 and x3(Tv) > x1(0) = y1, this implies that (recall
Xg(ti) 2y1+L—1—(N—€) > ay

using the condition (8.2). Hence we are not in the event that xg,(¢;) < a; for all
1 <4 < m. This completes the proof. O

The above result implies, using the inclusion-exclusion principle,

(85) P (jkl (tl) Z A, 7i'km (tm) Z am) == P(Xkl (tl) Z a, -, X, (tm) Z am)
for L satisfying
(8.6) L > max{a; — k1, ,am — km,yn — N} —y1 + N.

Therefore, Theorem 3.1 implies that
(8.7) P(Zg, (t1) > a1, , &k, (tm) > ap) = the right-hand side of (3.6)

for any L satisfying (8.6). In particular, for the initial condition #;(0) = ¢ — N,
i=1,---, N, by Theorem 4.6, we find that

(8.8) P (&g, (t1) > a1, , &k, (tm) = am) = the right-hand side of (4.30)
for any integer L satisfying
(8.9) L > 2N +max{a; — ki, -+ ,am — km, —N}.

Note that since the particles move only to the right, the above joint probability is
the same as that of the infinite TASEP (with infinitely many particles) with the step
initial condition. Hence we obtained a formula for the finite-time joint distribution
in multiple times and locations of the infinite TASEP with the step initial condition.
Actually we have infinitely many formulas, one for each L satisfying (8.9). Since
the infinite TASEP does not involve the parameter L, all these formulas should
give an equal value for all L satisfying (8.9).

Now, if we want to compute the large-time limit of the joint distribution of the
infinite TASEP under the KPZ scaling, we need to take a; = O(t). The above
restriction on L implies that L > O(t). This implies that ¢ < L3/2, which cor-
responds to the subrelazation time scale. Hence the large-time limit of the joint
distribution of the infinite TASEP is equal to the large-time limit, if it exists, of the
joint distribution of the periodic TASEP in the subrelaxation time scale. However,
it is not immediately clear if the formula (4.30) is suitable for the subrelaxation
time scale when m > 2. In particular, the kernels K;(w,w’) and Ks(w,w’) do
not seem to converge. We leave the analysis of the multipoint distribution of the
infinite TASEP as a future project.
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