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1. Introduction

Analyzing fields of character values is a difficult problem in the representation theory 
of finite groups. Real-valued characters and rational-valued characters have received more 
attention than others.

It is well-known that a finite group G has a unique real/rational-valued irreducible 
character if and only if G has odd order. In [15], Iwasaki proposed to study the relation-
ship between the structure of G and the number of real-valued irreducible characters of 
G, which we denote kR(G). He showed that if kR(G) = 2, then G has a normal Sylow 
2-subgroup which is either homocyclic or a so-called Suzuki 2-group of type A. Going 
further, Moretó and Navarro proved in [17] that if G has at most three irreducible real-
valued characters, then G has a cyclic Sylow 2-subgroup or a normal Sylow 2-subgroup 
which is homocyclic, quaternion of order 8, or an iterated central extension of a Suzuki 
2-group whose center is an elementary abelian 2-group. In particular, the groups with 
at most three irreducible real-valued characters must be solvable. Indeed, it was even 
proved in [18] that a finite group with at most three degrees of irreducible real-valued 
characters must be solvable.

In a more recent paper [23], the third author studied groups with four real-valued 
irreducible characters. Among other results, he proved that a nonsolvable group with 
exactly four real-valued irreducible characters must be the direct product of SL3(2) and 
an odd-order group. Classifying finite groups with exactly five real-valued irreducible 
characters seems to be a difficult problem. In the next result, which we prove in Section 2, 
we control the nonsolvable part of those groups. We write Sol(G) to denote the solvable 
radical of G, i.e. the largest solvable normal subgroup of G.

Theorem A. Suppose that a finite group G has at most five real-valued irreducible char-
acters. Then G/ Sol(G) is isomorphic to the trivial group, SL3(2), A5, PSL2(8) · 3 or 
2B2(8) · 3.

Theorem A and the aforementioned results suggest that the nonsolvable part of a finite 
group perhaps is bounded in terms of the number of real-valued irreducible characters of 
the group. We obtain the following result, proved in Section 4, which provides a partial 
answer to Iwasaki’s problem.

Theorem B. There exists an integer-valued function f on positive integers such that if 
G is a finite group with at most k real-valued irreducible characters, then |G/ Sol(G)| �
f(k).

Our arguments would allow us to find explicit bounds in Theorem B, but these bounds 
perhaps are far from best possible. Therefore, for the sake of simplicity, we have not tried 
to find the best bounding function.

Our proof of Theorem B uses the classification of finite simple groups and the following 
statement for simple groups, proved in Section 3, which may be of independent interest.
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Theorem C. For a finite nonabelian simple group S and S � G � Aut(S), let kR(G|S)
denote the number of real-valued irreducible characters of G whose kernels do not contain 
S. Then kR(G|S) → ∞ as |S| → ∞.

There is no rational-valued analogue of Theorem B, as shown by the simple groups 
PSL2(32k+1) with k � 1. We also note that, by Brauer’s permutation lemma, the number 
of real-valued irreducible characters and that of conjugacy classes of real elements in a 
finite group are always the same.

2. Nonsolvable groups with five real-valued irreducible characters

For a finite group G, we denote by Re(G) the set of all real elements of G, E(G) the set 
of orders of real elements of G and IrrR(G) the set of real-valued irreducible characters of 
G. Recall that the generalized Fitting subgroup F∗(G) of G is the central product of the 
layer E(G) of G (the subgroup of G generated by all quasisimple subnormal subgroups of 
G) and the Fitting subgroup F(G). Note that if G has a trivial solvable radical, that is, 
it has no nontrivial normal solvable subgroups, then F∗(G) = E(G) is a direct product 
of nonabelian simple groups. Moreover, if F∗(G) is a nonabelian simple group, then G
is an almost simple group with socle F∗(G).

Lemma 2.1. Let G be a finite nonsolvable group with a trivial solvable radical. If |E(G)| �
5, then G is an almost simple group.

Proof. As the solvable radical of G is trivial, we see that F∗(G) = E(G) =
∏r

i=1 Si is 
a direct product of nonabelian simple groups Si (1 � i � r), for some integer r � 1. It 
suffices to show that r = 1.

Suppose by contradiction that r � 2. Let M = S1 × S2. Since E(M) ⊆ E(F∗(G)) ⊆
E(G), we deduce that |E(M)| � 5. Observe that if xi ∈ Re(Si) for i = 1, 2, then x1x2 ∈
Re(M) and thus if x1 and x2 have coprime orders, then

o(x1x2) = o(x1)o(x2) ∈ E(M).

We consider the following cases.
(i): S1 or S2 has no real element of order 4. Without loss, assume that S1 has no real 

element of order 4. Then by [23, Proposition 3.2], S1 is isomorphic to one of the following 
groups:

SL2(2f )(f � 3), PSU3(2f )(f � 2), 2B2(22f+1)(f � 1);
PSL2(q)(5 � q ≡ 3, 5 (mod 8)), J1, 2G2(32f+1)(f � 1).

By [18, Theorem 3.1], S1 contains real elements z1 and z2 of order p1 and p2, where 
p1 �= p2 are odd primes. Since S2 has a real element of order 2, we see that M has real 
elements of order 1, 2, p1, p2, 2p1, 2p2, which is impossible.
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(ii): Both S1 and S2 have real elements of order 4. By [7, Proposition 6.4], S1 contains 
a real element of order p, where p is an odd prime. Since S2 has real elements of order 2
and 4, M has real elements of order 1, 2, 4, p, 2p and 4p, which is impossible again. �

Next, we classify all finite nonabelian simple groups S with |E(S)| � 5. Recall that 
a finite group G is called a (C)-group if the centralizer of every involution of G has a 
normal Sylow 2-subgroup. By [6, Lemma 2.7], G is a (C)-group if and only if G has no 
real element of order 2m with m > 1 being odd.

Lemma 2.2. Let S be a nonabelian simple group. Then |E(S)| � 5 if and only if S is 
isomorphic to one of the following simple groups:

(1) A5 ∼= PSL2(4), SL3(2), PSL3(3), or PSU3(3);
(2) PSL2(8), A6 ∼= PSL2(9), PSL2(11), PSL2(27), PSU3(4), PSL3(4), 2B2(8);
(3) PSL2(3f ), where f � 7 is an odd prime, 3f + 1 = 4r, 3f − 1 = 2s, and r, s are 

distinct odd primes.

Proof. By [23, Theorem B], we have 4 � |E(S)| � 5. If S ∼= PSL3(3), PSU3(3) or SL3(2), 
then |E(S)| = 5 and these groups appear in part (1). Assume that S is not isomorphic 
to one of these groups. By [18, Theorem 3.1], E(S) contains at least two distinct odd 
primes, say p1 and p2.

Assume first that |E(S)| = 4. Then E(S) = {1, 2, p1, p2}. It follows that S is a (C)-
group and thus S ∼= A5 by [23, Theorem 3.1].

Assume next that |E(S)| = 5. Assume that 4 ∈ E(S). Then E(S) = {1, 2, 4, p1, p2}. 
In particular, S has no real element of order 2m with m > 1 odd. By [20, Theo-
rem 1], S is isomorphic to PSL2(p) where p is a Fermat or a Mersenne prime; A6; or 
PSL2(q), 2B2(q), PSU3(q), or PSL3(q) where q > 2 is a power of 2. Assume that 4 /∈ E(S). 
By [23, Proposition 3.2] S is isomorphic to one of the following simple groups:

SL2(2f )(f � 3), PSU3(2f )(f � 2), 2B2(22f+1)(f � 1);

PSL2(q)(5 � q ≡ 3, 5(mod 8)), J1, 2G2(32f+1)(f � 1).

We can check that A6 has five distinct real element orders but J1 has more than five 
distinct real element order. So we may assume that S is not one of these two groups. We 
now consider the following cases.

Case 1: S ∼= SL2(2f ), f � 3. If 3 � f � 6, then we can check that only SL2(8) has 
exactly five distinct real element orders. So, assume f > 6. Since SL2(2f ) contains real 
elements x and y of order 2f − 1 and 2f + 1, respectively, together with real elements of 
order 1 and 2, we deduce that one of the numbers 2f ± 1 is an odd prime and the other 
is a square of an odd prime. Since f � 6, we can check that this cannot occur.
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Case 2: S ∼= PSL2(q), q = pf , where f � 1 and p > 2 is a prime. Using [9], if q � 37, 
then q ∈ {9, 11, 27}. Assume that q ≡ ε mod 4, ε = ±1. In this case, S has real elements 
of order (q − ε)/2 and (q + ε)/2, respectively. Note that (q − ε)/2 is even.

Assume that (q − ε)/2 = 2a for some integer a � 1. Since q > 37, 2a � 16 and thus 
S has real elements of order 1, 2, 4, 8, 16 and (q + ε)/2, which is a contradiction. Thus 
(q − ε)/2 is divisible by 2r for some odd prime r. Let s be a prime divisor of (q + ε)/2. 
Then {1, 2, r, s, 2r} ⊆ E(S) and since |E(S)| = 5, (q − ε)/2 = 2r and (q + ε)/2 = s, where 
r, s are distinct odd primes. If p > 3, then since 3 | q2 − 1, we must have r = 3 or s = 3, 
which is not the case as q > 37. Therefore p = 3 and q = 3f > 37 so f � 4. If f is even, 
then q ≡ 1 mod 8 and thus (q − 1)/2 is divisible by 4 which is impossible. Thus f � 5 is 
odd and so ε = −1. Hence (3f +1)/2 = 2r and (3f −1)/2 = s. The latter equation forces 
f to be a prime. This is part (3) of the lemma. Direct calculation shows that f � 7.

Case 3: S ∼= PSU3(2f ), f � 2. In this case, S has a subgroup T ∼= SL2(2f ). From 
Case 1, we must have f = 2 or 3. However |E(PSU3(8))| = 6 so S ∼= PSU3(4).

Case 4: S ∼= 2B2(22f+1), f � 1. If f = 1, then we can check that S satisfies the 
hypothesis of the lemma. Assume f � 2. By [21, Theorem 9 and Proposition 16], S has 
three nontrivial real elements of odd distinct orders, which are 22f+1 − 1 and 22f+1 ±
2f+1 + 1. As |E(S)| = 5, all of these numbers must be primes. Hence

42f+1 + 1 = (22f+1 + 2f+1 + 1)(22f+1 − 2f+1 + 1)

is a product of two distinct primes. Since 5 divides 42f+1 + 1, we deduce that

22f+1 − 2f+1 + 1 = 5

which is impossible as f � 2.
Case 5: S ∼= PSL3(2f ), f � 2. As S contains a subgroup isomorphic to SL2(2f ), we 

deduce that f = 2 or 3. Using [9], only PSL3(4) satisfies the hypothesis of the lemma.
Case 6: S ∼= 2G2(32f+1), f � 1. In this case, S contains subgroups isomorphic to 

PSL2(32f+1) and PSL2(8). Since |E(PSL2(8))| = 5, we deduce that

E(PSL2(32f+1)) ⊆ E(PSL2(8)) = {1, 2, 3, 7, 9}.

Thus (32f+1 + 1)/2 � 9 as PSL2(32f+1) has a real element of order (32f+1 + 1)/2. 
Therefore, 32f+1 � 17 which is impossible as f � 1.

Conversely, if S is one of the simple groups in (1)-(3), then we can check that S has 
at most 5 distinct real element orders. �
Lemma 2.3. Let G be an almost simple group with a nonabelian simple socle S. Then

(1) G has exactly four real-valued irreducible characters if and only if G ∼= SL3(2).
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(2) G has exactly five real-valued irreducible characters if and only if G is isomorphic 
to A5, PSL2(8) · 3 or 2B2(8) · 3.

Proof. Part (1) follows from [23, Theorem 3.3]. Assume that G is an almost simple group 
with a nonabelian simple socle S and that G has exactly five real-valued irreducible 
characters. By Brauer’s Lemma on character tables, G has exactly five conjugacy classes 
of real elements and thus |E(G)| � 5. Hence |E(S)| � 5 as E(S) ⊆ E(G). Therefore S
is one of the simple groups appear in the conclusion of Lemma 2.2. If S is one of the 
groups in (1) − (2) of Lemma 2.2, then by using [9], G is isomorphic to A5, PSL2(8) · 3
or 2B2(8) · 3.

Now assume that S ∼= PSL2(q) with q = 3f , where f � 7 is a prime, 3f + 1 = 4r and 
3f − 1 = 2s, where r, s are distinct odd primes. Let x ∈ S be a real element of order s. 
Then 〈x〉 is a Sylow s-subgroup of S and its normalizer in S is a dihedral group of order 
2s. It follows that S has (s − 1)/2 conjugacy classes of real elements of order s. Since 
|Out(S)| = 2f , we see that G has at least (s − 1)/(4f) conjugacy classes of real elements 
of order s. Since G already has 4 conjugacy classes of real elements of orders 1, 2, r, 2r, 
we deduce that G must have exactly one conjugacy class of real element of order s. Since 
(s − 1)/(4f) = (3f − 3)/(8f) and f � 7 is a prime, we can check that (3f − 3)/(8f) > 1. 
Thus this case cannot occur. �

The next theorem proves Theorem A, and provides additional information.

Theorem 2.4. Let G be a finite group. Assume that G has at most five real-valued ir-
reducible characters. Then G is either solvable or G/ Sol(G) ∼= SL3(2), A5, PSL2(8) · 3, 
2B2(8) · 3. Moreover, if | IrrR(G/ Sol(G))| = 5, then one of the following holds.

(1) G ∼= A5 × K, where K is of odd order.
(2) G ∼= (L × K) · 3, where L ∼= PSL2(8) or 2B2(8) and K is of odd order.

Proof. We may assume that G is nonsolvable and | IrrR(G)| � 5. Then | IrrR(G/

Sol(G))| � 5 and thus |E(G/ Sol(G))| � 5. By Lemma 2.1, G/ Sol(G) is an almost sim-
ple group. It follows from [23, Theorem B] that G/ Sol(G) has at least four real-valued 
irreducible characters; hence 4 � | IrrR(G/ Sol(G))| � 5. Now Lemma 2.3 yields the first 
part of the theorem.

Assume that | IrrR(G/ Sol(G))| = 5. By Lemma 2.3, G/ Sol(G) ∼= A5, PSL2(8) · 3 or 
2B2(8) · 3. In all cases, G/ Sol(G) has 3 conjugacy classes of nontrivial real elements of 
odd orders. As real elements of odd order of G/ Sol(G) lift to real elements of odd order 
of G by [13, Lemma 2.2], G has three conjugacy classes of nontrivial real elements of odd 
orders. It follows that Sol(G) has no nontrivial real element of odd order and thus Sol(G)
has a normal Sylow 2-subgroup by [7, Proposition 6.4]. Moreover, as | IrrR(G)| � 5, the 
above argument shows that G has no real element of order 2m with m > 1 being odd, 
so G is a (C)-group and has no real element of order 4. By [23, Theorem 2.3],
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L = O2′
(G) ∼= SL2(2f )(f � 2) or 2B2(22f+1)(f � 1).

It follows that L ∼= A5, PSL2(8) or 2B2(8) as these are the only possible nonabelian 
composition factors of G.

Let K := CG(L). Then K ∩ L = 1 and K × L � G. Since G is a (C)-group, we deduce 
that |K| is odd. Now G/K is isomorphic to a subgroup of Aut(L) and | IrrR(G/K)| � 5, 
we conclude that either G = K × A5 or G = (L × K) · 3, where L ∼= PSL2(8) or 2B2(8), 
as claimed. �
3. Real-valued characters of almost simple groups

In this section we prove Theorem C. We begin with the following observation:

Lemma 3.1. Keep the notation as in Theorem C. Then kR(G|S) = kR(G) − kR(G/S), 
kR(G) � kR(S)/|Out(S)|, and kR(G/S) � |Out(S)|. In particular, we have

kR(G|S) � kR(S)/|Out(S)| − |Out(S)|.

For S a finite nonabelian simple group, we will write

K(S) := kR(S)/|Out(S)| − |Out(S)|.

Hence, to prove Theorem C, it suffices to show that K(S) → ∞ as |S| → ∞. We remark 
that due to the nature of the statement of Theorem C, we may disregard a finite number 
of simple groups. Recall that we may view kR(S) as either the number of real-valued 
irreducible characters or the number of real conjugacy classes of S.

3.1. Initial considerations

Throughout, when q is a power of a prime p, we will write ν(q) for the positive integer 
such that q = pν(q).

Lemma 3.2. Let S be a simple group isomorphic to the alternating group An for n � 5, 
or a simple group of Lie type 2B2(q), 2G2(q), G2(q), 3D4(q), D4(q), 2F4(q), F4(q), or 
2D2n(q) with n � 2 for q a power of a prime. Or assume q �≡ 3 (mod 4) and that S is 
a simple group of Lie type Bn(q) with n � 3, Cn(q) with n � 1, or D2n(q) with n � 3. 
Then K(S) → ∞ as |S| → ∞.

Proof. Note that every conjugacy class of the symmetric group Sn is real, and that a 
class in Sn yields exactly one class in An if and only if the cycle type of the elements in 
the classes contain an even cycle or two cycles of the same length. Since the number of 
cycle types of this form is increasing with n and |Out(An)| = 2 for n � 7, we see that 
the statement holds if S = An.
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If S is G2(q), 2G2(q), 2B2(q), or 2F4(q), then observing the generic character tables 
available in CHEVIE [10], we see that all except two, six, two, or twelve, respectively, 
of the characters are real-valued. If S is F4(q), then all except four of the characters are 
real-valued, using [24, Theorem 4.1]. If S is one of the remaining simple groups of Lie 
type listed, then [22, Theorem 1.2] yields that every element of S is real.

Further, Out(S) � 24ν(q) where q = pν(q) for a prime p. Hence since the number of 
classes in S can be written as a polynomial in p whose exponents are in terms of n and 
ν(q), the statement also holds in these cases. �
3.2. Fixed parameters and classical groups

Proposition 3.3. Let S be a family of simple groups of Lie type with the same type and 
rank. That is, there is some generic reductive group G as in [2, Section 2.1] of simply 
connected type such that for each S ∈ S, S is of the form G/Z(G) where G = G(q) for 
some prime power q. Then for S ∈ S, we have K(S) → ∞ as q → ∞.

Proof. Let q be a power of a prime p and let G = G(q) be the fixed points GF of a 
simple simply connected algebraic group G over Fq under a Frobenius morphism F . Let 
T be a rational maximal torus of G and let Φ and Δ be a root system and set of simple 
roots, respectively, for G with respect to T. Let |Δ| = n. We use the notation as in [12]
for the Chevalley generators. In particular, note that T is generated by hα(t) for t ∈ F

×
q

and α ∈ Φ, and NG(T) is generated by T and the nα(1) for α ∈ Φ.
Note that we may assume that S is not one of the families considered in Lemma 3.2. 

Hence if F is twisted, we may assume that F = τFq where |τ | = 2 and either G is type 
An or n > 4. Here Fq denotes the standard Frobenius morphism induced from the map 
x �→ xq on Fq, and τ denotes a graph automorphism of G.

First assume F is not twisted, so τ = 1. Fix some α ∈ Δ. Then for t ∈ F×
q , we know 

s := hα(t) is real in G, with reversing element nα(1). Further, s lies in the maximally 
split torus T := TF . By [5, Cor. 0.12], we know that NG(T) controls fusion in T, so 
if s = hα(t) and s′ := hα(t′) for t, t′ ∈ F×

q are conjugate, then they are conjugate in 
NG(T). In particular, this means there is some product x :=

∏
β∈J nβ(1) with J ⊆ Φ

that conjugates s to s′.
Then by the properties of the Chevalley generators from [12, 1.12.1], we see this is 

impossible unless t′ = ±t±1. Indeed, hα(t)nβ(1) = hrβ(α)(±t), so we may write hα(t)x =
hr(α)(±t) where r :=

∏
β∈J rβ is the corresponding composition of reflections. Then if 

hα(t)x = hα(t′), we have hr(α)(±t) = hα(t′). But if 
̂
r(α) =

∑n
i=1 ci

̂
αi, then hr(α)(±t) =∏n

i=1 hαi
(±tci). Here Δ := {α1, . . . , αn} and for any β ∈ Φ we write 

̂
β = 2β/(β, β). 

Further, since G is simply connected, there is an isomorphism (F×
q )n → T given by 

(t1, . . . tn) �→ hα1(t1) · · · hαn
(tn) (see [12, 1.12.5]). Then this yields ci = 0 for αi �= α, 

and hence 

̂
r(α) = c

̂
α for some integer c and t′ = ±tc. Then since (r(α), r(α)) = (α, α), 

we have r(α) = cα and c = ±1.



N.N. Hung et al. / Journal of Algebra 555 (2020) 275–288 283
Now by [12, 1.12.6], we see s /∈ Z(G) for δ �= ±1. This yields that kR(G) � (q − 3)/2, 
and since (except for a finite number of exceptions) |Z(G)| � n + 1 and |Out(S)| �
2(n + 1)ν(q), we see K(S) � (q−3)

8(n+1)2ν(q) − 2(n + 1)ν(q) → ∞ as q → ∞.
If τ �= 1, we may argue similarly, taking α ∈ Δ to be fixed by τ , unless G is type An

with n even. In the latter case, we may instead take hα1(t)hαn
(tq) with t ∈ F×

q2 . Then 

in each case, the element being considered lies in T = TF (see [12, 2.4.7]) and similar 
arguments to above show that we still have K(S) → ∞ as n → ∞. �
Corollary 3.4. Let S(q) be a simple group E6(q), 2E6(q), E7(q), E8(q), An(q), or 2An(q), 
with n a fixed positive integer. Then K(S(q)) → ∞ as q → ∞.

Lemma 3.5. Let q be a fixed power of a prime and let Sn be a simple group of Lie type 
of classical type: An(q), 2An(q), Bn(q), Cn(q), Dn(q), or 2Dn(q). Then K(Sn) → ∞ as 
n → ∞.

Proof. Consider the unipotent characters of Sn. By [16], these characters are real-valued. 
For Sn of the form An(q) or 2An(q), these characters are indexed by partitions of n + 1
(see [3, 13.8]). Since the number of these behaves asymptotically like exp(π

√
2(n+1)/3)

4(n+1)
√

3 as 
n → ∞ (see [1, (5.1.2)]), and |Out(S)| � 2(q+1)ν(q), we have K(Sn(q)) → ∞ as n → ∞.

For Sn(q) of the form Bn(q), Cn(q), Dn(q), or 2Dn(q), the unipotent characters are 
indexed by symbols as in [3, 13.8], the number of which is at least the number of partitions 
of n − 1. Then since |Out(Sn)| � 8ν(q) for n � 5, we have K(Sn(q)) → ∞ as n → ∞
again in this case. �
Proposition 3.6. Let Sn(q) := Ω2n+1(q), PSp2n(q), or PΩ±

2n(q), with n � 5. Then 
K(Sn(q)) → ∞ as nq → ∞.

Proof. Write S = Sn(q) as G/Z(G), where G = GF is the set of fixed points of a simple, 
simply connected algebraic group G over Fq under a Frobenius morphism F . Notice that 
|Z(G)| � 4.

Let T be a rational maximal torus of G and let Φ and Δ be a root system and set 
of simple roots, respectively, for G with respect to T. Here we have |Δ| = n and Φ is of 
type Bn, Cn, or Dn. We use the notation as in [12, 1.12.1] for the Chevalley generators. 
Recall that T is generated by hα(t) for t ∈ F

×
q and α ∈ Φ and that NG(T) is generated 

by T and the nα(1) for α ∈ Φ.
We will use the standard model as in [12, Remark 1.8.8] for the members of Δ. 

Namely, let {e1, . . . en} be an orthonormal basis for the n-dimensional Euclidean space 
and let Δ = {α1, . . . , αn}. Note that for 1 � i � n − 1, we have αi := ei − ei+1. 
Further, since G is simply connected, there is an isomorphism (F×

q )n → T given by 
(t1, . . . tn) �→ hα1(t1) · · · hαn

(tn) (see [12, 1.12.5]).
Using Lemmas 3.2 and 3.5, we may suppose q � 3. For each 1 �= δ ∈ F×

q , we let 
s0(δ) := hα1(δ), s1(δ) := hα1(δ)hα3(δ), and in general for 0 � m � 
 n−4 �, let sm(δ) :=
2
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∏m
k=0 hα2k+1(δ). Our choices of m ensure that sm(δ) ∈ G is fixed by F , since in the 

case of 2Dn(q) = PΩ−
2n(q), sm(δ) is fixed by the graph automorphism and Frobenius Fq. 

Hence sm(δ) ∈ G = GF . Further, since (αi, αj) = 0 for |j − i| > 1, we see that each sm

is real in G, with reversing element 
∏m

k=0 nα2k+1(−1).
Recall that NG(T) controls fusion in T. Hence if sm(δ) and sm′(δ′) are conjugate 

in G, then there is some w ∈ W := NG(T)/T such that sm(δ)w = sm′(δ′). But W �
C2 � Sn (with C2 the group of order 2) where the generators of the base subgroup Cn

2
act via ei �→ −ei and the copy of Sn permutes the ei’s. Then by the properties of the 
Chevalley generators from [12, 1.12.1], we see this is impossible unless m = m′ and 
δ = δ′.

Note that we have (q − 3)/2 choices for δ �= ±1, since sm(δ) is conjugate to sm(δ−1), 
giving (q − 3)/2 + 1 = (q − 1)/2 elements in this form for a fixed m. Further, since δ �= 1
and sm(δ) has no factor hαn

(δ) nor hαn−1(δ), we see by [12, 1.12.6] that sm(δ) /∈ Z(G), 
so we have kR(S) > 1

4
 n−4
2 � 

(
q−1

2
)
. Further, |Out(S)| � 8ν(q), so

K(Sn(q)) >
(n − 4)(q − 1)

16 · 8ν(q) − 8ν(q)

which tends to ∞ as nq → ∞. �
3.3. Linear and unitary groups

We write SLε
n(q) with ε ∈ {±1} to denote SLn(q) for ε = 1 and SUn(q) for ε = −1, and 

similarly for GLε
n(q) and PSLε

n(q). Throughout this section, we also write G̃ = GLε
n(q), 

G = SLε
n(q) = [G̃, G̃], and S = G/Z(G) = PSLε

n(q). Note that G̃ ∼= G̃∗ in this case, 
where G̃∗ denotes the dual group, and we make this identification.

If s is a semisimple element of G̃, there exists a unique semisimple character χ̃s

associated to the G̃-conjugacy class of s, and χ̃s−1 is the complex conjugate character of 
χ̃s. Hence χ̃s is real if s is. If further s ∈ G = [G̃, G̃], then χ̃s is trivial on Z(G̃), using 
[19, Lemma 4.4]. Furthermore, the number of irreducible constituents of χ := χ̃s|G is 
exactly the number of irreducible characters θ ∈ Irr(G̃/G) satisfying χ̃sθ = χ̃s, and we 
have Irr(G̃/G) = {χ̃z | z ∈ Z(G̃)}. Also, for such z ∈ Z(G̃), if we take the product with 
χ̃z of each character in the Lusztig series for G̃ indexed by s, we obtain the Lusztig series 
indexed by sz, by [5, 13.30]. Then χ is irreducible if and only if s is not G̃-conjugate to 
sz for any nontrivial z ∈ Z(G̃). Further, if s and s′ are two such elements, an application 
of Gallagher’s theorem [14, Corollary 6.17] together with the above reasoning yields that 
if χ̃s|G = χ̃s′ |G, then s is conjugate to s′z for some z ∈ Z(G̃).

Hence we aim to construct a collection X of real semisimple elements of G such that 
two elements s, s′ ∈ X satisfy that s and s′z for z ∈ Z(G̃) are G̃-conjugate if and only 
if s′ = s and z = 1 and such that |X|/|Out(S)| − |Out(S)| tends to ∞ as nq → ∞.

Proposition 3.7. Let Sn(q) := PSL±
n (q). Then K(Sn(q)) → ∞ as nq → ∞.
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Proof. By Corollary 3.4 and Lemma 3.5, we may assume that q and n are sufficiently 
large. Write n̄ := �n/4�.

Recall that the semisimple elements of G̃ are completely determined by their eigen-
values. Consider a semisimple element

s = s(λ1, . . . , λn̄) := diag(λ1, λ−1
1 , λ2, λ−1

2 , . . . , λn̄, λ−1
n̄ , In−2n̄)

in G, where each λi is an element of the cyclic subgroup Cq−ε of F×
q2 and not all of the 

λi are in {±1}.
We see by the dimension of ker(s − 1) that s is not conjugate to sz for any 1 �= z =

μIn ∈ Z(G̃), since otherwise 1 = λiμ = λ−1
i μ for each i, implying that λ2

i = 1 for each 
i, contradicting our assumption that not all λi are in {±1}. Similarly, if s′ is another 
semisimple element of this form, defined by λ′

i for 1 � i � n̄, such that s′ is conjugate 
to sz with z = μIn ∈ Z(G̃), then it must be that μ = 1 and s is conjugate to s′.

Then by considering the elements of the form

s(λ1, 1, . . . , 1), s(λ1, λ1, 1, . . . , 1), ..., s(λ1, . . . , λ1),

together with those of the form

s(λ1, λ2, 1, . . . , 1), s(λ1, λ2, λ2, 1, . . . , 1), . . . , s(λ1, λ2, . . . , λ2)

and

s(λ1, λ2, λ3, 1, . . . , 1), s(λ1, λ2, λ3, λ3, 1, . . . , 1), . . . , s(λ1, λ2, λ3 . . . , λ3)

with λ1, λ2, λ3 and their inverses all distinct, we see

kR(Sn(q)) � n̄(q − 3)/2 + (n̄ − 1)(q − 3)(q − 5)/4 + (n̄ − 2)(q − 3)(q − 5)(q − 7)/8

> n̄(q − 5)3/8 − (q − 5)(q − 3)(q − 6)/4

> n̄(q − 5)3/8 − 2(q − 3)3/8

= (n̄ − 2)(q − 5)3 − 12(q − 5)2 − 24(q − 5) − 16
8 .

So

K(Sn(q))� (n̄ − 2)(q − 5)3 − 12(q − 5)2 − 24(q − 5) − 16
16(q + 1)ν(q) − 2(q + 1)ν(q)

= (n̄ − 2)(pν(q) − 5)3 − 12(pν(q) − 5)2 − 24(pν(q) − 5) − 16 − 4(pν(q) + 1)2ν(q)2

16(pν(q) + 1)ν(q)
,

which tends toward ∞ as nq → ∞. �
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Theorem C now follows by combining Lemmas 3.2 and 3.5 with Propositions 3.3, 3.6, 
and 3.7.

4. Proof of Theorem B

We start with a well-known observation.

Lemma 4.1. Let S be a finite nonabelian simple group. Then there exists a non-principal 
irreducible character of S that is extendible to a rational-valued character of Aut(S).

Proof. For each n � 5, consider the irreducible character of the symmetric group Sn

labeled by the partition (n − 1, 1). This character restricts irreducibly to the alternating 
group An. As it is well known that every character of Sn is rational-valued, the lemma 
is proved for the alternating groups. For the sporadic simple groups and the Tits group, 
one can check the statement directly by using [4]. Finally, when S is a simple group of 
Lie type, the Steinberg character of S extends to a rational-valued character of Aut(S), 
see [8] for instance. �
Proposition 4.2. Assume that N = S1 × S2 × · · · × Sn, a direct product of copies of a 
finite nonabelian simple group S ∼= Si, is a normal subgroup of G. Then the number of 
rational-valued irreducible characters of G is at least n.

Proof. Modding out CG(N) if necessary, we may assume that CG(N) = 1 so that 
N �G � Aut(N). By Lemma 4.1, there exists θ ∈ Irr(S) that is extendible to a rational-
valued character, say λ, of Aut(S). For each 1 � j � n, set

ψj := θ ⊗ · · · ⊗ θ ⊗ 1Sj+1 ⊗ · · · ⊗ 1Sn
∈ Irr(N).

Since Aut(N) acts transitively on the direct factors Si’s of N , the Aut(N)-orbit of ψj

consists of characters of the form α1⊗α2⊗· · ·⊗αn where αi ∈ {1Si
, θ} for every 1 � i � n

and the number of times that θ appears in the tensor product is precisely equal to j. 
This means that the size of the Aut(N)-orbit containing ψj is n!/j!(n −j)!. On the other 
hand, we see that ψj is invariant under

(Aut(S) � Sj) × (Aut(S) � Sn−j),

and

| Aut(N) : (Aut(S) � Sj) × (Aut(S) � Sn−j)| = n!/j!(n − j)!.

We therefore deduce that Aut(S) � Sj × Aut(S) � Sn−j is the inertia subgroup of ψj in 
Aut(N).
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Recall that θ extends to the rational-valued character λ ∈ Irr(Aut(S)). Let V be a 
C Aut(S)-module affording λ. Then Aut(S)j acts naturally on V ⊗j , with the character 
λ ⊗· · ·⊗λ, and Sj permutes the j tensor factors of V ⊗j . So V ⊗j becomes a tensor-induced 
module for Aut(Sj) = Aut(S) �Sj . Let μ be the character afforded by this module. Then, 
as λ is rational-valued, the formula for the tensor-induced character (see [11] for instance) 
implies that μ is also rational-valued. We have seen that θj extends to the rational-valued 
character μ ∈ Irr(Aut(Sj)). It follows that ψj extends to a rational-valued character of 
IAut(N)(ψj). In particular, ψj extends to a rational-valued character, say νj , of IG(ψj) =
G ∩ IAut(N)(ψj). The Clifford correspondence now produces n different rational-valued 
irreducible characters, namely νG

j , for 1 � j � n, of G, and the proposition is proved. �
We are now ready to prove Theorem B.

Proof of Theorem B. Since kR(G/ Sol(G)) � kR(G) and Sol(G/ Sol(G)) is trivial, we 
may assume with no loss that Sol(G) is trivial. The generalized Fitting subgroup of G, 
denoted by F∗(G), is then the direct product of the minimal normal subgroups of G, each 
of which is a product of copies of a nonabelian simple group. Therefore CG(F∗(G)) = 1
and G � Aut(F∗(G)).

Let S be a simple direct factor of F∗(G) and assume that the number of times that S
appears in F∗(G) is n. By Proposition 4.2, we know that n is bounded by k. It remains 
to prove that |S| is bounded in terms of k. Notice that if |S| is bounded in terms of k, 
then the number of choices for S appearing in F∗(G) is bounded, and therefore F∗(G)
is bounded, which in turn implies that |G| is bounded in terms of k.

Let N := S1 × S2 × · · · × Sn where each Si is isomorphic to S.
We have CNG(S1)/CG(S1)(NCG(S1)/CG(S1)) = 1, and hence

S1 ∼= NCG(S1)/CG(S1) � NG(S1)/CG(S1) � Aut(S1).

Assume, to the contrary, that |S| = |S1| can be arbitrarily large while k is fixed. Using 
Theorem C, we then can choose S1 so that NG(S1)/CG(S1) has at least k2+1 real-valued 
irreducible characters whose kernels do not contain S1. Let λ be one of these characters.

Let θ be an irreducible constituent of λ↓S1
, and set ψ := θ⊗1S2 ⊗· · ·⊗1Sn

. Since S1 �
Ker(λ), we see that θ is nontrivial, and hence the inertia subgroup IG(ψ) is contained in 
NG(S1). The Clifford correspondence then implies that, as λ (considered as a character 
of NG(S1)) lies over ψ, λG is an irreducible character of G. Moreover, λG is real-valued 
since λ is.

We have shown that, for each λ among k2 + 1 real-valued irreducible characters of 
NG(S1) whose kernels do not contain S1, there corresponds the real-valued irreducible 
character λG of G. On the other hand, as

|G : NG(S1)| � | Aut(F∗(G)) : NAut(F∗(G))(S1)| = n � k,
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each real-valued irreducible character of G lies above at most k irreducible characters of 
NG(S1). We therefore deduce that G has at least k + 1 real-valued irreducible charac-
ters, and this is contradiction. Thus we conclude that |S| is bounded in terms of k, as 
desired. �
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