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1. Introduction

Analyzing fields of character values is a difficult problem in the representation theory
of finite groups. Real-valued characters and rational-valued characters have received more
attention than others.

It is well-known that a finite group G has a unique real/rational-valued irreducible
character if and only if G has odd order. In [15], Iwasaki proposed to study the relation-
ship between the structure of G and the number of real-valued irreducible characters of
G, which we denote kg (G). He showed that if kr(G) = 2, then G has a normal Sylow
2-subgroup which is either homocyclic or a so-called Suzuki 2-group of type A. Going
further, Moreté and Navarro proved in [17] that if G has at most three irreducible real-
valued characters, then G has a cyclic Sylow 2-subgroup or a normal Sylow 2-subgroup
which is homocyclic, quaternion of order 8, or an iterated central extension of a Suzuki
2-group whose center is an elementary abelian 2-group. In particular, the groups with
at most three irreducible real-valued characters must be solvable. Indeed, it was even
proved in [18] that a finite group with at most three degrees of irreducible real-valued
characters must be solvable.

In a more recent paper [23], the third author studied groups with four real-valued
irreducible characters. Among other results, he proved that a nonsolvable group with
exactly four real-valued irreducible characters must be the direct product of SL3(2) and
an odd-order group. Classifying finite groups with exactly five real-valued irreducible
characters seems to be a difficult problem. In the next result, which we prove in Section 2,
we control the nonsolvable part of those groups. We write Sol(G) to denote the solvable
radical of G, i.e. the largest solvable normal subgroup of G.

Theorem A. Suppose that a finite group G has at most five real-valued irreducible char-
acters. Then G/ Sol(G) is isomorphic to the trivial group, SL3(2), As, PSL2(8) - 3 or
2

By(8) - 3.

Theorem A and the aforementioned results suggest that the nonsolvable part of a finite
group perhaps is bounded in terms of the number of real-valued irreducible characters of
the group. We obtain the following result, proved in Section 4, which provides a partial
answer to Iwasaki’s problem.

Theorem B. There exists an integer-valued function f on positive integers such that if
G is a finite group with at most k real-valued irreducible characters, then |G/ Sol(G)| <

f (k).

Our arguments would allow us to find explicit bounds in Theorem B, but these bounds
perhaps are far from best possible. Therefore, for the sake of simplicity, we have not tried
to find the best bounding function.

Our proof of Theorem B uses the classification of finite simple groups and the following
statement for simple groups, proved in Section 3, which may be of independent interest.
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Theorem C. For a finite nonabelian simple group S and S < G < Aut(S), let kr(G|S)
denote the number of real-valued irreducible characters of G whose kernels do not contain
S. Then kr(G|S) — o0 as |S| — oo.

There is no rational-valued analogue of Theorem B, as shown by the simple groups
PSLy(32%+1) with k£ > 1. We also note that, by Brauer’s permutation lemma, the number
of real-valued irreducible characters and that of conjugacy classes of real elements in a
finite group are always the same.

2. Nonsolvable groups with five real-valued irreducible characters

For a finite group G, we denote by Re(G) the set of all real elements of G, £(G) the set
of orders of real elements of G and Irrg (G) the set of real-valued irreducible characters of
G. Recall that the generalized Fitting subgroup F*(G) of G is the central product of the
layer E(G) of G (the subgroup of G generated by all quasisimple subnormal subgroups of
G) and the Fitting subgroup F(G). Note that if G has a trivial solvable radical, that is,
it has no nontrivial normal solvable subgroups, then F*(G) = E(G) is a direct product
of nonabelian simple groups. Moreover, if F*(G) is a nonabelian simple group, then G
is an almost simple group with socle F*(G).

Lemma 2.1. Let G be a finite nonsolvable group with a trivial solvable radical. If |E(G)| <
5, then G is an almost simple group.

Proof. As the solvable radical of G is trivial, we see that F*(G) = E(G) = [[\_, S; is
a direct product of nonabelian simple groups S; (1 < ¢ < r), for some integer r > 1. It
suffices to show that r = 1.

Suppose by contradiction that r > 2. Let M = S; x S3. Since £(M) C
E(G), we deduce that |E(M)| < 5. Observe that if z; € Re(S;) for i = 1,2,
Re(M) and thus if 27 and x5 have coprime orders, then

(@) €

E(F
then z129 €

o(z12) = o(x1)o(x2) € E(M).

We consider the following cases.

(i): Sy or S5 has no real element of order 4. Without loss, assume that S; has no real
element of order 4. Then by [23, Proposition 3.2], S} is isomorphic to one of the following
groups:

SLo(27)(f = 3),PSU3(27)(f > 2),?B2(22/T)(f > 1);
PSL2(q)(5 < ¢ = 3,5 (mod 8)),J1,2Go (32T (f > 1).

By [18, Theorem 3.1], S; contains real elements z; and z2 of order p; and ps, where
p1 # p2 are odd primes. Since S5 has a real element of order 2, we see that M has real
elements of order 1,2, p1, p2, 2p1, 2p2, which is impossible.
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(ii): Both S7 and S have real elements of order 4. By [7, Proposition 6.4], S1 contains
a real element of order p, where p is an odd prime. Since S has real elements of order 2
and 4, M has real elements of order 1, 2,4, p, 2p and 4p, which is impossible again. O

Next, we classify all finite nonabelian simple groups S with |£(S)| < 5. Recall that
a finite group G is called a (C)-group if the centralizer of every involution of G has a
normal Sylow 2-subgroup. By [6, Lemma 2.7], G is a (C)-group if and only if G has no
real element of order 2m with m > 1 being odd.

Lemma 2.2. Let S be a nonabelian simple group. Then |E(S)| < 5 if and only if S is
isomorphic to one of the following simple groups:

(1) As 2 PSLy(4), SLs(2), PSLs(3), or PSU3(3);

(2) PSL(8), Ag = PSLy(9), PSLy(11), PSLy(27), PSUs(4), PSLs(4), 2B (8);

(3) PSL2(37), where f > 7 is an odd prime, 3F +1 = 4r, 3/ —1 = 2s, and r,s are
distinct odd primes.

Proof. By [23, Theorem B], we have 4 < |£(S)] < 5. If S = PSL3(3), PSU3(3) or SL3(2),
then |£(S)| = 5 and these groups appear in part (1). Assume that S is not isomorphic
to one of these groups. By [18, Theorem 3.1], £(S) contains at least two distinct odd
primes, say p; and po.

Assume first that |£(S)| = 4. Then £(S) = {1,2,p1,p2}. It follows that S is a (C)-
group and thus S = Aj by [23, Theorem 3.1].

Assume next that [E(S)| = 5. Assume that 4 € £(S). Then E£(S) = {1,2,4,p1,p2}.
In particular, S has no real element of order 2m with m > 1 odd. By [20, Theo-
rem 1], S is isomorphic to PSLy(p) where p is a Fermat or a Mersenne prime; Ag; or
PSLa(q), ?Ba(q), PSUs(q), or PSL3(g) where ¢ > 2 is a power of 2. Assume that 4 ¢ £(.9).
By [23, Proposition 3.2] S is isomorphic to one of the following simple groups:

SLy(27)(f
PSLa(q)(5

3), PSU3(27)(f > 2),2B2(22/1)(

f=1);
q = 3,5(mod 8)),J1,2Go(32/+1)(f

>1
>1).

N WV

We can check that Ag has five distinct real element orders but J; has more than five
distinct real element order. So we may assume that S is not one of these two groups. We
now consider the following cases.

Case 1: S = SLo(2f),f > 3. If 3 < f < 6, then we can check that only SLy(8) has
exactly five distinct real element orders. So, assume f > 6. Since SLy(2/) contains real
elements x and y of order 2/ — 1 and 27 + 1, respectively, together with real elements of
order 1 and 2, we deduce that one of the numbers 2f + 1 is an odd prime and the other
is a square of an odd prime. Since f > 6, we can check that this cannot occur.
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Case 2: S = PSLy(q), ¢ = pf, where f > 1 and p > 2 is a prime. Using [9], if ¢ < 37,
then ¢ € {9,11,27}. Assume that ¢ = ¢ mod 4, e = £1. In this case, S has real elements
of order (¢ —€)/2 and (g + €)/2, respectively. Note that (¢ — €)/2 is even.

Assume that (¢ — €)/2 = 2% for some integer ¢ > 1. Since ¢ > 37, 2* > 16 and thus
S has real elements of order 1,2,4,8,16 and (g + €)/2, which is a contradiction. Thus
(¢ — €)/2 is divisible by 2r for some odd prime 7. Let s be a prime divisor of (q + €)/2.
Then {1,2,r,s,2r} C £(S) and since |E(S)| =5, (¢—¢€)/2 =2r and (¢+¢€)/2 = s, where
r, s are distinct odd primes. If p > 3, then since 3 | ¢ — 1, we must have r = 3 or s = 3,
which is not the case as ¢ > 37. Therefore p =3 and ¢ = 37 > 37 so f > 4. If f is even,
then ¢ = 1 mod 8 and thus (¢ — 1)/2 is divisible by 4 which is impossible. Thus f > 5 is
odd and so € = —1. Hence (3/ +1)/2 = 2r and (3/ —1)/2 = s. The latter equation forces
f to be a prime. This is part (3) of the lemma. Direct calculation shows that f > 7.

Case 3: S = PSU3(2/), f > 2. In this case, S has a subgroup T = SLy(2/). From
Case 1, we must have f = 2 or 3. However |E£(PSU;3(8))| = 6 so S = PSU3(4).

Case 4: S = 2B,(22/t1),f > 1. If f = 1, then we can check that S satisfies the
hypothesis of the lemma. Assume f > 2. By [21, Theorem 9 and Proposition 16], S has
three nontrivial real elements of odd distinct orders, which are 22/+1 — 1 and 22/*! 4+
2741 1 1. As |€(S)| = 5, all of these numbers must be primes. Hence

42/+1 +1= (22f+1 + of+1 + 1)(22f+1 _of+l1 + 1)
is a product of two distinct primes. Since 5 divides 427! + 1, we deduce that
22F _oftl 1 1=5

which is impossible as f > 2.

Case 5: S = PSL3(2/), f > 2. As S contains a subgroup isomorphic to SLo(2f), we
deduce that f =2 or 3. Using [9], only PSL3(4) satisfies the hypothesis of the lemma.

Case 6: S = 2Gy(32/*1), f > 1. In this case, S contains subgroups isomorphic to
PSLy(32/+1) and PSLy(8). Since |£(PSLy(8))| = 5, we deduce that

E(PSLy(3%/11)) C £(PSLy(8)) = {1,2,3,7,9}.
Thus (32! 4+ 1)/2 < 9 as PSLy(3%/*1) has a real element of order (32/*! 4 1)/2.
Therefore, 32/ < 17 which is impossible as f > 1.
Conversely, if S is one of the simple groups in (1)-(3), then we can check that S has
at most 5 distinct real element orders. O

Lemma 2.3. Let G be an almost simple group with a nonabelian simple socle S. Then

(1) G has ezactly four real-valued irreducible characters if and only if G = SL3(2).
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(2) G has ezactly five real-valued irreducible characters if and only if G is isomorphic
to A5,PSL2(8) -3 or 2B2(8) - 3.

Proof. Part (1) follows from [23, Theorem 3.3]. Assume that G is an almost simple group
with a nonabelian simple socle S and that G has exactly five real-valued irreducible
characters. By Brauer’s Lemma on character tables, G has exactly five conjugacy classes
of real elements and thus |E(G)| < 5. Hence |£(S)] < 5 as £(S) C £(G). Therefore S
is one of the simple groups appear in the conclusion of Lemma 2.2. If S is one of the
groups in (1) — (2) of Lemma 2.2, then by using [9], G is isomorphic to As, PSL2(8) - 3
or ?By(8) - 3.

Now assume that S = PSLy(q) with ¢ = 3/, where f > 7 is a prime, 3/ + 1 = 4r and
37 —1 = 2s, where r, s are distinct odd primes. Let 2 € S be a real element of order s.
Then (z) is a Sylow s-subgroup of S and its normalizer in S is a dihedral group of order
2s. It follows that S has (s — 1)/2 conjugacy classes of real elements of order s. Since
|Out(S)| = 2f, we see that G has at least (s —1)/(4f) conjugacy classes of real elements
of order s. Since G already has 4 conjugacy classes of real elements of orders 1, 2,7, 2r,
we deduce that G must have exactly one conjugacy class of real element of order s. Since
(s—1)/(4f) = (3/ —3)/(8f) and f > T is a prime, we can check that (3/ —3)/(8f) > 1.
Thus this case cannot occur. O

The next theorem proves Theorem A, and provides additional information.

Theorem 2.4. Let G be a finite group. Assume that G has at most five real-valued ir-
reducible characters. Then G is either solvable or G/ Sol(G) = SL3(2), As, PSL2(8) - 3,
2By(8) - 3. Moreover, if | Irrg (G/ Sol(G))| = 5, then one of the following holds.

As x K, where K is of odd order.

1) G
G = (L x K) -3, where L = PSLy(8) or ?Ba(8) and K is of odd order.

(2)

1R

Proof. We may assume that G is nonsolvable and |Irrg(G)| < 5. Then |Irrg(G/
Sol(G))] < 5 and thus |E(G/Sol(G))| € 5. By Lemma 2.1, G/ Sol(G) is an almost sim-
ple group. It follows from [23, Theorem B] that G/ Sol(G) has at least four real-valued
irreducible characters; hence 4 < | Irrg (G/ Sol(G))| < 5. Now Lemma 2.3 yields the first
part of the theorem.

Assume that |Irrg (G/ Sol(G))| = 5. By Lemma 2.3, G/ Sol(G) = As,PSL2(8) - 3 or
2B5(8) - 3. In all cases, G/ Sol(G) has 3 conjugacy classes of nontrivial real elements of
odd orders. As real elements of odd order of G/ Sol(G) lift to real elements of odd order
of G by [13, Lemma 2.2], G has three conjugacy classes of nontrivial real elements of odd
orders. It follows that Sol(G) has no nontrivial real element of odd order and thus Sol(G)
has a normal Sylow 2-subgroup by [7, Proposition 6.4]. Moreover, as | Irrg (G)] < 5, the

above argument shows that G has no real element of order 2m with m > 1 being odd,
so G is a (C)-group and has no real element of order 4. By [23, Theorem 2.3],
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L =0%(G) 2 SLy(2")(f = 2) or B2 TH)(f > 1).

It follows that L = As,PSLy(8) or ?By(8) as these are the only possible nonabelian
composition factors of G.

Let K := Cg(L). Then KNL =1and K x L<JG. Since G is a (C)-group, we deduce
that |K| is odd. Now G/K is isomorphic to a subgroup of Aut(L) and | Irrg (G/K)| < 5,
we conclude that either G = K x As or G = (L x K) - 3, where L = PSLy(8) or 2Bs(8),
as claimed. O

3. Real-valued characters of almost simple groups

In this section we prove Theorem C. We begin with the following observation:

Lemma 3.1. Keep the notation as in Theorem C. Then kr(G|S) = kr(G) — kr(G/S),
kr(G) = kr(S)/|0Out(S)|, and kr(G/S) < |Out(S)|. In particular, we have

kr(G|S) = kr(5)/|Out(S)| — [Out(S)].
For S a finite nonabelian simple group, we will write
R(S) := kr(S5)/|Out(S)] — [Out(S)].

Hence, to prove Theorem C, it suffices to show that R(S) — oo as |S| — co. We remark
that due to the nature of the statement of Theorem C, we may disregard a finite number
of simple groups. Recall that we may view kr(S) as either the number of real-valued
irreducible characters or the number of real conjugacy classes of S.

3.1. Initial considerations

Throughout, when ¢ is a power of a prime p, we will write v(q) for the positive integer
such that ¢ = p”(@).

Lemma 3.2. Let S be a simple group isomorphic to the alternating group A, for n =5,
or a simple group of Lie type *Ba(q), *Ga(q), Ga2(q), *Da(q), Da(q), *Fa(q), Falq), or
2Dy, (q) with n > 2 for ¢ a power of a prime. Or assume q¢ Z 3 (mod 4) and that S is
a simple group of Lie type B, (q) with n > 3, Cp,(q) with n > 1, or Da,(q) with n > 3.
Then R(S) — oo as |S| — oo.

Proof. Note that every conjugacy class of the symmetric group S,, is real, and that a
class in S,, yields exactly one class in A, if and only if the cycle type of the elements in
the classes contain an even cycle or two cycles of the same length. Since the number of
cycle types of this form is increasing with n and |Out(A,,)| = 2 for n > 7, we see that
the statement holds if S = A,,.
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If S is Ga(q), 2Ga(q), ®Ba(q), or 2F4(q), then observing the generic character tables
available in CHEVIE [10], we see that all except two, six, two, or twelve, respectively,
of the characters are real-valued. If S is F4(q), then all except four of the characters are
real-valued, using [24, Theorem 4.1]. If S is one of the remaining simple groups of Lie
type listed, then [22, Theorem 1.2] yields that every element of S is real.

Further, Out(S) < 24v(q) where ¢ = p*(@ for a prime p. Hence since the number of
classes in S can be written as a polynomial in p whose exponents are in terms of n and
v(q), the statement also holds in these cases. O

3.2. Fized parameters and classical groups

Proposition 3.3. Let S be a family of simple groups of Lie type with the same type and
rank. That is, there is some generic reductive group G as in [2, Section 2.1] of simply
connected type such that for each S € S, S is of the form G/Z(G) where G = G(q) for
some prime power q. Then for S € S, we have R(S) — oo as ¢ — oo.

Proof. Let ¢ be a power of a prime p and let G = G(q) be the fixed points GY of a
simple simply connected algebraic group G over Fq under a Frobenius morphism F'. Let
T be a rational maximal torus of G and let ® and A be a root system and set of simple
roots, respectively, for G with respect to T. Let |A| = n. We use the notation as in [12]
for the Chevalley generators. In particular, note that T is generated by h,(t) for ¢t € F:
and a € &, and Ng(T) is generated by T and the n,(1) for a € .

Note that we may assume that S is not one of the families considered in Lemma 3.2.
Hence if F is twisted, we may assume that F' = 7F; where |7| = 2 and either G is type
A, or n > 4. Here F, denotes the standard Frobenius morphism induced from the map
x+ 29 on F,, and 7 denotes a graph automorphism of G.

First assume F is not twisted, so 7 = 1. Fix some a € A. Then for ¢t € IFqX, we know
s 1= hq(t) is real in G, with reversing element n,(1). Further, s lies in the maximally
split torus T := T¥. By [5, Cor. 0.12], we know that Ng(T) controls fusion in T, so
if s = ha(t) and s := ha(t') for ¢,¢' € F¢ are conjugate, then they are conjugate in
Ng(T). In particular, this means there is some product x := [[5.;ng(1) with J C
that conjugates s to s'.

Then by the properties of the Chevalley generators from [12, 1.12.1], we see this is
impossible unless ¢’ = £t*!. Indeed, h ()" = Ry s (o) (1), 50 We may write ho (t)* =
Pr(a)(£t) where 7 := []4. ;75 is the corresponding composition of reflections. Then if

ha(t)® = ha(t'), we have h,(q)(£t) = ho(t'). But if R&) = YL, cidy, then hyqy(t) =
17, ha, (£t%). Here A := {a1,...,a,} and for any § € ® we write § = 26/(8, 8).
Further, since G is simply connected, there is an isomorphism (F: )® — T given by
(t1,...tn) = ha,(t1) -+ ha, (tn) (see [12, 1.12.5]). Then this yields ¢; = 0 for a; # «,
and hence R&) = c& for some integer ¢ and ¢' = £t°. Then since (r(a),r(a)) = (o, @),
we have r(a) = ca and ¢ = +1.
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Now by [12, 1.12.6], we see s ¢ Z(G) for ¢ # £1. This yields that kr(G) > (¢ — 3)/2,
and since (except for a finite number of exceptions) |Z(G)| < n + 1 and |Out(S)| <
2(n+ 1)r(q), we see K(S) > m —2(n+ 1)v(q) — oo as g — 0.

If 7 # 1, we may argue similarly, taking o € A to be fixed by 7, unless G is type A,
with n even. In the latter case, we may instead take hq, (t)hq, (t7) with ¢t € Fqﬁ. Then
in each case, the element being considered lies in 7' = T (see [12, 2.4.7]) and similar

arguments to above show that we still have R(S) — co asn — o0. O

Corollary 3.4. Let S(q) be a simple group Eg¢(q), *Es(q), E7(q), Es(q), An(q), or 2A,(q),
with n a fixved positive integer. Then R(S(q)) = 0o as ¢ — oo.

Lemma 3.5. Let q be a fized power of a prime and let S, be a simple group of Lie type
of classical type: A, (q), 2An(q), Brn(q), Cn(q), Dn(q), or 2D,(q). Then K(S,) — oo as
n — 0.

Proof. Consider the unipotent characters of S,,. By [16], these characters are real-valued.
For S, of the form A, (q) or 2A,,(q), these characters are indexed by partitions of n + 1
(see [3, 13.8]). Since the number of these behaves asymptotically like m(p(;(n— W as
n — oo (see [1, (5.1.2)]), and |Out(S)| < 2(¢+1)v(q), we have £(S,(q)) = 0o as n — oo.

For S,(q) of the form B, (q), C,.(q), Dn(q), or 2D,,(q), the unipotent characters are
indexed by symbols as in [3, 13.8], the number of which is at least the number of partitions
of n — 1. Then since |Out(S,)| < 8v(g) for n > 5, we have R(S,(¢)) — o0 as n — o©
again in this case. O

Proposition 3.6. Let S, (q) := Qanyi1(q), PSpy,(q), or PQ5, (q), with n > 5. Then
R(Sn(q)) = o0 as ng — co.

Proof. Write S = S,,(q) as G/Z(G), where G = G is the set of fixed points of a simple,
simply connected algebraic group G over Fq under a Frobenius morphism F'. Notice that
12(@)] < 4.

Let T be a rational maximal torus of G and let ® and A be a root system and set
of simple roots, respectively, for G with respect to T. Here we have |A| = n and ® is of
type By, Cyp, or D,,. We use the notation as in [12, 1.12.1] for the Chevalley generators.
Recall that T is generated by h,(¢) for t € qu and a € ® and that Ng(T) is generated
by T and the n,(1) for a € .

We will use the standard model as in [12, Remark 1.8.8] for the members of A.
Namely, let {e1,...e,} be an orthonormal basis for the n-dimensional Euclidean space
and let A = {ay,...,a,}. Note that for 1 < i < n — 1, we have o; = e; — ;1.
Further, since G is simply connected, there is an isomorphism (F: )® — T given by
(t1y. . tn) ¥ ha (t1) -+ ha, (L) (see [12, 1.12.5]).

Using Lemmas 3.2 and 3.5, we may suppose ¢ > 3. For each 1 # § € F, we let
50(6) = hay (6), $1(6) := ha, (0)hay(6), and in general for 0 < m < [252], let s, (6) ==
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[T hase.i (6). Our choices of m ensure that s,,(6) € G is fixed by F, since in the
case of 2D,,(q) = P€5,,(¢), sm(8) is fixed by the graph automorphism and Frobenius F,.
Hence s,,(0) € G = G¥. Further, since (a;, ;) = 0 for |j —i| > 1, we see that each s,,
is real in G, with reversing element [],"  na,,, (—1).

Recall that Ng(T) controls fusion in T. Hence if s,,(d) and s,,/(0’) are conjugate
in G, then there is some w € W := Ng(T)/T such that $,,(0)" = s/ (6’). But W <
C31S,, (with C5 the group of order 2) where the generators of the base subgroup C¥
act via e; — —e; and the copy of S,, permutes the e;’s. Then by the properties of the
Chevalley generators from [12, 1.12.1], we see this is impossible unless m = m’ and
§=4".

Note that we have (¢ — 3)/2 choices for § # +1, since s,, () is conjugate to s,,(671),
giving (¢ —3)/2+1 = (¢—1)/2 elements in this form for a fixed m. Further, since § # 1
and s,,(d) has no factor h,, (§) nor h,,,_,(d), we see by [12, 1.12.6] that s,,(8) ¢ Z(G),
so we have kg (S) > 1[254] (%) Further, |Out(S)| < 8v(q), so
(n—4)(¢—1)

ASu(a) > g

—8v(q)

which tends to co as ng — oco. O
3.3. Linear and unitary groups

We write SL{, (¢) with € € {£1} to denote SL,,(q) for e = 1 and SU,,(¢) for e = —1, and
similarly for GLS (¢) and PSLE (). Throughout this section, we also write G = GLE (q),
G = SLS(q) = [G,G], and S = G/Z(G) = PSL (q). Note that G = G* in this case,
where G* denotes the dual group, and we make this identification.

If s is a semisimple element of é, there exists a unique semisimple character X,
associated to the é—conjugacy class of s, and x,-1 is the complex conjugate character of
Xs- Hence X is real if s is. If further s € G = [C:‘, CNJ], then X, is trivial on Z(é), using
[19, Lemma 4.4]. Furthermore, the number of irreducible constituents of x := X|¢ is
exactly the number of irreducible characters 6 € Irr(é /G) satisfying X560 = Xs, and we
have Irt(G/G) = {X- | z € Z(G)}. Also, for such z € Z(G), if we take the product with
X of each character in the Lusztig series for G indexed by s, we obtain the Lusztig series
indexed by sz, by [5, 13.30]. Then Y is irreducible if and only if s is not G-conjugate to
sz for any nontrivial z € Z (é) Further, if s and s’ are two such elements, an application
of Gallagher’s theorem [14, Corollary 6.17] together with the above reasoning yields that
if Xsl¢ = Xs|c, then s is conjugate to s’z for some z € Z(G).

Hence we aim to construct a collection X of real semisimple elements of G such that
two elements s, s’ € X satisfy that s and s’z for z € Z(é) are G-conjugate if and only

if s = s and z = 1 and such that | X|/|Out(S)| — |Out(S)| tends to oo as ng — oo.

Proposition 3.7. Let S,,(q) := PSLE(q). Then &(S,(q)) — 00 as ng — oc.
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Proof. By Corollary 3.4 and Lemma 3.5, we may assume that ¢ and n are sufficiently
large. Write n := [n/4].

Recall that the semisimple elements of G are completely determined by their eigen-
values. Consider a semisimple element

=5\, An) o= diag A, AT Ao Ao o A AR Do)
in G, where each A; is an element of the cyclic subgroup Cy_. of IFqXQ and not all of the
A; are in {£1}.

We see by the dimension of ker(s — 1) that s is not conjugate to sz for any 1 # z =
ul, € Z(G) since otherwise 1 = A = A, 11y for each i, implying that A? =1 for each
i, contradicting our assumption that not all A; are in {+1}. Similarly, if s’ is another
semisimple element of this form, defined by A, for 1 < i < 7, such that ¢’ is conjugate

to sz with z = ul,, € Z(CNT'), then it must be that ¢ =1 and s is conjugate to s’.
Then by considering the elements of the form

s(A, 1,0, 1) s(A A, L, 1), s(A, -y A1),
together with those of the form
s(A1, A2, 1,00 1), 8( A1, Ae, A, 1y 1), s( A, Agy ey Ag)
and
$(A1, A2, A3, 1,0, 1), 8( A1, Ag, Ag, Az, 1o 1), s(Ag, Ag, Ag .oty As)

with A1, A2, A3 and their inverses all distinct, we see

kr(Sn(q)) = n(qg—3)/2+ (n—1)(¢—3)(¢—5)/4+ (n—2)(¢—3)(¢—5)(q—T7)/8
> i(q—5)%/8— (q—5)(q—3)(q—6)/4
>n(q—5)%/8—2(q—3)*/8
(=g -5 12 -5 - 24(g—5) ~ 16
< .
So

(n—2)(q—5)*—12(q—5)* — 24(¢ — 5) — 16
(n—2)(p"@ —5)% —12(p”@ — 5)? — 24(p*(@) — 5) — 16 — 4(p"? + 1)?v(q)*
16(p¥(@) + 1)v/(q) ’

ﬁ(Sn<q)> =

which tends toward co as nqg — co. O
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Theorem C now follows by combining Lemmas 3.2 and 3.5 with Propositions 3.3, 3.6,
and 3.7.

4. Proof of Theorem B

We start with a well-known observation.

Lemma 4.1. Let S be a finite nonabelian simple group. Then there exists a non-principal
irreducible character of S that is extendible to a rational-valued character of Aut(S).

Proof. For each n > 5, consider the irreducible character of the symmetric group S,
labeled by the partition (n — 1, 1). This character restricts irreducibly to the alternating
group A,. As it is well known that every character of S,, is rational-valued, the lemma
is proved for the alternating groups. For the sporadic simple groups and the Tits group,
one can check the statement directly by using [4]. Finally, when S is a simple group of
Lie type, the Steinberg character of S extends to a rational-valued character of Aut(S),
see [8] for instance. O

Proposition 4.2. Assume that N = Sy X So X -+ X Sy, a direct product of copies of a
finite nonabelian simple group S = S;, is a normal subgroup of G. Then the number of
rational-valued irreducible characters of G is at least n.

Proof. Modding out Cg(N) if necessary, we may assume that Cg(N) = 1 so that
N <G < Aut(N). By Lemma 4.1, there exists 6 € Irr(S) that is extendible to a rational-
valued character, say A, of Aut(S). For each 1 < j < n, set

Y =00 - ®0®1s,, ® - ®1lg, €Irr(N).

Since Aut(N) acts transitively on the direct factors S;’s of N, the Aut(NN)-orbit of ;
consists of characters of the form a; ® e ®- - -®ay, where o; € {1g,,0} forevery 1 <i < n
and the number of times that # appears in the tensor product is precisely equal to j.
This means that the size of the Aut(IV)-orbit containing ¢, is n!/j!(n—j)!. On the other
hand, we see that 1); is invariant under

(Aut(S)1S;) x (Aut(S)1S,—;),
and
| Aut(N) : (Aut(S)1S;) x (Aut(S)1Sn—;)| = n!/jl(n — j).

We therefore deduce that Aut(S)1S; x Aut(S) 1S, —; is the inertia subgroup of ¢; in
Aut(N).
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Recall that 6 extends to the rational-valued character A € Irr(Aut(S)). Let V be a
C Aut(S)-module affording X\. Then Aut(S)’ acts naturally on V®J, with the character
A®---®@\, and S; permutes the j tensor factors of V®I. So V®J becomes a tensor-induced
module for Aut(S7) = Aut(9)1S;. Let u be the character afforded by this module. Then,
as A is rational-valued, the formula for the tensor-induced character (see [11] for instance)
implies that y is also rational-valued. We have seen that 67 extends to the rational-valued
character p € Irr(Aut(S7)). It follows that 1; extends to a rational-valued character of
Tpue(n)(%4). In particular, ¢; extends to a rational-valued character, say v;, of Ig(v);) =
G N Ipue(ny(95). The Clifford correspondence now produces n different rational-valued
irreducible characters, namely VjG , for 1 < j < n, of G, and the proposition is proved. O

We are now ready to prove Theorem B.

Proof of Theorem B. Since kr(G/Sol(G)) < kr(G) and Sol(G/Sol(G)) is trivial, we
may assume with no loss that Sol(G) is trivial. The generalized Fitting subgroup of G,
denoted by F*(G), is then the direct product of the minimal normal subgroups of G, each
of which is a product of copies of a nonabelian simple group. Therefore Co(F*(G)) =1
and G < Aut(F*(Q)).

Let S be a simple direct factor of F*(G) and assume that the number of times that S
appears in F*(G) is n. By Proposition 4.2, we know that n is bounded by k. It remains
to prove that |S| is bounded in terms of k. Notice that if |S| is bounded in terms of k,
then the number of choices for S appearing in F*(G) is bounded, and therefore F*(G)
is bounded, which in turn implies that |G| is bounded in terms of k.

Let N := 51 x S x --- x S, where each S; is isomorphic to S.

We have C (s,)/cq(s:)(NCa(51)/Cq(S1)) = 1, and hence

S = NCG(Sl)/CG(Sl) < NG(Sl)/CG(Sl) < Aut(Sl).

Assume, to the contrary, that |S| = |S1| can be arbitrarily large while k is fixed. Using
Theorem C, we then can choose Sy so that Ng(S1)/Cq(S1) has at least k*+1 real-valued
irreducible characters whose kernels do not contain S;. Let A be one of these characters.

Let 6 be an irreducible constituent of Al g , and set ¢ := 0®1g,®---®1g,. Since S; €
Ker()), we see that  is nontrivial, and hence the inertia subgroup I¢(v) is contained in
N¢(S1). The Clifford correspondence then implies that, as A (considered as a character
of N(S1)) lies over ¢, A¢ is an irreducible character of G. Moreover, A“ is real-valued
since A is.

We have shown that, for each A\ among k2 + 1 real-valued irreducible characters of
N¢(S1) whose kernels do not contain Sy, there corresponds the real-valued irreducible
character A¢ of G. On the other hand, as

|G : Na(S1)| < [Aut(F*(G)) : Nawr- () (S1)| =n <k,
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each real-valued irreducible character of G lies above at most k irreducible characters of
Ng(S1). We therefore deduce that G has at least k + 1 real-valued irreducible charac-
ters, and this is contradiction. Thus we conclude that |S| is bounded in terms of k, as
desired. O
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