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Towards Efficient U-Nets:
A Coupled and Quantized Approach
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Abstract—In this paper, we propose to couple stacked U-Nets for efficient visual landmark localization. The key idea is to globally reuse
features of the same semantic meanings across the stacked U-Nets. The feature reuse makes each U-Net light-weighted. Specially, we
propose an order-K coupling design to trim off long-distance shortcuts, together with an iterative refinement and memory sharing
mechanism. To further improve the efficiency, we quantize the parameters, intermediate features, and gradients of the coupled U-Nets to
low bit-width numbers. We validate our approach in two tasks: human pose estimation and facial landmark localization. The results show
that our approach achieves state-of-the-art localization accuracy but using ~70% fewer parameters, ~30% less inference time, ~98%
less model size, and saving ~75% training memory compared with benchmark localizers.

Index Terms—Stacked U-Nets, Dense Connectivity, Network Quantization, Efficient Al, Human Pose Estimation, Face Alignment.

1 INTRODUCTION

The U-Net architecture [1] is a basic category of Convolution
Neural Network (CNN). It has been widely used in the
location-sensitive tasks: semantic segmentation [2], biomedi-
cal image segmentation [1], human pose estimation [3], facial
landmark localization [4], etc. A U-Net contains several top-
down and bottom-up blocks. There are shortcut connections
between the corresponding top-down and bottom-up blocks.
The essence of U-Net is integrating both the local visual cues
and global context information to make the inference.

Recently, the stacked U-Nets, e.g. hourglasses (HGs) [5]
become a standard baseline in landmark localization tasks.
The multiple top-down and bottom-up processing could
refine the inference stage-by-stage. Many techniques, such as
adversarial training [6], attention modeling [7], etc, are used
to further improve its inference accuracy. However, very few
works try to improve the efficiency of stacked U-Nets.

The stacked U-Nets usually contain dozens of millions of
float parameters. The massive high-precision computations
require the high-end GPU devices with abundant memory.
It is very challenging for the applications in resource-
limited mobile devices. In this paper, we aim to improve
the efficiency of staked U-Nets in three aspects: parameter,
memory, and bit-width.

Parameter efficiency. The shortcut connections could
promote feature reuse, thereby reducing many redundant
parameters. For a single U-Net, it is straightforward to
change each block into a dense block. Insides a dense block,
several convolutional layers are densely connected.

However, adding the shortcut connections properly in
the stacked U-Nets is nontrivial. Our solution is to couple
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the stacked U-Nets, generating the coupled U-Nets (CU-
Net). The key idea is to directly connect blocks of the same
semantic meanings, i.e. having the same resolution in either
top-down or bottom-up context, from any U-Net to all
subsequent U-Nets. Please refer to Fig. 1 for an illustration.
This encourages the feature reuse across the stacks resulting
in light-weighted U-net.

Yet there is an issue in designing the CU-Net. The number
of shortcut connections would have a quadratic growth if
we couple every U-Net pair, e.g. n stacked U-Nets would
generate O(n?) connections. To balance parameter efficiency
and inference accuracy, we propose the order-K coupling
that couples a U-Net to its K instance successors. Besides,
we employ intermediate supervisions to provide additional
gradients, compensating the trimmed off shortcut connec-
tions. The order-K coupling cuts down ~70% parameter
number and ~30% forward time without sacrificing inference
accuracy compared with stacked U-Nets [5]. Furthermore,
we propose an iterative design that can further reduce the
parameter number to ~50%. More specifically, the CU-Net
output of the first pass is used as the input of the second
pass, which is equivalent to a double-depth CU-Net.

Memory efficiency. The shortcut connections may have
a severe memory issue. For instance, a naive implementation
intends to make feature copies repeatedly for all shortcut
connections. We adapt the memory efficient implementation
[8] to share memories for features in connected blocks. This
technique can reduce the training memory by ~40%.

Bit-width efficiency. In addition to the parameter and
memory efficiency, we also investigate model quantization to
improve the bit-width efficiency. Different from the common
setup, we quantize the parameters as well as the data flow
( intermediate features and gradients). On the one hand,
we ternarize or binarize the float parameters, which shrinks
16x or 32x model size in testing. On the other hand, we
quantize the data flow with different bit-width setups, which
saves ~4x training memory without compromising the
performance. To the best of our knowledge, this is the first
study to simultaneously quantize the parameters and the
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Fig. 1. lllustration of dense U-Net, stacked U-Nets and coupled U-Nets. The CU-Net is a hybrid of dense U-Net and stacked U-Nets, integrating the
merits of both dense connectivity and multi-stage top-down and bottom-up refinement. The coupled U-Nets can save ~70% parameters and ~30%
inference time of stacked U-Nets. Each block in the coupled U-Nets is a bottleneck module which is different from the dense block.

data flow in U-Nets.

In summary, we present a comprehensive study of
efficient U-Nets in three aspects: parameter, memory, and bit-
width. Coupled U-Nets (CU-Nets), order-K coupling and
iterative refinement are proposed to balance the parameter
efficiency and inference accuracy. Besides, a memory sharing
technique is employed to significantly cut down the training
memory. Moreover, we investigate the bit-width efficiency
by quantizing the parameters as well as the data flow. Two
popular tasks, human pose estimation and facial landmark
localization, are studied to validate our approach in various
aspects. The experimental results prove that our model cuts
down ~70% parameter number and ~30% inference time.
Together with the quantization, we can shrink the model
size by ~98% and reduces ~75% training memory with
comparable performance as state-of-the-art U-Nets designs.

This is an extension of the ECCV work [9]. We have
improved it mainly in four aspects: giving a more compre-
hensive study of the U-Net efficiency, presenting a more
complete solution for both single U-Net and stacked U-
Nets, giving the detailed network architecture and the imple-
mentation of order-K coupling, conducting more thorough
ablation study to evaluate every component. For details,
please refer to the difference summary.

2 RELATED WORK

In this section, we review the recent developments on
designing convolutional network architectures, quantizing
the neural networks and two landmark localization tasks:
human pose estimation and facial landmark localization.
Network Architecture. The research on network architec-
tures have been active since AlexNet [10] appeared. First, by
using smaller filters, the VGG [11] network become several
times deeper than the AlexNet and obtain much better
performance. Then the Highway Networks [12] could extend
its depths to more than 100 layers. The identity mappings
make it possible to train very deep ResNet [13]. The popular
stacked U-Nets [5] are designed based on the residual
modules. More recently, the DenseNet [14] outperforms the
ResNet in the image classification task. Some works [15], [16]
try to use the dense connectivity in the U-Net. Following the
DenseNet [14], their dense connectivity is still local within
each block. However, the proposed coupling connectivity

is global at the U-Net level. Besides, we aim to improve
the U-Net efficiency whereas they focus on accuracy. Our
method is also related to DLA [17] in the sense of feature
aggregation. However, the proposed coupling connectivity
is designed for multiple stacked U-Nets whereas DLA [17] is
for single U-Net.

Network Quantization. Training deep neural networks
usually consumes a large amount of computational power,
which makes it hard to deploy on mobile devices. Recently,
network quantization approaches [18], [19], [20], [21], [22]
offer an efficient solution to reduce the network size by
cutting down high precision operations and operands. TWN
[19] utilize two symmetric thresholds to ternarize the param-
eters to +1, 0, or -1. XNOR-Net [22] quantize the parameters
and intermediate features. It also uses a scaling factor to
approximate the real-value parameters and features. DoReFa-
Net [20] quantizes gradients to low bit-width numbers.
WAGE [21] proposes an integer-based implementation for
training and inference simultaneously. These quantization
methods are mainly designed for the image classification
networks. In the recent binarized convolutional landmark
localizer (BCLL) [23] architecture, XNOR-Net [22] is utilized
for network binarization. However, BCLL only quantizes
parameters for inference. Due to its high precision demand
for training, it cannot save training memory and improve
training efficiency. Therefore, we explore to quantize the pro-
posed CU-Net in training and inference simultaneously. That
is, we quantize the parameters as well as the intermediate
features and gradients.

Human Pose Estimation. Starting from the DeepPose
[3], CNNs based approaches [24], [25], [26], [27], [28], [29],
[30], [31] become the mainstream in human pose estimation
and prediction. Recently, the architecture of stacked U-Nets
[5] has obviously beaten all the previous ones in terms of
usability and accuracy. Therefore, all recent state-of-the-art
methods [6], [7], [32], [33] build on its architecture. Chu et.
al. add the Conditional Random Field to refine its prediction.
Yang et. al. replace the residual modules in stacked U-
Nets with more sophisticated ones. Chen ef. al. [33] use
an additional network to provide adversarial supervisions.
Peng et. al. [6] use adversarial data augmentation to train
more robust stacked U-Nets. All these approaches focus on
boosting the inference accuracy. In contrast, we study to
improve the efficiency of stacked U-Nets in various aspects.
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Fig. 2. lllustration of single residual U-Net and dense U-Net. Each top-
down or bottom-up block in the residual U-Net is a residual block of
several residual modules. In contrast, each block in the dense U-Net
is a dense block with several densely connected layers. The dense
connections promote the feature reuse inside each block. Therefore, we
could largely reduce the parameters of single U-Net by replacing each
residual block with a dense block.

Facial Landmark Localization. Similarly, CNNs have
largely reshaped the field of facial landmark localization.
Traditional methods could be easily outperformed by the
CNNs based [34], [35], [36], [37]. Especially, the network
cascade has shown its effectiveness in detecting the facial
keypoints. Sun et. al. [38] propose to use three levels of neural
networks to predict landmark locations. Zhang et. al. [39]
study the problem via cascades of stacked auto-encoders
which gradually refine the landmark positions. In the recent
Menpo Facial Landmark Localization Challenge [40], stacked
U-Nets [5] achieve state-of-the-art performance. The pro-
posed order-K coupled U-Nets could produce comparable
localization errors but with much fewer parameters, smaller
model size, and less training memory.

3 METHOD

We first describe the dense connectivity to improve the
efficiency of a single U-Net. Then we introduce the coupling
connectivity to boost the efficiency of stacked U-Nets. The
order-K coupling is presented to balance the accuracy and
parameter efficiency. We also give an iterative refinement
to cut the CU-Net in one half. At last, we quantize its the
parameters, intermediate features and gradients.

3.1 Dense Connectivity for Single U-Net

A U-Net [1] is usually symmetric with the same number of
top-down and bottom-up blocks. And a pair of top-down and
bottom-up blocks with the same resolutions are connected.
In this paper, we refer to each top-down or bottom-up block
as a semantic block. We intend to add shortcut connections
to compress a single U-Net. One straightforward way is to
densely connect the convolutional layers of a semantic block,
forming a dense block. An illustration is shown in Figure 2.

The dense connections could increase the information
flow in the U-Net. However, the single dense U-Net follows
the DenseNet design [14]. That is, the dense connections
are only within the local blocks. If we have several stacked
U-Nets, how could we add the shortcut connections? It is
more meaningful to improve the efficiency of stacked U-Nets
since they are commonly used in practice.

Order 0

Order 1

Order 2

Fig. 3. lllustration of order-K coupling. For simplicity, each dot represents
one U-Net. The red lines are shortcut connections for the same semantic
blocks in different U-Nets. The initial input and the U-Net outputs pass
through the blue lines. Order-0 coupling (Top) strings U-Nets together
only by their inputs and outputs, i.e., stacked U-Nets. Order-1 coupling
(Middle) has shortcut connections only for adjacent U-Nets. Similarly,
order-2 coupling (Bottom) has shortcut connections for 3 nearby U-Nets.

3.2 Coupling Connectivity for Stacked U-Nets

Suppose multiple U-Nets are stacked together, for the "
top-down and bottom-up blocks in the n‘" U-Net, we use
fi(-) and g} (-) to denote their non-linear transformations.
Their outputs are represented by x} and y}. f;’(-) and
g7 () comprise operations of Convolution (Conv), Batch
Normalization (BN) [41], rectified linear units (ReLU) [42],
and pooling. Please note that the top-down and bottom-up
blocks have independent index £. To make the resolutions of
xy and y;' match, their indexes £ both increase from the high
to low resolutions.

Stacked U-Nets. We recap the popular stacked U-Nets
[5] based on the residual modules. Basically, each block is a
residual module. The feature transitions at the /! top-down
and bottom-up blocks of the n*" U-Net can be written as:

Xi = [ (1), yi1 = 90 (Y7 +%7). @)

The shortcut connections only exist locally within each U-Net.
It restricts the feature reuse across U-Nets. Thus, it contains
many redundant parameters.

Coupled U-Nets. To facilitate the feature reuse across
stacked U-Nets, we propose a global connectivity pattern.
The same semantic blocks, i.e., blocks at the same locations
of different U-Nets, have direct connections. Hence, we refer
to this coupled U-Nets architecture as CU-Net. Figure 1 gives
an illustration. It essentially merges features from multiple
sources and then generates new features. Mathematically, the
feature transitions at the /! top-down and bottom-up blocks
of the n'* U-Net can be formulated as:

XZI = fén([leflvleilbvygfl = 9?71([y?’X?7Y2171])’ (2)

where X! = x9,x},---,x}”! are the outputs of the

¢t top-down blocks in all preceding U-Nets. Similarly,
Y?‘l =ylyh -, y?_l represent the outputs from the "
bottom-up blocks. [- - -] denotes the feature concatenation,
which could make information flow more efficiently than the
summation operation in Equation 1.

According to Equation 2, a block receives features not
only from connected blocks in the current U-Net but also
the output features of the same semantic blocks from all
its preceding U-Nets. Each U-Net becomes light-weighted,
benefiting from the feature reuse across stacked U-Nets. Thus,
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Fig. 4. Implementation of CU-Net. The left figure shows 2 U-Nets coupled together through the red dot lines. Each U-Net has its own supervision.
For simplicity, we only show a pair of top-down and bottom-up semantic blocks. The right figure gives the detailed implementation of a pair of
semantic blocks in the second U-Net. Basically, m features from the former block of current U-Net and n features from the same semantic block of
the preceding U-Net are concatenated and transformed to 4n features by a convix1. A conv3x3 then generates n new features and another convix1
compresses the m + n input and n generated features to m features. The bottom-up block needs to concatenate the additional m skipped features.

the parameter efficiency is largely improved. Please note
that the coupling connectivity is global whereas the dense
connectivity in DenseNet [14] is local within blocks.

3.3 Order-K Coupling

In the above formulation of CU-Net, we connect blocks with
the same semantic meanings across all U-Nets. The shortcut
connections would have quadratic growth depth-wise. To
make CU-Net more parameter efficient, we propose to cut
off some trivial connections. For compensation, we add a
supervision at the end of each U-Net. Both the intermediate
supervisions and the shortcut connections could alleviate the
gradient vanish problem, helping train better CU-Net models.
Mathematically, the features X} ! and Y} ' in Equation 2
turns into

X?_l :le_k’... 7X?_1, 3)
Y?71 :y?7k7"' 7y?717 (4)

where 0 < k < n represents how many preceding nearby
U-Nets connect with the current one. £ = n or £ = 0 would
result in the stacked U-Nets or fully densely connected U-
Nets. A medium order could reduce the growth of CU-Net
parameters from quadratic to linear. Therefore, it largely
improves the parameter efficiency of CU-Net and could
make CU-Net grow several times deeper.

The proposed order-K coupling has a similar philosophy
as the Variable Order Markov (VOM) models [43]. Each U-
Net can be viewed as a state in the Markov model. The
current U-Net depends on a fixed number of preceding
nearby U-Nets, instead of preceding either only one or all
U-Nets. In this way, the long-range connections are cut off.
Figure 3 illustrates the couplings of three different orders.
The shortcut connections exist for the U-Net semantic blocks
and U-Net inputs. We differentiate them by the red and blue
colors in Figure 3. We define the coupling order based on
either the red or blue lines. In Figure 3, both the red and blue

shortcut connections follow the VOM patterns of order-0,
order-1 and order-2.

We could extend the order-K coupling to more general
order-K connectivity if each U-Net is simplified as a unit.
Dense connectivity [14] is a special case of order-K connec-
tivity on the limit of K. For small K, order-K connectivity
is much more parameter efficient. But fewer connections
may affect the inference accuracy of very deep CU-Net.
To make CU-Net have both high parameter efficiency and
inference accuracy, we propose to use order-K connectivity
in conjunction with intermediate supervisions. In contrast,
DenseNet [14] has only one supervision at the end. Thus, it
cannot effectively take advantage of order-K connectivity.

3.4

In order to further improve the parameter efficiency of CU-
Net, we consider an iterative refinement. It uses only half
of a CU-Net but may achieve comparable accuracy. In the
iterative refinement, a CU-Net has two forward passes. In
the first pass, we concatenate the inputs of the first and
last U-Nets and merge them in a small dense block. More
specifically, if the input features of a U-Net have n channels,
concatenating the inputs of the first and last U-Nets results
in 2n channel features. Then we forward them through 4
densely connected Conv3x3 layers. Each layer produces
m channel new features. Then we concatenate all 2n 4 4m
features and use one Convlx1 layer to compress them to
n channel features, the modified input. Then the modified
input is fed forward in the CU-Net again. An illustration of
the iterative refinement is shown in Figure 5.

The iterative refinement may cause the overfitting. We
provide two techniques to avoid this. First, independent
batch normalization parameters are learned in the two
iterations. Second, we call the backpropagation separately for
each forward pass. Two different mini-batch images are used
to update the two iterations. We forward the first batch only

Iterative Refinement
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Fig. 5. lllustration of iterative refinement. The same order-K CU-Net is
used twice in the iterative refinement. In the first iteration, the input of
the last U-Net is generated on the basis of the initial input. Then they
are concatenated and further aggregated in a dense block. The updated
input is forwarded through the order-K CU-Net to get the final output.
Given a long CU-Net cascade, the iterative refinement has the potential
to reduce its depth by half and still maintain comparable accuracy.

for the first pass and update the network using the gradient
descent. The second batch is forwarded in two passes and
the gradient descent is only applied on the second pass.

In this iterative pipeline, the CU-Net has two groups
of supervisions in the first and second iterations. Both
the detection supervision (binary cross entropy loss) and
regression (mean squared error) supervision [26] are already
used in the landmark detection tasks. However, there is
no investigation of how they compare with each other. To
this end, we try different combinations of detection and
regression supervisions for two iterations. Our comparison
could give some guidance for future research.

3.5 AQuantization of Parameter, Feature and Gradient

Apart from shrinking the parameter number, we also in-
vestigate to quantize each parameter, intermediate features
and gradients. Quantizing the parameters could improve the
efficiency in both training and inference. For a parameter w;
in a convolutional filter W, we could binarize a parameter
through the sign function:

©)

where clip is a saturation function that clips parameter w; to
[-1, 1]. Or we ternarize w; by a threshold-based function:

q(w;) = sign(clip(w;, —1,1)),

1w >t
q(wi) = q +1, |wi| <t , (6)
-1, w; < —t

where t &~ 215" | |w;| is a positive threshold. As XNOR-
Net [22], we also try to use a scaling factor « to approximate
the real-value weight.

Quantizing the intermediate features and gradients, i.e.,
the dataflow, could boost the training efficiency by reducing
the training memory. We follow the WAGE [21]. The dataflow
is quantized to k-bit values by the following linear mapping
function:

q(z, k) = clip(o(k)-round(zo(k))—1+0(k),1—0o(k)) (7)

where k is the pre-defined bit-width and o(k) =
the unit distance function. In the following experiments, we
explore different combinations of bit-widths to balance the
accuracy and training memory consumption.
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Fig. 6. lllustration of memory efficient implementation. It is for the Concat-
BN-ReLU-Conv(1 x 1) in each bottleneck structure. ReLU is not shown
since it is an in-place operation with no additional memory request.
The efficient implementation pre-allocates two fixed memory space to
store the concatenated and normalized features of connected blocks. In
contrast, the naive implementation always allocates new memories for
them, causing high memory consumption.

4 |MPLEMENTATION

In this section, we give the detailed architecture of CU-Net
and the implementation of order-K coupling through the
queue data structure. Besides, a memory efficient implemen-
tation for the shortcut connections is also described.

4.1 CU-Net Architecture

In the original stacked U-Nets, there is mainly one feature
flow going through each U-Net. The coupled U-Nets still
have a main feature flow along the U-Nets cascade. Let m
denote the feature number in the main flow and n represent
the generated feature number at each semantic block of U-
Net, i.e. red block in Figure 4. The generated features are
forwarded through the shortcut connections.

Before entering a red semantic block, the main feature
flow and the shortcut feature flow are merged by channel-
wise concatenation. For each top-down block of the it (i > 0)
U-Net, its inputs contain the m features in the main flow and
another n x min(i, K) features from the shortcut connections
of previous K U-Nets, where min(i, K) indicates the lesser
one of the order K and . They are concatenated channel-
wise to m + n x min(i, K) features. For each bottom-up
block of the i (i > 0) U-Net, its inputs include additional m
shortcut features from the corresponding top-down blocks.
Thus, its inputs have 2m + n x min(i, K) features.

Then a 1 x 1 convolution compresses the input features to
4 x n features. A following 3 x 3 convolution produces n new
features. At last, the m + n x min(i, K) (top-down block) or
2m + n x min(i, K) (bottom-up block) input features and
the n generated features are concatenated. Another 1 x 1
convolution compresses them to m output features, flowing
into the next block.

4.2 Order-K Coupling Implementation

The order-K coupling describes the connectivity for the
whole U-Net. Inside a U-Net, each semantic block has order-
K connectivity. That is, the order-K coupling consists of the
order-K connectivity. Therefore, we only need to implement
the order-K connectivity.

A shortcut connection means one feature reuse. In the
order-K connectivity, a semantic block would use the fea-
tures generated by the same semantic blocks in the preceding
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Fig. 7. Validation PCKh curves of 2 coupled U-Nets(CU-Net-2) under
different hyper-parameters m and n. The converged curve reaches higher
for larger m and n. But the gap between adjacent curves becomes
smaller. m = 128 and n = 32 is a good trade-off of accuracy and
efficiency. Besides, Larger m and n also make the curve smoother.

K U-Nets. Thus, for the current U-Net, we need to store the
history features only from the preceding K U-Nets. As the
U-Nets are used sequentially one-by-one, a length-K history
sliding window also moves forward.

We use the dynamic queue structure to simulate this
process. More specifically, we assign one queue for the same
semantic blocks in all U-Nets. To save the memory, a queue
only stores the references to the features instead of the feature
copies. If the current U-Net index is less than K, we keep
appending the feature reference to the queue rear. Otherwise,
we first remove the old reference from the queue front and
then append a new reference to the rear. The feature reference
at the front is the least recent. Therefore, it is removed with
the highest priority.

4.3 Memory Efficient Implementation

Benefitting from the order-K coupling, the CU-Net is quite
parameter efficient. However, a naive implementation would
prevent from training very deep CU-Net. Because the con-
catenation operation produces features detached from its
inputs. In other words, the concatenated shortcut features
require new space. Thus, the shortcut connections could
increase the memory demand.

To reduce the training memory, we follow the efficient im-
plementation [8]. More specifically, concatenation operations
of the same semantic blocks in all U-Nets share a memory
allocation and their subsequent batch norm operations share
another memory allocation. Suppose a CU-Net includes N
U-Nets each of which has L top-down blocks and L bottom-
up blocks. We need to pre-allocate two memory space for
each of 2L semantic blocks. For the /! top-down blocks, the

concatenated features [x;_;,X9], -, [x) ', X}Y 2] share

the same memory space. Similarly, the concatenated fea-
0 0 1 1307 ... N—-1  N—1 yN-27;

tures [y, 1. %], [yo_1, %5, Yol [y x, .Y, 7lin

the (" bottom-up blocks share the same memory space.

In one shared memory allocation, later produced features
would overlay the former features. Thus, the concatenations
and their subsequent batch norm operations require to be re-
computed in the backward phase. Figure 6 illustrates naive
and efficient implementations.
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Fig. 8. Validation PCKh curves of single dense U-Net and 8 coupled
U-Nets (CU-Net-8) with 1 and 4 supervisions. They have equivalent
amounts of parameters. The CU-Net-8 get higher converged PCKh than
the single dense U-Net. The additional intermediate supervisions bring
more PCKh gains. But its curve fluctuates more before the convergence.

5 EXPERIMENTS

In this section, we evaluate each component in the pro-
posed method. First, we select the hyper-parameters and
evaluate the intermediate supervisions in the CU-Net. Then
we compare the CU-Net with the single dense U-Net to
show its accuracy superiority. After that, we evaluate the
order-K coupling with the intermediate supervisions. Then
we show the order-1 CU-Net is much more parameter
efficient than the stacked U-Nets [5]. We also evaluate the
iterative refinement to halve CU-Net parameters and test
the quantization of parameters, intermediate features, and
gradients. Finally, we compare the quantized order-1 CU-Net
with state-of-the-art methods in both human pose estimation
and facial landmark localization. Some qualitative results are
also shown in Figure 11.

Network. The input resolution is normalized to 256 x256.
Before the CU-Net, a Conv7 x 7 filter with stride 2 and a max
pooling would produce 128 features with resolution 64 x64.
Hence, the maximum resolution of CU-Net is 64 x64. Each
block in CU-Net has a bottleneck structure as shown on the
right side of Figure 1. At the beginning of each bottleneck,
features from different connections are concatenated and
stored in shared memory. Then the concatenated features are
compressed by the Convl x 1 to 4m features. At last, the
Conv3 x 3 further produces m new features. The batch norm
and ReLU are used before the convolutions.

Training. We implement the CU-Net using the PyTorch.
The CU-Net is trained by the optimizer RMSprop. When
training human pose estimators, the initial learning rate is
2.5 x 10~* which is decayed to 5 x 1075 after 100 epochs.
The whole training takes 200 epochs. The facial landmark
localizers are easier to train. Also starting from 2.5 x 1074,
its learning rate is divided by 5, 2 and 2 at epoch 30, 60
and 90 respectively. The above settings remain the same for
quantized CU-Net. To match the pace of dataflow, we set
the same bit-width for gradients and features. We quantize
dataflows and parameters all over the CU-Net except for
the first and last convolutional layers, since localization is a
fine-grained task requiring high precision heatmaps.

Human Pose Datasets. We use two benchmark human
pose estimation datasets: MPII Human Pose [44] and Leeds
Sports Pose (LSP) [45]. The MPII is collected from YouTube
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TABLE 1
PCKhs of the CU-Net with varied intermediate supervisions on the MPII validation set. CU-Net-2 denotes a CU-Net with 2 U-Nets. The intermediate
supervisions lower the PCKh of CU-Net-2. However, it improves the PCKh of deeper networks CU-Net-4 and CU-Net-8. Deeper CU-Net requires
more intermediate supervisions to get the highest PCKh. But full intermediate supervisions are not optimal.

CU-Net-2 CU-Net-4 CU-Net-8
# Supervisions 1 2 1 2 3 4 1 2 4 8
PCKh@0.5 (%) 86.0 858 876 881 880 878 886 893 895  89.0
TABLE 2 TABLE 3

Comparison of different hyper-parameters m and n measured by the
parameter number and the PCKh on the MPII validation set. We use 2
coupled U-Nets(CU-Net-2). The PCKh increase becomes less from the
left to the right while the parameter number growly consistently. A good
trade-off between the PCKh and parameter number is m=128 and n=32.

m 64 128 128 128 192 192

n 16 16 24 32 24 32
# Parameters 05M 1.0M 14M 19M 24M 29M
PCKh@0.5 (%) | 81.6 84.2 85.6 86.0 86.3 86.6

videos with a broad range of human activities. It has 25K
images and 40K annotated persons, which are split into a
training set of 29K and a test set of 11K. Following [46], 3K
samples are chosen from the training set as the validation set.
Each person has 16 labeled joints. The LSP dataset contains
images from many sports scenes. Its extended version has
11K training samples and 1K testing samples. Each person
in LSP has 14 labeled joints. Since there are usually multiple
people in one image, we crop around each person and resize
it to 256x256. We also use scaling (0.75-1.25), rotation (-/+30)
and random flip to augment the data.

Facial Landmark Datasets. The experiments of the facial
landmark localization are conducted on the composite of
HELEN, AFW, LFPW, and IBUG which are re-annotated
in the 300-W challenge [47]. Each face has 68 landmarks.
Following [48] and [35], we use the training images of
HELEN, LFPW and all images of AFW, totally 3148 images,
as the training set. The testing is done on the common subset
(testing images of HELEN and LFPW), challenge subset (all
images from IBUG) and their union. We use the provided
bounding boxes from the 300-W challenge to crop faces. The
same augmentations of scaling and rotation as in human
pose estimation are applied.

Metric. We use the standard metrics in both human pose
estimation and face alignment. Specifically, Percentage of
Correct Keypoints (PCK) is used to evaluate approaches for
human pose estimation. A human joint is correctly detected
if the L2 distance between the detected and groundtruth
points is within a certain threshold. The MPII and LSP
datasets use 50% of the head segment length and 20% of
the L2 distance between the left shoulder and right hip as
their thresholds. And the normalized mean error (NME) is
employed to measure localizing facial landmarks. It measures
the normalized L2 distance between the predicted and
groundtruth landmarks. Following the convention of 300-W
challenge, we use the inter-ocular distance to normalize mean
error. For network quantization, we propose the balance
index to balance accuracy and efficiency.

CU-Net v.s. single dense U-Net on MPII validation set measured by
PCKh(%) and parameter #. The ratio is parameter # divided by the
corresponding baselines(stacked 4 and 8 U-Nets). The CU-Net can get
higher PCKh than the dense U-Net given a few more parameters.

Method PCKh # Para. Baseline Ratio
Dense U-Net (8) 881 6.IM 255M 23.9%
CU-Net-8 89.5 7.9M 255M  31.0%
Dense U-Net (4) 87.1 2.9M 129M  22.5%
CU-Net-4 881 39M 129M 30.2%

5.1

There are two important hyper-parameters in designing the
CU-Net. One is the feature number m in the main feature
stream. In the experiments, m remains the same when the
feature map resolution changes. The other hyper-parameter is
the generated feature number n in a block of U-Net. We have
tried 6 combinations of m and n in 2 coupled U-Nets. Table
2 gives the PCKhs on the MPII validation set. Besides, we
choose 4 from the 6 settings and show how their validation
PCKhs change during the training process in Figure 7.

In Table 2, the smallest m and n are 64 and 16. We set the
increments 64 and 8 for m and n. We could observe how the
accuracy (PCKh) and the parameter number change along
with the two hyper-parameters. First, the accuracy increases
when m and n grow. Furthermore, the increase is 2.6%, 1.4%,
0.4%, 0.3% and 0.3% from the left to the right. The increase
slows down. Similar phenomena could be observed in Figure
7. The training is more stable when m and n become larger
according to the curves in Figure 7.

Besides, the parameter number also grows as m and n
become larger. Moreover, the growths are 0.5M, 0.4M, 0.5M,
0.5M and 0.5M. The parameter growth remains consistent.
We would like to select a model with high accuracy and
low model complexity. Through balancing the accuracy and
parameter number, we choose m=128 and n=32. We fix this
setting in the following experiments.

Hyper-Parameter Selection

5.2 Evaluation of Intermediate Supervisions

Generally, the supervision of a CU-Net is the supervision
of its last U-Net. Since a CU-Net contains several U-Nets,
we consider adding supervisions for preceding U-Nets.
More specifically, we only add the supervision at the end
of a U-Net. Fortunately, the coupling connections do not
prevent us from doing this. Note that if the supervision
number is smaller than the U-Net number, we distribute
the supervisions as uniformly as possible. For example, if 2
supervisions exist in 4 coupled U-Nets, they are at the end
of the second and fourth U-Nets.

Table 1 gives the PCKh comparison of CU-Net with
different numbers of supervisions. For CU-Net-2, adding
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Fig. 9. Relation of PCKh(%), # parameters and order-K coupling on MPII
validation set. The parameter number of CU-Net grows approximately
linearly with the order of coupling. However, the PCKh first increases
and then decreases. A small order 1 or 2 would be a good balance for
prediction accuracy and parameter efficiency.

TABLE 4
Order-1 CU-Net-8 v.s. order-7 CU-Net-8, measured by training and
validation PCKhs(%) on MPII. Order-7 has higher training PCKh in all
epochs. However, its validation PCKh is lower at last. Thus, order-7 with
full intermediate supervisions overfits the training set a little bit.

PCKh on training set

Epoch 1 50 100 150

Order-1 CU-Net-8 | 203 832 87.7 917

Order-7 CU-Net-8 | 25.2 84.7 893 93.1
PCKh on validation set

Epoch 1 50 100 150

Order-1 CU-Net-8 | 294 828 85.7 87.1

Order-7 CU-Net-8 | 36.6 84.0 85.1 86.7

supervision for the first U-Net makes the validation PCKh
drop by 0.2%. The coupling connections already strengthen
the gradient propagation. The additional supervision makes
the gradients too strong, leading to a little overfitting.

However, observations are different for more coupled
U-Nets. According to Table 1, additional supervisions could
improve the PCKh of 4 coupled U-Nets (CU-Net-4). The
CU-Net-4 obtains the highest PCKh with 1 additional su-
pervision. Similar results appear for the CU-Net-8. But 3
additional supervisions help it get the highest PCKh. CU-Net-
4 and CU-Net-8 are much deeper than the CU-Net-2. Some
intermediate supervisions could alleviate the gradient vanish
problem. Thus, they help the CU-Net get better convergences.
The CU-Net-8 is twice deeper than the CU-Net-4, thereby
benefiting from more additional intermediate supervisions.

Both the intermediate supervisions and the coupling
connections help train better CU-Net models. However, to
obtain the highest accuracy, their amounts should have a bal-
ance. If one increases, the other needs to decrease. Since the
intermediate supervisions require very few extra parameters,
we would like to use full intermediate supervisions. That is,
each U-Net in the CU-Net has one supervision. In this way,
we could cut off some coupling connections to further reduce
some parameters.

5.3 CU-Net v.s. Single Dense U-Net

There are two ways of adding the shortcut connections in the
U-Net. One is adding the dense connections in each block of

8
T T T T
12 > &
EE o
w
Q10 " 2
z -
Q 8 -
: -
L]
s P
on 6 [ o &
= / /
k= .’ | ¥ Naive Implementation
s 4 & = -
&= . & ~-@-- Efficient Implementation
v
2 L L I 4 4 5 L I
2 4 6 8 10 12 14 16

Number of U-Nets

Fig. 10. Naive implementation v.s. memory-efficient implementation. The
order-1 coupling, batch size 16 and a 12GB GPU are used. The naive
implementation can only support 9 U-Nets at most. In contrast, the
memory-efficient implementation allows training 16 U-Nets, which nearly
doubles the depth of CU-Net.

TABLE 5
Order-1 CU-Net v.s. stacked residual U-Nets on MPII validation set
measured by PCKh(%), parameter number, and inference time. With the
same number of U-Nets, Order-1 CU-Net achieves comparable
performance as stacked U-Nets. But it has only ~30% parameters. The
inference time is reduced by ~30%, benefiting from fewer parameters.

Method PCKh # Para. Ratio Time(ms) Ratio
Stacked U-Nets (16) - 50.5M 100% 104.8 100%
CU-Net-16 89.9 159M 31.5% 70.8 67.6%
Stacked U-Nets (8) 89.3 25.5M 100% 489 100%
CU-Net-8 89.5 79M 31.0% 36.1 73.8%
Stacked U-Nets (4) 88.3 12.9M 100% 28.2 100%
CU-Net-4 882 39M 30.2% 189  67.0%

a single U-Net, resulting in the single dense U-Net. The other
is using the coupling connections in stacked U-Nets. Table 3
compares the PCKh and parameter number of CU-Net and
single dense U-Net. For a fair comparison, the single dense
U-Net and the CU-Net have the same number of conv3x3
layers. We add one layer in each dense block of the dense
U-Net every time we increase one U-Net in the CU-Net.

According to Table 3, the CU-Net obviously outperforms
the dense U-Net by 1.4% and 1.0% for the 4 and 8 U-Nets.
We use the parameter numbers of stacked 4 and 8 U-Nets as
the baselines since the main goal is to reduce the parameters
of stacked U-Nets. Although the CU-Net has a few more
parameters than the dense U-Net, the CU-Net is cost-effective.
For example, the dense U-Net (8) and CU-Net-4 both increase
1.0% over the dense U-Net (4). However, they have 2.1x and
1.3x parameters of the dense U-Net (4).

We also show the validation PCKh curves of the 8 U-Nets
setting in Figure 8. The converged PCKh curves of CU-Net
and single dense U-Net have gaps. Besides, the CU-Net
PCKh curve fluctuates more when adding the intermediate
supervisions. Because additional supervisions can make the
CU-Net parameters updated with larger steps in the training.

5.4 Evaluation of Order-K Coupling

The order-K coupling couples a U-Net only to its K succes-
sors. Each U-Net has its own independent supervision. In this
experiment, we investigate how the PCKh and convolution
parameter number change along with the order value. Figure
9 gives the results from MPII validation set. The left and
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TABLE 6
NME(%) on 300-W using order-1 CU-Net-4 with iterative refinement,
detection, and regression supervisions. Iterative refinement can lower
errors and regression supervision outperforms detection supervision.

Easy Hard  Full #
Method Subset Subset Set Para.
Detection only 3.63 560 4.01 39M
Regression only 291 512 334 39M
Detection Detection 3.52 5.59 393 4.1M
Detection Regression 2.95 512 337 41M
Regression Regression ~ 2.87 497 328 41M

right figures show results of CU-Net with 8 and 16 U-Nets.
It is clear that the convolution parameter number increases
as the order becomes larger. However, the left and right
PCKh curves have a similar shape of first increasing and
then decreasing. The order-1 coupling is always better than
the order-0 one.

However, high order may not be a good choice. Because
we already use full intermediate supervisions. The balance
of coupling and intermediate supervisions is broken for the
high order ones. Too dense coupling make gradients accu-
mulate too much, causing the overfitting. Further evidence
of overfitting is shown in Table 4. The order-7 coupling has
the higher training PCKh than order-1 in all training epochs.
But its validation PCKh is a little lower in the last training
epochs. Thus, we use order-1 coupling with full intermediate
supervisions in the following experiments.

5.5 CU-Net v.s. Stacked Residual U-Nets

The CU-Net is proposed to improve the parameter efficiency
of stacked U-Nets with the residual modules. To validate this,
we compare the order-1 CU-Net with the stacked residual
U-Nets [5]. This experiment is done on the MPII validation
set. Table 5 shows three pairs of comparisons with 4, 8 and
16 U-Nets. The PCKh, convolution parameter number and
inference time are reported. The inference time refers to the
time of forwarding one image under the testing mode. We
compute the average inference time on the MPII validation
set. For a fair comparison, we test all the models using the
Torch toolbox and K40 GPU.

In Table 5, with the same number of U-Nets, the order-1
CU-Net could obtain comparable or even better accuracy.
More importantly, the feature reuse across U-Nets make each
U-Net in the CU-Net light-weighted. The parameter number
and inference time of the stacked residual U-Nets decrease
by ~70% and ~30%. Besides, the high parameter efficiency
makes it possible to train order-1 CU-Net-16 in a 12G GPU
with batch size 16.

5.6 Evaluation of Iterative Refinement

The iterative refinement is designed to reduce the parameters
of CU-Net by one half. We validate the design in two steps.
First, we verify adding an iteration on a CU-Net could
improve the accuracy. The experiment is done on the 300-W
dataset using order-1 CU-Net-4. Results are shown in Table
6. For both detection and regression supervisions, adding an
iteration could lower the localization errors, demonstrating
the effectiveness of iterative refinement. Meanwhile, the

TABLE 7
Iterative order-1 CU-Net-4 v.s. non-iterative order-1 CU-Net-8 on 300-W
measured by NME(%). Iterative CU-Net-4, with few additional
parameters on CU-Net-4, achieves comparable performance as
CU-Net-8. Thus, the iterative refinement has the potential to halve
parameters of CU-Net but still maintain comparable performance.

Easy Hard  Full #
Method Subset Subset Set Parameters
CU-Net-4 291 5.12 3.34 3.9M
Iter. CU-Net-4 2.87 497 3.28 4.1M
CU-Net-8 2.82 5.07 3.26 7.9M

model parameters only increase 0.2M. Besides, the regression
supervision outperforms the detection one no matter in the
iterative or non-iterative setting, making it a better choice for
the landmark localization.

The regression and detection supervisions have different
groundtruths. The regression supervision draws a gaussian
circle centered at a keypoint coordinate. The detection
supervision needs to strictly divide a groundtruth heatmap
into two areas: keypoint area and non-keypoint area. In
practice, it is hard to specify an accurate area for a keypoint.
The Gaussian groundtruth can alleviate this concern by
decreasing the confidence scores gradually. We think the
advantage of regression supervision comes from its more
reasonable groundtruth heatmaps.

Second, we prove an iterative CU-Net could get compa-
rable accuracy as a double-length CU-Net. More specifically,
we compare iterative order-1 CU-Net-4 with order-1 CU-
Net-8. Table 7 gives the comparison. We can find that the
iterative CU-Net-4 could obtain comparable NME as CU-
Net-8. However, the CU-Net-8 has double parameters of
CU-Net-4, whereas the iterative CU-Net-4 has only 0.2M
additional parameters.

5.7 Evaluation of Parameter and Dataflow Quantization

In this experiment, we study to quantize the parameters and
dataflow, i.e., intermediate features and gradients. Through
network quantization, high precision parameters and opera-
tions can be efficiently represented by a few discrete values.
We try a series of bit-widths to find appropriate choices.
We use the order-1 CU-Net-4 on the 300-W dataset and the
order-1 CU-Net-2 on the MPII validation set. The results are
shown in Tables 8, 9 and 10. BW and TW represent binarized
weight and ternarized weight respectively. The suffixes o
and QIG denote the float scaling factor o and quantized
intermediate features and gradients.

Binary Parameters. According to Tables 8 and 9, the
binarized parameters with the scaling factor o achieves PCKh
85.5% in human pose estimation and NME 3.58% in facial
landmark localization. They are very close to the original
86.1% and 3.38%, without any quantization. Even without the
scaling factor ¢, the decrease of PCKh and increase of NME
are small. This indicates binarizing the CU-Net parameters
does not affect much its localization accuracy. However, the
model size is substantially decreased by 32x.

Ternary Parameters. Ternary representation has one more
bit than the binary one. Its stronger representation power
could improve the accuracy of CU-Net. Based on Table 8,
ternary parameters reduces the NME of binary parameters
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TABLE 8
Performance of different combinations of bit-width values on the 300-W dataset measured by NME(%). All quantized networks are based on order-1
CU-Net-4. BW and TW are short for binarized and ternarized parameters, « represents float scaling factor, QFG is short for quantized intermediate
features and gradients. Bitr, Bitp, Bitg represents the bit-width of features, parameters, gradients respectively. Training memory and model size
are represented by their compression ratios to those of the original CU-Net-4. The balance index is calculated by Equation 8. The CU-Net-4-BW-«
gets the lowest error. Considering together accuracy, training memory and model size, the CU-Net-4-BW-«(818) has the smallest balance index.

Method Bit; Bity  Bitg NME(%) NME(%) NME(%) Training Model Balance
Full set  Easyset Hardset Memory Size Index
CU-Net-4 32 32 32 3.38 2.95 5.13 1.00 1.00 11.4
BW-QIG 6 1 6 5.93 5.10 9.34 0.17 0.03 0.18
BW-QIG 8 1 8 4.30 3.67 6.86 0.25 0.03 0.14
BW-a-QIG 8 1 8 4.47 3.75 7.40 0.25 0.03 0.15
BW 32 1 32 3.75 3.20 5.99 1.00 0.03 0.42
BW-a 32 1 32 3.58 3.12 5.45 1.00 0.03 0.38
T™W 32 2 32 3.73 321 5.85 1.00 0.06 0.83
TW-QIG 6 2 6 4.27 3.70 6.59 0.17 0.06 0.19
TW-QIG 8 2 8 4.13 3.55 6.50 0.25 0.06 0.26
TABLE 9 TABLE 10

Performance of different quantization configurations for order-1
CU-Net-2 on the MPII validation dataset measured by PCKh(%), training
memory, model size, and balance index. The CU-Net-2-BW-a gets the
highest accuracy. Considering together accuracy, training memory and

model size, the CU-Net-2-BW-«(818) has the smallest balance index.

Bitp Bitp Bitg PCKh Training Model Balance

Method (%) Memory Size Index
CU-Net-2 32 32 32 861 1.00 1.00 193
BW-QFG 6 1 6 627 017 0.03 710
BW-QFG 8 1 8 81.5 0.25 0.03 2.57
BW 32 1 32 847 1.00 0.03 684
BW-a 32 1 32 855 1.00 0.03 7.97
™ 32 2 32 849 1.00 0.06 14.0
TW-QFG 6 2 6 74.0 0.17 0.06 6.90
TW-QFG 8 2 8 817 025 0.06 5.02

by 0.02%. With the quantization of features and gradients, we
can observe more obvious NME decreases 1.66% and 0.17%.
Consistent changes on the PCKh can be found in Table 9.

Features and Gradients Quantization. Quantizing the
intermediate features and gradients of CU-Net could largely
reduce the training memory, improving the training efficiency.
We try 6-bits and 8-bits with either the binary or ternary
parameters. The 8-bits quantization is obviously better than
the 6-bits one, especially for the binary parameters. The 8-bits
quantization with binary parameters decreases the PCKh by
4.6% and increases the NME by 0.92%. However, the training
memory is significantly reduced by 75%. For mobile devices
with limited computational resources, slightly performance
drop is tolerable provided the large efficiency enhancement.

Balancing Accuracy and Quantization. The quantization
of parameters and dataflow could significantly increase the
testing and training efficiency but at the cost of some accuracy
decrease. Thus, we need a trade-off between them. To this
end, we propose the balance index (BI) in Equation 8 to
balance the quantization and accuracy.

BI=FE?.TM-MS 8)

where T'M and MS are short for training memory and
model size. Instead of using their raw values, we use their
ratios to those without any quantization. £ denotes the
error in the landmark localization. We set E' as the NME
for facial landmark localization while 1-PCKh for human

Detailed PCKh comparison of different quantization configurations for
order-1 CU-Net-2 on MPI| validation sets. The parameter binarization or
ternarization have small influence on the accuracy of individual human
joints. But the quantization of intermediate features and gradients lowers
the accuracy of challenging human joints: elbow, wrist, ankle and knee.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
CU-Net-2 96.1 94.586.7 81.1 86.9 81.0 76.3 86.1
CU-Net-2+BW-a 95.9 944 86.6 80.3 86.5 79.5 752 85.5
CU-Net-2+BW 96.3 94.2 85.279.185.8 782 743 84.7
CU-Net-2+BW-QIG(818) 95.6 92.4 82.0 74.7 82.6 74.8 68.6 81.5
CU-Net-2+BW-QIG(616) 87.7 77.4 61.849.8 64.2 50.8 47.2 62.7
CU-Net-2+TW 96.2 93.9 85.779.6 85.8 79.1 74.1 84.9
CU-Net-2+TW-QIG(828) 95.4 92.6 82.1 75.2 83.0 749 68.7 81.7
CU-Net-2+TW-QIG(626) 94.2 87.2 73.4 65.1 76.0 64.7 57.6 74.0

pose estimation. The E? is calculated in the above formula
to emphasize the prior importance of accuracy. Smaller BI
indicates better balance.

In Tables 8 and 9, BW-a-QIG(818) gets the smallest BI. Its
NME increases only 0.92% and its PCKh decreases only 4.6%.
However, it reduces 4 x training memory and 32x model
size. It has the best balance for accuracy and efficiency.

Quantization Impact on Individual Human Joints. In
addition to the average PCKhs In Table 9, we also give the
PCKhs of individual human joints under various quantiza-
tion settings in Table 10. The parameter binarization does not
affect much the joint accuracy. However, the quantization of
intermediate features and gradients causes obvious decreases
of challenging joints like wrist, knee, and ankle. This means
that, although the parameter quantization does not lose much
useful information, the parameter update still requires high
precision representations. A possible solution is to explore
better input and gradient quantization strategies.

5.8 Evaluation of Memory Efficient Implementation

The memory-efficient implementation makes it possible
to train very deep CU-Net. Figure 10 shows the training
memory consumption of both naive and memory-efficient
implementations of order-1 CU-Net. The linear growths of
training memory along with number of U-Nets is because of
the fixed order coupling. But the memory growth of efficient
implementation is much slower than that of the naive one.
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TABLE 11
Comparison of convolution parameter number (Million), model size (Megabyte) and inference time (millisecond) with state-of-the-art methods. The
CU-Net-8 can largely reduce ~69%-~86% parameter number and ~26%-~86% inference time.

Method Yang et al. [32]  Weietal [24] Chuetal [7] Newelletal [5] | Order-1 CU-Net-8  Order-1 CU-Net-16
# Parameters (M) 28.0 29.7 58.1 255 7.9 159
Inference Time (ms) 137.7 1124 251.0 48.9 36.1 70.8

TABLE 12

NME(%) comparison with state-of-the-art facial landmark localization methods on 300-W dataset. The CU-Net-BW-« refers to the CU-Net with
binarized parameters and scaling factor «. It obtains comparable error with state-of-the-art method [5]. But it has ~50x smaller model size.

Method CFAN Deep CFSS TCDCN DDN MDM TSR HGs(4) ‘ Order-1 ~ Order-1 CU-
[39] Reg [49] [48] [34] [50] [51] [35] [5] CU-Net-8  Net-8-BW-«a

Easy subset 5.50 451 473 4.80 - 4.83 4.36 2.90 2.82 3.00

Hard subset ~ 16.78 13.80 9.98 8.60 - 10.14 756 5.15 5.07 5.36

Full set 7.69 6.31 5.76 5.54 5.59 5.88 4.99 3.35 3.26 3.46
TABLE 13 TABLE 14

PCKh(%) comparison on MPII test sets. The CU-Net-BW-« refers to the
CU-Net with binary parameters and scaling factor «. The order-1
CU-Net-16-BW-a could achieve comparable accuracy. More importantly,
it has ~2% model size compared with other state-of-the-art approaches.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Pishchulin et al. [52] 74.3 49.0 40.8 34.136.5 34.4 35.2 44.1
Tompson et al. [53] 95.8 90.380.574.377.6 69.7 62.8 79.6
Carreira et al. [25] 95.7 91.7 81.772.482.8 73.2 66.4 81.3
Tompson et al. [46] 96.1 91.9 83.977.880.9 72.3 64.8 82.0
Hu et al. [54] 95.0 91.6 83.076.6 81.9 745 69.5 82.4
Pishchulin et al. [27] 94.1 90.2 83.477.382.6 75.7 68.6 82.4
Lifshitz et al. [29] 97.8 93.385.780.485.3 76.6 70.2 85.0
Gkioxary et al. [55] 96.2 93.186.782.185.2 81.4 741 86.1
Rafi et al. [56] 97.2 93.9 86.4 81.386.8 80.6 73.4 86.3
Belagiannis et al. [30] 97.7 95.0 88.2 83.087.9 82.6 78.4 88.1
Insafutdinov et al. [28] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al. [24] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al. [26] 97.9 95.189.985.389.4 85.7 81.7 89.7
Newell et al. [5] 98.2 96.391.287.190.1 87.4 83.6 90.9
Chu et al. [7] 98.5 96.391.9 88.190.6 88.0 85.0 91.5
Order-1 CU-Net-8 97.4 96.291.8 87.390.0 87.0 83.3 90.8
Order-1 CU-Net-16 974 96.4 92.187.790.2 87.7 84.3 91.2
+BW+a 97.6 96.491.7 87.390.4 87.3 83.8 91.0

With batch size 16, we could train the CU-Net-16 in one 12GB
GPU. Under the same setting, the naive implementation
could support only CU-Net-9.

5.9 Comparison with State-of-the-art Methods

We compare the CU-Net with state-of-the-art approaches for
both human pose estimation and facial landmark localization.
Both the efficiency and accuracy are compared.

Efficiency. Table 11 compares the CU-Net with state-of-
the-art methods in terms of efficiency. The CU-Net-8 has only
~14%-~31% parameter number of them. Fewer parameters
can usually accelerate the inference speed. According to
Table 11, the CU-Net-8 uses ~74% time of Newell et. al [5]
(stacked 8 U-Nets). Yang et. al [32] and Chu et. al [7] use
more sophisticated modules and graphical models based on
Newell et. al [5], resulting in much higher time cost. Wei et.
al [24] also has high time expense mainly due to its larger
input resolution and convolution kernel size. The CU-Net-16
consumes more time than Newell et. al [5], albeit its fewer

PCK(%) comparison on LSP test set. The CU-Net-BW-« refers to the
CU-Net with binary parameters and scaling factor a. The order-1
CU-Net-16-BW-« could obtain comparable state-of-the-art accuracy. But
it has ~50x smaller model size than other state-of-the-art methods.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Belagiannis et al. [30] 95.2 89.0 81.577.0 83.7 87.0 82.8 85.2
Lifshitz et al. [29] 96.8 89.082.779.190.9 86.0 825 86.7
Pishchulin ef al. [27]  97.0 91.0 83.878.191.0 86.7 82.0 87.1
Insafutdinov et al. [28] 97.4 92.7 87.584.491.5 89.9 87.2 90.1
Wei et al. [24] 97.8 92.587.083.991.5 90.8 89.9 90.5
Bulat et al. [26] 972 92.188.185.292.2 914 88.7 90.7
Chu et al. [7] 98.1 93.7 89.386.993.4 94.0 925 92.6
Newell et al. [5] 98.2 94.091.287.293.5 945 92.6 93.0
Yang et al. [32] 98.3 94.592.288.994.4 95.0 93.7 93.9
Order-1 CU-Net-8 97.1 94.791.6 89.093.7 94.2 93.7 93.4
Order-1 CU-Net-16 ~ 97.5 95.0 92.590.1 93.7 95.2 94.2 94.0
+BW+a 97.8 94.391.889.393.1 949 94.4 93.6

parameters. Because the CU-Net-16 has double depth of
Newell et. al [5]. However, the CU-Net-16 uses only ~28%-
~63% time of other more complex methods.

Besides, the network quantization can also improve the
model efficiency. For example, the parameter binarization can
reduce the model size by ~32x. The parameter binarization
and feature quantization can bring ~2x-~58x speedup ac-
cording to the theoretical analysis of [22]. With the binarized
parameters, the convolutions only have the addition and
subtraction without the multiplication operations, resulting
in ~2x speedup. If the features are also binarized, it can
achieve ~58 x speedup with the bit-counting operations [18].
Generally, measuring the inference time of the quantized
networks requires special software and hardware supports.
We only provide a theoretical analysis here due to our
resource limitations.

Accuracy. Tables 12, 13 and 14 show accuracy compar-
isons on both facial landmark localization and human pose
estimation. Despite its high efficiency, the CU-Net can still
achieve obtain comparable state-of-the-art accuracy on the
benchmark 300-W, MPII and LSP test sets.
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Fig. 11. Qualitative results of human pose estimation and facial landmark localization. The quantized CU-Net could handle a wide range of human
poses, even with occlusions. It could also detect accurate facial landmarks with various head poses and expressions.

6 CONCLUSION

We design the efficient CU-Net. It connects blocks with
the same semantic meanings in stacked U-Nets. The order-
K coupling and iterative refinement are introduced to
further improve the parameter efficiency. We also study
the quantization of parameters, intermediate features and
gradients. Experiments on both human pose estimation and
facical landmark localization show that the CU-Net could
achieve comparable state-of-the-art accuracy but with only
~30% parameters, ~70% inference time, ~2% model size
and ~25% training memory.
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