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Abstract—The parameter space of CNT forest synthesis is vast
and multidimensional, making experimental and/or numerical
exploration of the synthesis prohibitive. We propose a more
practical approach to explore the synthesis-process relationships
of CNT forests using machine learning (ML) algorithms to
infer the underlying complex physical processes. Currently, no
such ML model linking CNT forest morphology to synthesis
parameters has been demonstrated. In the current work, we
use a physics-based numerical model to generate CNT forest
morphology images with known synthesis parameters to train
such a ML algorithm. The CNT forest synthesis variables
of CNT diameter and CNT number densities are varied to
generate a total of 12 distinct CNT forest classes. Images of the
resultant CNT forests at different time steps during the growth
and self-assembly process are then used as the training dataset.
Based on the CNT forest structural morphology, multiple
single and combined histogram-based texture descriptors are
used as features to build a random forest (RF) classifier to
predict class labels based on correlation of CNT forest physical
attributes with the growth parameters. The machine learning
model achieved an accuracy of up to 83.5% on predicting the
synthesis conditions of CNT number density and diameter.
These results are the first step towards rapidly characterizing
CNT forest attributes using machine learning. Identifying the
relevant process-structure interactions for the CNT forests using
physics-based simulations and machine learning could rapidly
advance the design, development, and adoption of CNT forest
applications with varied morphologies and properties.
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I. INTRODUCTION

Carbon nanotubes (CNTs) are widely studied for their
promising mechanical, electrical, and thermal properties [1]
that make them suitable for diverse applications including
photodetectors [2], thin-film flexible electronics [3] [4], trans-
parent conductive membranes [5], electrocatalysis support [6],
bioelectronics [7] and physical sensors [8] [9] [10]. When
CNTs are synthesized in dense populations known as CNT
forests, however, a significant performance gap between in-
dividual CNTs and CNT forests is observed. To date, over-
coming the performance gaps has not been achieved due to a

lack of understanding about how the processing mechanisms
of CNT synthesis control the CNT self-assembly process [9]
[11][12][13][14][15][16]. The wavy and entangled morphol-
ogy of CNT forest caused by the mechanical competition
of concurrently growing CNTs during self-assembly process
is considered the main source of the performance degrada-
tion [17][18][19][20][21][22]. An internal morphology of a
relatively straight and a wavy CNT forest is shown in Figure 1.

Achieving a desired property set from CNT forests is
currently an unfulfilled challenge. Most CNT synthesis recipes
rely on previously successful results rather than a fundamen-
tal understanding of CNT forest kinetics and the assembly
process. The CNT forest processing parameter space includes
numerous variables including catalyst composition, catalyst
thickness, synthesis temperature, processing gas composition,
synthesis time, operating pressure, among others. An exper-
imental exploration of the full synthesis parameter space is
both cost and time prohibitive. Numerical simulation of CNT
forests synthesis and self-assembly is an alternative approach
that may increase the speed and diversity of synthesis param-
eters examined. Such simulations can predict both the CNT
forest structural morphology and the resulting CNT forest
properties. By systematically varying CNT synthesis param-
eters, one may arrive at a set of conditions that product the
desired CNT forest performance metrics such as mechanical
stiffness and thermal conductivity.

These desired performance metrics are intricately related to
the structural morphology of the CNT forest itself, although
the functional relationships between CNT forest structural
morphology and CNT forest properties are currently not well
understood. For instance, the CNT forest morphology, in terms
of CNT length, waviness, and density, may be tuned according
to specific applications [23]- thin-film-type transistors require
dense and parallel single-walled carbon nanotubes (SWCNTs)
to sustain large current [24][25], while their ultralong length
enables easy fabrication of numerous devices out of one
individual SWCNT and the construction of logic circuits
at a single nanotube level [26][27]. Therefore, predicting
the combination of processing parameters required to grow978-1-7281-4732-1/19/$31.00 c�2019 IEEE



Fig. 1. The internal morphology of a typical (a) relatively straight CNT forest
(scale 10 µm) (b) wavy and entangled CNT forest (scale 5 µm).

application-tailored CNT forests would represent a significant
advance that could enable new CNT forest-based applications
that fully exploit the beneficial properties of individual CNTs.
Here we employ a physics-based numerical simulation of
CNT forest growth and assembly to generate images of CNT
forest morphology using variable synthesis parameters. The
simulated imagery is used to train a ML model to predict the
growth attributes of a CNT forest.

Machine learning is a powerful technique to identify pat-
terns governing the behavior of nanomaterials synthesis to
accelerate the search for optimal materials. Recent develop-
ments in the eld of machine learning (ML) combined with
the current materials data infrastructure have made the data
driven techniques popular and increasingly popular within the
materials science community. Machine learning algorithms

excel at nding patterns in a dataset and identifying qualitative
trends and outliers that would otherwise be extremely difcult to
nd. Hence, ML exhibits a great potential in assisting materials
design and synthesis in the future with the ambitious goal
of accelerated and application-tailored materials design and
discovery [28]. Recently, ML is successfully employed to
design organic light-emitting diodes [29], metal-organic frame-
works [30], drugs [31], classify steel microstructures [32],
construction materials [33] and in combination with computa-
tional materials to predict graphene bandgap [34]. A paradigm
shift in the eld of material science is inevitable in the upcoming
years as ML and deep learning (DL) becoming increasingly
powerful.

Unfortunately, the amount of available experimental data
of CNT forest growth is not sufficient to be used as labeled
data for training the machine learning model due to the vast
range of CNT forest synthesis conditions, growth recipes and
resultant morphologies reported in literature. Experimental
results are usually noisy, expensive and time consuming, and
the CNT forest attributes (CNT diameter, areal density, growth
rate) are poorly characterized and time variant. Therefore,
the physics-based simulation of CNT forests may present a
reliable and powerful tool for training ML models in the
absence of suitable experimental data.

In this study, a time-resolved mechanical simulation
model is employed to nucleate and synthesize CNT forests.
The finite element model is discussed in detail elsewhere
[35][36][37][38]. Here, we have grown CNT forests with
different user-defined synthesis inputs, namely CNT number
density and CNT outer diameter to evaluate their effect on
the forest structure. As there is a vast input parameter space
that may result in different morphologies, investigating all
process conditions is impractical. In this preliminary study, the
resulting forest morphology is used to train a machine learning
model to predict synthesis properties. Local feature extractors,
individually and in combination, followed by random forest
classifier were employed to create the class predictor model.
We used four local descriptors that are derived from both
Local Binary Pattern (LBP) and Motif Cooccurrence Matrix
(MCM) descriptors [39][40][41]. The descriptors are Rotation
Invariance Cooccurrence among Local Binary Patterns (RIC-
LBP), Joint Adaptive Median Binary Patterns (JAMBP), Joint
Motif Labels (JML), and Motif Patterns (MP) encoded with
RIC-LBP [40]. The reason behind using multiple local de-
scriptors is to capture more texture features and to ultimately
improve the final classification accuracy. This work represents
a first step towards an autonomously operating system that
can determine the synthesis parameters required to synthesize
CNT forests with desired property sets.

II. METHODOLOGY

A. CNT Forest Simulation
A time-resolved 2D simulation model is employed to

simulate CNT forests. The simulation model is based on
the finite-element analysis of concurrently growing CNTs
whose mechanical equilibrium is evaluated at discrete time
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Fig. 2. RIC-LBP Descriptor Computed using Three Different Radius. The
Final Histogram is the Concatenation of the Three Radius RIC-LBP Descrip-
tor.

steps [35][36][37]. Each CNT is modelled as numerous finite
frame elements connected end-to-end. The CNT elements
are hollow cylinders, each having 6 mechanical degrees of
freedom. Three DOF are present at each terminal element node
representing axial, transverse, and angular deformation. At
each growth step, new elements are added to the bottom of the
forest representing a base-growth mechanism. The interactions
of neighboring CNTs are approximated by a linearized van
der Waals potential when they are in close proximity. The
simulation is governed by user-defined inputs such as CNT
inner and outer diameter, orientation angle, number density,
growth rates, etc. that are assigned at the onset of simulation
based on Gaussian distributions.

In this paper, we classify twelve distinct CNT forest classes
using different local descriptors to extract the texture features
from the CNT forest images. In our proposed framework,
the descriptors based on LBP [42] and Motif Peano scan
methods [43] are used. The first two descriptors are called
RIC-LBP and JAMBP which are a very powerful variation of
the original LBP descriptor. The other descriptors are called
JML and MP and are a modification of the original MCM
descriptor. The reason we choose these set of local features is
their ability to capture image texture and the high classification
performance generated using challenging databases. In the
following, we will explain how each method is used to extract
features and the number of features used with respect to each
descriptor.

B. LBP-Based Descriptors

1) RIC-LBP: The Rotation Invariant Co-occurrence among
LBP (RIC-LBP) proposed by Nosaka et. al [44] was used
successfully to classify Human Epithelial type-2 HEp-2 cell
images. RIC-LBP makes use of the relationships among the
binary patterns by finding the co-occurrence patterns among
the histogram features as shown in Figure 2. Moreover, RIC-
LBP histogram is represented in the form of many LBP pairs
and each pair will be attached with a specific label to account
for rotation invariance which makes it very powerful to capture

Fig. 3. Illustration of the Adaptive Median Binary Pattern Window.

important image texture. As proposed in [44], 408 bins from
the three schemes were extracted.

2) JAMBP: The Joint Adaptive Median Binary Patterns
(JAMBP) descriptor was introduced in [45] by Hafiane et. al.
It builds upon the powerful AMBP [46] descriptor by joining
more information extracted from the original image. These
information represent the mean of the image and the window
size used around each pixel to compute the threshold value.
The power of AMBP descriptor is that it uses an adaptive
window size around the center pixel as shown in Figure 3. As
a result, it has the ability to better capture texture features.
Moreover, JAMBP uses multiscale scheme by computing
AMBP descriptor using different ranges and sampling points
from the center pixel. In our work, we extracted 320 bins from
JAMBP and used them in the classification phase.

C. Motif-Based Descriptors

Fig. 4. The Twelve Motif Patterns used in our Approach.

1) JML: The Joint Motif Labels (JML) descriptor was
proposed by Oraibi et. al [40]. The descriptor exploits the
spatial relationship among intensity pixel in a 2 ⇥ 2 image
neighborhood. This is done by finding the Optimum Peano
scans among pixels by minimizing the energy of the intensities
in a small image region based on the equation below:

� = |p1� p2|+ |p2� p3|+ |p3� p4| (1)

Figure 4 shows the 12 motif patterns extracted from a
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Fig. 5. Feature Vector Calculations of JML and MP Descriptors before Applying the Translational Invariance.

2 ⇥ 2 neighborhood image with the corresponding letters for
each pixel that are used in the minimization equation. In
order to compute this descriptor, the twelve motif patterns
are extracted from the 2 ⇥ 2 neighborhood. Then, these
patterns are labeled from 1 - 12. Later, three moments are
found: minimum, median, and maximum patterns. Then, the
corresponding labels of these patterns are stored in 3 separate
matrices. We repeat this process for all image pixels. At the
end, we join each matrix with the mean and variance of the
image in a 3D joint histogram mechanism. More details can
be found in [40]. We also consider the translational invariance
property of the descriptor by computing it on four different
images: the original one, the original image shifted by one
pixel horizontally, vertically, and diagonally by one pixel. As
a result, we gain a descriptor that has 576 bins. Figures 5 and 6
illustrate the computation of JML before and after translational
invariance.

2) MP: The Motif Patterns (MP) descriptor, which was
also proposed by Oraibi et. al [40], works by exploiting the
motif patterns extracted during the process of constructing
the JML descriptor. These patterns are considered as intensity
values since they represent the variation of intensity pixels in
a specific neighborhood. As a result, we can exploit these
patterns by encoding them using any texture descriptor as
shown in Figure 7. We selected the RIC-LBP descriptor to
encode the minimum patterns only since it generates powerful
features that result in high classification performance. To cope
with translational invariance, we applied the same approach as
in JML and extracted features from 4 images. The result is a

descriptor that has 1632 bins which can be used during the
classification stage. Figures 5 and 6 illustrate the computation
of JML before and after translational invariance.

D. Random Forests (RF) Classifier

Random Forests (RFs) are an ensemble learning method
for classification and regression. RFs operate by creating
multiple decision trees and outputting the class that is the
mode of the classes or mean prediction in the case of the
regression task [47]. The first algorithm for random decision
was created by Tin Kam Ho. After that, an extension of Ho’s
algorithm was developed by Breiman et al. [48] which involves
combining Breiman’s “bagging” idea and random selection of
features, introduced first by Ho et. al and resulted in the RFs
classifier. The training algorithm for random forests applies the
general technique of bootstrap aggregating, or bagging, to tree
learners. The number of trees is a free parameter. Typically, a
few hundred to several thousand trees are used, depending on
the size and nature of the training set.

III. RESULTS AND DISCUSSION

In this section, we demonstrate the performance of our
approach for classifying 12 CNT classes, defined later. We
perform classification using 1000 trees RF classifier, which
previously proved to be very efficient [41][39]. During training
and testing, we used 5 fold cross-validation, where 80% of
data was used for training and the remaining 20% was used for
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Fig. 6. Computation of JML and MP descriptors after applying three different local translations including one pixel horizontal (T1), one pixel vertical (T2)
and one pixel diagonal (t3) for translational invariance.

Fig. 7. Motif Patterns Descriptor Illustration. The Minimum Motif Patterns
Matrix is Encoded with RIC-LBP and 408 Bins Features are Extracted.

testing. The evaluation metric used is the Mean Class Accuracy
(MCA) which is defined as:

MCA =
1

K

KX

K=1

CCRk (2)

where K is the number of classes and CCRk is the correct
classification rate for each class.

The dimensions of CNT forest images range between
192⇥730 and 627⇥730 where rows varies in size as columns
have a fixed size. In the experiments, we did not re-size the
images or alter them. This is because we are using local feature
descriptors that accept any image size. In addition, the number
of images per class ranges between 100 - 230.

1) CNT Forest Simulation: CNT forests are simulated for
a total number of twelve distinct classes employing three
different CNT densities and four outer diameters. Population
of CNTs with 250, 500 and 750 CNTs were grown on a 50
µm simulation domain, corresponding to a pitch of 200, 100
and 66.67 nm between CNT nucleation cites, respectively. For
simplicity, the outer diameters are 5, 10, 15 and 20 nm, and
deemed constant for all CNTs within the forest. CNTs are
modeled as hollow cylinders assigned with inner diameters that
were 70% of magnitude of outer diameters. The CNT forests
were grown up to 1200 total growth steps that corresponds to
a height of nearly 55 µm. The CNT growth rate undergoes a
sigmoid behavior such that it is highest at the onset of growth,

Fig. 8. A typical 500 CNT number forest morphology grown by an average
rate of 50 nm/step captured after (a) 300 growth steps (b) 600 growth steps
(c) 900 growth steps (d) 1200 growth steps with growth rate of 50 nm per
timestep. Simulation time takes around 3 hours for five to ten seconds of CNT
growth.

gradually decreases, typically over the subsequent 20 minutes,
and finally terminates [49].

However, our ML model training can be trained by sim-
ulating CNT forests for a relatively short length, i.e. up to
55 m in this study. This corresponds to the early stages
of growth that is fulfilled within a few minutes [49]. Due
to computational resources limitations, it takes about a few
hours to simulate CNT forests by our finite-element simulation
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Fig. 9. The CNT forest morphologies (a)class1: 250 CNTs - OD=5 nm (b) class2: 250 CNTs - OD=10 nm (c) class3: 250 CNTs - OD=15 nm (e) class4:
250 CNTs - OD=20 nm (e) class5: 500 CNTs - OD=5 nm (f) class6: 500 CNTs - OD=10 nm (g) class7: 500 CNTs - OD=15 nm (h) class8: 500 CNTs -
OD=20 nm (i) class9: 750 CNTs - OD=5 nm (j) class10: 750 CNTs - OD=10 nm (k) class11: 750 CNTs - OD=15 nm (l) class12: 750 CNTs - OD=20 nm.

model. For instance, it takes about 2.5 hours to grow a forest
of 55 m height with a pitch of 100 nm between nucleation
cites while such forest is grown in less than 2 minutes experi-
mentally [49]. Therefore, the growth rate of each CNT within
the population was assigned stochastically from a Gaussian
probability density function with an average growth rate of
50 nm per time step and a standard deviation of 5%. The
orientation angle of CNTs was also assigned to each CNT
based on a Gaussian distribution having a standard deviation of
5� relative to the growth substrate normal. Each class of CNT
forests is simulated for several times to generate sufficient
amount of data to train the ML model. CNT morphologies are
plotted and saved every 100 time steps starting from time step
of 300 up to 1200. The first 300 time steps are disregarded due
to the short length of forests. A typical forest growth sequence
at various time steps is shown in Figure 8. It is interesting
that each forest morphology captured during the same forest
growth is not exactly similar to the previous morphologies

within the same realization.

As discussed earlier, the twelve classes shown above have
different densities and outer diameters. A representative image
of each CNT forest class may be found in Figure 9. It should
be noted that all simulation growth parameters are the same
except for the CNT number density and outer diameters. The
typical density of a CNT forest is 109-1013 [18] [19][20][50],
while classes 1-to-4 corresponding to Figures 9 (a-d) have
CNT number densities of 0.25⇥1010 CNTs/cm2, that exhibits
similar morphology to Figure 1 (b). Classes 5-8 correspond
to Figures 9 (e-h) and have CNT number densities of 1 ⇥
1010 CNTs/cm2. Classes 9-12, as shown in Figures 9 (i-l),
have CNT number densities of 2.25⇥ 1010 CNTs/cm2, which
resembles Figure 1 (a). A summary of synthesis parameters
for the twelve class is shown in Table I.

The morphological changes arise from the interactions
between adjacent CNTs that make neighboring CNTs bonded
by the van der Waals forces and make bundles. The bonds
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TABLE I
A SUMMARY OF CNT FOREST SIMULATION GROWTH PARAMETERS WITH
AVERAGE GROWTH RATE OF 50 nm PER TIMESTEP AND GROWTH STD OF

5%.

Class No. Outer Diameter Inner Diameter CNT Number
(nm) (nm) (/50µm)

1 5 3.5 250
2 10 7.0 250
3 15 10.5 250
4 20 14.0 250
5 5 3.5 500
6 10 7.0 500
7 15 10.5 500
8 20 14.0 500
9 5 3.5 750

10 10 7.0 750
11 15 10.5 750
12 20 14.0 750

are subject to breaking when the generated forces during
the forest self-assembly exceed a threshold force of 10
nN [35],[36]. It is worth noting that the x-y axis is cropped
in Figure 9 in order to convert plots shown in Figure 8 to
images that can be used to train the ML model.

2) Local Features Experiments: Our experiment starts by
classifying the CNT forest classes using our framework of
four local descriptors: RIC-LBP, JAMBP, JML, and MP. The
classification results were reported for each single descriptor
as shown in Table II. Then, the combination of descriptors are
examined to further improve the classification performance.

TABLE II
RESULTS OF APPLYING OUR LOCAL FEATURES FRAMEWORK USING 1000
TREES RF WITH FIVE-FOLD CROSS VALIDATION. AFTER COMBINING THE
FOUR SETS OF FEATURE DESCRIPTORS THE MCA RESULTS IMPROVED BY

MORE THAN 3%.

Descriptor Size MCA
RIC-LBP 408 80.0
JAMBP 320 76.2
JML 576 80.5
MP 1624 79.4
RIC-LBP + JAMBP 728 79.9
RIC-LBP + JAMBP + JML 1304 81.6
RIC-LBP + JAMBP + JML + MP 2936 83.5

From Table II, the best accuracy of a single local descriptor
was obtained by JML. This is because JML uses the spatial
relationship among the intensity pixel in a 2⇥2 neighborhood
efficiently. JAMBP exhibited the lowest performance since it
was not able to capture the important texture features from
the dense tubes of CNT forest. This is mainly because JAMBP
proved to work very well with noisy images while CNT forest
images are very clean. It is observed that the combination
of multiple local descriptors also enhanced the classification
performance. In the best case, combining the four descriptors
resulted in a performance improvement by more than 3%.

RF classifier with 1000 trees was tested before to classify
Human Epithelial type 2 (HEp-2) images and it was very

successful in recognizing six and seven classes of cells and
specimen samples respectively [39][41]. Hence, the RF clas-
sifier was selected to classify CNT forest images that yields
impressive results as shown in Table II, when adopting the RF
with many trees to aide the voting process within the classifier.

IV. CONCLUSIONS

In this paper, we presented a framework of multiple local
descriptors to classify 12 CNT forest classes corresponding
to different synthesis conditions. We split the dataset into 5
folds in order to perform 5 fold cross-validation. Then, the
Random Forests classifier with 1000 trees was applied on the
extracted local descriptors. We have studied several descriptors
and demonstrated that the accuracy of a single local descriptor
can be improved by concatenating multiple local descriptors
and feeding them to the classifier. The accuracy of JML (the
best single performance descriptor) was improved from 80.5%
to 83.5% by combining all four descriptors: RIC-LBP, JAMBP,
JML, and MP. This high classification accuracy promotes
discovering the CNT forest synthesis-structure relationships
so that their promising performance can be adopted in real
world applications. We foresee this work as a meaningful step
towards creating an unsupervised simulation using machine
learning techniques that can seek out the desired CNT forest
synthesis parameters to achieve desired property sets for
diverse applications.
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