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3. To determine how species responded to intra- and interspecific competition along
environmental gradients, we experimentally manipulated the relative abundances
of three species and replicated this across five lakes which varied in environmental
conditions affecting larval damselfly per capita growth and mortality rates—key
vital rates regulating their populations.

4. Results suggest Enallagma are ecologically differentiated in ways that in some
communities can result in intraspecific competition exceeding interspecific com-
petition. However, in many cases the opposite was true, or the effects of intra-
and interspecific competition were equivalent via growth and mortality responses.
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nisms regulating damselfly assemblages.

5. This framework can be broadly applied to identify the ecological differences
among species that may promote coexistence, advancing knowledge of the mech-
anisms underlying coexistence and overcoming some limitations of purely phe-
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1 | INTRODUCTION

A fundamental goal of ecology is to understand if, how and why spe-
cies diversity in communities is being maintained or only slowly lost
(Chesson, 2000b; Dornelas et al., 2014; Hubbell, 2001; Hutchinson,
1959; MacArthur & Levins, 1967; Vellend et al., 2013). Critical to any
mechanism promoting the maintenance of species diversity through
stable coexistence are differences among species in how they in-
teract with the environment (Gause, 1934; Hutchinson, 1959). One
approach to understanding the maintenance of species diversity
is therefore to identify “ecological differences” among species.
Fulfilling this task, ecologists have exerted tremendous effort identi-
fying differences among co-occurring taxa in communities (Chesson,
2000b; Siepielski & McPeek, 2010; Silvertown, 2004). Countless
studies have revealed that species within the same trophic posi-
tion frequently differ in their abilities to interact with competitors,
predators, parasites and mutualists (Mittelbach, 2012). Similarly,
species differ in their demographic responses to abiotic gradients
such as temperature, precipitation, pH or salinity (Chesson, 2000b).
Arguably, these differences in how species interact with the envi-
ronment are taken to constitute various aspects of a species niche.

While ecological differences among species are a necessary cri-
terion for the maintenance of diversity, not all ecological differences
promote local coexistence (Adler, Fajardo, Kleinhesselink, & Kraft,
2013; Siepielski & McPeek, 2010). Rather, the key ecological differ-
ences that can promote coexistence are those that result in com-
petitors interacting differently with the environment (e.g. consume
different prey resources, vary in physiological sensitivity to environ-
mental stress), such that intraspecific density dependence is stron-
ger than interspecific density dependence (Adler, Hillerislambers,
& Levine, 2007; Chesson, 2000b). When density-dependent intra-
specific competition is stronger than interspecific competition, each
species limits their own population growth rates more than their
competitors (Adler et al., 2007; Chesson, 2000b). The resulting neg-
ative frequency-dependent demographic responses species would
then exhibit can promote coexistence by preventing any one spe-
cies from dominating in a community (Adler et al., 2007; Chesson,
2000b). Numerous studies have now taken this phenomenological
approach and explicitly quantified how intra- and interspecific com-
petition jointly vary to structure communities (Adler et al., 2018;
Letten, Ke, & Fukami, 2017; McPeek, 2012).

Although these two approaches, identifying differences in how
species interact with the environment and testing for intra- and in-
terspecific competitive differences, are complementary, each has
limitations. Whereas correlative studies of species associations with
environmental variation often identify ecological differences among
species, it is unclear whether these differences shape species' demo-

graphic responses to intra- and interspecific competition, and thus

contribute to stable coexistence. By contrast, studies of species
demographic responses to intra- and interspecific competitors can
reveal the demographic signatures of ecological differences poten-
tially promoting coexistence. However, this approach is inherently
phenomenological and does not explicitly identify the underlying
ecological mechanisms producing these effects (HilleRisLambers,
Adler, Harpole, Levine, & Mayfield, 2012; Kraft, Godoy, & Levine,
2015; Letten et al.,, 2017). This is a familiar criticism of the phe-
nomenological results provided by many well-known models (e.g.
Lotka-Volterra models) upon which this latter approach is built,
whereby the observed results are largely divorced from ecological
mechanisms. Therefore, combining these two approaches may be a
useful way of identifying what aspects of the environment shape
the relative strength of species demographic responses to intra- and
interspecific competition. Doing so would allow for a better under-
standing of what ecological differences among species may actually
promote competitor coexistence.

Here, we present and demonstrate a framework that combines
experimental and standardized observational studies to determine
what ecological differences among species may shape intra- and in-
terspecific competitive interactions. We first develop the conceptual
context establishing why environmental heterogeneity and ecolog-
ical differences among species may affect competitive interactions,
and then proceed to explain the experimental-observational ap-
proach along with its caveats and potential pitfalls. We subsequently
demonstrate how to apply this framework with a case study using
an assemblage of predatory aquatic insects (Enallagma damselflies).

1.1 | A framework linking ecological differences,
environmental variation and competitive interactions

1.1.1 | Conceptual context

Our goal here is to describe a conceptual framework explaining how
environmental factors (e.g. abiotic conditions, species interactions)
may shape the ecological mechanisms underlying competitive ef-
fects, and an experimental approach to test this model (Figure 1).
Because ecological differences are what cause species to expe-
rience stronger demographic responses to intra- than interspecific
competition (Chesson, 2000b), this implies that the ecological fac-
tors that cause a species to have higher per capita population growth
rates when rare must become limiting when that species is common
(Siepielski, Hung, Bein, & McPeek, 2010). For example, coexistence
of two species consuming two resources requires that each be bet-
ter at consuming the resource that most limits its own population
abundance (Letten et al., 2017; McPeek, 2018; Tilman, 1980, 1982).
The feedback limiting per capita population growth imposed by neg-

ative frequency dependence can thus arise from differences in how
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FIGURE 1 A conceptual framework to understand the ecological differences among competitor species shaping the potential for local
coexistence. Panel (a) denotes variation in the outcomes of experimental manipulations of species relative abundances between a pair of
competing species: (i and ii) demonstrate outcomes where species experience increasingly stronger intra-relative to interspecific competitive
effects on per capita population growth rates. In this scenario, such demographic responses may facilitate species coexistence by preventing
any one species from dominating; (iii) denotes an outcome where the effects of intra- and interspecific competitive effects are equivalent;
(iv and v) demonstrate outcomes where species experience stronger inter-relative to intraspecific competitive effects. In this scenario, such
demographic responses may result in competitive exclusion depending on which species has the strongest overall competitive effect. Panel
(b) maps the slopes depicted in panel (a) across an environmental factor that potentially influences the outcomes of inter- and intraspecific
competitive interactions. The solid green line depicts a situation in which an increase in an environmental factor is causing species to
experience stronger intraspecific than interspecific competitive effects, and thus facilitates coexistence. Finding such associations can help
to reveal potential ecological differences among species that mediate coexistence. For example, the environmental factor could be increased
in the abundances of two limiting prey types that each competitor species uses. By contrast, the dashed green line depicts a situation in
which an increase in an environmental factor is causing species to experience stronger inter- than intraspecific competitive effects, and thus

may increase competitive exclusion

the environment shapes species responses to intra- and intraspe-
cific competition via indirect resource competition (Chesson, 2000a;
Germain, Mayfield, & Gilbert, 2018; HilleRisLambers et al., 2012;
Lanuza, Bartomeus, & Godoy, 2018; Letten et al., 2017), or how it
shapes direct intraspecific density dependence outside of resource
limitation (McPeek, 2012), as well as other factors such as predators
and parasites that emerge in richer community modules (Chesson,
2018; Chesson & Kuang, 2008; McPeek, 2012, 2018; Sommers &
Chesson, 2019).

Therefore, there are two components underlying any mechanism
of ecological differences that structure an assemblage of competi-
tors: (a) the interspecific differences that exist among taxa (e.g. dif-
ferent limiting prey resources, susceptibilities to predators) affecting
species demographies and (b) the intraspecific population regulation
occurring within a particular species. Although much of community
ecology has focused on identifying the differences among species
that affect their abilities to engage in interspecific interactions (e.g.
Chesson, 1991), it is important to remember that many species di-
rectly limit their own per capita demographic rates (McPeek, 2018)
by mechanisms such as territoriality (Grether, Losin, Anderson, &
Okamoto, 2009; Losin, Drury, Peiman, Storch, & Grether, 2016),
feeding interference (Le Bourlot, Tully, & Claessen, 2014; Skalski &
Gilliam, 2001; de Villemereuil & Lopez-Sepulcre, 2011), cannibalism

(Polis, 1981; Rudolf, 2007) and physiological responses to crowding
(Glennemeier & Denver, 2002; McPeek, Grace, & Richardson, 2001).

Given the multitude of mechanisms shaping species demographic
responses to intra- and interspecific competition, it is reasonable to
suspect that the environmental factors shaping these competitive
interactions should vary among communities. Indeed, local adapta-
tion to environmental factors across the landscape can modify the
strength of competitive interactions (Siepielski, Nemirov, Cattivera,
& Nickerson, 2016). Therefore, we should expect the relative effects
of intra- and interspecific competition to also vary among commu-
nities because of how species ecological differences cause them
to respond differently to environmental heterogeneity (Figure 1b).
Identifying these ecological factors provides insight into the under-
lying mechanisms causing intra- and interspecific responses to vary,

which is a key determinant of local coexistence.

1.1.2 | Unified experimental-
observational approach

One way to quantify the strength of the demographic effects of
intra-relative to interspecific competition is to conduct pairwise
competition experiments, where each species is manipulated to
low and high relative abundances (Adler et al., 2007). When a
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species is manipulated to low relative abundance, it primarily ex-
periences the demographic effects of interspecific interactions.
By contrast, when a species is manipulated to high relative abun-
dance, it primarily experiences the effects of intraspecific inter-
actions. Therefore, if a species per capita population growth rate
decreases as it becomes common, this would indicate that the ef-
fects of intraspecific competition reduce growth rates more than
interspecific competition. If, however, a species per capita growth
rate decreases as it becomes rare, this would imply that interspe-
cific competition reduces growth rates more than intraspecific
competition, which would hamper coexistence (Figure 1a). Thus,
when both species in a given pair experience demographic advan-
tages when rare (e.g. reciprocal slopes; Figure 1a), this condition
can promote local coexistence. If only one species gains a demo-
graphic advantage when rare, this would imply that one species
exerts a stronger competitive effect, regardless of which species
is the recipient of competition.

The strength of these competitive responses can therefore be
estimated as the slope of per capita population growth rates when
species are established at low and high relative abundances. Larger
negative values indicate stronger intraspecific effects, larger positive
values imply stronger interspecific effects, and a slope of zero would
suggest species respond identically to intra- and interspecific com-
petition (Figure 1). Note that to estimate the individual strengths of
intra- and interspecific competition, additional experimental manipu-
lations (e.g. a response surface design) of both species in isolation are
required (Hart, Freckleton, & Levine, 2018; Inouye, 2001). The exper-
imental design we subsequently employed in our case study, though,
is still sufficient to estimate demographic responses to intra- and in-
terspecific competition. In the absence of being able to estimate per
capita population growth rates, a limitation faced by many research-
ers for numerous study systems, it may be permissible to use other
vital rates that shape population growth rates (e.g. per capita mortal-
ity, fecundity, individual somatic growth rates; Hart et al., 2018). In
doing so, one must assume a linear correlation between a particular
per capita demographic rate and per capita population growth rates.

When manipulative experiments of relative abundance are
replicated in multiple locations along environmental gradients,
this natural heterogeneity provides an opportunity to then un-
derstand how the environment may shape intra- and interspecific
competitive effects (Figure 1b). These associations can help reveal
the ecological differences among species potentially shaping co-
existence (or exclusion; Figure 1). This can be accomplished by ob-
serving how demographic responses (changes in per capita rates)
to relative abundance manipulations change along environmental
gradients. Results from this approach can be statistically evalu-
ated with a simple model:

y=a+p,a+ PE+praE+e

where y is per capita population growth rate (or a surrogate as above,
e.g. per capita individual growth rate, mortality rates), a is the inter-
cept, a denotes relative abundance, E is an environmental factor, aE

is the interaction between relative abundance and an environmental
factor, and ¢ is error; 3, are slope parameters estimated from the data.
Importantly, these terms do not have to be linear functions of rela-
tive abundance and environmental factors; nonlinear regression ap-
proaches could also be used. In the context of pairwise competitive
effects, this model can be implemented using familiar MANOVA type
models, as there are two species and thus two vital rates (y1 and yz).
The aE term is of particular interest because it captures how the effect
of relative abundance depends on an environmental factor. Note, how-
ever, that it may be more straightforward to first assess whether there
is a site effect (e.g. simply testing for spatial variation in competitive
effects), rather than a particular environmental effect.

The above analysis is informative for understanding whether the
effects of relative abundance vary among sites, or are potentially
influenced by an environmental factor, but it does not test how the
strength of competitive effects might vary with the environment.
Quantifying how the strength of competitive effects varies along
environmental gradients for species pairs requires estimating the
correlation between different environmental factors and the slope
of the difference in growth rates between low and high relative

abundance treatments per species (Figure 1b).

1.1.3 | Caveats and pitfalls

Several caveats are important for implementing this unified experi-
mental-observational framework in field settings. First, it assumes
that manipulations of relative abundance are performed at a relevant
spatial scale whereby frequency dependence occurs (Amarasekare,
2003; Hart, Usinowicz, & Levine, 2017; Sears & Chesson, 2007) and
that sufficient environmental heterogeneity exists within and among
experimental locations which might differentially affect vital rates
(Adler et al., 2007). It is also critical that there is feedback between
limiting factors (e.g. prey abundances, nutrients) and manipulations
of relative abundance. That is, experiments must be conducted such
that perturbing one species to low relative abundance allows its lim-
iting resources (and those of its competitors) to respond in turn.
Second, and following from the above, the total densities of spe-
cies must be sufficient that competitive interactions are occurring,
which can be challenging to determine given spatial and temporal
variation in natural densities for most species (Mittelbach, 2012).
That is, if species densities are so low that resource is not limiting,
then responses to relative abundance would potentially be weak-
ened if not absent. This is a limitation of such substitutive experi-
mental designs, where total density is fixed (Goldberg & Scheiner,
2001; Underwood, 1986). Responses to relative abundance manipu-
lations could also be weakened if density-dependent responses oc-
curred with a time-lag greater than the duration of the experiment
(e.g. if resources take more time to be depleted). Study system-
specific knowledge can be important in determining relevant total
densities (Mittelbach, 2012). In the absence of such knowledge, one
potential solution is to simultaneously manipulate both relative and
total abundances in a crossed factorial design, book-ending relevant
extremes in natural total densities (Siepielski et al., 2010). Such an
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approach is also informative because it may be that species are eco-
logically equivalent, and thus do not respond to relative abundance
manipulations. However, if density-dependent population regulation
is important, species should still respond to manipulations of total
abundance (Siepielski et al., 2010). Similarly, response surface de-
signs could also be implemented (Hart et al., 2018; Inouye, 2001).

Third, for clarification, the present framework is concerned with
what has been referred to as “variation-independent stabilizing mech-
anisms” focused on local species coexistence (Chesson, 2000b). These
are mechanisms that shape the strength of intraspecific relative to
interspecific competitive effects, but are not dependent on spatial en-
vironmental variation (e.g. local resource or habitat partitioning along
a gradient), temporal environmental variation (e.g. storage effect type
mechanisms) or relative nonlinearities to work (Chesson, 2000b; Sears
& Chesson, 2007). The latter are all important mechanisms that can
shape coexistence (Chesson, 2000b) and expansions of these mecha-
nisms to the framework we outline would be a useful endeavour. Thus,
while the framework we propose is not comprehensive, and does not
allow for an exploration of all possible mechanisms underlying poten-
tial coexistence, it should still serve as a useful starting point that can
be modified to accompany other mechanisms.

Fourth, this framework only works for fairly simple communi-
ties and relies on pairwise comparisons of competitive interactions.
Indeed, because the competitive effects of interest here are by
definition demographic responses that cause species to have dif-
ferential effects on themselves relative to other species (Letten et
al., 2017), this way of quantifying competitive differences can only
be understood in the context of pairwise competitive interactions.
Yet, real communities are often very complex, and multiple environ-
mental conditions and interspecific interactions contribute to spe-
cies differences that can shape their abilities to coexist (Chesson,
2018; McPeek, 2017, 2018). As a result, it may very well be that
complex indirect interactions among community members via inter-
action chains and higher order interactions emerging from non-ad-
ditive density responses are critical (Letten & Stouffer, 2019; Levine,
Bascompte, Adler, & Allesina, 2017). In principal, the framework
presented here could be extended to capture these higher order
actions. Likewise, consideration of not only resource-based compet-
itive interactions, but also of other species interactions (e.g. parasit-
ism, predation, mutualism) that influence consumers and resources
embedded within complex food webs will be important (Chesson &
Kuang, 2008; McPeek, 1989, 2018; Sommers & Chesson, 2019).

Finally, while the framework we outline may experimentally
identify the occurrence and strength of competitive effects, the
correlation between competitive responses and environmental fac-
tors is not experimentally determined and direct causality cannot
be inferred. Essentially, the framework we outline is perhaps best
viewed as a “where-to-start inquiry”. It allows researchers to identify
whether species exhibit differences in responses to intra- and inter-
specific competition, and if so, what might be the underlying causal
factors for those responses. Subsequent to this, if environmental
factors are identified, experimental studies manipulating those fac-
tors would then be necessary (HilleRisLambers et al., 2012).

2 | MATERIALS AND METHODS

2.1 | Study system

We applied our framework to a field study with Enallagma damsel-
flies. Enallagma are among the most diverse and abundant genera
of odonates in North America, with 34 of the 38 species found as
larvae in lakes and ponds with fish (McPeek, 1990, 1998; McPeek
& Brown, 2000; Siepielski et al., 2010; Westfall & May, 2006). In
our study region in the Ozarks and the Arkansas River Valley of the
south-central United States, two to six species of Enallagma fre-
quently co-occur is small areas (1-m? patches of macrophytes). These
damselflies spend over 90% of their lives (ca. 11 months in temper-
ate zones) as aquatic larvae in the littoral zone, feeding upon small
invertebrates and being consumed by conspecifics and heterospe-
cifics, larger predacious insects and especially fish.

Previous field experiments have shown that density-depen-
dent growth (changes in body size) through competition for food
resources contributes to the regulation of fish-lake damselfly as-
semblages, and ecological differences affecting growth rates among
species are detectable using cage experiments (McPeek, 1990, 1998;
McPeek et al., 2001; Siepielski & McPeek, 2013; Siepielski, Mertens,
Wilkinson, & McPeek, 2011). Similarly, per capita mortality is also
strongly density-dependent (see figure 2 of Siepielski et al., 2010)
with different species exhibiting differences in predator-driven mor-
tality rates (Bried & Siepielski, 2019). Although our experiment did
not include fish predators, which are a major source of mortality for
fish-lake Enallagma (McPeek, 1998; McPeek & Peckarsky, 1998),
mortality arising from both intraguild predation and cannibalism is
common and often density dependent in odonates (Van Buskirk,
1989; Fincke, 1994; Johnson, 1991; McPeek & Crowley, 1987). Thus,
density- and frequency-dependent mechanisms via resource and
interference competition, as well as intraguild and cannibalistic in-
teractions, can regulate damselfly population growth rates (McPeek,
2008; McPeek & Peckarsky, 1998).

2.2 | Experimental approach

To determine whether each species gained a demographic advan-
tage when rare, we experimentally manipulated the relative abun-
dance of species and compared their per capita individual growth
rates (changes in body size through time; hereafter, per capita
growth rates; see below) and per capita mortality rates when at low
versus high relative abundance. Because manipulating the relative
abundances of all species would be prohibitive, we chose three:
E. exsulans, E. vesperum and E. traviatum. We selected these species
because their ranges broadly overlap (Westfall & May, 2006), they
commonly co-occur in lakes where their ranges overlap, and their
relative abundances vary among lakes implying that different eco-
logical factors regulate their abundances.

During October 2017, we established 25 submerged cages
(0.47 m high x 0.23 m wide x 0.23 m long, giving a bottom surface
area of 0.052 m?) in the littoral zone of each of five lakes. These five



6 Journal of Animal Ecology

OUSTERHOUT ET AL.

lakes were chosen because preliminary sampling of environmental
factors in them (see below) indicated that they varied in a manner
that could mediate competitive interactions among damselflies.
Cages were constructed of 2.1-cm-diameter PVC pipe encased in
mesh netting (0.6 x 1.2 mm mesh), which allowed prey to readily
colonize cages and for all damselflies to experience similar local con-
ditions (e.g. water chemistry and temperature), while excluding com-
petitors and non-damselfly predators. At the end of the experiment,
all cages contained natural prey (i.e. annelids, cladocerans, chirono-
mids and ostracods). To provide a foraging structure for damselflies,
we added the dominant macrophyte (Justicia americana) at natural
densities to each cage after carefully removing any invertebrates.

We initiated damselfly treatments 10-20 October by randomly
assigning two species of Enallagma to each cage and manipulating
one species of each pair to low relative abundance (25%; five larvae/
cage) and the other to high relative abundance (75%, 15 larvae/cage)
and vice versa for all possible pairwise combinations. Total abun-
dance (n = 20) was thus held constant across relative abundance
treatments. Given the bottom surface area of the cages, this results
in a total density of ~378 damselflies/m?. This density is greater
than the average of 132 + 141 (SD) Enallagma/m? in the study re-
gion, and thus, it should be sufficient to detect density-dependent
growth (Figure S1) and mortality responses (figure 2 of Siepielski et
al., 2010), as numerous previous studies have found across a range of
total densities, species and geographic locations ranging from CA to
NH (McPeek, 1990, 1998; Siepielski et al., 2010; Siepielski, Nemirov,
et al.,, 2016). Our manipulations of damselfly relative abundance
should affect the level of prey resources in our experimental cages
because prey items were readily capable of moving into them. Thus,
if different Enallagma species consumed different prey (e.g. resource
partitioning), then when a given species was rare more of those prey
items should have been available.

The three species pairings x two relative abundances were each
replicated four times in each lake. All damselflies placed in cages were
from their local lakes and included the natural size variation present
in each lake at the time the experiments were established. The re-
maining cage in each lake allowed us to determine possible damselfly
trespassing rates (i.e. non-experimental animals infiltrated the cages.
This was found to be low [two larvae across all control cages]). We
replicated this same experimental design in five lakes. We concluded
the experiment during 9-20 November, after 30 days (+1.2 SD), which
is more than sufficient for detecting changes in Enallagma per capita
growth and mortality rates in field conditions (McPeek & Peckarsky,
1998; Siepielski et al., 2010, 2011; Siepielski, Nemirov, et al., 2016).

Although we cannot estimate per capita population growth rates
directly, both per capita growth and per capita mortality contrib-
ute to damselfly population regulation (McPeek & Peckarsky, 1998).
We therefore used these latter demographic rates as response vari-
ables for measures of demographic performance that should affect
population growth rates (Siepielski et al., 2010, 2011). Importantly,
previous field enclosure experiments showed that food additions
increase damselfly growth rates, implying that prey resources (in
addition to feeding interference; McPeek & Crowley, 1987) are

limiting to the growth of damselflies in fish lakes, and that they are
likely drawing resource levels down at the scale of our experiments
(McPeek, 1998). Per capita growth rates are also an important de-
mographic rate for damselflies, because they determine the length
of time larvae is exposed to their predators (McPeek & Peckarsky,
1998). Despite the absence of fish predators, mortality likely arose
from both cannibalism, which is essentially an extreme form of in-
terference competition, and intraguild predation (Van Buskirk, 1989;
Fincke, 1994; Johnson, 1991; McPeek & Crowley, 1987). The threat
of cannibalism can also generate strong stress responses—growth
rates of Enallagma are upwards of 50% lower when conspecifics are
present (McPeek et al., 2001). We acknowledge that other sources
of mortality, especially from fish, can strongly affect damselfly pop-
ulation growth rates and thus their potential to coexist (McPeek &
Peckarsky, 1998). In the Discussion, we return to this issue.

As in our previous studies (Bried & Siepielski, 2019; McPeek,
1990, 1998; Siepielski et al., 2010), growth and mortality rates for
each species were calculated for each cage. Per capita growth rates
for each species were calculated as [mean(In(head width of recov-
ered larvae)) - mean(In(head width of initial sample))]/duration. This
growth rate metric assumes a model of head width(t) = head width(0)
e(gt), where g is the growth rate and is independent of the initial size
of the individual, but may depend on species, environmental con-
ditions and the density of competitors (McPeek, 1998). The initial
samples of head width were from a subset of randomly chosen indi-
viduals not used in the cages. Head widths were measured using a
compound microscope fitted with an ocular micrometre. Per capita
mortality rate was estimated as: —(In(number recovered) - In(initial
number))/duration.

2.3 | Standardized sampling of
environmental gradients

At the five lakes used in the experiment, we measured environmen-
tal factors that previous studies have shown can either directly or in-
directly affect damselfly growth and mortality rates (McPeek, 1990,
1998; McPeek et al., 2001; Siepielski & McPeek, 2013; Siepielski et
al., 2011; Siepielski, Nemirov, et al., 2016; Table S1). The methods
used here have been described elsewhere (references as above), so
we only briefly describe them here. We estimated the density of
macrophytes in 10 0.25-m? quadrats in the littoral zone, because
they are an essential habitat for damselflies, providing refuge from
predators and foraging substrate for “arboreal” larvae (Crowley &
Johnson, 1992). Damselfly prey density on submerged macrophytes
was estimated by taking six replicate prey samples with a 6-L box
sampler (100-pm mesh). We also measured the density of fish preda-
tors by taking three standardized seine hauls (4.5 m x 1.5 m beach
seine net with 5-mm mesh). Although fish were not included in our
experimental cages, their potential indirect effects (e.g. reduced prey
consumption) on growth rates should still be detectable via olfactory
or visual cues (Siepielski, Fallon, & Boersma, 2016). Because various
aspects of water chemistry can either directly or indirectly affect
the movement of nutrients, oxygen and other abiotic factors within
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and between levels of the local food web (Corbet, 1999; Frolich
Strong & Robinson, 2004), we characterized water chemistry (con-
ductivity, pH, salinity) of each lake using a YSI probe (YSI ProPlus,
YSI Incorporated), using the averages of three measurements from
the sampling area. Finally, we estimated an overall index of lake pro-
ductivity by measuring chlorophyll-a (hereafter chl-a) concentration
(ug/ml) with a fluorometer (Turner Designs) after a standard ethanol
digestion (Siepielski & McPeek, 2013), using the averages from two
water samples.

To estimate the density of Enallagma (all species combined), we
returned to lakes twice during the larval period (27 September-20
October 2016 and 20 October-20 November 2016). During each
visit, larvae were sampled by taking 10 standardized 1-m-long dip
net sweeps (28 cm net opening, 1 x 1 mm mesh) spread across a
60-m stretch of the littoral zone and stratified by dominant macro-
phytes. This method gives highly repeatable estimates of odonate
densities (Crowley & Johnson, 1992; Stoks & McPeek, 2003). All
captured odonates were preserved in 70% ethanol and later identi-
fied to species and measured in the laboratory. We used mean den-

sity over the two samples as an estimate of competitor density.

2.4 | Statistical analyses

In our experiment, two species were present in all cages, and thus,
the growth and mortality responses are inherently multivariate.
Therefore, we first used a MANOVA model to determine the ef-
fects of relative abundance, lake and their interaction on per capita
growth and mortality rates for each species pairing. This analysis al-
lowed us to determine whether, when paired together, species per
capita growth and mortality rates responded to relative abundance
manipulations, and whether these responses varied among lakes (e.g.
Figure 1a). We then conducted simple linear regressions of per cap-

ita growth and mortality rates against relative abundance for each

lake x species pairing (Levine & HilleRisLambers, 2009) to estimate
the slope of growth and mortality rates in relation to relative abun-
dance. In addition, we also built hierarchical models with a random
intercept and slope for each lake by species by relative abundance
combination. In principal, these models would allow for regulariza-
tion, because estimates for each slope inform the estimates of the
other slopes (Gelman, Hill, & Yajima, 2012). However, results from
these more complicated models were qualitatively similar, and thus,
we present results from the simpler analysis, acknowledging that
such model estimates are likely to be noisy and may overestimate
the variation among lakes and species combinations in slopes in rela-
tion to relative abundances. To assess how environmental variation
can affect the relative strength of intra- and interspecific competi-
tion, we then conducted a simple correlation analysis between these
estimated slopes and each of the environmental variables measured
in each lake (e.g. Figure 1b). All analyses were conducted in program
R version 3.3.3 (R Core Team, 2017).

3 | RESULTS
3.1 | Experimental manipulations of species relative
abundances to infer competitive effects

Per capita growth rates for species pairs varied significantly among
lakes for two of the three species pairs (Table 1; Figure 2); however,
there was no consistent effect of relative abundance, nor a signifi-
cantinteraction between relative abundance and lake terms (Table 1).
Across lakes, species growth rates were significantly different from
each other (ANOVA, F, 237 =40.09, p < 0.0001): E. vesperum (mean
growth rate = 0.008 + 1.8 x 10™* SE) had a higher per capita growth
rate than E. exsulans (mean growth rate = 0.006 + 3.0 x 107* SE;
Tukey HSD, p < 0.0001) and E. traviatum (Tukey HSD, p < 0.0001),

and E. exsulans had a higher per capita growth rate than E. traviatum

TABLE 1 Results of the MANOVA comparing Enallagma species per capita growth and mortality rates at low and high relative
abundances for each of the three species pair combinations among five lakes in Arkansas (see Figure 2)

Per capita growth rate

Per capita mortality rate

Comparison and model terms Wilk's 4 F
E. traviatum-E. vesperum comparison
Lake 0.762 1.06
Relative abundance 0.922 1.218
Lake x relative abundance 0.678 1.555
E. exsulans-E. vesperum comparison
Lake 0.19 9.403
Relative abundance 0.941 0.906
Lake x relative abundance 0.9 0.394
E. traviatum-E. exsulans comparison
Lake 0.359 4.844
Relative abundance 0.988 0.183
Lake x relative abundance 0.78 0.959

df P Wilk's A 7 df p

8.58 0.406 0.642 1.797 8.58 0.096
2.29 0.31 0.982 0.257 2.29 0.774
8.58 0.159 0.841 0.651 8.58 0.731
8.58 <0.0001 0.476 3.254 8.58 0.003
2.29 0.415 0.975 0.359 2.29 0.701
8.58 0.92 0.48 3.213 8.58 0.004
8.58 0.0001 0.59 2.181 8.58 0.042
2.29 0.833 0.869 2176 2.29 0.131
8.58 0.476 0.888 0.44 8.58 0.891
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(mean growth rate = 0.005 + 2.0 x 107* SE; Tukey HSD, p = 0.028).
These results indicate per capita growth rates were variable among
lakes and species, though differences in the effects of intra- and in-
terspecific competition were largely absent or not detectable.

Per capita mortality rates for species pairs also varied among
lakes for the same two species pairs as found for growth rates
(Table 1; Figure 2). Unlike growth rates, however, across lakes spe-
cies per capita mortality rates were not significantly different from
each other (ANOVA, F2, 237 = 2.37,p = 0.095). Although no effect of
relative abundance or interaction terms between lakes and relative
abundance were apparent for E. traviatum-E. vesperum or E. travia-
tum-E. exsulans pairs (Table 1; Figure 2a,c), there was a significant
lake x relative abundance interaction effect for E. exsulans-E. ves-

perum pairs (Table 1). Individual lake-level analyses showed that
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and species pairs, both in magnitude and sign (Figure 2), though con-
fidence intervals of most slopes overlapped with zero (Figure S2).
Although some species experienced a tendency for greater per cap-
ita growth or lower mortality when rare in some lakes when paired
with some species, the effects were rarely reciprocal among a given
pair of taxa in a given lake. That is, it was uncommon for both species
when paired together to both experience demographic advantages
(higher growth or lower mortality) where rare, which is a necessary
condition for local coexistence. Instead, most slopes were opposing,
but again the confidence intervals of these slopes largely overlapped
with zero implying that intraspecific effects were largely the same as
interspecific effects (Figure S2). Overall, these results indicate that
per capita growth and mortality rate changes in response to relative
abundance manipulations are both infrequent and variable in magni-

tude and direction.

3.2 | Examining how species competitive effects are
shaped by environmental variation

Although the MANOVA and individual-level regressions (the re-
gressions per species pairing per lake, Figures 2 and S2) detected
infrequent, subtle and variable effects of relative abundance ma-
nipulations among species and lakes, we further investigated how
these effects on per capita growth and mortality rates varied in re-
lation to environmental differences among lakes (Figures 3 and 4).
The slopes of per capita growth and mortality rates between low
and high relative abundances simply provide an estimated effect
size, albeit with much uncertainty (Figure S2) capturing the strength
of competitive effects, and we can examine how this varies along
different environmental factors. However, given the overall lack of

statistical significance in most of these comparisons, we exercise
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caution in interpreting these results and consider it an exploratory
analysis aimed at understanding how frequency-dependent growth
and mortality might vary along environmental gradients, as well as
an illustration of our conceptual framework (Figure 1).

Overall, correlations between frequency-dependent growth
(Figures 3 and S3) and mortality (Figures 4 and S3) and environmental
factors among lakes differed in both direction and magnitude among
species pairs. In most cases, a given species growth or mortality re-
sponse to relative abundance within a pair responded differently to
different environmental factors. This is most apparent by comparing
the same pairs of different taxa, where the growth or mortality slopes
are often in opposing directions for the same environmental factors
(Figures 3 and 4). However, there were also some instances where
species responded similarly. For example, as prey density increased,

most species tended to experience greater growth rates when rare

(e.g. largely negative slopes in Figure 3). Similarly, as fish density in-
creased, per capita mortality increased as a species relative abundance
increased for most species’ pairs (e.g. largely positive slopes in Figure 4).
While growth and mortality rates of some species pairs showed similar-
ity in their overall responses, most changes were nevertheless idiosyn-
cratic. Thus, for at least some species, this analysis suggests differences
in how species growth and mortality responses to relative abundance
varied with environmental factors, implying differences in the ecology

of these species that might shape competitive interactions.

4 | DISCUSSION

Coexistence theory focused on determining if species ex-

hibit stronger population regulation because of intra-relative to
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interspecific competition has provided a compelling framework
identifying whether species differ ecologically in ways that pro-
mote their coexistence. This is an important contribution, because
it has spurred critical tests evaluating if species do coexist, which
has long been assumed but rarely determined (Siepielski & McPeek,
2010). However, this body of work does not identify the ecological
underpinnings of species differences that shape the effects of intra-
relative to interspecific competition. Concomitant with this line of
inquiry are studies of species associations with the environment,
which measure aspects of species' ecological differences, but not
whether these differences actually affect the strength of intra- and
interspecific competition. The framework we outlined shows one
way of combining these two approaches to move purely phenom-
enological studies of species competitive differences into one incor-
porating ecological underpinnings (Figure 1). Addressing this “why
do species coexist” question, as opposed to simply “do they meet
conditions facilitating coexistence” should help develop mechanistic
insights into explaining the maintenance of species diversity.

Results from applying this framework to Enallagma damselfly as-
semblages indicate that, on average, intra- and interspecific competitive
effects tend to be equivalent, at least through the contribution of larval
per capita growth and mortality rates. Despite finding some instances
of negative frequency dependence among competing species, indicat-
ing stronger intra-relative to interspecific competition, we found none
where this pattern was reciprocated within a pair in the same lake. If
only one of a pair of species exhibits a demographic advantage when
rare, this alone would not contribute to reducing competitive exclusion,
and the species with the strongest competitive effect could eventually
dominate. Obviously, results from these experiments do not include
processes acting during other life stages (egg, early instars, adult).
However, no density-dependent effects on growth and mortality have
been detected during these shorter life stages (McPeek, 2008).

While the overall patterns suggest that these species respond
similarly to relative abundance manipulations, they do show that the
species are ecologically different. Mortality rates varied among lakes
but were generally similar among species; however, we did find that
the species differed in their average per capita growth rates (E. ves-
perum > E. traviatum > E. exsulans). In our analysis, there were also
some suggestions that species differed in how their growth and mor-
tality rates responded to frequency manipulations, and how these
responses varied along environmental gradients. Such findings indi-
cate that these species differ in their abilities to interact with other
species, themselves and the environment. The differences in growth
rates presumably arose because the species vary in their prey at-
tack rates, conversion efficiencies or physiological stress responses
to themselves or their competitors—all factors that previous exper-
iments have established differ among Enallagma species (McPeek,
2004; McPeek et al., 2001; Stoks & McPeek, 2006). Thus, these re-
sults show that these species are ecologically different in ways that
ecologists frequently identify as being important mediators of com-
petition, though these apparent differences are not those that seem
to contribute to local coexistence in this case (Chesson, 2000b;
Leibold & McPeek, 2006; Siepielski & McPeek, 2010).

Taken at face value, our exploratory analysis examining the
relationship between growth and mortality responses to relative
abundance manipulations and environmental gradients can provide
some insight into how ecological differences may nonetheless drive
species’ responses to intra- and interspecific competition. Although
most of these associations were idiosyncratic, there were some
instances where species responded similarly. For example, as prey
density increased, most species tended to experience greater growth
rates when rare (Figure 3). Similarly, as fish density increased, per
capita mortality increased as a species relative abundance increased
for most species’ pairs (Figure 4). For most of these comparisons,
though, any growth or mortality advantages when rare were rarely
reciprocal, and never occurred across all lakes for a given species. It
may simply be that the range of environmental conditions in our ex-
perimental lakes was not sufficient enough to allow species to gain
any demographic advantages when rare (Bried & Siepielski, 2019),
or that any advantages may be so subtle that stochastic processes
simply play a more important role (Siepielski et al., 2010; Svensson,
Gomez-Llano, Torres, & Bensch, 2018). Ultimately, further experi-
mental work is necessary to more definitively understand what envi-
ronmental factors might contribute to the weak negative frequency
dependency observed in this system, and thus reveal any potential
ecological differences mediating coexistence.

Although our experiment focused on the role of resource com-
petition and potential mortality responses through cannibalism and
intraguild predation, it did not capture the effects of other species
interactions, such as predation by consumers in other trophic lev-
els (Chesson, 2018; Chesson & Kuang, 2008; McPeek, 2012, 2014,
2018; Sommers & Chesson, 2019). Indeed, mortality driven by pre-
dation by fish is an important determinant of Enallagma population
regulation (McPeek, 1990, 1998). In a recent experiment, we found
that some Enallagma species experience lower mortality in response
to their shared fish predator when rare in one location but not in
another (Bried & Siepielski, 2019). Thus, these results suggest that
Enallagma can be ecologically differentiated among populations in
ways shaping survivorship in response to a shared predator, which
should promote their coexistence. Clearly, in order to understand
if and how competitors may coexist, the ideal experiment will fully
capture all of the ecological factors that mediate a species long-term
low-density growth rate (Chesson, 2000b). And no species’ demog-
raphy is likely shaped by a single factor, interaction or process in
nature. Extending this framework beyond competition is thus a nec-
essary step (McPeek, 2018).

A benefit of this framework is that the reciprocal rare species
advantage required for coexistence can be viewed both within and
across localities. Although we did not find evidence for a reciprocal
rare species advantage within a lake, some pairs of taxa exhibited
reciprocal growth rate or mortality advantages when rare across
different lakes. The absence of these reciprocal competitive effects
within lakes may mean that each of the species is somewhat locally
maladapted to environmental conditions that vary among these
lakes (e.g. prey resources), which can affect density-dependent
per capita growth rates (Siepielski, Nemirov, et al., 2016). Previous
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experimental work has shown that the strength of density-depen-
dent intraspecific competition in Enallagma weakens as populations
are increasingly maladapted to local conditions (Siepielski, Nemirov,
et al., 2016). Thus, if the strength of interspecific competition was
to increase with maladaptation, the effect could be a reduction in
the strength of intra-relative to interspecific competition, which
could lead to competitive exclusion. Alternatively, it may be that the
species not exhibiting a growth or mortality advantage when rare
was more limited by resources, consumption or stress responses to
conspecifics, or other factors that were not as limiting for the other
species at a given lake. It may also be that the natural densities of
Enallagma varied enough that our standardized relative abundance
manipulations affected them differently. Indeed, as noted earlier
one caveat to the implementation of our framework is that a single
total density treatment was sufficient to detect competitive effects.
Given that our previous studies of several species in geographic lo-
cations ranging from California to New Hampshire have consistently
found negative density dependence occurring it is reasonable to as-
sume competition is occurring here, but further experimental ma-
nipulations of total abundance are warranted (Siepielski et al., 2010).

In addition to the above possibilities, it may simply be that
local coexistence does not occur. Instead, the spatial scale of “co-
existence” may be more regional (Amarasekare, 2003; Hart et al.,
2017) and occur in a metacommunity context (Leibold & Chase,
2017; Leibold et al., 2004; Shoemaker & Melbourne, 2016). Some
sites may serve as source populations, where growth or mortality
advantages for different species buffer them from local extinction
(Pulliam, 1988). However, if this is the case, local factors may not
be promoting local coexistence among species, and in the absence
of any dispersal, the species with the highest per capita population
growth rate would likely eventually come to dominate (McPeek &
Gomulkiewicz, 2005). Similarly, the single species (within a pair) pos-
itive frequency dependence in per capita effects we occasionally
observed indicates locally stronger inter- than intraspecific com-
petitive effects. Theoretical models (M’Gonigle, Mazzucco, Otto,
& Dieckmann, 2012) have suggested that this kind of positive fre-
quency dependence may be an important mechanism maintaining
diversity in ecologically similar species such as Enallagma. However,
positive frequency dependence would lead to the loss of diversity at
the local scale where species interactions are most important, but
promote it at a regional level via priority effects (M'Gonigle et al.,
2012).

Regardless, the mixture of advantages, disadvantages and no
demographic effects when rare that we observed is not uncommon.
For example, at a single location Levine and HilleRisLambers (2009)
grew 10 annual plants in mixed-species assemblages and estimated
per capita population growth rates for each under relative abundance
manipulations. They found that four species showed significant de-
creases in per capita population growth rates with increasing relative
abundance, three had increasing per capita growth rates with in-
creasing relative abundance, and three showed no significant change.
Similarly, Kraft et al. (2015), also at a single location, conducted a field
experiment in which 18 annual plant species were pitted against one

another in pairwise combinations and found that only 12 of 102 pair-
wise species comparisons resulted in potential coexistence. In fact,
in most cases negative frequency dependence was absent or partic-
ularly weak. A recent meta-analysis, however, found that intraspe-
cific effects are frequently much stronger than interspecific effects,
at least among plants where this has been best studied (Adler et al.,
2018). Collectively, such results point to the need for a much more
expansive view of the make-up of species assemblages in local com-
munities (Leibold & McPeek, 2006; McPeek, 2017; Siepielski et al.,
2010; Svensson et al., 2018). There is no a priori reason to suspect
that all species are locally coexisting (McPeek, 2017).

Other recent studies have also sought to develop more mecha-
nistic insight into the ecological factors underlying competitor co-
existence. For example, Letten et al. (2017) showed how Chesson's
coexistence theory (Chesson, 2000b) can be mapped onto classic
niche theory on the basis of mechanistic resource-based models (e.g.
the R* approach). Adler et al. (2013) developed an insightful approach
examining how species functional traits, which affect their interac-
tions with the abiotic and biotic environment, might contribute to
shaping species coexistence (Kraft et al., 2015). A next step would
be to fully integrate studies of species functional traits and the envi-
ronmental conditions that affect the strength of intra- and interspe-
cific competition in order to determine what ecological differences
mediate coexistence. This feedback between the environment and
species traits that promote coexistence is ultimately what shapes the
structure of communities (Kraft et al., 2015; McPeek, 2017).

Our motivation for developing this unifying framework was the
notion that ideas such as “intra-relative to interspecific competitive ef-
fects” are often divorced from the underlying ecological mechanisms
governing these phenomenological responses. When wrapped up in
demographic responses alone, the insights gained from experimental
manipulations provide only a partial answer to the deeper mystery of
not only if, but how species might coexist. The benefit of adopting the
framework we outlined is that it allows for the development of this
mechanistic insight. From this framework, it should also be apparent
that it is impossible to determine whether or not species can coexist
based on results from a single location. Species may or may not coexist
in any one location, but there is simply no reason to suspect that the
abilities for species to coexist are somehow fixed at the species level
(Bried & Siepielski, 2019). Rather, the demographic responses to com-
petition and other interspecific interactions that species exhibit likely
vary in response to their ecological differences and how local adap-
tation or plasticity might affect species performances along environ-
mental gradients (Lankau, 2011; Turcotte & Levine, 2016). A research
programme focused on combining results from phenomenological
studies with mechanistic insight should help develop a much broader
perspective towards understanding what ecological differences
among species shape the rich diversity of life found in communities.
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