Mathematische Annalen (2020) 377:1-18

https://doi.org/10.1007/500208-018-1732-6 Mathematische Annalen
™

Check for
updates

On the postcritical set of a rational map

Laura G. DeMarco'® - Sarah C. Koch? - Curtis T. McMullen3

Received: 20 September 2017 / Revised: 4 July 2018 / Published online: T August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

The postcritical set P(f) of a rational map f : P! — P! is the smallest forward
invariant subset of P! that contains the critical values of f. In this paper we show that
every finite set X C P'(Q) can be realized as the postcritical set of a rational map.
We also show that every map F : X — X defined on a finite set X C P!(C) can be
realized by arational map f : P(f) — P(f), provided we allow small perturbations
of the set X. The proofs involve Belyi’s theorem and iteration on Teichmiiller space.
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1 Introduction

Let f : P! — P! be a rational map on the Riemann sphere P! = P!(C)
of degree d > 2. Let C(f) C P! denote the set of critical points of
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f,and let V(f) denote the set of critical values. The postcritical set of f is defined
by

Py =] v,

n>0

A rational map is postcritically finite if |P(f)| < oco. Most postcritically finite
rational maps are rigid, in the sense defined in Sect. 2; for example, f is rigid if
|[P(f)| > 4. When f is rigid, it is conformally conjugate to a rational map g defined
over the algebraic closure of Q, in which case we have P(g) C P! (Q). In this paper
we prove the converse:

Theorem 1.1. For any finite set X C PY(Q) with | X| > 2, there exists a rigid, post-
critically finite rational map such that P(f) = X.

We can also arrange that P(f) C C(f), which implies that f is hyperbolic. The
proof (Sect. 2) uses Belyi’s theorem; consequently, the degree of the map f we con-
struct may be enormous, even when the set X is rather simple.

In light of Theorem 1.1, we formulate the following more precise question about
dynamics on the postcritical set.

Question 1.2. Let X C P'(Q) be a finite set. Is every map F : X — X realized by a
rigid rational map f : P(f) — P(f) with P(f) = X?

Itis easy to see the answer can be no when | X| = 2, and it is yes when | X| = 3 (for
a proof, see Sect. 7). We do not know of any negative answer when | X | = 4, but most
cases are simply open. For example, we do not know the answer for X = {0, 1, 4, oo}
and F(x) = x.

We can, however, show that Question 1.2 has a positive answer if we allow pertur-
bations of X as a subset of P1(C).

Theorem 1.3. Let F : X — X be an arbitrary map defined on a finite set X C P'(C)

with | X| > 3. Then there exists a sequence of rigid postcritically finite rational maps
fy such that |P(f,)| = |X],

P(f,) = X and f,|P(fy) — F|X

asn — oQ.

The proof (Sect. 4) uses iteration on Teichmiiller space, as in the proof of Thurston’s
topological characterization of postcritically finite rational maps [5].

In Sect. 5, we establish the following new Hurwitz-type result, which may be of
interest in its own right:

Any collection of partitions P with |P| > 3 can be extended to the passport Q
of a rational map, with |Q| = |P].
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On the postcritical set of a rational map 3

See Theorem 5.1. (Here the passport of a rational map f is the collection of par-
titions of deg( f) arising from the fibers over its critical values.) We use this result to
strengthen Theorem 1.3 in Sect. 6 by showing that we can also specify the multiplicity
of F at each point of X.

Other constructions of rational maps with specified postcritical sets are presented
in Sect. 7.

2 Every finite set of algebraic numbers is a postcritical set

In this section we prove that any finite set X C P! (Q) with 2 < |X| < oo arises as
the postcritical set of a rigid rational map (Theorem 1.1). The result for rational maps
follows easily from the following variant for polynomials.

Theorem 2.1. For any finite set of algebraic numbers X C C with |X| > 1, there
exists a polynomial f such that P(f) NC = X.

Polynomials. To begin the proof, we remark that it is easy to construct polynomials
with prescribed critical values. It is convenient, when discussing a polynomial f, to
omit the point and infinity and let Co(f) = C(f) N C, and similarly for Vy(f) and
Po(f).

Lemma 2.2. For any finite set X C C, there exists a polynomial g with Vy(g) = X.

Proof. There are many ways to prove this result; for example, by induction on | X|,
using the fact that Vo(f o g) = Vo(f) U f(Vo(g)) and Vo(z2 4+ a) = {a}. |

(For a more precise result, see Corollary 5.4.)
Let us say B is a Belyi polynomial if Vo(B) C {0, 1}. We will also use following
result from [2]:

Theorem 2.3. For any finite set X C Q, there exists a Belyi polynomial such that
B(X) C {0, 1}.

Proof of Theorem 2.1. Our aim is to construct a polynomial f such that Py(f) = X.

This is easy if | X| < 1, so assume | X| > 2. Using Lemma 2.2, choose a polynomial g

such that Vj(g) = X, and precompose with an affine transformation so that {0, 1} C

Co(g). Let B be a Belyi polynomial such that §(X) C {0, 1}. Finally, let f = g o .
We claim that Vo (f) = X. Indeed, we have

Vo(f) = Vo(g o B) = Vo(g) Ug(Vo(B)) = X Ug(Vo(B)):

but Vo(B) C {0,1} C Co(g), and therefore g(Vp(B)) C X, so Vo(f) = X. In
particular X C Py(f). Butin fact Py(f) = X, since

f(X)=goB(X)Cg(0,1}) C X.

O
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4 L. G. DeMarco et al.

Hyperbolicity. Note that

Po(f) = X C B (Co(g)) C Colg o B) = Co(f)

in the construction above. Thus every periodic point in P(f) is superattracting, and
hence f is hyperbolic.

Rigidity. To deduce Theorem 1.1, we must first briefly discuss rigidity. A postcritically
finite map f : P! — P! is rigid if any postcritically finite rational map g uniformly
close enough to f, and with |P(g)| = |P(f)], is in fact conformally conjugate to
f. For any fixed d and n, the rigid maps with deg(f) = d and |P(f)| = n fall into
finitely many conjugacy classes.

By a theorem of Thurston [5], the only postcritically finite rational maps f that
are not rigid are the flexible Lattes examples, which arise from the addition law on an
elliptic curve [12]. These flexible maps have |P(f)| = 4 and Julia set J(f) = P'.
Consequently, any postcritically finite rational map with a periodic critical point (such
as a polynomial) is rigid.

Proof of Theorem 1.1. Let X C P!(Q) be a finite set with | X| > 2. After a change of
coordinates defined over @, we can assume that co € X. Then by Theorem 2.1, there
exists a polynomial f with P(f) = X;and as we have just observed, any postcritically
finite polynomial is rigid. O

Belyi degree and postcritical degree. Given a finite set X C Q, let B(X) denote the
minimum of deg(B) over all Belyi polynomials with 8(X) C {0, 1}; and let D(X)
denote the minimum of deg( f) over all polynomials with Py(f) = X.

Little is known about the general behavior of these degree functions (in particular,
lower bounds seem hard to come by); however, the proof of Theorem 2.1 in concert
with Corollary 5.4 gives the relation:

D(X) = B(X)+ |X| + 1.

Both degree functions seem to merit further study.

3 Contraction on Teichmiiller space

The rational maps f constructed in the proof of Theorem 1.1 all satisfy | f (P (f))| <
3. We next address the problem of realizing more general dynamics on P(f). Our
construction will use iteration on Teichmiiller space as in [5]. This section gives the
needed background; for more details see [3,7].

Teichmiiller spaces. Given a finite set A C P! with |A| = n, we let T4 = 7y, denote
the Teichmiiller space of genus zero Riemann surfaces marked by (P!, A).

A point in 7y is specified by another pair (P!, A’) together with an orientation—
preserving marking homeomorphism:

é: (P, A) > (P, A).
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On the postcritical set of a rational map 5

Since A’ = ¢(A), the marking ¢ alone determines a point [¢] € T4. Two markings
@1, ¢2 determine the same point iff we can write ¢p = o1 o, where o € Aut(Ph
and ¢ is isotopic to the identity rel A.

The cotangent space to 74 at (P!, A’) is naturally identified with the vector space
Q (P! — A’) consisting of meromorphic differentials ¢ = ¢(z) dz? on P! with at worst
simple poles on A’ and elsewhere holomorphic. The Teichmiiller metric corresponds

to the norm
llgl =/ g
IP’I

Pullback. Now let F : P! — P! be a smooth branched covering map with deg(F) > 2.
The sets C(F), V(F) and P (F) are defined just as for a rational map.
Consider a pair of finite sets A and B in P! such that

on the cotangent space.

F(A)UV(F) C B.
We then have a map of pairs
F: (P A) — (P, B)

that is branched only over B. By pullback of complex structures, we then obtain a
holomorphic map

O’F:TB—>'Z4.

Contraction. Let o : 7p — 74 be a holomorphic map between Teichmiiller spaces.
By the Schwarzlemma, || Do || < 1inthe Teichmiiller metric. We say o is a contraction
if | Do || < 1 at every point of 7. (We also say o is a contraction if |B| = 3, since
then its image is a single point.) If A = B and o is a contraction, then o has at most
one fixed point.

The following result is well known and was a key step in the proof of Thurston’s
rigidity theorem for postcritically finite rational maps; see [5, Prop. 3.3].

Proposition 3.1. The map o is a contraction if and only if there is no 4-tuple By C B
such that
F~'(By) C AUC(F). 3.1)

Proof. We may assume |B| > 4. Suppose ||Dofg| = 1 at some point in 7. The
coderivative of o at this point is given explicitly by a pushforward map of the form

fx: Q@' —A) — QP - B,

where f is a rational map of the same topological type as F. Since the domain of f; is
finite dimensional, there exists anonzero g € Q (P! — A’) such that || f.q|| = |I¢|. The
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6 L. G. DeMarco et al.

fact that there is no cancellation under pushforward implies that ¢ is a locally a positive
real multiple of the pullback of f.q. In fact, since || f* fuqll = deg(f) Il fxqll = llgll,
we must have

f* frq = deg(f)q.

Now recall that any meromorphic quadratic differential on P! has at least 4 poles.
Choose 4 points By C B such that ¢(By) C B’ is contained in the poles of f.q.
Then the equation above implies that the poles of f* f.q lie in A’. Thus any point in
F~Y(By) that does not lie in A must be a critical point of F, giving condition (3.1)
above.

For the converse, suppose we have 4 points By C B satisfying (3.1). Consider, at
any point in 7p, a quadratic differential g with poles only at the 4 points marked by By.
Then f*g has poles only at points marked by A, and hence it represents a cotangent
vector to 74. Since || fx (f*q)|| = deg(f)llg|l = Il f*qll, we have | Do || = 1 atevery
point in 7p. ]

Example: Dynamics. Let f be a rational map with |P(f)| = 3. Note that a rational
map is a special case of a smooth branched covering. Consider a map of pairs

ffo@h ) - @' B),
such that f¥(A) U P(f) C B.
Proposition 3.2. The pullback map
ok T — Ta

is a contraction provided deg(f)* > |A|.

Proof. We may assume |B| > 4. Consider any 4-tuple By C B. Since |P(f)| = 3, we
have a point b € By — V(f¥). Then f~*(b) is disjoint from C(f*), and | f % (b)| =
deg(f)k > |A|, so we cannot have f¥(By) C AU C(f5). |

Factorization. For later use, we record the following fact. Suppose we have a factor-
ization F = F| o F>. The pullback map can then be factored as

T 2% 10 2 7 (3.2)

where C = F,(A) U V(F,) .

Combinatorial equivalence. Finally we formulate the connection between fixed
points on Teichmiiller space and rational maps, following Thurston.

Let F and G be a pair of postcritically finite branched coverings of P!. An
orientation—preserving homeomorphism of pairs

¢ : (P, P(F)) — (P, P(G))
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On the postcritical set of a rational map 7

gives a combinatorial equivalence between F and G if there is a second homeomor-
phism v, isotopic to ¢ rel P(F), making the diagram

®', P(F)) —~ (', P(G))

‘| lo

P!, P(F)) 2~ (', P(G))

commute. Since X = P (F) is forward invariant, F' determines a holomorphic map
OF . TX — Tx.

The following result follows readily from the definitions (cf. [5, Prop. 2.3]):

Proposition 3.3. A point [Y] € Tx is fixed by oF if and only if there exists a rational
map f with P(f) =Y such that the marking homeomorphism

¢: (P, X)—> PY)

gives a combinatorial equivalence between F and f.

4 Prescribed dynamics on P(f)

In this section we prove Theorem 1.3. That is, given a finite set X C P! with |X| > 3,
and amap F : X — X, we will construct a sequence of rigid rational maps f, such
that P(f,;) — X and

JalP(fa) = FIX.

This means that for all » > 0, we can find homeomorphisms ¢, of P! such that
¢n — id, ¢, (X) = P(fy), and ¢, conjugates F|X to f,|P(fy).

The setup. Let / be a quadratic rational map with J (k) = P! and
P(h) = {0, 1, co}.

(Explicitly, we can take h(z) = (2/z — 1)2.) Note that V (k") = P(h) for all n > 2.
The map & is expanding in the associated orbifold metric on P! (see e.g. [11, Thm
19.6], [10, App. A)).

It is convenient to normalize so that X contains P (h). Let g be a polynomial fixing
0 and 1, such that its finite critical values Vj(g) coincide with X — P (h). (Such a
polynomial exists by Lemma 2.2.) Then

V(goh") =V(g)Ug(V(h") = X
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8 L. G. DeMarco et al.

for all n > 2. For later convenience, we also choose g such that
deg(g) =3 if |X| =4. 4.1

(Le.if X = {0, 1, oo, a}, we take g to be a cubic polynomial with Vy(g) = {a}.)

Approximation by branched covers. Since J(h) = P!, the set U, h " (x) is dense

for any x € P'. Using this fact, we can construct a sequence of homeomorphisms
¢n: (B, X) > (P!, X,),

with ¢, — id, such that

FIX =goh"o¢,lX

forall n. To do this we first pick, foreach x € X, anearby pointx’ such that goh” (x") =
F(x) and such that the map x — x’ is injective; set X,, = {x’ : x € X}. Then, we
choose a homeomorphism ¢, close to the identity that moves x to x’ for all x € X.
The larger n is, the closer we can take x’ to x, and hence the closer we can take ¢, to
the identity.

Construction of rational maps. Next we observe that
Fp=goh"o¢,: (P, X) - E'X)

is a smooth branched covering map with P(F;) = X.
Theorem 1.3 follows from:

Theorem 4.1. For all n > 0, F, is combinatorially equivalent to a rational map f,;
and suitably normalized, we have f,|P(f,) — F|X.

Proof. Using the maps ¢,,, we can regard X,, as points in 7x such that X,, — X. By
construction, we have

oF, (X) = X,

and d(X,, X) — 0. We wish to control the contraction of o, , and produce a fixed
point close to X. That is, to complete the proof it suffices to show there are point
configurations P, — X such that o, (P,) = P,. For then, by Proposition 3.3, we
have a corresponding sequence of rational maps satisfying P(f,) = P,, and the
marking homeomorphisms transport F|X to f,| P (fy)-

Choose k such that deg(h)k =2k > | X| 4+ 3. The crux of the matter is the factor-
ization

Fp=(goh*) o (" *ogy,),
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On the postcritical set of a rational map 9

valid for all n > k. From this we obtain a factorization of o, as

Opn—k opn

Og Opk
TX —> TB —> TA Tx;

see Eq. (3.2). In this factorization, we have
A=h" (X)) UVH"H.

Since |V (h"%)| < |P(h)| = 3, we have deg(h)¥ = 2¥ > 3 4 |X| > |A|, and hence
opk is a contraction by Proposition 3.2. Thus 0, = ojk 0 0 is also a contraction.
The amount of contraction at P € 7Ty varies continuously with P. Since the ball of
radius 2 about X in 7y is compact, we can find a constant A, independent of 7, such
that

d(P,X) =2 = | Dop,(P)| = |Dogu (P = 4 < 1.

Let X! = a;n (X), and let €, = d(X, X,,). For all n > 0, we have €, << (1 — A).
Under this assumption, we can prove by induction that:

(i) d(X, X) < 1, and hence
(i) d(X', Xi=1) < el

n’

From this it follows that X ﬁl converges, as I — 00, to a fixed point P, of of, with
d(X, P,) < €,(1 —A)~!. Since €, — 0, this completes the proof. m|

Proof of Theorem 1.3. We just need to verify that f;, isrigid. Butif f;, is a flexible Lattes
example, then |P(f,,)| = |X| = 4 and hence deg(g) = 3 by condition (4.1). Moreover
deg( f,,) is a square, contradicting the fact that deg(F,,) = deg(g) deg(h)" =3-2". O

Algorithmic solution. We have used the construction above as the basis for a practical
computer program that solves the approximation problem addressed by Theorem 1.3.
The iteration does not quite take place on Teichmiiller space; rather, we arrange that
P, is always close enough to X that there is a unique homeomorphism of P! close to
the identity sending P, to X.

5 Solution to a Hurwitz problem

In this section we establish the existence of polynomials and rational maps with con-
strained branch data. This will enable us to strengthen Theorem 1.3 by prescribing
local degrees at points of X as discussed in Sect. 6.

Our main result is:

Theorem 5.1. Let P = (Py, ..., P,) be a finite list of partitions of a positive integer
d. Then P can be extended to the passport of a rational map if n > 3 and to the
passport of a polynomial if n > 2.
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10 L. G. DeMarco et al.

Partitions. A partition P of d > 0 is a list of positive integers (py, ..., ps) such
that ) p; = d. Repetitions are allowed, and the order in which elements appear is
unimportant. The trivial partition has p; = 1 fori =1,...,d.

Extensions. Given a second partition P’ = (p{, ..., p;) ofd' = }_ pi, we let

P+P/=(Pl,u-,Ps,P/p--wP;) G.D

denote the combined partition of d + d’. A partition Q extends P if Q = P + P’ for
some partition P’. (For example, 1 +3 + 5 4 7 = 16 is an extension of 3 + 7 = 10.)

Our main interest is in finite lists of partitions P = (P, ..., P,). In this setting we
say that Q extends P if, when suitably ordered, we have Q@ = (Qy, ..., Q,) and Q;
extends P; fori = 1,..., n. In particular, if Q extends P then |Q| = |P].

Passports. A passport of degree d is a finite list P = (Py, ..., P,) of nontrivial
partitions of d. As with partitions, repetitions are allowed and the order in which
elements appear is unimportant. We set

c(P)y=Y (d—|Pi).

Rational maps. For any y in the target of a rational map f we have a partition P(f, y)
of d = deg(f) given by:

Z mult(f, x).
f)=y

The passport of f is the collection of partitions
P =P v), ..., P(f,v)

arising from the critical values {vy, ..., v,} of f. (The other points in the target of f
yield trivial partitions.) The number of critical points of f mapping to a given point
y, counted with multiplicity, isd — |P(f, y)|. Hence

c(P(f)) =2d —2.

Branched coverings. The passport of a smooth branched covering map F : §% — 52
is defined similarly. As is well known, any passport that can be realized topologically
can be realized geometrically. More precisely, we have:

Proposition 5.2. Let F : S* — S2 be a branched covering with V (F) = {vy, ..., vp},
and let X = {x1,...,x,} C PL. Then there exists a rational map f : P! — P! with
deg(f) = deg(F) and V(f) = X such that

P(f,x;)=P(F,v;) fori=1,...,n.

In particular, P(f) = P(F).
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On the postcritical set of a rational map 1

Proof. Choose an orientation—preserving diffeomorphism ¢ : S> — P! such that
¢ (v;) = xj fori =1, ..., n.Pulling the complex structure on P! back to S? via ¢oF,
and applying the uniformization theorem, we obtain a homeomorphism ¥ : §> — P!
such that f = ¢ o F o ¢! is a holomorphic branched covering, and hence a rational
map (cf. [17]). |

Hurwitz problem. The Hurwitz problem is to characterize the passports that arise
from branched coverings of S2. A complete solution is not known; for background,
see e.g. [9, Ch. 5]. Theorem 5.1 addresses a variant of this problem where we allow
the partitions to be extended.

Polynomials. When g : C — C is a polynomial, its passport P(g) is defined as the
list of partitions P (g, v;) coming from the finite critical values of g.

The passports of polynomials are easily described. In fact, by [6, Prop. 5.2] we
have:

Theorem 5.3. A passport P = (Py, ..., P,) of degree d arises from a polynomial g
if and only if
c(P)=) d—|P)=d—1. (5.2)
i

The equation above is necessary because g has d — 1 critical points. Applying Propo-
sition 5.2, we obtain:

Corollary5.4. Let X C C be a finite set such that 1 < |X| < d. Then there exists a
polynomial g of degree d whose critical values coincide with X.

Corollary 5.5. Let P = (Py, ..., P,) be a collection of partitions with n > 2. Then P
can be extended to the passport of a polynomial of degree d for all d sufficiently large.

Proof. It will be convenient to use exponential notation for repeated integers (so (1¢)
is a partition of d).

First, extend the partitions in P so they are all nontrivial partitions of the same
integer d. Then P is a passport. If we extend P; to P; + (1) for all i, then d increases
by 1 but ¢(P) remains the same. Thus after a further extension of P, we can assume
that d — 1 > ¢(P). If equality holds, we are done.

Otherwise, extend P; to P; + (3) fori = 1,2,and to P; + (1, 1, 1) fori > 3. Then
d increases by 3 while ¢(P) increases by 4. By repeating this type of extension until
equality holds in Eq. (5.2), we obtain an extension of P that arises from a polynomial
of degree d.

Finally, suppose P is the passport of a polynomial of degree d. To complete the
proof, we will show that P can be extended to a polynomial passport of degree d + k
for any k > 2. To see this, just extend P; to P; + (k), Py to P, + (2, 1¥-2), and P; to
P; + (1%) for i > 3. O

Theorem 5.6. Any collection of partitions P = (Py, ..., P,) with n > 3 can be
extended to the passport of a rational map.
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12 L. G. DeMarco et al.
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Fig. 1. Model dessins Dg(m), D1(m), and Doo(m) are drawn in rows for | <m <5.
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Proof. We divide the proof into two cases.

Case I. Assume n > 4. Let Py = (P, P2) and let P, = (P3, ..., P,). By Corollary
5.5, we may assume that P; and P, are passports of polynomials g; and g of the
same degree d.

The complex plane can be naturally completed to a closed disk

D=CuUS!

by adding a circle to represent the rays in TooC. Then each polynomial g; extends
continuously to a proper map D; of degree d on D, satisfying D;(x) = dx for all
x e S =R/Z.

Now construct a branched covering F : S — S by gluing together two copies of
D to obtain a sphere, and then setting F' = D on the first copy and F = D; on the
second. Then P(F) = P by construction, and F can be replaced by a rational map
by Proposition 5.2, and the proof in this case is complete.

Case II. Now assume that n = |P| = 3. We will construct a rational map with
V(f) = {0, 1, oo} such that P(f) extends P.

For convenience, let us index the elements P; of P by i € I = {0, 1, oco}. After
replacing P; by the extension P; + (2), if necessary, we may assume that every partition
in P is nontrivial.

To construct f, it suffices to give the topological data of a dessin d’enfant D C C
[9,14]. A dessin is connected graph with vertices of two colors, embedded in the plane,
arising as the preimage of the interval [0, 1] under a branched covering F : P! — P!
with V(F) C {0, 1, oo}. We adopt the convention that the white vertices of D map to
0 and the black vertices map to 1. The components of P! — D are called the faces of
D, and each face contains a unique point z such that F(z) = oo.

Consider, for each m > 1, the three types of model dessins

Do(m), Di(m), and Dy (m)

shown in Fig. 1. (These graphs correspond to the rational maps fo(z) = z™, f1(2) =
7" 4+ 1 and foo(z) = (2" 4+ z7™ + 2)/4.) The barycenter z of D;(m) is a vertex
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On the postcritical set of a rational map 13

Fig. 2. A dessin d’enfant D
obtained by connecting the
components of G to a single
edge [b, w], which is drawn in
the center. All three components
of G are connected to w; all
three components of G| are
connected to b; and one b
component of G is connected
to w while the other is connected
to b. The corresponding rational
map f has degree 42.

fori = Oori = 1, and it lies in a face if i = oo0. In all three cases, F(z) = i and
mult(F, z) = m.

Let Py = (ay, - .., an), and let Go C C be a planar graph with n components, such
that its jth component is isomorphic to Dg(a;). Such a graph is unique up to planar
isotopy. Construct G; C C and G, C C similarly, using the partitions P, Py, and
the models D1(m), Doo(m). When constructing G, we take care not to nest two
components of type D, (m). It is easy to arrange that the graphs G; are contained in
disjoint disks in the plane. Let G = GoUG1 U G. Then every vertex of G is incident
to the unique unbounded component U of C — G.

To obtain D, we add new edges between vertices of opposite colors to make G
connected. In the process we take care not to alter the valence at the center of each
component of G. This can be done in many ways.

For example, begin by introducing a new edge [b, w] C U, with one white vertex
w and one black vertex b. Then connect each component of G to w, connect each
component of G to b, and connect each component of G, to either w or b as in Fig.
2, making sure that these new edges do not cross.

The resulting connected graph D C C is then a dessin d’enfant for a rational map
f with V(f) = {0, 1, oo}. By the construction of the graph G;, the partition P(f, i)
extends P; for eachi € V(f), and hence P(f) extends P. O

Proof of Theorem 5.1. The statements for polynomials and for rational maps are cov-
ered by Corollary 5.5 and Theorem 5.6 respectively. O

Remarks and references. The proof of Theorem 5.6 for n > 4 is based on the fact
that the passports for a pair of polynomials of degree d can be combined to give the
passport of a rational map. This result also appears in [6, Remark on p. 785] and
[1, Prop. 10]. The branched covering built from a pair of polynomials is called their
formal mating in [16].

6 Prescribed critical points in P(f)
In this section we strengthen Theorem 1.3 by showing that we can construct a rational

map with prescribed critical points in its postcritical set P(f) ~ X. We will also give
a similar result for polynomials.

@ Springer



14 L. G. DeMarco et al.

Multiplicities. To make the first statement precise, recall that f has a critical point of
order mult(f, x) — 1 at each point x € P'. We can regard the multiplicity as a map
mult(f) : P! - Z, ={1,2,3,...}.

Our aim is to show:

Theorem6.1. Let F : X — X and M : X — Z be arbitrary maps defined on a
finite set X C P! with |X| > 3. Then there exists a sequence of rigid, postcritically
finite rational maps f, such that |P(f,)| = |X|,

P(fu) = X, fulP(fa) = FIX, and mult(f,)[P(fn) - M|X

asn — oQ.

Proof. The argument is a modification of the proof of Theorem 1.3 given in Sect. 4.
As in that section, the construction is based on a pair of rational maps g and 4. Let
h be a quadratic rational map with J(h) = P! and |P(h)| = 3.
To construct g, we first associate to each x € X the partition

Py =M(y1), ..., M(y,))

where F~1(x) = {¥,...,yn} C X.Then ) 5 |P¢| = |X|. (Note that if x ¢ F(X),
then P, is the empty partition and | P, | = 0.)

Let P, = P+ (1) be the partition obtained by padding P, with an extra 1 at the end
(notation as in equation (5.1)), so | P}| = | Px| + 1. By Proposition 5.2 and Theorem
5.6, there is a rational map g with critical values V(g) = X such that P(g, x) extends
P; for all x € X. Since |X| > 3, we then have

187 X1 =)_IP(g.x)[ = ) P/l =2|X| > |X|+3. (6.1)
X X

Next, we construct an injective map
X > g ') cP!

such that
F(y) =g(y)) and M(y) = mult(g, t(y)) (6.2)

for all y € X. To define ((y), let x = F(y) and recall that: y determines a point
M(y) € Py, we have an inclusion P, C P(g, x), and there is a bijection P(g, x) =
g~ '(x) which labels points by their multiplicities. We define ¢(y) to be the image of
M (y) under the composition Py C P(g, x) = g~ (x).

Since |P(h)| = 3 and Eq. (6.1) holds, we can choose & € Aut(P') such that
a(P(h)) C g‘l(X) — 1(X). Upon replacing g and ¢ with g o @ and aloy, equation
(6.2) continues to hold, and we then have

P(h) C g~ '(X) — uX).
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Now recall that J (k) = P! and hence
X C J(h). (6.3)

Consequently, for any x € X, the inverse orbit of ¢(x) under 4 accumulates on every
point of X. Moreover, if " (z) = t(x), then mult(h", z) = 1, since t(x) ¢ P (h). Thus
we can find a sequence of injective maps ¢, : X — X, converging to the identity,
such that

mult(h")|X, =1 and A" (¢,(x)) = t(x). 6.4)

Extend (¢,) to a sequence of homeomorphisms of P! converging to the identity as
n — oo, and let

Fy,=goh"o¢,: (P, X) — (P, X). (6.5)
Then by Eq. (6.2), we have
Fy|X =F and mult(F,)|X = M|X. (6.6)

Finally, we reiterate the proof of Theorem 4.1 to convert the postcritically finite
branched covers F, into rational maps f, with P(f,) — X. Since f, and F; are
conjugate on their postcritical sets, we then have

JalP(fa) > FIX and  mult(f,)|P(fn) = M|X

by Eq. (6.6). We can also ensure, by our choice of g, that deg( f;,) is not a square, and
hence the postcritically finite maps f, are rigid for all n > 0. O

The polynomial case. We conclude by presenting a variation of Theorem 6.1 for
polynomials.

Theorem 6.2. Let F : X — X and M : X — Z.4 be arbitrary maps defined on a
finite set X C C with |X| > 2. Then there exists a sequence of postcritically finite
polynomials f,, such that |Po(fn)| = | X|,

Po(fu) = X, fulPo(fu) = FIX, and mult(f,)[Po(fn) — M|X

asn — oQ.

Prescribed Julia sets. For the proof, we will need a polynomial # whose Julia set
contains X (to play the role of the rational map h with J(h) = P! in the proof of
Theorem 6.1). It suffices to treat the case where X C Q, since Q is dense in C.

Lemma 6.3. Given any finite set X C Q, there is a polynomial h so that

|Po()| =2 and X C J(h).
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Fig. 3. This table contains all seven possible graphs representing maps X — X when | X| = 3. Each graph
can be realized by a rational map f : P(f) — P(f). Explicit examples are given by A(z) = 1 — 1/z2;
B(z) = (z—a)3/(z—1+a)? wherea? —a+1 = 0; C(z) = z2(3—22); D(z) = (1-2/2)%; E(z) = 22 —1;
F(z) =2z — 1)2/(4z(z —1));and G(z2) = 22 — 2. In each case, the degree is minimal among all rational
maps realizing the given dynamics on X.

Proof. By Theorem 2.3, there is a polynomial 8 with 8(X) U Vp(B) C {0, 1}. We
can assume that deg(8) > 1 and Vp(B) = {0, 1} (for example, by taking a Belyi
polynomial for a larger set that contains X).

There are two distinct points a, b € f~1({0, 1}) that are not critical points of 5.
Indeed, the set B~ ({0, 1}) consists of 2d points, counted with multiplicity, and at
most 2|Co(f)| = 2d — 2 of these are accounted for by critical points.

Leta € Aut(C) be an affine transformation sending the ordered pair (a, b) to (0, 1),
and set 1 = o o . We then have:

Vo(h) ={a, b}, h({a,b}) C{a,b}, and h(X) C {a,b}.

The first two properties imply that Py(h) = {a, b}, and in particular Py(h) is disjoint
from Cq(h). It follows that Py(h) is contained in the Julia set of /. Since the Julia set
is totally invariant and 4 (X) C {a, b}, we have X C J(h) as well. |

Proof of Theorem 6.2. We may assume X C Q. Let & be a polynomial associated to X
asin Lemma 6.3. Let (P] : x € X) be the family of partitions constructed in the proof
of Theorem 6.1, and let g be a polynomial with Vy(g) = X, provided by Proposition
5.2 and Corollary 5.5, such that P (g, x) extends P, for all x € X. We can now simply
repeat the proof of Theorem 6.1, using the mappings g and % to obtain the desired
polynomials f;,. O

7 Alternative constructions

In this section we discuss alternative constructions of rational maps with postcritical
sets satisfying |P(f)| < 4.

The case |P(f)|] < 3. The only rational maps with |P(f)| = 2 are those that are
conformally conjugate to z — z+“. Question 1.2 then has a negative answer if X C P!
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has cardinality 2; thatis, F : X — X isrealized by f : P(f) — P(f) if and only if
F is bijective.

It is easy to see that Question 1.2 has a positive answer whenever | X| = 3. Indeed,
we can first normalize so that X = {0, 1, co}. Then, up to reordering the points of X,
there are only seven possibilities for F. A concrete rational map realizing each one is
given in Fig. 3.

The case |P(f)| = 4: rigid Lattes maps. Let O C H denote the set of 7 in the upper
halfplane that are quadratic over Q, and let

A:H— H/T(Q2) ZP'—{0, 1, o0}

be the universal covering map. Rigid Lattes maps are precisely those which are covered
by the action of complex multiplication on an elliptic curve E (up to translation by a
point of order in E[2]); see [12, Lemmas 4.3 and 4.4]. Every such elliptic curve has
the form £ = C/(Z & Zt) with T € Q. Using these rigid maps, one can explicitly
construct f with P(f) = {0, 1, 0o, z} for all z in the dense set 1(Q) C P!. On the
other hand,

L=Xx(0) (7.1)
is very small subset of @ For example, L N Z = {—1, 2}, since the j—invariant

o 256(1 — A+ 233
R VIT L)

is an algebraic integer for all A € L (see e.g. [15, §11.6] for details). So the postcrit-
ical sets arising from rigid Lattes examples are insufficient to complete the proof of
Theorem 1.1 in the case |P(f)| = 4.

The case |P(f)| = 4: dynamics on moduli space. Our second construction of rational
maps with given postcritical sets is based on [8]. There, the author builds maps on
moduli space g : My, --+ Mo, ,, whose periodic points correspond to postcritically
finite rational maps on the Riemann sphere.

Forn = 4, the moduli space Mg 4 can be identified with Pl — {0, 1, 00},and g(2) =
(1 —2/2)? is an example of one such map on moduli space. Each periodic point x of
period m gives rise to a postcritically finite polynomial of degree 2" with postcritical
set {0, 1, 0o, x}. Let K denote the set of all periodic points of g in Pl — {0, 1, oo}. The
set K lies in @, and it is dense in the Julia set J(g). Moreover, we have J(g) = P!
since g is a Lattes map, so K C P! provides a dense set of postcritical sets arising
from polynomials.

Interestingly, the intersection L N K is finite (where L is defined by equation
(7.1)). Indeed, K is a set of bounded Weil height, as a consequence of the existence
of a canonical height for g [4]. But the j-invariants of elliptic curves with complex
multiplication have no infinite subsets of bounded height [13, Lemma 3], so neither
does L.

@ Springer



18

L. G. DeMarco et al.

References

Baranski, K.: On realizability of branched coverings of the sphere. Topol. Appl. 116, 279-291 (2001)

2. Belyi, G.V.: On Galois extensions of a maximal cyclotomic field. Math. USSR Izv. 14, 247-256 (1980)

13.
14.

15.
16.
. Thom, R.: L’equivalence d’une fonction différentiable et d’un polynéme. Topology 3, 297-307 (1965)

Buff, X., Cui, G., Tan, L.: Teichmiiller spaces and holomorphic dynamics. In: Handbook of Teichmiiller
theory, vol. IV, pp. 717-756. Eur. Math. Soc. (2014)

Call, G.S., Silverman, J.H.: Canonical heights on varieties with morphisms. Compos. Math. 89, 163—
205 (1993)

Douady, A., Hubbard, J.: A proof of Thurston’s topological characterization of rational maps. Acta
Math. 171, 263-297 (1993)

Edmonds, A., Kulkarni, R., Stong, R.E.: Realizability of branched coverings of surfaces. Trans. Am.
Math. Soc. 282, 773-790 (1984)

Hubbard, J.H.: Teichmiiller Theory, volume II. Matrix Editions (2016)

Koch, S.: Teichmiiller theory and critically finite endomorphisms. Adv. Math. 248, 573-617 (2013)
Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer, New York (2004)

. McMullen, C.: Complex Dynamics and Renormalization, volume 135 of Annals of Math. Studies.

Princeton University Press, Princeton (1994)

. Milnor, J.: Dynamics in One Complex Variable, volume 160 of Annals of Math. Studies. Princeton

University Press, Princeton (2006)

. Milnor, J.: On Lattes maps. In: Hjorth, P.G., Petersen, C.L. (eds.), Dynamics on the Riemann Sphere,

pp. 9-44. European Math. Soc. (2006)

Poonen, B.: Spans of Hecke points on modular curves. Math. Res. Lett. 8, 767-770 (2001)

Schneps, L. (ed.): The Grothendieck theory of dessins d’enfants (Luminy, 1993), volume 200 of London
Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (1994)

Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves. Springer, Verlag (1994)

Tan, L.: Matings of quadratic polynomials. Ergod. Theory Dyn. Syst. 12, 589-620 (1992)

@ Springer



