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Abstract
The postcritical set P( f ) of a rational map f : P1 → P1 is the smallest forward
invariant subset of P1 that contains the critical values of f . In this paper we show that
every finite set X ⊂ P1(Q ) can be realized as the postcritical set of a rational map.
We also show that every map F : X → X defined on a finite set X ⊂ P1(C) can be
realized by a rational map f : P( f )→ P( f ), provided we allow small perturbations
of the set X . The proofs involve Belyi’s theorem and iteration on Teichmüller space.
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1 Introduction

Let f : P1 → P1 be a rational map on the Riemann sphere P1 = P1(C)
of degree d ≥ 2. Let C( f ) ⊂ P1 denote the set of critical points of
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2 L. G. DeMarco et al.

f , and let V ( f ) denote the set of critical values. The postcritical set of f is defined
by

P( f ) =
⋃

n≥0
f n(V ( f )).

A rational map is postcritically finite if |P( f )| < ∞. Most postcritically finite
rational maps are rigid, in the sense defined in Sect. 2; for example, f is rigid if
|P( f )| > 4. When f is rigid, it is conformally conjugate to a rational map g defined
over the algebraic closure of Q , in which case we have P(g) ⊂ P1(Q ). In this paper
we prove the converse:

Theorem 1.1. For any finite set X ⊂ P1(Q ) with |X | ≥ 2, there exists a rigid, post-
critically finite rational map such that P( f ) = X.

We can also arrange that P( f ) ⊂ C( f ), which implies that f is hyperbolic. The
proof (Sect. 2) uses Belyi’s theorem; consequently, the degree of the map f we con-
struct may be enormous, even when the set X is rather simple.

In light of Theorem 1.1, we formulate the following more precise question about
dynamics on the postcritical set.

Question 1.2. Let X ⊂ P1(Q ) be a finite set. Is every map F : X → X realized by a
rigid rational map f : P( f )→ P( f ) with P( f ) = X?

It is easy to see the answer can be nowhen |X | = 2, and it is yeswhen |X | = 3 (for
a proof, see Sect. 7). We do not know of any negative answer when |X | = 4, but most
cases are simply open. For example, we do not know the answer for X = {0, 1, 4,∞}
and F(x) = x .

We can, however, show that Question 1.2 has a positive answer if we allow pertur-
bations of X as a subset of P1(C).

Theorem 1.3. Let F : X → X be an arbitrary map defined on a finite set X ⊂ P1(C)
with |X | ≥ 3. Then there exists a sequence of rigid postcritically finite rational maps
fn such that |P( fn)| = |X |,

P( fn)→ X and fn|P( fn)→ F |X

as n→∞.

The proof (Sect. 4) uses iteration on Teichmüller space, as in the proof of Thurston’s
topological characterization of postcritically finite rational maps [5].

In Sect. 5, we establish the following new Hurwitz-type result, which may be of
interest in its own right:

Any collection of partitions P with |P| ≥ 3 can be extended to the passport Q
of a rational map, with |Q| = |P|.
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On the postcritical set of a rational map 3

See Theorem 5.1. (Here the passport of a rational map f is the collection of par-
titions of deg( f ) arising from the fibers over its critical values.) We use this result to
strengthen Theorem 1.3 in Sect. 6 by showing that we can also specify the multiplicity
of F at each point of X .

Other constructions of rational maps with specified postcritical sets are presented
in Sect. 7.

2 Every finite set of algebraic numbers is a postcritical set

In this section we prove that any finite set X ⊂ P1(Q ) with 2 ≤ |X | < ∞ arises as
the postcritical set of a rigid rational map (Theorem 1.1). The result for rational maps
follows easily from the following variant for polynomials.

Theorem 2.1. For any finite set of algebraic numbers X ⊂ C with |X | ≥ 1, there
exists a polynomial f such that P( f ) ∩ C = X.

Polynomials. To begin the proof, we remark that it is easy to construct polynomials
with prescribed critical values. It is convenient, when discussing a polynomial f , to
omit the point and infinity and let C0( f ) = C( f ) ∩ C, and similarly for V0( f ) and
P0( f ).

Lemma 2.2. For any finite set X ⊂ C, there exists a polynomial g with V0(g) = X.
Proof. There are many ways to prove this result; for example, by induction on |X |,
using the fact that V0( f ◦ g) = V0( f ) ∪ f (V0(g)) and V0(z2 + a) = {a}. ⊓*
(For a more precise result, see Corollary 5.4.)

Let us say β is a Belyi polynomial if V0(β) ⊂ {0, 1}. We will also use following
result from [2]:

Theorem 2.3. For any finite set X ⊂ Q , there exists a Belyi polynomial such that
β(X) ⊂ {0, 1}.
Proof of Theorem 2.1. Our aim is to construct a polynomial f such that P0( f ) = X .
This is easy if |X | ≤ 1, so assume |X | ≥ 2. Using Lemma 2.2, choose a polynomial g
such that V0(g) = X , and precompose with an affine transformation so that {0, 1} ⊂
C0(g). Let β be a Belyi polynomial such that β(X) ⊂ {0, 1}. Finally, let f = g ◦ β.

We claim that V0( f ) = X . Indeed, we have

V0( f ) = V0(g ◦ β) = V0(g) ∪ g(V0(β)) = X ∪ g(V0(β));

but V0(β) ⊂ {0, 1} ⊂ C0(g), and therefore g(V0(β)) ⊂ X , so V0( f ) = X . In
particular X ⊂ P0( f ). But in fact P0( f ) = X , since

f (X) = g ◦ β(X) ⊂ g({0, 1}) ⊂ X .

⊓*
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4 L. G. DeMarco et al.

Hyperbolicity. Note that

P0( f ) = X ⊂ β−1(C0(g)) ⊂ C0(g ◦ β) = C0( f )

in the construction above. Thus every periodic point in P( f ) is superattracting, and
hence f is hyperbolic.

Rigidity.To deduce Theorem 1.1, wemust first briefly discuss rigidity. A postcritically
finite map f : P1 → P1 is rigid if any postcritically finite rational map g uniformly
close enough to f , and with |P(g)| = |P( f )|, is in fact conformally conjugate to
f . For any fixed d and n, the rigid maps with deg( f ) = d and |P( f )| = n fall into
finitely many conjugacy classes.

By a theorem of Thurston [5], the only postcritically finite rational maps f that
are not rigid are the flexible Lattès examples, which arise from the addition law on an
elliptic curve [12]. These flexible maps have |P( f )| = 4 and Julia set J ( f ) = P1.
Consequently, any postcritically finite rational map with a periodic critical point (such
as a polynomial) is rigid.

Proof of Theorem 1.1. Let X ⊂ P1(Q ) be a finite set with |X | ≥ 2. After a change of
coordinates defined over Q , we can assume that∞ ∈ X . Then by Theorem 2.1, there
exists a polynomial f with P( f ) = X ; and as we have just observed, any postcritically
finite polynomial is rigid. ⊓*
Belyi degree and postcritical degree. Given a finite set X ⊂ Q , let B(X) denote the
minimum of deg(β) over all Belyi polynomials with β(X) ⊂ {0, 1}; and let D(X)
denote the minimum of deg( f ) over all polynomials with P0( f ) = X .

Little is known about the general behavior of these degree functions (in particular,
lower bounds seem hard to come by); however, the proof of Theorem 2.1 in concert
with Corollary 5.4 gives the relation:

D(X) ≤ B(X)+ |X | + 1.

Both degree functions seem to merit further study.

3 Contraction on Teichmüller space

The rational maps f constructed in the proof of Theorem 1.1 all satisfy | f (P( f ))| ≤
3. We next address the problem of realizing more general dynamics on P( f ). Our
construction will use iteration on Teichmüller space as in [5]. This section gives the
needed background; for more details see [3,7].

Teichmüller spaces.Given a finite set A ⊂ P1 with |A| = n, we let TA ∼= T0,n denote
the Teichmüller space of genus zero Riemann surfaces marked by (P1, A).

A point in TA is specified by another pair (P1, A′) together with an orientation–
preserving marking homeomorphism:

φ : (P1, A)→ (P1, A′).
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On the postcritical set of a rational map 5

Since A′ = φ(A), the marking φ alone determines a point [φ] ∈ TA. Two markings
φ1,φ2 determine the same point iff we can write φ2 = α ◦φ1 ◦ψ , where α ∈ Aut(P1)
and ψ is isotopic to the identity rel A.

The cotangent space to TA at (P1, A′) is naturally identified with the vector space
Q(P1− A′) consisting of meromorphic differentials q = q(z) dz2 on P1 with at worst
simple poles on A′ and elsewhere holomorphic. The Teichmüller metric corresponds
to the norm

∥q∥ =
∫

P1
|q|

on the cotangent space.

Pullback.Now let F : P1 → P1 be a smoothbranched coveringmapwith deg(F) ≥ 2.
The sets C(F), V (F) and P(F) are defined just as for a rational map.

Consider a pair of finite sets A and B in P1 such that

F(A) ∪ V (F) ⊂ B.

We then have a map of pairs

F : (P1, A)→ (P1, B)

that is branched only over B. By pullback of complex structures, we then obtain a
holomorphic map

σF : TB → TA.

Contraction. Let σ : TB → TA be a holomorphic map between Teichmüller spaces.
By the Schwarz lemma, ∥Dσ∥ ≤ 1 in theTeichmüllermetric.We sayσ is a contraction
if ∥Dσ∥ < 1 at every point of TB . (We also say σ is a contraction if |B| = 3, since
then its image is a single point.) If A = B and σ is a contraction, then σ has at most
one fixed point.

The following result is well known and was a key step in the proof of Thurston’s
rigidity theorem for postcritically finite rational maps; see [5, Prop. 3.3].

Proposition 3.1. The map σF is a contraction if and only if there is no 4-tuple B0 ⊂ B
such that

F−1(B0) ⊂ A ∪ C(F). (3.1)

Proof. We may assume |B| ≥ 4. Suppose ∥DσF∥ = 1 at some point in TB . The
coderivative of σF at this point is given explicitly by a pushforward map of the form

f∗ : Q(P1 − A′)→ Q(P1 − B ′),

where f is a rational map of the same topological type as F . Since the domain of f∗ is
finite dimensional, there exists a nonzero q ∈ Q(P1− A′) such that ∥ f∗q∥ = ∥q∥. The
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6 L. G. DeMarco et al.

fact that there is no cancellation under pushforward implies that q is a locally a positive
real multiple of the pullback of f∗q. In fact, since ∥ f ∗ f∗q∥ = deg( f ) ∥ f∗q∥ = ∥q∥,
we must have

f ∗ f∗q = deg( f ) q.

Now recall that any meromorphic quadratic differential on P1 has at least 4 poles.
Choose 4 points B0 ⊂ B such that φ(B0) ⊂ B ′ is contained in the poles of f∗q.
Then the equation above implies that the poles of f ∗ f∗q lie in A′. Thus any point in
F−1(B0) that does not lie in A must be a critical point of F , giving condition (3.1)
above.

For the converse, suppose we have 4 points B0 ⊂ B satisfying (3.1). Consider, at
any point in TB , a quadratic differential q with poles only at the 4 points marked by B0.
Then f ∗q has poles only at points marked by A, and hence it represents a cotangent
vector to TA. Since ∥ f∗( f ∗q)∥ = deg( f )∥q∥ = ∥ f ∗q∥, we have ∥DσF∥ = 1 at every
point in TB . ⊓*

Example: Dynamics. Let f be a rational map with |P( f )| = 3. Note that a rational
map is a special case of a smooth branched covering. Consider a map of pairs

f k : (P1, A)→ (P1, B),

such that f k(A) ∪ P( f ) ⊂ B.

Proposition 3.2. The pullback map

σ f k : TB → TA

is a contraction provided deg( f )k > |A|.

Proof. Wemay assume |B| ≥ 4. Consider any 4-tuple B0 ⊂ B. Since |P( f )| = 3, we
have a point b ∈ B0 − V ( f k). Then f −k(b) is disjoint from C( f k), and | f −k(b)| =
deg( f )k > |A|, so we cannot have f −k(B0) ⊂ A ∪ C( f k). ⊓*

Factorization. For later use, we record the following fact. Suppose we have a factor-
ization F = F1 ◦ F2. The pullback map can then be factored as

TB
σF1−→ TC

σF2−→ TA, (3.2)

where C = F2(A) ∪ V (F2) .
Combinatorial equivalence. Finally we formulate the connection between fixed
points on Teichmüller space and rational maps, following Thurston.

Let F and G be a pair of postcritically finite branched coverings of P1. An
orientation–preserving homeomorphism of pairs

φ : (P1, P(F))→ (P1, P(G))
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On the postcritical set of a rational map 7

gives a combinatorial equivalence between F and G if there is a second homeomor-
phism ψ , isotopic to φ rel P(F), making the diagram

(P1, P(F))

F

ψ
(P1, P(G))

G

(P1, P(F)) φ
(P1, P(G))

commute. Since X = P(F) is forward invariant, F determines a holomorphic map

σF : TX → TX .

The following result follows readily from the definitions (cf. [5, Prop. 2.3]):

Proposition 3.3. A point [Y ] ∈ TX is fixed by σF if and only if there exists a rational
map f with P( f ) = Y such that the marking homeomorphism

φ : (P1, X)→ (P1,Y )

gives a combinatorial equivalence between F and f .

4 Prescribed dynamics on P(f )

In this section we prove Theorem 1.3. That is, given a finite set X ⊂ P1 with |X | ≥ 3,
and a map F : X → X , we will construct a sequence of rigid rational maps fn such
that P( fn)→ X and

fn|P( fn)→ F |X .

This means that for all n ≫ 0, we can find homeomorphisms φn of P1 such that
φn → id, φn(X) = P( fn), and φn conjugates F |X to fn|P( fn).
The setup. Let h be a quadratic rational map with J (h) = P1 and

P(h) = {0, 1,∞}.

(Explicitly, we can take h(z) = (2/z − 1)2.) Note that V (hn) = P(h) for all n ≥ 2.
The map h is expanding in the associated orbifold metric on P1 (see e.g. [11, Thm
19.6], [10, App. A]).

It is convenient to normalize so that X contains P(h). Let g be a polynomial fixing
0 and 1, such that its finite critical values V0(g) coincide with X − P(h). (Such a
polynomial exists by Lemma 2.2.) Then

V (g ◦ hn) = V (g) ∪ g(V (hn)) = X
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8 L. G. DeMarco et al.

for all n ≥ 2. For later convenience, we also choose g such that

deg(g) = 3 if |X | = 4. (4.1)

(I.e. if X = {0, 1,∞, a}, we take g to be a cubic polynomial with V0(g) = {a}.)
Approximation by branched covers. Since J (h) = P1, the set ⋃

n h
−n(x) is dense

for any x ∈ P1. Using this fact, we can construct a sequence of homeomorphisms

φn : (P1, X)→ (P1, Xn),

with φn → id, such that

F |X = g ◦ hn ◦ φn|X

for all n. To do thiswefirst pick, for each x ∈ X , a nearby point x ′ such that g◦hn(x ′) =
F(x) and such that the map x 2→ x ′ is injective; set Xn = {x ′ : x ∈ X}. Then, we
choose a homeomorphism φn close to the identity that moves x to x ′ for all x ∈ X .
The larger n is, the closer we can take x ′ to x , and hence the closer we can take φn to
the identity.

Construction of rational maps. Next we observe that

Fn = g ◦ hn ◦ φn : (P1, X)→ (P1, X)

is a smooth branched covering map with P(Fn) = X .
Theorem 1.3 follows from:

Theorem 4.1. For all n ≫ 0, Fn is combinatorially equivalent to a rational map fn;
and suitably normalized, we have fn|P( fn)→ F |X.

Proof. Using the maps φn , we can regard Xn as points in TX such that Xn → X . By
construction, we have

σFn (X) = Xn,

and d(Xn, X) → 0. We wish to control the contraction of σFn , and produce a fixed
point close to X . That is, to complete the proof it suffices to show there are point
configurations Pn → X such that σFn (Pn) = Pn . For then, by Proposition 3.3, we
have a corresponding sequence of rational maps satisfying P( fn) = Pn , and the
marking homeomorphisms transport F |X to fn|P( fn).

Choose k such that deg(h)k = 2k > |X | + 3. The crux of the matter is the factor-
ization

Fn = (g ◦ hk) ◦ (hn−k ◦ φn),
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On the postcritical set of a rational map 9

valid for all n ≥ k. From this we obtain a factorization of σFn as

TX
σg−→ TB

σhk−→ TA
σhn−k◦φn−→ TX ;

see Eq. (3.2). In this factorization, we have

A = hn−k(φn(X)) ∪ V (hn−k).

Since |V (hn−k)| ≤ |P(h)| = 3, we have deg(h)k = 2k > 3 + |X | ≥ |A|, and hence
σhk is a contraction by Proposition 3.2. Thus σg◦hk = σhk ◦ σg is also a contraction.
The amount of contraction at P ∈ TX varies continuously with P . Since the ball of
radius 2 about X in TX is compact, we can find a constant λ, independent of n, such
that

d(P, X) ≤ 2 3⇒ ∥DσFn (P)∥ ≤ ∥Dσg◦hk (P)∥ ≤ λ < 1.

Let Xin = σ iFn (X), and let ϵn = d(X , Xn). For all n ≫ 0, we have ϵn ≪ (1− λ).
Under this assumption, we can prove by induction that:

(i) d(Xin, X) ≤ 1, and hence
(ii) d(Xin, X

i−1
n ) ≤ ϵnλ

i .

From this it follows that Xin converges, as i → ∞, to a fixed point Pn of σFn with
d(X , Pn) ≤ ϵn(1− λ)−1. Since ϵn → 0, this completes the proof. ⊓*

Proof of Theorem 1.3. We just need to verify that fn is rigid. But if fn is a flexible Lattès
example, then |P( fn)| = |X | = 4 and hence deg(g) = 3 by condition (4.1). Moreover
deg( fn) is a square, contradicting the fact that deg(Fn) = deg(g) deg(h)n = 3 · 2n . ⊓*

Algorithmic solution.We have used the construction above as the basis for a practical
computer program that solves the approximation problem addressed by Theorem 1.3.
The iteration does not quite take place on Teichmüller space; rather, we arrange that
Pn is always close enough to X that there is a unique homeomorphism of P1 close to
the identity sending Pn to X .

5 Solution to a Hurwitz problem

In this section we establish the existence of polynomials and rational maps with con-
strained branch data. This will enable us to strengthen Theorem 1.3 by prescribing
local degrees at points of X as discussed in Sect. 6.

Our main result is:

Theorem 5.1. Let P = (P1, . . . , Pn) be a finite list of partitions of a positive integer
d. Then P can be extended to the passport of a rational map if n ≥ 3 and to the
passport of a polynomial if n ≥ 2.
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10 L. G. DeMarco et al.

Partitions. A partition P of d ≥ 0 is a list of positive integers (p1, . . . , ps) such
that

∑
pi = d. Repetitions are allowed, and the order in which elements appear is

unimportant. The trivial partition has pi = 1 for i = 1, . . . , d.

Extensions. Given a second partition P ′ = (p′1, . . . , p
′
t ) of d

′ =∑
p′i , we let

P + P ′ = (p1, . . . , ps, p′1, . . . , p
′
t ) (5.1)

denote the combined partition of d + d ′. A partition Q extends P if Q = P + P ′ for
some partition P ′. (For example, 1+ 3+ 5+ 7 = 16 is an extension of 3+ 7 = 10.)

Our main interest is in finite lists of partitions P = (P1, . . . , Pn). In this setting we
say that Q extends P if, when suitably ordered, we have Q = (Q1, . . . , Qn) and Qi
extends Pi for i = 1, . . . , n. In particular, if Q extends P then |Q| = |P|.
Passports. A passport of degree d is a finite list P = (P1, . . . , Pn) of nontrivial
partitions of d. As with partitions, repetitions are allowed and the order in which
elements appear is unimportant. We set

c(P) =
∑

i

(d − |Pi |).

Rational maps. For any y in the target of a rational map f we have a partition P( f , y)
of d = deg( f ) given by:

∑

f (x)=y
mult( f , x).

The passport of f is the collection of partitions

P( f ) = (P( f , v1), . . . , P( f , vn))

arising from the critical values {v1, . . . , vn} of f . (The other points in the target of f
yield trivial partitions.) The number of critical points of f mapping to a given point
y, counted with multiplicity, is d − |P( f , y)|. Hence

c(P( f )) = 2d − 2.

Branched coverings. The passport of a smooth branched covering map F : S2 → S2

is defined similarly. As is well known, any passport that can be realized topologically
can be realized geometrically. More precisely, we have:

Proposition 5.2. Let F : S2 → S2 be a branched covering with V (F) = {v1, . . . , vn},
and let X = {x1, . . . , xn} ⊂ P1. Then there exists a rational map f : P1 → P1 with
deg( f ) = deg(F) and V ( f ) = X such that

P( f , xi ) = P(F, vi ) for i = 1, . . . , n.

In particular, P( f ) = P(F).

123



On the postcritical set of a rational map 11

Proof. Choose an orientation–preserving diffeomorphism φ : S2 → P1 such that
φ(vi ) = xi for i = 1, . . . , n. Pulling the complex structure on P1 back to S2 via φ ◦ F ,
and applying the uniformization theorem, we obtain a homeomorphism ψ : S2 → P1
such that f = φ ◦ F ◦ψ−1 is a holomorphic branched covering, and hence a rational
map (cf. [17]). ⊓*

Hurwitz problem. The Hurwitz problem is to characterize the passports that arise
from branched coverings of S2. A complete solution is not known; for background,
see e.g. [9, Ch. 5]. Theorem 5.1 addresses a variant of this problem where we allow
the partitions to be extended.

Polynomials. When g : C → C is a polynomial, its passport P(g) is defined as the
list of partitions P(g, vi ) coming from the finite critical values of g.

The passports of polynomials are easily described. In fact, by [6, Prop. 5.2] we
have:

Theorem 5.3. A passport P = (P1, . . . , Pn) of degree d arises from a polynomial g
if and only if

c(P) =
∑

i

(d − |Pi |) = d − 1. (5.2)

The equation above is necessary because g has d − 1 critical points. Applying Propo-
sition 5.2, we obtain:

Corollary 5.4. Let X ⊂ C be a finite set such that 1 ≤ |X | < d. Then there exists a
polynomial g of degree d whose critical values coincide with X.

Corollary 5.5. Let P = (P1, . . . , Pn) be a collection of partitions with n ≥ 2. Then P
can be extended to the passport of a polynomial of degree d for all d sufficiently large.

Proof. It will be convenient to use exponential notation for repeated integers (so (1d)
is a partition of d).

First, extend the partitions in P so they are all nontrivial partitions of the same
integer d. Then P is a passport. If we extend Pi to Pi + (1) for all i , then d increases
by 1 but c(P) remains the same. Thus after a further extension of P , we can assume
that d − 1 ≥ c(P). If equality holds, we are done.

Otherwise, extend Pi to Pi + (3) for i = 1, 2, and to Pi + (1, 1, 1) for i ≥ 3. Then
d increases by 3 while c(P) increases by 4. By repeating this type of extension until
equality holds in Eq. (5.2), we obtain an extension of P that arises from a polynomial
of degree d.

Finally, suppose P is the passport of a polynomial of degree d. To complete the
proof, we will show that P can be extended to a polynomial passport of degree d + k
for any k ≥ 2. To see this, just extend P1 to P1 + (k), P2 to P2 + (2, 1k−2), and Pi to
Pi + (1k) for i ≥ 3. ⊓*

Theorem 5.6. Any collection of partitions P = (P1, . . . , Pn) with n ≥ 3 can be
extended to the passport of a rational map.
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12 L. G. DeMarco et al.

Fig. 1. Model dessins D0(m), D1(m), and D∞(m) are drawn in rows for 1 ≤ m ≤ 5.

Proof. We divide the proof into two cases.

Case I. Assume n ≥ 4. Let P1 = (P1, P2) and let P2 = (P3, . . . , Pn). By Corollary
5.5, we may assume that P1 and P2 are passports of polynomials g1 and g2 of the
same degree d.

The complex plane can be naturally completed to a closed disk

D ∼= C ∪ S1

by adding a circle to represent the rays in T∞Ĉ. Then each polynomial gi extends
continuously to a proper map Di of degree d on D, satisfying Di (x) = dx for all
x ∈ S1 ∼= R/Z.

Now construct a branched covering F : S2 → S2 by gluing together two copies of
D to obtain a sphere, and then setting F = D1 on the first copy and F = D2 on the
second. Then P(F) = P by construction, and F can be replaced by a rational map
by Proposition 5.2, and the proof in this case is complete.

Case II. Now assume that n = |P| = 3. We will construct a rational map with
V ( f ) = {0, 1,∞} such that P( f ) extends P .

For convenience, let us index the elements Pi of P by i ∈ I = {0, 1,∞}. After
replacing Pi by the extension Pi+(2), if necessary, wemay assume that every partition
in P is nontrivial.

To construct f , it suffices to give the topological data of a dessin d’enfant D ⊂ C
[9,14]. A dessin is connected graph with vertices of two colors, embedded in the plane,
arising as the preimage of the interval [0, 1] under a branched covering F : P1 → P1
with V (F) ⊂ {0, 1,∞}. We adopt the convention that the white vertices of D map to
0 and the black vertices map to 1. The components of P1 − D are called the faces of
D, and each face contains a unique point z such that F(z) = ∞.

Consider, for each m ≥ 1, the three types of model dessins

D0(m), D1(m), and D∞(m)

shown in Fig. 1. (These graphs correspond to the rational maps f0(z) = zm , f1(z) =
zm + 1 and f∞(z) = (zm + z−m + 2)/4.) The barycenter z of Di (m) is a vertex
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Fig. 2. A dessin d’enfant D
obtained by connecting the
components of G to a single
edge [b, w], which is drawn in
the center. All three components
of G0 are connected to w; all
three components of G1 are
connected to b; and one
component of G∞ is connected
to w while the other is connected
to b. The corresponding rational
map f has degree 42.

for i = 0 or i = 1, and it lies in a face if i = ∞. In all three cases, F(z) = i and
mult(F, z) = m.

Let P0 = (a1, . . . , an), and let G0 ⊂ C be a planar graph with n components, such
that its j th component is isomorphic to D0(a j ). Such a graph is unique up to planar
isotopy. Construct G1 ⊂ C and G∞ ⊂ C similarly, using the partitions P1, P∞ and
the models D1(m), D∞(m). When constructing G∞, we take care not to nest two
components of type D∞(m). It is easy to arrange that the graphs Gi are contained in
disjoint disks in the plane. LetG = G0∪G1∪G∞. Then every vertex of G is incident
to the unique unbounded component U of C− G.

To obtain D, we add new edges between vertices of opposite colors to make G
connected. In the process we take care not to alter the valence at the center of each
component of G. This can be done in many ways.

For example, begin by introducing a new edge [b, w] ⊂ U , with one white vertex
w and one black vertex b. Then connect each component of G0 to w, connect each
component of G1 to b, and connect each component of G∞ to either w or b as in Fig.
2, making sure that these new edges do not cross.

The resulting connected graph D ⊂ C is then a dessin d’enfant for a rational map
f with V ( f ) = {0, 1,∞}. By the construction of the graph Gi , the partition P( f , i)
extends Pi for each i ∈ V ( f ), and hence P( f ) extends P . ⊓*

Proof of Theorem 5.1. The statements for polynomials and for rational maps are cov-
ered by Corollary 5.5 and Theorem 5.6 respectively. ⊓*

Remarks and references. The proof of Theorem 5.6 for n ≥ 4 is based on the fact
that the passports for a pair of polynomials of degree d can be combined to give the
passport of a rational map. This result also appears in [6, Remark on p. 785] and
[1, Prop. 10]. The branched covering built from a pair of polynomials is called their
formal mating in [16].

6 Prescribed critical points in P(f )

In this section we strengthen Theorem 1.3 by showing that we can construct a rational
map with prescribed critical points in its postcritical set P( f )≈X . We will also give
a similar result for polynomials.
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14 L. G. DeMarco et al.

Multiplicities. To make the first statement precise, recall that f has a critical point of
order mult( f , x) − 1 at each point x ∈ P1. We can regard the multiplicity as a map
mult( f ) : P1 → Z+ = {1, 2, 3, . . .}.

Our aim is to show:

Theorem 6.1. Let F : X → X and M : X → Z+ be arbitrary maps defined on a
finite set X ⊂ P1 with |X | ≥ 3. Then there exists a sequence of rigid, postcritically
finite rational maps fn such that |P( fn)| = |X |,

P( fn)→ X , fn|P( fn)→ F |X , and mult( fn)|P( fn)→ M |X

as n→∞.

Proof. The argument is a modification of the proof of Theorem 1.3 given in Sect. 4.
As in that section, the construction is based on a pair of rational maps g and h. Let

h be a quadratic rational map with J (h) = P1 and |P(h)| = 3.
To construct g, we first associate to each x ∈ X the partition

Px = (M(y1), . . . ,M(yn))

where F−1(x) = {y1, . . . , yn} ⊂ X . Then
∑
X |Px | = |X |. (Note that if x /∈ F(X),

then Px is the empty partition and |Px | = 0.)
Let P ′x = Px+(1) be the partition obtained by padding Px with an extra 1 at the end

(notation as in equation (5.1)), so |P ′x | = |Px | + 1. By Proposition 5.2 and Theorem
5.6, there is a rational map g with critical values V (g) = X such that P(g, x) extends
P ′x for all x ∈ X . Since |X | ≥ 3, we then have

|g−1(X)| =
∑

X

|P(g, x)| ≥
∑

X

|P ′x | = 2|X | ≥ |X | + 3. (6.1)

Next, we construct an injective map

ι : X → g−1(X) ⊂ P1

such that
F(y) = g(ι(y)) and M(y) = mult(g, ι(y)) (6.2)

for all y ∈ X . To define ι(y), let x = F(y) and recall that: y determines a point
M(y) ∈ Px , we have an inclusion Px ⊂ P(g, x), and there is a bijection P(g, x) ∼=
g−1(x) which labels points by their multiplicities. We define ι(y) to be the image of
M(y) under the composition Px ⊂ P(g, x) ∼= g−1(x).

Since |P(h)| = 3 and Eq. (6.1) holds, we can choose α ∈ Aut(P1) such that
α(P(h)) ⊂ g−1(X)− ι(X). Upon replacing g and ι with g ◦ α and α−1 ◦ ι, equation
(6.2) continues to hold, and we then have

P(h) ⊂ g−1(X)− ι(X).
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Now recall that J (h) = P1 and hence

X ⊂ J (h). (6.3)

Consequently, for any x ∈ X , the inverse orbit of ι(x) under h accumulates on every
point of X . Moreover, if hn(z) = ι(x), then mult(hn, z) = 1, since ι(x) /∈ P(h). Thus
we can find a sequence of injective maps φn : X → Xn , converging to the identity,
such that

mult(hn)|Xn = 1 and hn(φn(x)) = ι(x). (6.4)

Extend ⟨φn⟩ to a sequence of homeomorphisms of P1 converging to the identity as
n→∞, and let

Fn = g ◦ hn ◦ φn : (P1, X) −→ (P1, X). (6.5)

Then by Eq. (6.2), we have

Fn|X = F and mult(Fn)|X = M |X . (6.6)

Finally, we reiterate the proof of Theorem 4.1 to convert the postcritically finite
branched covers Fn into rational maps fn with P( fn) → X . Since fn and Fn are
conjugate on their postcritical sets, we then have

fn|P( fn)→ F |X and mult( fn)|P( fn)→ M |X

by Eq. (6.6). We can also ensure, by our choice of g, that deg( fn) is not a square, and
hence the postcritically finite maps fn are rigid for all n ≫ 0. ⊓*

The polynomial case. We conclude by presenting a variation of Theorem 6.1 for
polynomials.

Theorem 6.2. Let F : X → X and M : X → Z+ be arbitrary maps defined on a
finite set X ⊂ C with |X | ≥ 2. Then there exists a sequence of postcritically finite
polynomials fn such that |P0( fn)| = |X |,

P0( fn)→ X , fn|P0( fn)→ F |X , and mult( fn)|P0( fn)→ M |X

as n→∞.

Prescribed Julia sets. For the proof, we will need a polynomial h whose Julia set
contains X (to play the role of the rational map h with J (h) = P1 in the proof of
Theorem 6.1). It suffices to treat the case where X ⊂ Q , since Q is dense in C.

Lemma 6.3. Given any finite set X ⊂ Q , there is a polynomial h so that

|P0(h)| = 2 and X ⊂ J (h).
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Fig. 3. This table contains all seven possible graphs representing maps X → X when |X | = 3. Each graph
can be realized by a rational map f : P( f ) → P( f ). Explicit examples are given by A(z) = 1 − 1/z2;
B(z) = (z−α)3/(z−1+α)3 where α2−α+1 = 0;C(z) = z2(3−2z); D(z) = (1−2/z)2; E(z) = z2−1;
F(z) = (2z − 1)2/(4z(z − 1)); and G(z) = z2 − 2. In each case, the degree is minimal among all rational
maps realizing the given dynamics on X .

Proof. By Theorem 2.3, there is a polynomial β with β(X) ∪ V0(β) ⊂ {0, 1}. We
can assume that deg(β) > 1 and V0(β) = {0, 1} (for example, by taking a Belyi
polynomial for a larger set that contains X ).

There are two distinct points a, b ∈ β−1({0, 1}) that are not critical points of β.
Indeed, the set β−1({0, 1}) consists of 2d points, counted with multiplicity, and at
most 2|C0( f )| = 2d − 2 of these are accounted for by critical points.

Letα ∈ Aut(C) be an affine transformation sending the ordered pair (a, b) to (0, 1),
and set h = α ◦ β. We then have:

V0(h) = {a, b}, h({a, b}) ⊂ {a, b}, and h(X) ⊂ {a, b}.

The first two properties imply that P0(h) = {a, b}, and in particular P0(h) is disjoint
from C0(h). It follows that P0(h) is contained in the Julia set of h. Since the Julia set
is totally invariant and h(X) ⊂ {a, b}, we have X ⊂ J (h) as well. ⊓*
Proof of Theorem 6.2. We may assume X ⊂ Q . Let h be a polynomial associated to X
as in Lemma 6.3. Let (P ′x : x ∈ X) be the family of partitions constructed in the proof
of Theorem 6.1, and let g be a polynomial with V0(g) = X , provided by Proposition
5.2 and Corollary 5.5, such that P(g, x) extends P ′x for all x ∈ X . We can now simply
repeat the proof of Theorem 6.1, using the mappings g and h to obtain the desired
polynomials fn . ⊓*

7 Alternative constructions

In this section we discuss alternative constructions of rational maps with postcritical
sets satisfying |P( f )| ≤ 4.

The case |P(f)| ≤ 3 . The only rational maps with |P( f )| = 2 are those that are
conformally conjugate to z 2→ z± d . Question 1.2 then has a negative answer if X ⊂ P1
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has cardinality 2; that is, F : X → X is realized by f : P( f )→ P( f ) if and only if
F is bijective.

It is easy to see that Question 1.2 has a positive answer whenever |X | = 3. Indeed,
we can first normalize so that X = {0, 1,∞}. Then, up to reordering the points of X ,
there are only seven possibilities for F . A concrete rational map realizing each one is
given in Fig. 3.

The case |P(f)| = 4: rigid Lattès maps. Let Q ⊂ H denote the set of τ in the upper
halfplane that are quadratic over Q , and let

λ : H → H/*(2) ∼= P1 − {0, 1,∞}

be the universal coveringmap. Rigid Lattèsmaps are precisely thosewhich are covered
by the action of complex multiplication on an elliptic curve E (up to translation by a
point of order in E[2]); see [12, Lemmas 4.3 and 4.4]. Every such elliptic curve has
the form E = C/(Z ⊕ Zτ ) with τ ∈ Q. Using these rigid maps, one can explicitly
construct f with P( f ) = {0, 1,∞, z} for all z in the dense set λ(Q) ⊂ P1. On the
other hand,

L = λ(Q) (7.1)

is very small subset of Q . For example, L ∩ Z = {−1, 2}, since the j–invariant

j = 256(1− λ+ λ2)3

λ2(1− λ)2

is an algebraic integer for all λ ∈ L (see e.g. [15, §II.6] for details). So the postcrit-
ical sets arising from rigid Lattès examples are insufficient to complete the proof of
Theorem 1.1 in the case |P( f )| = 4.

The case |P(f)| = 4: dynamics onmoduli space.Our second construction of rational
maps with given postcritical sets is based on [8]. There, the author builds maps on
moduli space g :M0,n !!" M0,n whose periodic points correspond to postcritically
finite rational maps on the Riemann sphere.

For n = 4, themoduli spaceM0,4 can be identifiedwithP1−{0, 1,∞}, and g(z) =
(1− 2/z)2 is an example of one such map on moduli space. Each periodic point x of
period m gives rise to a postcritically finite polynomial of degree 2m with postcritical
set {0, 1,∞, x}. Let K denote the set of all periodic points of g in P1−{0, 1,∞}. The
set K lies in Q , and it is dense in the Julia set J (g). Moreover, we have J (g) = P1
since g is a Lattès map, so K ⊂ P1 provides a dense set of postcritical sets arising
from polynomials.

Interestingly, the intersection L ∩ K is finite (where L is defined by equation
(7.1)). Indeed, K is a set of bounded Weil height, as a consequence of the existence
of a canonical height for g [4]. But the j-invariants of elliptic curves with complex
multiplication have no infinite subsets of bounded height [13, Lemma 3], so neither
does L .
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