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ABSTRACT

Fully convolutional network (FCN) has shown potency in
segmenting heterogeneous objects from natural images with
high run-time efficiency. This technique, however, is not
able to produce continuous, smooth and shape-preserved
regions consistently due to complex organ structures and oc-
casional weak appearance information commonly observed
in various anatomical structures in medical images. In this
paper, we propose a deep end-to-end network with two task-
specific branches to ensure continuousness, smoothness and
shape-preservation in segmented structure without addition-
ally sophisticated shape adjustment, e.g., dense conditional
random fields. The novelties of the proposed method lie in
three aspects. First, we formulate the organ segmentation as
a multi-task learning process that combines both region and
boundary identification tasks, which can alleviate spatially
isolated segmentation errors. Second, we use boundary dis-
tance regression to ensure the smoothness of the segmented
contours, instead of formulating boundary identification as
a classification problem [1]. Third, our deep network is de-
signed to have a “Y” shape, i.e., the first half of the network
is shared by both region and boundary identification tasks,
while the second half is branched for each task independently.
This architecture enables the task-specific feature learning for
better region and boundary identification, and offers informa-
tion for segmentation refinement based on a fusion scheme
using energy functional. Extensive evaluations are conducted
on a variety of applications across organs and modalities,
e.g., MR femur, CT kidney, etc. Our proposed method shows
better performance compared to the state-of-the-art methods.

Index Terms— Deep end-to-end network, multi-task and
task-specific learning, shape preserved organ segmentation.

1. INTRODUCTION

Fully convolutional network (FCN) [2] has been highlighted
as a fundamental segmentation approach for anatomy delin-
eation in medical images. It exploits the deep convolution-
al neural networks (DCNN) for coarse-to-fine inference and
makes a prediction at every pixel. Without manually setting
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Fig. 1. (a)-(d) show the ground truth (green lines) and seg-
mented contours (red) using FCN method for two MR bone
and two CT kidney cases. The FCN-based results exist spa-
tially isolated errors and smoothless segmented boundaries.

handcrafted features, DCNN has the ability to learn a hierar-
chical representation of raw input data. However, FCN is lim-
ited for lower-level tasks requiring precise localization, e.g.,
semantic segmentation, since the DCNN-based inferences in-
side FCN build invariance to spatial transformations and pro-
vide only abstraction of spatial details. In Fig. 1, FCN is more
likely to have predicted outliers due to the high variability of
organic shapes and low-contrast imaging quality in medical
images. It may not produce a continuous segmented object
with smooth boundary.

Recent researches employ a new strategy called multi-task
learning for organ segmentation. The main task of this strat-
egy is to optimize target extraction by leveraging auxiliary
information from a set of correlated tasks (e.g., background
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Fig. 2. Proposed deep multi-task and task-specific feature learning network. The left half is encoding for the abstraction of
multi-level contextual feature. The right half has two decoding branches for the task-specific learning. Each blue convolution
block includes two convolutional layers with filter size of 3 x 3 and zero-padding of 1. Parametric rectified linear unit and batch
normalization are also adopted in all convolutional and deconvolutional layers.

classification or bounding box investigation). Chen et al. [1]
studied a multi-task deep representation that combined region
and boundary classifications to obtain continuous tissue de-
scription. In order to alleviate the spatially isolated segmen-
tation errors in Fig. 1, we formulate the organ segmentation
as a multi-task network consisting of two parallel end-to-end
branches, as shown in Fig. 2. Each task involves two sym-
metrical parts, i.e., encoding and decoding. The first task is
a conventional fully convolutional network for the inference
of organ probability map. The second task is a novel deep re-
gression network (DRN) that regresses the distance constraint
information of organic boundary. During the distance regress-
ing, it produces continuously numerical constraints of spatial
information. Thus the DRN obtains better potential to pre-
serve the smoothness of boundary, comparing with the dis-
crete classified labels obtained by boundary classification.

Gao et al. [3] proposed a boundary extractor by learning
a joint objective function from displacement estimation and
organ classification, and these two tasks only share param-
eters in the final loss. But in Fig. 2, the two task-specific
branches in the proposed network share parameters in the en-
coding process in the first half of Y-shape network, while hav-
ing their own decoding parameters to represent the features
for the classification and regression, respectively. This struc-
ture ensures a balanced and sufficient parameters learning to
represent the task-specific features for region and boundary
identification. During the training, the cumulative loss is op-
timized by jointly investigating the two losses from each s-
ingle branch. Adding the distance regression task can effec-
tively regularize the smoothness of segmented boundary and

reduce the isolated segmentation errors. Simultaneously, the
classification branch is efficient for locating and extracting
target. Finally, the proposed method also explores a unified
segmentation architecture which incorporates a shape refine-
ment. We combine the inferred organ probability map and the
regressed boundary distance map based on a fusion scheme
using energy functional. This scheme can efficiently refine
organ boundary, and avoid the complex parameter tuning of
additionally sophisticated shape adjustment (e.g., dense con-
ditional random fields [4]).

2. METHODOLOGY
2.1. Deep end-to-end network with multi-task learning

In this section, we present a deep end-to-end network branched
by two task-specific learning for the organ segmentation. As
shown in Fig. 2, the network takes the entire 2D image as in-
put, and the first task is a conventional FCN for the inference
of organ probability map, and the second one is the novel
DRN regressing the distance constraint information of organ-
ic boundary. The main structure of each task is designed as
a symmetric way, i.e., encoding-decoding. The two branch-
es share the encoding part, which contains 4 max-pooling
layers with stride 2 to obtain 4 different resolutions of raw
image. Under each resolution, two convolutional layers are
utilized for feature abstraction. This successive encoding
allows to obtain multi-size contextual information which is
helpful to receive the integral interior structure of tissue and
the sufficient background knowledge surrounding it, and then
improve the recognition performance. In the decoding part of
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each task, we deploy 4 deconvolutional layers in a cascaded
way for up-sampling feature maps. Each deconvolutional lay-
er adopts stride 2, so it avoids the usage of large up-sampling
factors (16, or 32), and effectively reduces computation and
details missing in deconvolution. These deconvolutional op-
erations restore input image's resolution from lower to higher,
and finally reach the original size. Each upscaling operation
also follows two convolutional layers, playing the same role
to abstract features. The design of the proposed network
firstly makes the encoder extract high-level abstraction fea-
tures, and then the two decoders acquire pixel-wise organ
probability map and boundary distance map, respectively.

The deep contour-aware network [1] makes its boundary
identification branch as classification. This approach pro-
vides strong boundary constraints, and can increase the over-
all segmentation accuracy and reduce spatially isolated er-
rors. However, the classification-based auxiliary task offers
discrete boundary labels, which may cause some non-smooth
segmented contours. Here, we consider boundary distance re-
gression as a reasonable criteria to produce continuously nu-
merical constraints of spatial information. So we build the
boundary identification task by the distance regression, and
this criteria performs as complementary cues to the proba-
bility map of organ classification, and then it regularizes the
trouble of classification outliers.

We define the loss of the classification branch L.;s by ap-
plying multi-class cross entropy loss to each pixel of the out-
put probability map. In the regression branch, we formulate
the loss term Lg;s based on the following loss:
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where K is the number of classes. For the i-th class, D; (x)
and D; (x) are the predicted and the ground truth distance
maps at pixel location x € €2, where €2 is the image space,
and C Z2. w is a weight function that gives higher penalty
weight to the pixels that are farther away the organ border.
Thus, the objective function of the network is as follows:
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where « and 3 are the balance weights. 7" represents the num-
ber of tasks. W, denotes the parameters of ¢-th task.

Based on the proposed multi-task network and losses, the
objective function will not suffer from the non-trivial solving
issue mentioned in [5]. We can easily derive a standard solu-
tion for the novel ¢5-based regression loss. Moreover, except
the two loss layers in the two branches, the rest layers use
the same decoding network design, and thus Eq. 2 holds low
model complexity and can be effectively solved through, for
instance, the stochastic gradient descent (SGD) solver.

2.2. Energy functional based fusion scheme

A further refinement could fuse the predicted organ probabil-
ity map P and boundary distance map D to obtain the final
segmentation. Here, the fusion scheme minimizes an energy
functional F(P D) based on the Chan-Vese model [6]. The
scheme treats P and D as the optimization target and signed
distance function, respectively. Because D has already been
very close to the real organ, it can be used as a good and
straightforward initialization for the fusion. With few itera-
tions for an image, the fusion will finish in 0.02s.

3. EXPERIMENTS

Experimental settings. We validate the proposed method on
three datasets. The first synthetic dataset includes 6000 2D
simulated images (training: 4000, validating: 1000, testing:
1000). We use 3 types of geometry elements (circle, trian-
gle and square) to construct the toy examples. The target for
segmentation is combined by a circle and a triangle, which is
initially located in the center of image with a stochastic offset
in the = and y directions. In order to simulate complex va-
rieties of shape, the angle, length and direction of the target
are randomly set. Each toy image also includes some inter-
ferences by randomly placing several squares and circles with
various sizes surrounding the target. Meanwhile, heavy Gaus-
sian noises are added to blur all shapes. The second dataset
includes 2304 2D magnetic resonance (MR) images (training:
1368, validating: 468, testing: 468). They are from 64 3D MR
femur scans with voxel spacing (Imm, Imm, Imm). On each
3D femur volume, we rotationally sample 36 slices around the
femoral shaft, with 5 degrees interval angle. The third set is
built by 107 computed tomography (CT) 3D kidney images.
Each kidney image is resampled and cropped, and has the
same physical size (20cmx20cm x 15cm) with voxel spacing
(Imm, Imm, Imm). Along the axial direction of each kidney
data, we totally sample 16050 2D images with Imm interval
distance (training: 9000, validating: 3000, testing: 4050). Pa-
tients randomly used in dataset 2 and 3 are independent from
others. All the images are resized to 128 x 128, and their pixel
intensity is linearly normalized in [0, 1].

Two state-of-the-art medical segmentation approaches are
evaluated with our method. One is the U-net [7], and the
second is the deep contour-aware networks for accurate g-
land segmentation (DCAN [1]). For validation, dice simi-

larity coefficient (DSC = %) and relative error

(RE = ?giﬁ:%) between the ground truth (GT) labels and
segmentation results are reported. TP, F'P and F'N are the
number of pixels correctly identified, incorrectly identified
and incorrectly rejected respectively. The mini-batch is em-
ployed in the training phase, and its size is set to around 80 for
each training of the compared methods. We use a momentum
of 0.9 and a learning rate initially set as 0.001 (multiplied by

a factor of 0.95 every 10,000 iterations).
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Fig. 3. 2D visual comparisons for simulated data, femur bone
and kidney. Green, red, blue and yellow lines are for the GT,
U-net, DCAN and proposed method, respectively.

Table 1. Quantitative comparisons.
Simulation Femur Bone Kidney
DSC | RE | DSC | RE | DSC | RE
U-net 0.90 | 0.19 | 090 | 0.19 | 0.70 | 0.62
DCAN | 092 | 0.15| 091 | 0.18 | 0.83 | 0.31
Ours 0.96 | 0.09 | 0.93 | 0.14 | 0.90 | 0.19

Method

Experimental results. Fig. 3 (a)-(c) show visual compar-
isons between the proposed method and the U-net model for
three cases. Shown by these, the U-net model can locate the
position of organ (or target) correctly. Its segmented regions
capture most of the correct tissue areas, and get good quan-
titative measurements. Yet its results suffer from leakages to
the surrounding areas, where have similar pixel intensity to
the targets. On the other hand, the classification branch of our
method is the same as the U-net, but with the additional re-
gression branch and the joint training, the proposed approach
can prevent the leakage issue, and thus obtain better total seg-
mentation performance. Since the few visual comparisons
may not reflect the overall performance clearly, quantitative
comparisons of overlapping accuracies are shown in Table 1.
After showing the effectiveness of the proposed model to
prevent leakages, we also visually compare the boundary s-
moothness of results by the DCAN and proposed method. In
order to have a better view, only the segmented contours by
the two approaches are plotted for the same cases in Fig. 3
(d)-(f). The DCAN method does not show significant leak-
age problem, and obtains higher total segmentation accura-
cy comparing with the U-net in Table 1. However, by con-
sidering the boundary smoothness shown in the red boxes,
the proposed method achieves better performance. The two
methods both utilize multi-task strategy to preserve shape, but
in the DCAN, its boundary classification task offers discrete
boundary labels which may cause non-smooth boundary. In
our regression branch, the boundary distance regression could

provide continuously numerical constraints of spatial infor-
mation during optimizing the regression loss. Hence the pro-
posed method could produce higher smoothness on boundary.
Besides the visual comparisons, the overall quantitative mea-
surements between the two approaches are shown in Table 1.

4. CONCLUSION

In the present work, we propose a deep multi-task network
for robust shape preserved organ segmentation. The network
has a unified architecture to formulate organ segmentation
as multi-task learning that combines both region and bound-
ary identification. This multi-task learning with the novel
boundary distance regression can alleviate spatially isolated
segmentation errors as well as ensure the smoothness of seg-
mented contours. The proposed deep network is designed as
a Y shape, bifurcated at the end of the encoding path. Hence
the shared encoding and non-shared decoding paths have bal-
anced layers and parameters for each task branch.

5. REFERENCES

[1] H. Chen, X. Qi, L. Yu, and P--A. Heng, “Dcan: Deep
contour-aware networks for accurate gland segmenta-
tion,” in Proceedings of the IEEE conference on Comput-
er Vision and Pattern Recognition, pp. 2487-2496, 2016.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 3431-3440, 2015.

[3] Y. Gao, Y. Shao, J. Lian, A. Z. Wang, R. C. Chen, and
D. Shen, “Accurate segmentation of ct male pelvic organs
via regression-based deformable models and multi-task

random forests,” IEEE transactions on medical imaging,
vol. 35, no. 6, pp. 1532-1543, 2016.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille, “Semantic image segmentation with
deep convolutional nets and fully connected crfs,” arX-
iv preprint arXiv:1412.7062, 2014.

[5] L. Kokkinos, “Ubernet: Training auniversal’ convolutional
neural network for low-, mid-, and high-level vision us-
ing diverse datasets and limited memory,” arXiv preprint
arXiv:1609.02132, 2016.

[6] T. F. Chan and L. A. Vese, “Active contours without
edges,” Image Processing, IEEE Transactions on, vol. 10,
no. 2, pp. 266-277, 2001.

[71 O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-
volutional networks for biomedical image segmentation,”
in International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pp. 234-241,
Springer, 2015.

1224



