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ABSTRACT

Fully convolutional network (FCN) has shown potency in

segmenting heterogeneous objects from natural images with

high run-time efficiency. This technique, however, is not

able to produce continuous, smooth and shape-preserved

regions consistently due to complex organ structures and oc-

casional weak appearance information commonly observed

in various anatomical structures in medical images. In this

paper, we propose a deep end-to-end network with two task-

specific branches to ensure continuousness, smoothness and

shape-preservation in segmented structure without addition-

ally sophisticated shape adjustment, e.g., dense conditional

random fields. The novelties of the proposed method lie in

three aspects. First, we formulate the organ segmentation as

a multi-task learning process that combines both region and

boundary identification tasks, which can alleviate spatially

isolated segmentation errors. Second, we use boundary dis-

tance regression to ensure the smoothness of the segmented

contours, instead of formulating boundary identification as

a classification problem [1]. Third, our deep network is de-

signed to have a “Y” shape, i.e., the first half of the network

is shared by both region and boundary identification tasks,

while the second half is branched for each task independently.

This architecture enables the task-specific feature learning for

better region and boundary identification, and offers informa-

tion for segmentation refinement based on a fusion scheme

using energy functional. Extensive evaluations are conducted

on a variety of applications across organs and modalities,

e.g., MR femur, CT kidney, etc. Our proposed method shows

better performance compared to the state-of-the-art methods.

Index Terms— Deep end-to-end network, multi-task and

task-specific learning, shape preserved organ segmentation.

1. INTRODUCTION

Fully convolutional network (FCN) [2] has been highlighted

as a fundamental segmentation approach for anatomy delin-

eation in medical images. It exploits the deep convolution-

al neural networks (DCNN) for coarse-to-fine inference and

makes a prediction at every pixel. Without manually setting

Fig. 1. (a)-(d) show the ground truth (green lines) and seg-
mented contours (red) using FCN method for two MR bone

and two CT kidney cases. The FCN-based results exist spa-

tially isolated errors and smoothless segmented boundaries.

handcrafted features, DCNN has the ability to learn a hierar-

chical representation of raw input data. However, FCN is lim-

ited for lower-level tasks requiring precise localization, e.g.,

semantic segmentation, since the DCNN-based inferences in-

side FCN build invariance to spatial transformations and pro-

vide only abstraction of spatial details. In Fig. 1, FCN is more

likely to have predicted outliers due to the high variability of

organic shapes and low-contrast imaging quality in medical

images. It may not produce a continuous segmented object

with smooth boundary.

Recent researches employ a new strategy called multi-task

learning for organ segmentation. The main task of this strat-

egy is to optimize target extraction by leveraging auxiliary

information from a set of correlated tasks (e.g., background
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Fig. 2. Proposed deep multi-task and task-specific feature learning network. The left half is encoding for the abstraction of
multi-level contextual feature. The right half has two decoding branches for the task-specific learning. Each blue convolution

block includes two convolutional layers with filter size of 3×3 and zero-padding of 1. Parametric rectified linear unit and batch
normalization are also adopted in all convolutional and deconvolutional layers.

classification or bounding box investigation). Chen et al. [1]

studied a multi-task deep representation that combined region

and boundary classifications to obtain continuous tissue de-

scription. In order to alleviate the spatially isolated segmen-

tation errors in Fig. 1, we formulate the organ segmentation

as a multi-task network consisting of two parallel end-to-end

branches, as shown in Fig. 2. Each task involves two sym-

metrical parts, i.e., encoding and decoding. The first task is

a conventional fully convolutional network for the inference

of organ probability map. The second task is a novel deep re-

gression network (DRN) that regresses the distance constraint

information of organic boundary. During the distance regress-

ing, it produces continuously numerical constraints of spatial

information. Thus the DRN obtains better potential to pre-

serve the smoothness of boundary, comparing with the dis-

crete classified labels obtained by boundary classification.

Gao et al. [3] proposed a boundary extractor by learning

a joint objective function from displacement estimation and

organ classification, and these two tasks only share param-

eters in the final loss. But in Fig. 2, the two task-specific

branches in the proposed network share parameters in the en-

coding process in the first half of Y-shape network, while hav-

ing their own decoding parameters to represent the features

for the classification and regression, respectively. This struc-

ture ensures a balanced and sufficient parameters learning to

represent the task-specific features for region and boundary

identification. During the training, the cumulative loss is op-

timized by jointly investigating the two losses from each s-

ingle branch. Adding the distance regression task can effec-

tively regularize the smoothness of segmented boundary and

reduce the isolated segmentation errors. Simultaneously, the

classification branch is efficient for locating and extracting

target. Finally, the proposed method also explores a unified

segmentation architecture which incorporates a shape refine-

ment. We combine the inferred organ probability map and the

regressed boundary distance map based on a fusion scheme

using energy functional. This scheme can efficiently refine

organ boundary, and avoid the complex parameter tuning of

additionally sophisticated shape adjustment (e.g., dense con-

ditional random fields [4]).

2. METHODOLOGY

2.1. Deep end-to-end network with multi-task learning

In this section, we present a deep end-to-end network branched

by two task-specific learning for the organ segmentation. As

shown in Fig. 2, the network takes the entire 2D image as in-

put, and the first task is a conventional FCN for the inference

of organ probability map, and the second one is the novel

DRN regressing the distance constraint information of organ-

ic boundary. The main structure of each task is designed as

a symmetric way, i.e., encoding-decoding. The two branch-

es share the encoding part, which contains 4 max-pooling

layers with stride 2 to obtain 4 different resolutions of raw

image. Under each resolution, two convolutional layers are

utilized for feature abstraction. This successive encoding

allows to obtain multi-size contextual information which is

helpful to receive the integral interior structure of tissue and

the sufficient background knowledge surrounding it, and then

improve the recognition performance. In the decoding part of
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each task, we deploy 4 deconvolutional layers in a cascaded

way for up-sampling feature maps. Each deconvolutional lay-

er adopts stride 2, so it avoids the usage of large up-sampling

factors (16, or 32), and effectively reduces computation and

details missing in deconvolution. These deconvolutional op-

erations restore input image's resolution from lower to higher,

and finally reach the original size. Each upscaling operation

also follows two convolutional layers, playing the same role

to abstract features. The design of the proposed network

firstly makes the encoder extract high-level abstraction fea-

tures, and then the two decoders acquire pixel-wise organ

probability map and boundary distance map, respectively.

The deep contour-aware network [1] makes its boundary

identification branch as classification. This approach pro-

vides strong boundary constraints, and can increase the over-

all segmentation accuracy and reduce spatially isolated er-

rors. However, the classification-based auxiliary task offers

discrete boundary labels, which may cause some non-smooth

segmented contours. Here, we consider boundary distance re-

gression as a reasonable criteria to produce continuously nu-

merical constraints of spatial information. So we build the

boundary identification task by the distance regression, and

this criteria performs as complementary cues to the proba-

bility map of organ classification, and then it regularizes the

trouble of classification outliers.

We define the loss of the classification branch Lcls by ap-

plying multi-class cross entropy loss to each pixel of the out-

put probability map. In the regression branch, we formulate

the loss term Ldis based on the following loss:

Ldis =
1

2K

K∑

i=1

∑

x∈Ω
w (x)

∥∥∥D̂i (x)−Di (x)
∥∥∥
2

2
(1)

where K is the number of classes. For the i-th class, D̂i (x)
and Di (x) are the predicted and the ground truth distance
maps at pixel location x ∈ Ω, where Ω is the image space,

and ⊂ Z2. w is a weight function that gives higher penalty
weight to the pixels that are farther away the organ border.

Thus, the objective function of the network is as follows:

argmin
{Wt}Tt=1

{
Lcls + αLdis + β

T∑

t=1

‖Wt‖22
}

(2)

where α and β are the balance weights. T represents the num-
ber of tasks. Wt denotes the parameters of t-th task.

Based on the proposed multi-task network and losses, the

objective function will not suffer from the non-trivial solving

issue mentioned in [5]. We can easily derive a standard solu-

tion for the novel �2-based regression loss. Moreover, except
the two loss layers in the two branches, the rest layers use

the same decoding network design, and thus Eq. 2 holds low

model complexity and can be effectively solved through, for

instance, the stochastic gradient descent (SGD) solver.

2.2. Energy functional based fusion scheme

A further refinement could fuse the predicted organ probabil-

ity map P̂ and boundary distance map D̂ to obtain the final

segmentation. Here, the fusion scheme minimizes an energy

functional F (P̂ , D̂) based on the Chan-Vese model [6]. The
scheme treats P̂ and D̂ as the optimization target and signed

distance function, respectively. Because D̂ has already been

very close to the real organ, it can be used as a good and

straightforward initialization for the fusion. With few itera-

tions for an image, the fusion will finish in 0.02s.

3. EXPERIMENTS

Experimental settings. We validate the proposed method on
three datasets. The first synthetic dataset includes 6000 2D

simulated images (training: 4000, validating: 1000, testing:

1000). We use 3 types of geometry elements (circle, trian-

gle and square) to construct the toy examples. The target for

segmentation is combined by a circle and a triangle, which is

initially located in the center of image with a stochastic offset

in the x and y directions. In order to simulate complex va-
rieties of shape, the angle, length and direction of the target

are randomly set. Each toy image also includes some inter-

ferences by randomly placing several squares and circles with

various sizes surrounding the target. Meanwhile, heavy Gaus-

sian noises are added to blur all shapes. The second dataset

includes 2304 2D magnetic resonance (MR) images (training:

1368, validating: 468, testing: 468). They are from 64 3DMR

femur scans with voxel spacing (1mm, 1mm, 1mm). On each

3D femur volume, we rotationally sample 36 slices around the

femoral shaft, with 5 degrees interval angle. The third set is

built by 107 computed tomography (CT) 3D kidney images.

Each kidney image is resampled and cropped, and has the

same physical size (20cm×20cm×15cm) with voxel spacing
(1mm, 1mm, 1mm). Along the axial direction of each kidney

data, we totally sample 16050 2D images with 1mm interval

distance (training: 9000, validating: 3000, testing: 4050). Pa-

tients randomly used in dataset 2 and 3 are independent from

others. All the images are resized to 128×128, and their pixel
intensity is linearly normalized in [0, 1].

Two state-of-the-art medical segmentation approaches are

evaluated with our method. One is the U-net [7], and the

second is the deep contour-aware networks for accurate g-

land segmentation (DCAN [1]). For validation, dice simi-

larity coefficient (DSC = 2TP
2TP+FP+FN ) and relative error

(RE = FP+FN
TP+FN ) between the ground truth (GT) labels and

segmentation results are reported. TP , FP and FN are the

number of pixels correctly identified, incorrectly identified

and incorrectly rejected respectively. The mini-batch is em-

ployed in the training phase, and its size is set to around 80 for

each training of the compared methods. We use a momentum

of 0.9 and a learning rate initially set as 0.001 (multiplied by

a factor of 0.95 every 10,000 iterations).
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Fig. 3. 2D visual comparisons for simulated data, femur bone
and kidney. Green, red, blue and yellow lines are for the GT,

U-net, DCAN and proposed method, respectively.

Table 1. Quantitative comparisons.
Method Simulation Femur Bone Kidney

DSC RE DSC RE DSC RE
U-net 0.90 0.19 0.90 0.19 0.70 0.62

DCAN 0.92 0.15 0.91 0.18 0.83 0.31

Ours 0.96 0.09 0.93 0.14 0.90 0.19

Experimental results. Fig. 3 (a)-(c) show visual compar-

isons between the proposed method and the U-net model for

three cases. Shown by these, the U-net model can locate the

position of organ (or target) correctly. Its segmented regions

capture most of the correct tissue areas, and get good quan-

titative measurements. Yet its results suffer from leakages to

the surrounding areas, where have similar pixel intensity to

the targets. On the other hand, the classification branch of our

method is the same as the U-net, but with the additional re-

gression branch and the joint training, the proposed approach

can prevent the leakage issue, and thus obtain better total seg-

mentation performance. Since the few visual comparisons

may not reflect the overall performance clearly, quantitative

comparisons of overlapping accuracies are shown in Table 1.

After showing the effectiveness of the proposed model to

prevent leakages, we also visually compare the boundary s-

moothness of results by the DCAN and proposed method. In

order to have a better view, only the segmented contours by

the two approaches are plotted for the same cases in Fig. 3

(d)-(f). The DCAN method does not show significant leak-

age problem, and obtains higher total segmentation accura-

cy comparing with the U-net in Table 1. However, by con-

sidering the boundary smoothness shown in the red boxes,

the proposed method achieves better performance. The two

methods both utilize multi-task strategy to preserve shape, but

in the DCAN, its boundary classification task offers discrete

boundary labels which may cause non-smooth boundary. In

our regression branch, the boundary distance regression could

provide continuously numerical constraints of spatial infor-

mation during optimizing the regression loss. Hence the pro-

posed method could produce higher smoothness on boundary.

Besides the visual comparisons, the overall quantitative mea-

surements between the two approaches are shown in Table 1.

4. CONCLUSION

In the present work, we propose a deep multi-task network

for robust shape preserved organ segmentation. The network

has a unified architecture to formulate organ segmentation

as multi-task learning that combines both region and bound-

ary identification. This multi-task learning with the novel

boundary distance regression can alleviate spatially isolated

segmentation errors as well as ensure the smoothness of seg-

mented contours. The proposed deep network is designed as

a Y shape, bifurcated at the end of the encoding path. Hence

the shared encoding and non-shared decoding paths have bal-

anced layers and parameters for each task branch.
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