Computers & Graphics 79 (2019) 58-68

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect e

Computers & Graphics

b

OMP X
&GRAPHICS

Technical Section

Cartoonish sketch-based face editing in videos using identity n

deformation transfer”

Check for
updates

Long Zhao®*, Fangda Han? Xi Peng® Xun Zhang? Mubbasir Kapadia®, Vladimir Pavlovic?,

Dimitris N. Metaxas*®

3 Department of Computer Science, Rutgers University, NJ, United States
b Department of Computer Science, Binghamton University, New York, United States

ARTICLE INFO ABSTRACT

Article history:

Received 9 December 2018
Revised 10 January 2019
Accepted 13 January 2019
Available online 24 January 2019

Keywords:

Video editing
Sketch-based modeling
Shape deformation
Deformation transfer
3D morphable model

We address the problem of using hand-drawn sketches to create exaggerated deformations to faces in
videos, such as enlarging the shape or modifying the position of eyes or mouth. This task is formulated
as a 3D face model reconstruction and deformation problem. We first recover the facial identity and
expressions from the video by fitting a face morphable model for each frame. At the same time, user’s
editing intention is recognized from input sketches as a set of facial modifications. Then a novel identity
deformation algorithm is proposed to transfer these facial deformations from 2D space to the 3D facial
identity directly while preserving the facial expressions. After an optional stage for further refining the
3D face model, these changes are propagated to the whole video with the modified identity. Both the
user study and experimental results demonstrate that our sketching framework can help users effectively
edit facial identities in videos, while high consistency and fidelity are ensured at the same time.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed tremendous advances in the field
of facial performance capture in videos, which serves as a vital
foundation for other computer graphics applications [1-3]. Espe-
cially, impressive results have been achieved in state-of-the-art
face editing frameworks, and they are widely used in creating
funny facial effects for video games, movies and even mobile ap-
plications. In order to express user’s editing intention, this kind of
frameworks always involves complex inputs (e.g., other images or
videos within the same domain [3,4]) or additional capture devices
(e.g., RGB or RGB-D cameras [2,5,6]). However, it is quite incon-
venient for artists or amateur editors to reach these resources in
our daily life. Moreover, current state-of-the-art methods always
aim to enable users to modify the facial expression of the actor
in a video, since this kind of editing intention can be easily de-
tected with fixed facial identities. While changing the identity, i.e.,
the original appearance of a face without the influence from the
pose and facial expression, is quite difficult, since it is a form of
modification which is hard to be computed straightforward from
reference inputs or several parameters.

* This article was recommended for publication by Y Gingold.
* Corresponding author.
E-mail address: 1z311@cs.rutgers.edu (L. Zhao).

https://doi.org/10.1016/j.cag.2019.01.004
0097-8493/© 2019 Elsevier Ltd. All rights reserved.

We address these two shortcomings by making use of sketch,
which offers more efficiency and flexibility to editors as demon-
strated in the recent research [7-10]. Consider the problem of
transferring facial characters in a cartoon image to an actor in the
video as shown in Fig. 1. In this paper, we propose a novel and ro-
bust interactive sketch-based face editing framework for both pro-
fessional and amateur editors to finish this task very conveniently
on a standard PC. We note that our framework is not a caricature
system: the cartoon image we introduced here is not an input which
will be processed by our framework; we are simply using it as an in-
spiration or guideline for users to edit the source video. In fact, users
are free to modify any facial appearance of an actor in the given
video with the help of our framework. Compared to previous work,
we focus on allowing users to edit the facial identity of the actor
in the whole video, but not the expressions.

There are three challenges towards this goal. (1) There is an
inherent tradeoff between flexibility of sketch-based specification
and robustness. Specifically, unconstrained hand-drawn strokes
may produce ambiguous inputs [7,11]. For example, a stroke drawn
between the eyebrow and upper eyelid might indicate editing ei-
ther of them. And it is quite difficult for the framework to deter-
mine the user’s true editing intention by dealing with this stroke
alone. (2) Since the face appearance depends on the pose of the ac-
tor as well as the identity, the influence of facial expression should
be taken into account when applying changes to the identity. (3)

https://doi.org/10.1016/j.cag.2019.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.01.004&domain=pdf
mailto:lz311@cs.rutgers.edu
https://doi.org/10.1016/j.cag.2019.01.004

L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68 59

Frame #2

Input Frame #11 Frame #23

Frame #45 Frame #61 Frame #79 Frame #91

Fig. 1. Given a video, consider the problem of modifying the actor’s facial appearance, e.g., enlarging his mouth, to match facial characters in a reference image (top-left).
Our framework enables users to perform such editing operations by hand-drawn sketch. Then these modifications are propagated throughout the whole video. Top: a cartoon
image for reference and key frames in a video. Bottom: the input sketches and edited frames. Note that our framework is not a caricature system. It does not transfer texture
styles from cartoon images to videos, since we only focus on sketch-based identity deformation.

Compared with previous sketch-based methods designed for static
2D images or 3D models [7,8,11,12], our framework has to further
propagate the modifications from one frame to the whole video. In
this process, we need to predict the modified face appearance in
each frame while ensuring consistency and fidelity.

In this paper, we introduce a 3D face model fitting and identity
deformation transfer formulation. Our core idea is to first trans-
fer modifications from the input sketch to the corresponding 3D
face model fitted by the facial identity and expression, which is
then used for propagating changes to the whole video. To the
best of our knowledge, we are the first framework which allows
users to edit the facial identity of an actor in a video using hand-
drawn sketches. This is made possible with the following key con-
tributions: (1) a sketch-based facial identity editing framework for
videos, (2) a novel 2D to 3D sketch-based identity deformation
transfer algorithm, (3) and a contour-based interface for 3D model
refinement.

2. Related work

In this section, we review the previous work in the filed of
sketch-based editing and deformation transfer which motivate the
design of our sketching system.

2.1. Sketch-based shape editing

Hand-drawn sketches are widely used in modeling static fa-
cial inputs, such as images or 3D shapes [1,13]. The main chal-
lenge of these systems is to handle ambiguous user inputs, i.e.,
strokes which are difficult to match. Previous work [7,11,14] lim-
its the use of only pre-recorded data (curves or points) to mitigate
ambiguity. The following two sketch-based facial animation editing
systems proposed recently are most related to our work. Nataneli
et al. [12] introduced an internal representation of sketch’s seman-
tics, while users have to draw sketch in some predefined regions.
Miranda et al. [8] built a sketching interface control system, which
only allows users to draw strokes on a predefined set of areas cor-
responding to different face landmarks to avoid ambiguous condi-
tions. In this paper, we introduce a sketch-based editing framework
which differs from previous work in the following two aspects: (1)
our method is the first framework that allows users to edit the
face by sketch in a video sequence other than a static image or 3D
shape; (2) we utilize the sequence information of strokes to deal
with ambiguous user inputs without predefined constraints.

2.2. Deformation transfer

Deformation transfer [15,16] firstly addressed the problem of
transferring local deformations between two different meshes,
where the deformation gradient of meshes is directly transferred
by solving an optimization problem. Semantic deformation trans-
fer [17] inferred a correspondence between the shape spaces of
the two characters from given example mesh pairs by using stan-
dard linear algebra. Zhou et al. [18] further utilized these meth-
ods to automatically generate a 3D cartoon of a real 3D face. Thies
et al. [2] developed a system that transfers expression changes
from the source to the target actor based on [15] and achieves
real-time performance. Xu et al. [19] designed a facial expression
transfer and editing technique for high-fidelity facial performance
data. Moreover, other flow-based approaches [3,4] are also pro-
posed to transfer facial expression to different face meshes. How-
ever, these traditional methods aim to transfer deformations, espe-
cially facial expressions, between 3D meshes. Differing from them,
we propose a transfer pipeline which can be used to directly trans-
fer local identity changes in 2D space to a 3D face model. Huang
et al. [20] presented an approach to project changes of a mesh in
2D to 3D as the projection constraint. Compared with it, the main
novelty of our algorithm is that we combine a sketch-based in-
terface to enable users to perform the editing with hand-drawn
sketches from 2D to 3D. We first map sketch into a set of mod-
ifications corresponding to 3D space, and then transfer it to the
target 3D mesh.

3. Framework overview

The input of our framework is a monocular video consisting
of continuous frames of a person’s face, together with a frame ¢,
in this video containing a corresponding hand-drawn sketch. This
sketch may be a complete facial sketch or partial strokes repre-
senting changes that the user wants to be made to the appearance
of the face, e.g., to enlarge the mouth or modify the position of
the eyebrows. Our goal is to recognize all these changes from the
sketch and apply them to the whole video. Inspired by Thies et al.
[2,3], we formulate this task as a parametric face model fitting and
deformation transfer problem.

The whole pipeline of our framework is outlined in Fig. 2. Our
core idea is to first reconstruct a 3D face model F; for each frame
t in the input video, where F; can be disentangled into a unique
component I to represent the facial identity and a sequence of E;
to describe the facial expression changes over time. Meanwhile, the
face deformation encoded in the input sketch is approximated by

60 L. Zhao, F. Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68

'S w S
Output
— !
\ 7 :'A
5. Re-rendering
_______________ -
| a“~
(1
(Jb\ 1
.) 1
= 1
1 =
__________________ L

1. Face Model Fitting

3. Identity Deformation Transfer

4. Contour-Based Model Refinement 6. Results

Fig. 2. Workflow of our sketching framework. The detailed algorithm of each part is presented in the corresponding sections. Red dashed arrows indicate a sequence of
inputs while blue solid arrows stand for model fitting or updating operations, and a dashed box means an optional step. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

a set of local deformations in 2D space. Then we transfer these
deformations from 2D space to the target 3D facial identity I,
while the influence of expression E; is removed by solving an en-
ergy minimization problem. After computing the modified identity
shape I, we can get the updated full 3D face model £ for each
frame t. Finally, these modifications are propagated throughout the
whole video by rendering £ to frame t with the isomap M;.

In the following, we discuss the individual steps in detail. First,
in Section 4, we show how the 3D face model is reconstructed
and disentangled into the identity as well as expression for each
frame in the video by a robust 3D face morphable model fitting
algorithm [21]. In Section 5, a robust sketch mapping and fitting
schema is introduced to recognize user’s editing intentions and
apply them to the face in 2D space. Specifically, we utilize the
order information carried by a series of strokes to mitigate ambi-
guity. Then an energy function is minimized to deform the face ap-
pearance and handle stroke noises at the same time. In Section 6,
we further present an approach to transfer deformations from 2D
space to the 3D facial identity with depth estimation, while get rid
of the influence from expression. We also implement a contour-
based interface for users to refine the 3D identity optionally in
Section 7. Finally, Section 8 presents the optimization algorithms
for rendering the deformed face texture back to the whole video,
which removes artifacts generated from the previous steps. The
user study as well as experiment results shown in Section 9 in-
dicate that our sketching framework is simple to use even for am-
ateurs, while high-fidelity results are guaranteed as well. For clar-
ity, we list the main symbols we used throughout this paper in
Table 1.

4. Face model fitting

We utilize FaceWarehouse [22] to construct the blendshape face
meshes for each frame in the input video. Specifically, a fully trans-
formed 3D face model F can be represented as:

F=R-V+t=R.(Cxyu’ xse’) +t, (1)

where V is a set of vertices describing the shape of the face mesh.
We utilize R and t to represent the global rotation and transla-
tion of V, respectively. C is the rank-3 core tensor from the Face-
Warehouse database [22], which corresponds to vertices of the face

mesh, identity and expression. u is the identity vector and e is the
expression vector. Let L = {I,} denote a set of 2D facial landmarks
of the face in a frame and {v,} denote their corresponding vertices
of the 3D face mesh V. Let F) be the 3D position of v after the
global rotation and translation according to Eq. (1). To compute I,
we define a set of 2D displacement D = {d,} and each of them is
added to the projection of FVk):

I, = HP(F(Vk)) +d,, (2)

where TIp(-) denotes a perspective projection operation which is
parameterized by a projection matrix P. To recover these unknown
face parameters from the video, we employ DDE [21], a state-of-
the-art real-time regression algorithm for facial tracking. DDE pre-
dicts a sextuple (P, u; e, Ry, t;, D¢) for each frame t in the video.
Note that P and u are invariant across all frames for the same ac-
tor and the same video camera during tracking, while the other
unknowns change in different frames. The expression blendshapes
B = {b,} of the certain actor in the input video is constructed as:

B=C x> UT. (3)

As commonly assumed in blendshape models, by is 3D shape of
the neutral face. We can further represent the face shape V; of the
actor in the frame t by:

Np—1

Vi=bo+ Y (by—bo) - &" =bo +E =I+E, (4)
n=1

where & = [ét(l), . ét(")] is computed from the initially fitted ex-

pression coefficient vector e; estimated by DDE. Intuitively, Eq.
(4) disentangles the actor’s 3D face shape V; into the identity
I and expression E;. For each frame t, we also extract M;, the
isomap [23] which contains pixel textures for the face model, and
compute 2D landmarks L; according to Eq. (2). At last, we get the
final per-frame face performances which consist of six parameters
(I, Et, Ry, tg, Le, My). In the following steps, I, E; and L; are used
for computing the deformed 3D face mesh; while R, t; and M;
are employed to propagate the modifications throughout the en-
tire video to generate the final result.

L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68 61

Table 1

The main symbols and their meanings we employed in this paper.

Symbol Meaning

V={v|1<k<N}
u=[u,..., U]
e=[e;.....en]
B={b, |0 <k<Ng}
L={l|1<k=<N}

m =

{Gkl1 <k <N¢}

{Sk|1 <k <Ns} A set of hand-drawn strokes

A set of vertices to represent the shape of a 3D face mesh

The coefficient vector of the facial identity

The coefficient vector of the facial expression

A set of expression blendshapes of a certain actor (by is the shape of neutral expression)
A set of 2D landmarks of the face in a video frame

A 3D face mesh generated after the global rotation R and translation t

The identity component of a 3D face mesh F

The expression component of a 3D face mesh F

M The isomap of a 3D face mesh F

A set of 2D landmark groups (each Gy is a subset of L)

Fig. 3. lllustration of the face landmarks. (a) the original frame; (b) the 68 land-
marks predefined by Huber et al. [24]; (c) the original landmarks to be edited; (d)
the sketch input (the second stroke is ambiguous since it can be mapped to either
the eyebrow or the upper eyelid); (e) key points extracted from the strokes; (f) the
final modified landmarks.

5. Sketch-based deformation transfer

We present a robust sketch-based face editing framework to en-
able users to edit all possible face details once they have been
marked with the corresponding vertices on the 3D face mesh. In
this paper, we allow users to edit 68 face landmarks predefined by
Cao et al. [21,24] for illustration as shown in Fig. 3(b). In order to
apply user’s editing intention from the input sketch, we need first
map each stroke to a suitable part of the face, e.g., the contour of
eyes or mouth, and then deform this part according to the hand-
drawn stroke.

5.1. Sketch mapping

Our target is to map each stroke to a landmark group in the
2D space (a collection of landmarks which represents a meaningful
part of the face, e.g., the left eyebrow or the upper eyelid), and to
remove unreasonable strokes from the result at the same time. The
main challenge in this task is how to deal with ambiguous user in-
puts, and Fig. 3(d) shows an example. Previous methods solve this
problem by only allowing users to edit the face with pre-defined
curves [7,11,14] or draw strokes in pre-ordered regions [8,12]. In-
stead, we introduce a robust mapping schema which enables users
to draw strokes without certain constraints, while the only as-
sumption we made here is that the stroke should be “clean”, i.e.,
each stroke aims to edit just one target landmark group.

We notice users always draw a sketch in a meaningful order
encoding their editing intention. Landmark groups having a strong
relation with each other, e.g., the upper and bottom eyelids of the
same eye, trend to be drawn at the same time. Based on this ob-
servation, the input sketch is regarded as an ordered sequence of
strokes and Hidden Markov Model (HMM) is employed to formu-
late this problem. Note that our HMM-based algorithm leverages the
order in which users draw strokes, for efficient matching with land-
mark groups. Prior works, e.g., [25] have not combined this order
information with HMM. It uses HMM to model the shape of this
stroke to match mesh templates. Let {G1,..., G} be a set of land-
mark groups on the 2D image, and {S;,...,S;} be the stroke se-
quence of the input sketch. We treat each landmark group G as
the hidden state while a stroke S is the observation of HMM, and
our target is to find the most probable sequence of hidden states
(landmark groups) for a given observation sequence (strokes):

argmax P(Gy:¢[St:¢). (5)
1t

The initial probabilities P(Gy) for each hidden state is set to 1/Ng.

And P(S¢|G;) is the emission probability which measures the prob-

ability of each stroke belonging to a certain landmark group. We
define P(S¢|G;) as:

d(St, Gr)?
P(St]Ge) = e"p(‘T ’
0, otherwise

if d(S¢,Gr) <30 (6)

where d(S;, G¢) measures the difference between S; and G;, which
is the average Euclidean distance of their corresponding key points.
Note that if S; has a high distance with all landmark groups (which
means that this stroke is invalid), S; will not be matched with any
Gt and excluded from the result. P(G;|G;_1) is the transition matrix
which expresses the probability of moving from one hidden state
to another. Transition probabilities between two landmark groups
with a strong relation are assigned a higher value, i.e., twice as
large as the other values, which makes it easier for correspond-
ing strokes to be mapped together and helps when strokes are
ambiguous. Given these parameters, the most probable sequence
problem can be solved by the Viterbi Algorithm [26].

5.2. Landmark deformation

For each input stroke S and its mapped landmark group G, we
need to deform G into G according to S, where G is the final mod-
ified landmark group. This is achieved by solving an energy min-
imization function that leverages the position of the input stroke
(editing intention of the user) and the original shape of the land-
mark group. Let g; and g; be the coordinates of the ith landmark
in G and G, respectively, and s; be the corresponding ith key point

62 L. Zhao, E. Han and X. Peng et al./Computers & Graphics 79 (2019) 58-68

in S. The energy function is formulated as:

Ng—1

N
E=Y |l&—sill>+ > (1 —cos(Pi—). (7)

i=1 i=1

where y; is the included angle of g; and g;,{; 7 is that of §;
and g;,,. To minimize this target function, we use the value of
||gi.1 — &il| to approximate ||g;, 1 — &;||, and we solve it with gra-
dient descent algorithm.

Intuitively, the first term of Eq. (7) is the position constrain.
It measures the distance between the modified landmark group
and the input stroke, which moves the landmarks of this landmark
group to their expected positions. Meanwhile, the second term of
Eq. (7) represents the shape prior. It is employed to maintain the
original shape information of this landmark group after the mod-
ification, which helps to prevent generating unrealistic results due
to noises carried by the input sketch.

6. Facial identity deformation transfer

The final modified facial identity [is calculated from the target
identity I by transferring 2D deformations (a set of modified 2D
face landmarks) to I while removing the influence of expressions.
Our strategy is first to estimate the 3D positions of 2D landmarks
with reconstructed face model parameters as shown in Section 3.
Then a robust deformation transfer technique is proposed to deter-
mine the modified identity according to these 3D landmark posi-
tions as well as the expression. It is achieved by two steps: depth
estimation for key points in 2D and solving an extended target
function of [15]. The main contribution of our identity deformation
transfer algorithm is that we perform the deformation transfer be-
tween different feature spaces: from 2D to 3D; while prior work [15,
16, 17] performs the transfer in the same 3D space.

To estimate the 3D position (&;,¥;,Z;) of a certain modified
landmark ii whose 2D coordinate in this frame is (%;,y;), we need
to reconstruct Z; (the depth of this point towards the screen plane).
However, the depth value is unknown since the deformation is
made in 2D space. Notice that when the front face is right against
the screen plane, i.e., the face plane and screen plane are paral-
lel to each other, points on the face mesh will have similar depth
value (the delta of the maximum and minimum depth value of all
the points will reach its minimum), especially for the landmark
whose normal vector is perpendicular to the screen plane. Based
on this observation, we estimate the depth Z; of the modified land-
mark ii with the original depth z; of 1;, which can be computed
directly according to Eq. (1). This estimation can avoid generating
unrealistic facial identity effectively. However, as a result, our ap-
proach is able to achieve the best performance if the editing is ap-
plied on the frame when the actor is facing the camera.

Then we can get the modified facial identity by further trans-
ferring deformations (a set of modified 3D landmark coordinates
computed above) to the target identity. Our approach is inspired
by the correspondence system in [15], but developed in the con-
text of our deformation framework. Let V = {vy,...,v;} and V =
{Vq,...,Vy} be the n vertices of the original and modified facial
identity. Note that here V is equal to the facial identity I when
we remove the effect of the facial expression E; according to Eq.
(4). We let Q = {Q;} be a set of mesh triangles and Q; = V;(V;)~!
be the affine transformations that define the deformation for the
ith triangle, where V; and V; are the corresponding vertex ma-
trix [15] calculated from V and V, respectively. The vertex posi-
tions of the modified identity are computed by minimize the dis-
tance between the original and modified 3D landmarks after re-
moving the influence of facial expression. We define the landmark

term as:
PR ST (8)
2 i=1 1 l ’

where m is the number of modified 3D landmarks, and T; =1 +
Et("") is the coordinate of the ith modified landmark after merging
the influence of the facial expression E;. Then the whole energy
function is defined as:

E(V, .. = Ws&s +WiE + W&

V)
9
=by, b € F(V), ®)

S.t. ‘Al,'

where w, controls the effect of each term, and w; = 0.1 while the
other two are set to 1 experimentally; b, in Eq. (9) is a set of
points on the face boundary F(V). & is a smooth term to make
the transformations for the set of adjacent triangles .4 be similar
with each other [15]:

Q|
& =23 Y e - Q2 (10)

i=1 jeA()

and & maintains the original triangle shapes which are not af-
fected by the deformation in order to prevent generating a drastic
change in the shape of the target identity [15]:

Q|
~ N 1
E (W T = 5 D IIQ -1 (1)
i=1

where I is the identity matrix. The whole energy function can be
minimized by solving a system of linear equations. During this pro-
cedure, the boundary points of the deformed mesh will match ex-
actly since they are specified as constraints to keep the original
face contour, the local deformations are transferred by the land-
mark term, and the rest of the mesh will be carried along by the
smoothness and identity terms.

7. Contour-based face model refinement

Since the quality of a 3D face model computed from the iden-
tity deformation transfer highly influences our final result, we im-
plement an interface for artists to directly edit the deformed 3D
face model for refinement. To ensure fluency and simplicity of user
interaction during this process, we present a contour-based edit-
ing schema. Note that this refinement step can be skipped if a fa-
vorable result has already been achieved during previous steps or
users have no experience in 3D model editing.

At the beginning of this refinement stage, selected feature con-
tours on the deformed 3D face model are projected onto the 2D
canvas to produce an initial sketch-like contour map. Then the user
can drag or rotate it to observe the model from different views. If
some of the projected lines are not satisfactory, the user can re-
draw them with new sketches. In this refinement phase, these re-
drawn lines are matched more closely with user inputs by adding
them as new constraints for the 3D face model. Compared with
traditional interactive 3D mesh editing softwares such as MAYA
or 3DS-MAX, which always take a long time for a skilled artist
to create a decent 3D face model, our contour-based approach is
much simpler and faster. Moreover, this contour-based refinement
interface also ensures a smooth user experience during the whole
editing process for not involving different softwares or interactive
modes other than hand-drawn sketches.

Contour rendering. Recent studies [27,28] present a hybrid line
rendering method to generate 2D contour maps for 3D shapes
and obtain good performance. In this paper, we adopt this ap-
proach which combines predefined exterior silhouettes, occluding

L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68 63

(b)

Fig. 4. We provide a contour-based mode for model refinement. Given a 3D face
mesh (a), a hybrid line rendering method is utilized to render the contours from
different view points (b). Users are allowed to edit these contours with sketches as
shown in (c).

contours, suggestive contours [29] and shape boundaries to gener-
ate the final contour map from a given view point for further edit-
ing. Examples are shown in Fig. 4. Note that the preprocess steps
in [30] are also applied to reduce the noise in the initial map.

3D model refinement. Users are allowed to rotate the input 3D
model to edit its 2D contour map from different view points. Once
an unsatisfactory line in the map is found, users can modify it
by marking a certain region around to erase it first, and draw a
new relevant sketch. After sampling the key points from them,
the edited line is then calculated by the same algorithm as de-
scribed in Section 5.2. We treat the key points in the edited line
as new landmark constraints, and the identity deformation trans-
fer in Section 6 is employed to update the face model. Users are
able to repeat these steps until a favorable 3D facial identity [is
achieved. Note that since more constraints are added, we increase
the weights of wg and w; in Eq. (9) at this stage so as to prevent
drastic deformations in the final 3D shape I.

8. Texture re-rendering and smoothing

Propagating deformations to the whole video is achieved by
computing modified § with [for each frame t according to
Egs. (1) and (4), and then re-rendering the extracted face texture
isomap M; back to the frame with f. For a high-fidelity result, the
background should be warped as well, so that both sides of the
face boundary deform coherently. We also apply the median filter
on the boundary to blur the difference between the face and its
surrounding background.

Note that there might be some “holes” (invisible pixels) on the
isomap M; due to the occlusion. However, if modifications are ap-
plied on the boundary of the 3D facial identity, these “holes” will
lead to artifacts after smoothing since they might be visible as a
result of the deformation. We notice that these missing pixels may
be seen from other frames (since the actor always have different
poses in different frames), which can be employed to fill “holes”
in one certain frame. Therefore, we utilize a refined isomap M; to
synthesize the modified face in each frame. To obtain the refined
isomap M;, we first compute a mean isomap M from all frames in
the given video. And then for the isomap M; of each frame t, we
use this mean isomap to fill the “holes” in it. We obtain the final
refined isomap M; for each frame after applying a Gaussian filter
on it to smooth the boundaries. Finally, the artifacts on the bound-
ary can be removed by re-rendering the face with M; as shown in
Fig. 5.

To handle missing background due to the facial deformation,
one simple strategy is building a background model (background
as in non-face and non-body) over successive frames and then
replacing missing background pixels with newly revealed ones.
However, this approach depends on an accurate background seg-
mentation algorithm. In this paper, we solve it in a more robust
warping-based manner. Firstly, we employ SIFT [31] to detect the

Fig. 5. We use the refined isomap (the second row) to remove artifacts. From left to
right: the original frame and the sketch input, texture isomap, the modified output,
detailed view of the output.

Table 2

Average runtime of our framework. The average runtime for one
frame of each step in our method is computed with respect
to different video resolutions. The program runs with parallel
optimization.

Video quality 360P 480P 720P 1080P
Model fitting 11.9 ms 12.1 ms 13.6 ms 14.3 ms
Sketch matching 1.4 ms 14 ms 1.8 ms 2.1 ms
Deform transfer 3.1 ms 3.1 ms 3.4 ms 3.5 ms
Rendering 166 ms 205 ms 82.6ms 98.6 ms
BG Opt. 188 ms 21.6 ms 28.1 ms 342 ms
FPS 293Hz 269Hz 97Hz 8.4 Hz
FPS w/ BG Opt. 19.2 Hz 16.8 Hz 7.6 Hz 6.2 Hz

static key points from the starting frame; optical flow is calcu-
lated throughout the whole video in order to track the dynamic
key points of the background. Then we construct a set of control
points for each frame by combining the static and dynamic points.
Finally, we use Moving Least Square [32] algorithm to warp the
background pixels based on detected control points. This optimiza-
tion strategy can effectively avoid shaking for static objects in the
background, while maintain the consistency of the face boundary
concurrently.

9. Results

We evaluate the performance of our approach on different
Youtube videos at a resolution of 1280 x 720. The videos show dif-
ferent actors with different scenes captured from varying camera
angles; we choose one frame for each video and provide a cor-
responding sketch of the actor’s face as the input. In our experi-
ments, users are allowed to edit 68 face landmarks marked by Hu-
ber et al. [24] by sketch for demonstration. Example results cre-
ated by amateurs using our sketching interface are shown in Figs. 1
and 6.

9.1. Runtime performance

We evaluate the runtime performance of our methods by com-
puting the average runtime of each step with respect to differ-
ent video resolutions. Within the step of texture re-rendering, an
isomap with 256 x 256 resolution is computed for 360P and 480P
videos; 512 x 512 resolution is configured for HD videos. Our ap-
proach runs on a desktop computer with an Intel 4.00 GHz Core i7-
6700K CPU. Table 2 shows the result. The texture re-rendering and
background optimization is the slowest components, while oth-
ers run in a matter of milliseconds. Note that our framework can

64 L. Zhao, FE. Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68

Input Frame #62 Frame #71 Frame #83 Frame #98 Frame #110 Frame #124 Frame #150

¥

Input Frame #2 Frame #7 Frame #18 Frame #33 Frame #78 Frame #86 Frame #116

Input Frame #1 Frame #42 Frame #58 Frame #66 Frame #84 Frame #98 Frame #118

Input Frame #16 Frame #27 Frame #57 Frame #67 Frame #86 Frame #98 Frame #117

Fig. 6. More examples of our sketching system. In each example, the first column includes the cartoon image for reference (top) and the sketch input (bottom). Starting
from the second column, the original (top) and edited frames (bottom) in different videos are shown.

L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68 65

achieve real-time performance (>25 FPS) for standard resolution
videos without background optimization, which is compatible with
streaming inputs. Moreover, our method does not rely on a power
GPU and can be extended to light-weight devices.

9.2. User study

In this section, the user study is conducted to evaluate the user
experience as well as the video results achieved by our framework.
We invited 20 people, 10 men and 10 women. All participants are
graduate students aged from 23 to 25, and 3 of them major in arts
while the others come from statistics and computer science de-
partments. In addition, 4 of them have background in arts and 3D
animation modeling (with 3-year experiences in MAYA and 3DS-
MAX as well), while the others are amateur users that have lim-
ited or no knowledge about drawing and 3D editing. Before the
following sessions, a 10 min tutorial as well as 20 min for practice
were given to guarantee that every participant knows how to use
our interface. Another 40 min are employed to introduce MAYA to
amateur users. In our evaluation, we use cartoon images as ref-
erence to compare our results with users’ true editing intention
in an effective way. Users are asked to edit the face to match a
cartoon image using our system. However, they are free to make
additional modifications as they wish. Therefore, the results may
contain some unrelated user inputs.

9.2.1. User experience of interfaces

The goal of the first session is evaluating the user experience
of our sketched-based interface. To guide users’ editing intention,
each participant was given a Youtube video together with a 2D
cartoon face image as reference, and asked to edit the facial ap-
pearance of the actor in this video to match at least one promi-
nent facial character in the cartoon image using our system. Note
that the created facial identity was not required to strictly fol-
low the reference image and differences were allowed. All partici-
pants should complete 5 tasks in this session with different pairs
of videos and reference images as illustrated in Figs. 1 and 6. We
also implemented another deformation-based user interface, where
3D face models were first calculated according to Section 3; then
MAYA was utilized as the editing tool instead of sketches, and
final results were directly generated by the modified models as
Section 8. In this deformation-based interface, users are only al-
lowed to edit/modify the positions of mesh vertices with MAYA.
This constraint is made for fair comparison, since our system de-
forms the mesh in the same way. All participants were asked to
repeat the same tasks with this interface. For amateur users, they
could stop anytime if it was too difficult for them to continue
while the artists were required to finish all tasks. To verify the ef-
fectiveness of our contour-based refinement mode in Section 7, the
amateur users were recommended to try it after the initial sketch-
ing, and the artists should use it for all tasks. At the end of this
session, we asked the participants which system is easier to use.

Among all the 16 amateur users, 12 of them finished editing
tasks with the deformation-based interface while the others gave
up halfway. Instead, all participants completed the same tasks with
our sketch-based interface. Moreover, 10 of the amateurs used our
contour-based refinement mode; the others chose to skip it for fa-
vorable results had already been achieved in the previous steps.
In terms of user experience, all participants agree that our sys-
tem is simpler to use and yields decent results. Those who tried
our refinement mode agree that it was very helpful, and the four
professional artists agree that it is more efficient than traditional
deformation-based software.

SISLELS
T11,
TLL,
e
LLL

(b) Ours (¢c) MAYA* (d) Ours*+RF

(a) Input

Fig. 7. A gallery of results created using three different editing interface settings.
From top to bottom, each row shows the fitted 3D face model and the deformed
models corresponding to the cases as shown in Fig. 1 and Fig. 6, respectively. Note
that each 3D face model is fitted from the actor in the first frame of the video.

Table 3

Average timings for editing with different interfaces.
Interface MAYA Ours MAYA* Ours*+RF
Time (m) 125+18 36+03 95+14 41+08

9.2.2. Comparison on mesh deformation

Fig. 7 shows a gallery of deformed 3D face models, which are
corresponding to the actors of the cases as shown in Figs. 1 and 6,
with three different editing interface settings. They were created
using our sketch-based interface by amateurs (Ours), by artists
with the deformation-based interface (MAYA*) and our sketch-
based interface with the refinement mode (Ours*+RF), respectively.
Detailed timings are shown in Table 3. In addition, we also re-
port the timing for editing using the deformation-based interface
by amateurs (MAYA). As shown in Table 3, an amateur on aver-
age only spent 3.6 min to complete the task via our system, which
is 3 times faster than using the interface based on MAYA. Mean-
while, our sketching interface also doubled the editing efficiency

66 L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68

EMAYA: #3.00 ®Ours: #2.40 ®wMAYA*:#2.27 » Ours* + RF: #2.33

Rank #1

Rank #2

Rank #3

Rank #4

30

of votes

Fig. 8. Voting results from the 1st to 4th rank of videos created with 4 different
interface settings. We also report the average ranking of each group following the
group name.

for artists. In Fig. 7, our system is able to achieve results com-
parable with the ones created using MAYA by artists, while ama-
teurs managed to perform reasonable mesh deformations with our
interface.

9.2.3. Evaluation on visual results

To further evaluate the visual results generated by our sketch-
based face editing system, we also designed the second session fol-
lowing the editing session. In this session, results in the previous
session were selected into 4 groups: videos edited by amateurs us-
ing the deformation-based interface or our sketch-based interface,
and ones generated by artists using the deformation-based inter-
face or our sketch-based interface with the refinement mode. For
fair comparison, we manually chose the best result in each group
for every task in the editing session. After that, all these videos
(5 tasks done by 4 groups, respectively) together with their cor-
responding reference cartoon images were presented to additional
30 students who did not participated in the editing session. Given
a reference image (displayed in random order), every participant
was asked to look at the corresponding videos from the 4 differ-
ent groups, and then rank them by choosing the one that better
matches the cartoon. The final results are shown in Fig. 8.

We can find that videos created by amateurs using our
sketching interface obtain higher average rank than ones using
deformation-based interface. A T-Test was also conducted to com-
pare rankings obtained with these two different settings. There
was a significant difference in the rankings using the deformation-
based interface (M =3.00, SD = 1.17) and sketch-based interface
(M = 2.40, SD = 1.08); t(58) = 2.19, p = 0.03. It demonstrates that
our framework does improve the results for amateurs. Notice that
different results created by artists and amateurs with our sketch-
ing interface have similar average ranks (2.33 and 2.40, respec-
tively). It suggests that, with the help of our sketch-based inter-
face, amateurs manage to create comparable results to a certain
extent compared with artists. Another observation is that results
have similar ranks when artists use our interface and MAYA, which
agrees that artists can produce competitive results with our inter-
face compared with MAYA.

9.3. Evaluation of 3D-based editing

We argue that the 3D face model and deformation transfer al-
gorithms are the keys to ensure the consistency as well as fidelity
of the editing results. To evaluate the effectiveness of our 3D-based
editing system, we implemented a 2D-warping baseline for com-
parison. We use the results of deformed 2D face landmarks in
Section 5.2 as the inputs for this baseline. Then the face is de-
formed by Moving Least Square [32] in the 2D space. All partici-

0.5 T T T T T T

2D Warping
04r 3D Editing

Distance
j=]
(98]

10 20 30 40 50 60
Frame #

Fig. 9. The Content Distance curves of our 3D-based editing system and the 2D-
warping baseline. Our system has a lower curve and a smaller gap when handling
changes in head rotations and facial expressions.

Nataneli et al. Ours

Input Miranda et al.

Fig. 10. Comparison of our sketch matching to the approximate implementation
of Miranda et al. [8] and Nataneli et al. [12]. From top to bottom: two individual
strokes, one stroke with noises, and a group of strokes with ambiguity (different
colors represent different matched landmark group pairs). Our method is able to
achieve reasonable results for all these cases.

pants of the user study are invited to try this 2D-warping baseline,
and 85% of them prefer our system over the baseline.

For quantitative comparison, we measure the content consis-
tency of an editing video using the Content Distance metric in-
troduced in [33,34]. We employed OpenFace [35], which outper-
forms human performance in the face recognition task, for mea-
suring video content consistency. A feature vector is produced by
OpenFace for each frame in a given video. The distance is then cal-
culated by the pairwise L2 distance of the feature vectors. To mea-
sure the quality of an edited video, we compute the distances be-
tween each frame and the first frame. A method that owns a lower
distance curve handles changes in rotations or expressions better.

We collected all the edited results in the user study for evalua-
tion. To highlight the performance, the videos are manually aligned
so that a noticeable change in head rotation or expression occurs
around the 25th frame. Using the deformed 2D landmarks as the
inputs, we compute the distance curves for the edited videos gen-
erated by our 3D-editing system and the 2D-warping baseline for
comparison. The results are given in Fig. 9. From the figure, we find
that the content of the videos generated by our system is more
consistent: ours achieves a lower distance curve. More importantly,
our system is able to handle rotation or expression changes better
than the 2D-warping baseline, since there is a smaller gap in our
distance curve. Therefore, our system offers a 3D solution which
substantially outperforms the 2D-warping approach.

L. Zhao, . Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68 67

9.4. Evaluation of sketch matching

To evaluate the performance of sketch matching, we compare
our method with a geometry-based algorithm described in [8] and
another learning-based approach [12] which both achieve state-
of-the-art performance. We use the stroke similarity measurement
described in them to match strokes with landmarks, respectively as
their corresponding approximate implementation. Detailed results
are shown in Fig. 10. We can find that all the methods produce
competitive results with clear user inputs. However, as shown in
the second case of Fig. 10, [8] is sensitive to noises since it fits
landmarks to strokes via only geometry features; Nataneli et al.
[12] is able to handle this case due to pre-learned prior knowl-
edge; our method can remove noises by taking the original appear-
ance of the landmark group (the shape prior term in Eq. (7)) into
consideration. For ambiguous inputs as shown in the third case of
Fig. 10, both [8,12] map the second stroke to eyebrow incorrectly;
we can successfully match it with the upper eyelid since the HMM
we employed trends to match the upper and bottom eyelids at the
same time during optimization.

10. Conclusions and discussion

This paper presents the first sketch-based face editing frame-
work for monocular videos. In an attempt to recognize the user’s
editing intentions from hand-drawn sketch, a robust sketch match-
ing schema is introduced to convert them to a set of face land-
mark deformations. Furthermore, a novel facial identity deforma-
tion transfer algorithm is employed to propagate these changes
throughout the whole video, while consistency and fidelity are
maintained. Without background optimization, our framework is
able to achieve real-time performance for streaming inputs with
standard definition. Overall, we believe our framework will con-
tribute to many new and exciting applications in the field of face
editing on light-weight devices, e.g., a tablet PC and mobile phone.

Limitations. There are some notable limitations to our work. One
limitation of our sketch-mapping algorithm is that amateur users
may not produce correctly ordered sketches in their first try. We
make use of HMM to model the relation of different strokes, and
users have to redraw a part of strokes with the incorrect order.
However, this is mitigated by the fact that on average, the com-
plexity and number of sketches is small (less than 6 strokes in
most cases), and our interactive system supports rapid iteration
and refinement of strokes. Another limitation is that we only al-
low users to edit a few landmarks on a face. This is due to the
limitation of the morphable models we employed to construct the
3D face: local geometric details such as wrinkles cannot be rep-
resented. Moreover, since our method relies on a fixed z-value for
more accurate depth estimation, users have to draw sketches on a
front face to achieve the best performance.

Future work. In the future, we will consider implementing a
stereo editing interface to enhance the user experience and enable
users to edit faces from different view points as well. To allevi-
ate the problem of limited editing ability, we propose to utilize
Generative Adversarial Network (GAN) [36] to make pixel-to-pixel
prediction [34,37,38] directly from sketches instead of using mor-
phable models. Moreover, allowing users to edit more facial details
from sketches is another future direction. We expect other inter-
esting applications for the framework we have shown here. One
can imagine coupling this work with an artist to create a cartoon
talking avatar starting from a video.

Acknowledgments

The authors would like to thank the reviewers for their con-
structive comments and the participants of our user study for their

precious time. This work was funded in part by grant BAAAFOSR-
2013-0001 to Dimitris Metaxas. This work is also partly supported
by NSF 1763523, 1747778, 1733843 and 1703883 Awards. Mubbasir
Kapadia has been funded in part by NSF [IS-1703883, NSF S&AS-
1723869, and DARPA SocialSim- 911NF-17-C-0098.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.cag.2019.01.004.

References

[1] Han X, Gao C, Yu Y. DeepSketch2Face: a deep learning based sketch-
ing system for 3D face and caricature modeling. ACM Trans Gr (TOG)
2017;36(4):126:1-126:12.

[2] Thies], Zollhéfer M, Stamminger M, Theobalt C, Niefner M. Face2Face: re-
al-time face capture and reenactment of RGB videos. In: Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR); 2016.
p. 2387-95.

[3] Yang F, Bourdev L, Shechtman E, Wang], Metaxas D. Facial expression editing
in video using a temporally-smooth factorization. In: Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR); 2012. p. 861-8.

[4] Yang F, Wang], Shechtman E, Bourdev L, Metaxas D. Expression
flow for 3D-aware face component transfer. ACM Trans Gr (TOG)
2011;30(4):60:1-60:10.

[5] Chen Y-L, Wu H-T, Shi F, Tong X, Chai J. Accurate and robust 3D facial capture
using a single RGBD camera. In: Proceedings of the international conference
on computer vision (ICCV); 2013. p. 3615-22.

[6] Hsieh P-L, Ma C, Yu], Li H. Unconstrained realtime facial performance cap-
ture. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR); 2015. p. 1675-83.

[7] Lau M, Chai J, Xu Y-Q, Shum H-Y. Face poser: interactive modeling of 3D facial
expressions using facial priors. ACM Trans Gr (TOG) 2009;29(1):3:1-3:17.

[8] Miranda JC, Alvarez X, Orvalho], Gutierrez D, Sousa AA, Orvalho V.
Sketch express: a sketching interface for facial animation. Comput Gr
2012;36(6):585-95.

[9] Wang F, Kang L, Li Y. Sketch-based 3D shape retrieval using convolutional neu-
ral networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR); 2015. p. 1875-83.

[10] Liang S, Zhao L, Wei Y, Jia J. Sketch-based retrieval using content-aware hash-
ing. In: Proceedings of the pacific-rim conference on multimedia (PCM); 2014.
p. 133-42.

[11] Chang E, Jenkins OC. Sketching articulation and pose for facial animation. In:
Proceedings of the ACM SIGGRAPH/eurographics symposium on computer an-
imation; 2006. p. 271-80.

[12] Nataneli G, Faloutsos P. Bringing sketch recognition into your hands. IEEE Com-
put Gr Appl 2011;31(3):32-41.

[13] Olsen L, Samavati FF, Sousa MC, Jorge JA. Sketch-based modeling: a survey.
Comput Gr 2009;33(1):85-103.

[14] Sucontphunt T, Mo Z, Neumann U, Deng Z. Interactive 3D facial expression
posing through 2D portrait manipulation. In: Proceedings of the graphics in-
terface; 2008. p. 177-84.

[15] Sumner RW, Popovi¢]. Deformation transfer for triangle meshes. ACM Trans
Gr (TOG) 2004;23(3):399-405.

[16] Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-pre-
serving surface editing. In: Proceedings of the vision, modeling & visualization;
2006. p. 357-64.

[17] Baran I, Vlasic D, Grinspun E, Popovic J. Semantic deformation transfer. ACM
Trans Gr (TOG) 2009;28(3):36:1-36:6.

[18] Zhou], Tong X, Liu Z, Guo B. 3D cartoon face generation by local deformation
mapping. Vis Comput 2016;32(6):717-27.

[19] Xu F, Chai J, Liu Y, Tong X. Controllable high-fidelity facial performance trans-
fer. ACM Trans Gr (TOG) 2014;33(4):42:1-42:11.

[20] Huang], Shi X, Liu X, Zhou K, Wei L-Y, Teng S-H, et al. Subspace gradient
domain mesh deformation. ACM Trans Gr (TOG) 2006;25(3):1126-34.

[21] Cao C, Hou Q, Zhou K. Displaced dynamic expression regression for real-time
facial tracking and animation. ACM Trans Gr (TOG) 2014a;33(4):43:1-43:10.

[22] Cao C, Weng Y, Zhou S, Tong Y, Zhou K. FaceWarehouse: a 3D facial ex-
pression database for visual computing. IEEE Trans Vis Comput Gr (TVCG)
2014b;20(3):413-25.

[23] Tenenbaum]B, Silva Vd, Langford JC. A global geometric framework for non-
linear dimensionality reduction. Science 2000;290(5500):2319-23.

[24] Huber P, Hu G, Tena R, Mortazavian P, Koppen WP, Christmas W, et al. A mul-
tiresolution 3D morphable face model and fitting framework. In: Proceedings
of the international conference on computer vision theory and applications
(VISAPP); 2016. p. 79-86.

[25] Kraevoy V, Sheffer A, van de Panne M. Modeling from contour drawings. In:
Proceedings of the sixth eurographics symposium on sketch-based interfaces
and modeling; 2009. p. 37-44.

[26] Viterbi A. Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Trans Inf Theory 1967;13(2):260-9.

https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000185
https://doi.org/10.1016/j.cag.2019.01.004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0021
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0021
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0021
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0021
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0022
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0023
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0023
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0023
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0023
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0024
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0025
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0025
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0025
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0025
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0026
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0026

68 L. Zhao, FE. Han and X. Peng et al./ Computers & Graphics 79 (2019) 58-68

[27] Wang F, Lin L, Tang M. A new sketch-based 3D model retrieval approach by
using global and local features. Gr Models 2014;76(3):128-39.

[28] Zhao L, Liang S, Jia], Wei Y. Learning best views of 3D shapes from sketch
contour. Vis Comput 2015;31(6):765-74.

[29] DeCarlo D, Finkelstein A, Rusinkiewicz S, Santella A. Suggestive contours for
conveying shape. ACM Trans Gr (TOG) 2003;22(3):848-55.

[30] Zitnick CL, Dollar P. Edge boxes: locating object proposals from edges. In:
Proceedings of the European conference on computer vision (ECCV); 2014.
p. 391-405.

[31] Lowe DG. Distinctive image features from scale-invariant keypoints. Int] Com-
put Vis 2004;60(2):91-110.

[32] Schaefer S, McPhail T, Warren]. Image deformation using moving least
squares. ACM Trans Gr (TOG) 2006;25(3):533-40.

[33] Tulyakov S, Liu M-Y, Yang X, Kautz J. MoCoGAN: decomposing motion and con-
tent for video generation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR); 2018. p. 1526-35.

[34] Zhao L, Peng X, Tian Y, Kapadia M, Metaxas D. Learning to forecast and refine
residual motion for image-to-video generation. In: Proceedings of the Euro-
pean conference on computer vision (ECCV); 2018. p. 387-403.

[35] Amos B, Ludwiczuk B, Satyanarayanan M. OpenFace: a general-purpose face
recognition library with mobile applications. Tech. Rep. CMU-CS-16-118. CMU
School of Computer Science; 2016.

[36] Goodfellow I, Pouget-Abadie], Mirza M, Xu B, Warde-Farley D, Ozair S,
et al. Generative adversarial nets. In: Proceedings of the advances in neural
information processing systems; 2014. p. 2672-80.

[37] Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional
adversarial networks. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (CVPR); 2017. p. 1125-34.

[38] Tian Y, Peng X, Zhao L, Zhang S, Metaxas DN. CR-GAN: learning complete rep-
resentations for multi-view generation. In: Proceedings of the international
joint conference on artificial intelligence (IJCAI); 2018. p. 942-8.

http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0027
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0027
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0027
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0027
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0028
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0028
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0028
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0028
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0028
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0029
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0029
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0029
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0029
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0029
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0030
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0030
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0030
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0031
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0031
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0032
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0032
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0032
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0032
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0033
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0033
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0033
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0033
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0033
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0034
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0035
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0035
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0035
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0035
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0037
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0037
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0037
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0037
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0037
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038
http://refhub.elsevier.com/S0097-8493(19)30014-7/sbref0038

	Cartoonish sketch-based face editing in videos using identity deformation transfer
	1 Introduction
	2 Related work
	2.1 Sketch-based shape editing
	2.2 Deformation transfer

	3 Framework overview
	4 Face model fitting
	5 Sketch-based deformation transfer
	5.1 Sketch mapping
	5.2 Landmark deformation

	6 Facial identity deformation transfer
	7 Contour-based face model refinement
	8 Texture re-rendering and smoothing
	9 Results
	9.1 Runtime performance
	9.2 User study
	9.2.1 User experience of interfaces
	9.2.2 Comparison on mesh deformation
	9.2.3 Evaluation on visual results

	9.3 Evaluation of 3D-based editing
	9.4 Evaluation of sketch matching

	10 Conclusions and discussion
	Acknowledgments
	Supplementary material
	References

