

Virtual Adornments: Haute Couture Practices for IoT Connecting Apparel

Caroline McMillan

RMIT University

Melbourne, Australia

cazmcmillan@hotmail.com

ABSTRACT

The Internet of Things (IoT) [3, 16, 35] is a physical-digital ecosystem of compliant technologies and heterogeneous parts, enabling vast transmissions of data and candid, pervasive presence of things [40]. Fashion, on the other hand, is an embodied practice, an information medium of material, social, cultural, economic and political forces. Many wearables are outfitted to actuate data input sources as a visualised display. However, the impact and rich possibilities of fashion adornment practices for embodied data engagement in IoT wearables design have been overlooked. Introducing computational materials of the IoT to physical properties pushes this virtual system into the physical realm. In this research, an aesthetic criterion of haute couture practices considers the material turn [34, 39]. Design cases of fashion-led adornment style are a promising path to follow in the context of designing wearables for an *Internet of Worn Things*.

Author Keywords

Wearables; Internet of Things; fashion; haute couture; research through design; material cultures.

CSS Concepts

- Human-centered computing~Interface design prototyping
- Applied computing~Performing arts
- Computer systems organization~Robotic components

LITERATURE REVIEW

The IoT's ubiquitous [41], enmeshed ecology enables autonomous processing and aggregation of big data transactions amongst the digital-physical world. Data security vulnerabilities are addressed as a key issue [42, 14], as is locating dynamic topologies [31] of IoT connected *worn things*. Moreover, our shifting engagement with computational material, wireless technologies and data, provokes diverse aesthetic and material dialogue; the material

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

TEI '19, March 17–20, 2019, Tempe, AZ, USA

© 2019 Copyright is held by the owner/author(s).

Publication rights licensed to ACM.

ACM 978-1-4503-6196-5/19/03...\$15.00

<https://doi.org/10.1145/3294109.3302935>

turn, notions of screen essentialism [4, 13, 25], computational medial affordances such as glitches, pattern recognition, autonomous behaviours [6, 36] and disembodied aesthetics [12, 32]. As wearables, IoT systems, have notably advanced tracking practices, such as the Quantified self [23, 37] and remote social interactions [9]. Given the susceptibility of networked denizens in a pervasive socio-technical system, it is timely to question the habitual IoT paradigm [2, 26], framing the networked *body-worn things* in this ecology. Accordingly, worn quantified data visualisation is critiqued [18], as are aesthetic data input sources [7, 25] and bodily-sensory outputs [1, 38, 44]. While ornamental textile approaches have been explored for textile computation (5, 11, 15, 25, 33], my research draws from rich fashion traditions of haute couture [8, 10, 28], whose embellishment practices offer a tactile, aesthetic refinement for wearables.

RESEARCH QUESTIONS

By foregrounding a fashion perspective, networked *worn things* are viewed through a computational material lens.

- In what ways can fashion-led, embodied material practices craft computational material into meaningful data visualisation, for networked wearables in an *Internet of Worn Things* ecology?
- How can computational material and its medial affordances interrogate aesthetic expression for haute couture adornment practices, to broaden bodily-sensory modes of output?

APPROACH

In my research inquiry, I adapt Research through Design (RtD) [14], to the specific context of crafting IoT connected fashion wearables and extend it by integrating antidisiplinary [20] and performative [17, 19, 27] tactics. RtD supports my investigation of embodied engagement with computational materials through fashion design processes as a mode of inquiry. In this research, a collection of IoT connected garments - *Virtual Adornments* are devised to customise wireless technologies and data-sets for use in haute couture adornment style, to probe networks of *worn things*. Using the design mechanisms and conditions relevant for garments, future outcomes are imagined, emergent material prototypes constructed and artefacts devised to engage with broader ethics of dynamic, networked, worn data transactions. Making negotiates antidisiplinary interventions and performative observations, using material investigation,

prototyping material artefacts to incite feedback, see emergent patterns and to articulate unfamiliar conditions. Methods employed in this approach are drawn from RtD design processes: *contextual review of practice and literature, material and aesthetic investigation and ideation, material probes[21] and embodied ideation[43], action research diaries, prototypes, testing, performative artefacts, wearer interventions.*

WORK IN PROGRESS

Prototypes

The *Virtual Adornments* collection explores visual and tactile bodily-sensory aesthetic expressions for empowered data input and refined output systems, through consistent haute couture adornment style. This approach is unique, in the sense that hardware components are replaced before tailored on garments. This creates significant differences in the aesthetic expression since the reworked materials correspond to tactile textures, reminiscent of fashion haute couture collections. Two exploratory works in this series are; *Live:scape BLOOM* [29, 30], an IoT dress with robotic embellishment that kinetically responds to quantified weather phenomena, and *Aura:maton*, IoT connected corsetry that electronically releases scent based on quantified physiological data. Both garments explore embodied, autonomous behaviour of data expression in the IoT.

Figure 1. Video still of *Live:scape BLOOM*. Haute couture robotic embellishment detail.

Embodied Design Workshops

Further, an initial phase of embodied design workshops with new media, theatre, fashion and interaction design students, faculty, and dancers has been conducted. Additional requirements were necessary to deepen ideation for what future networked data expressions may fit, move, perform, look and feel. The aim was to probe tactile, bodily experience through materials and movement gestures, and program IoT wearables into the act of wearing. Early analysis unearths that the resulting wearables conceptualisations are specific to individual material, sensory, bodily, style and cultural orientation.

Performative artefacts

Exhibiting *Live:scapeBLOOM* as a performative artefact revealed a range of individual responses — many described desires for broader sensory-aesthetic expression, such as

added LED's for greater effect, scent producing flower embellishment, or more reciprocative interaction behaviour than autonomous live streams of quantified wind data. A hardware 'glitch' in *Live:scape BLOOM* created coquettish movement and provoked intrigue from one viewer. Rather than debug the glitch, it is a compelling shaping material to reconceptualise autonomous computational pattern recognition and medial affordances into the wearables design process: *embellishment repeat patterns, materials, garment patternmaking, silhouettes, data input sources and output hardware, performative interaction design, embodied, dynamic prototyping, testing interventions, film presentation.*



Figure 2. Detail of an emergent material prototype in the design process of making an olfactory output for data expression.

DISCUSSION AND FUTURE WORK

Performative analysis of *Livescape:BLOOM* has informed aesthetic direction for *Aura:maton*. In consideration of data-triggered scent embellishment, material investigations for ambient scent as opposed to skin worn, and required hardware options, the overall expression was drastically modified to accommodate the volatile, temporal behaviour of scent material. Instead, immaterial forms such as fog, temporal traces, and fabric transparency were used to capture aesthetic properties metaphorically. My objective is to value the practice and material improvisation of fashion haute couture for IoT wearables, so they can be worn as everyday garments and appreciated for augmented wireless data visualisation. The approach of aligning established fashion and textile embellishment with computational material practices for the field of IoT, while drawing on familiar routines in the design process, proves suitable for this research. Wearables can be more than computational display. Rather, artefacts of identification within dynamic, physical-digital systems, contributing to the grounding of the fashion wearables design as a bodily-sensory practice. Ongoing work explores wearer probes, that scaffold interactions of IoT mediated garments to leverage broader public responses and experiential accounts of the *Virtual Adornments* collection.

Figure 3. Video still of *AURA:maton*. Performative analysis of haute couture robotic corsetry.

CONCLUSION

My research reveals what can be considered failures of autonomous technological processing, as crucial to material and design innovation. This view advances practice in fashion-led IoT connected wearables, critiquing inclinatio toward designing for seamless technological functionality. By looking outside the boundaries of IoT usage, and introducing a fashion perspective for an *Internet of Worn Things*, my work resists ubiquitous technological scenarios of automated network assembly and function, to propose more nuanced responses of fashion wearables as a complex, layered, embodied practice.

ACKNOWLEDGMENTS

I would like to thank my supervisors Danielle Wilde and Lijing Wang for their ongoing encouragement and support. Funding from the Australian Research Training Program Scholarship is gratefully acknowledged. I would also like to thank the reviewers for their helpful comments. *Live:scape BLOOM* was developed during the Deutsche Telekom Fashion Fusion Award Berlin Germany 2016. All images © 2019 the author.

REFERENCES

[1] Judith Amores and Patti Maes. 2017, May. Essence: Olfactory interfaces for unconscious influence of mood and cognitive performance. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems* (pp. 28-34). ACM.

[2] Luigi Atzori, Antonio Iera and Giacomo Morabito. 2010. The internet of things: A survey. *Computer networks*, 54(15), 2787-2805.

[3] Kevin Ashton. 2009. That ‘internet of things’ thing. *RFID journal*, 22(7), 97-114.

[4] David M. Berry and Michael Dieter. 2015. Thinking postdigital aesthetics: Art, computation and design. In *Postdigital Aesthetics: Art, Computation and Design* (pp. 1-11). Palgrave Macmillan.

[5] Joanna Berzowska and Marcelo Coelho. 2005, October. Kukkia and vilkas: Kinetic electronic garments. In *Wearable Computers, 2005. Proceedings. Ninth IEEE International Symposium on* (pp. 82-85). IEEE.

[6] James Bridle. 2019. New Aesthetic. Retrieved January 6, 2019 from <http://new-aesthetic.tumblr.com/>

[7] Sophia Brueckner and Rachel Freire. 2018. (October). Embodisuit: a wearable platform for embodied knowledge. In *Proceedings of the 2018 ACM International Symposium on Wearable Computers* (pp. 242-247). ACM.

[8] Chanel. 2015. Making-of the CHANEL Spring-Summer 2015 Haute Couture Collection, Retrieved April 20, 2018 from https://www.youtube.com/watch?v=3cDhTzoMj_s

[9] Cute Circuit. The Hug Shirt; The Twitter Dress. Retrieved January 6, 2018 from <http://cutecircuit.com/>

[10] Delpozo. 2018. Embroidery. Retrieved November 7, 2018 from <https://www.delpozo.com/en/atelier-delpozo-2/embroidery/>

[11] Laura Devendorf, Joanne Lo, Noura Howell, Jung Lin Lee, Nan-Wei Gong, M. Emre Karagozler, Shiho Fukuhara, Ivan Poupyrev, Eric Paulos and Kimiko Ryokai. 2016. May. I don't Want to Wear a Screen: Probing Perceptions of and Possibilities for Dynamic Displays on Clothing. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (pp. 6028-6039). ACM.

[12] Dezeen. 2012. Li Edelkoort at Dezeen Live. Video. (21 December 2012.) Retrieved January 9, 2019 from <https://vimeo.com/56121730>

- [13] Virginia Eubanks. 2018. Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin's Press.
- [14] Christopher Frayling. 1993. Research in Art and Design. Royal College of Art Research Papers series 1.1, 1-5.
- [15] Ying Gao. 2017. Possible Tomorrows. Retrieved 4 May, 2018 from <http://yinggao.ca/possible-tomorrows/>
- [16] Neil Gershenfeld, Raffi Krikorian and Danny Cohen. 2004. The internet of things. *Scientific American*, 291(4), 76-81.
- [17] Brad Haseman. 2006. A manifesto for performative research. *Media International Australia incorporating Culture and Policy*, 118,1, 98-106.
- [18] James N. Gilmore. 2016. Everywear: The quantified self and wearable fitness technologies. *New Media & Society*, 18(11), 2524-2539.
- [19] Giulio Jacucci and Ina Wagner. 2007. Performative roles of materiality for collective creativity. In *Proceedings of the 6th ACM SIGCHI conference on Creativity & cognition* (pp. 73-82). ACM.
- [20] Joi Ito. 2014. Antidisciplinary. *MIT Media Lab Blog* October, 2, 2014.
- [21] Heekyoung Jung and Erik Stolterman. 2011. Material probe: exploring materiality of digital artifacts. In *Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction* (pp. 153-156). ACM.
- [22] Heekyoung Jung, Erik Stolterman, Will Ryan, Tonya Thompson and Marty Siegel. 2008. Toward a framework for ecologies of artifacts: how are digital artifacts interconnected within a personal life?. In *Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges* (pp. 201-210). ACM.
- [23] Kevin Kelly. 2007. What is the quantified self. *The Quantified Self*, 5, 2007.
- [24] Rebecca Kleinberger, Alisha Panjwani. 2018, March. Digitally Enchanted Wear: a Novel Approach in the Field of Dresses as Dynamic Digital Displays. In *Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction* (pp. 27-34). ACM.
- [25] Kobakant. Smart Rituals; The Crying Dress. Retrieved March 11, 2018 from: <http://www.kobakant.at/DIY/?p=6204>
- [26] Treffyn Lynch Koreshoff, Tuck Was Long, Tony Robertson. 2013. Approaching a human-centred Internet of Things.
- [27] Valerie Lamontagne. 2017. *Performative Wearables: Bodies, Fashion and Technology*. Ph.D Dissertation. Concordia University, Montréal, Canada.
- [28] @marchesafashion. 2016. Marchesa x IBM. Instagram post. (May 2, 2016). Retrieved August 6, 2018 from <https://www.instagram.com/p/BE42oJbhStN/?hl=en>
- [29] Caroline McMillan. 2018, June. Live:Scape BLOOM: Connecting Smart Fashion to the IoT Ecology. In *International Conference on Artificial Intelligence*
- [30] Caroline McMillan. 2018. Live:scape BLOOM. Video. (6 November 2018) Retrieved 9 January 2019 from <https://vimeo.com/299296620>
- [31] Friedemann Mattern, Christian Floerkemeier. 2010. From the Internet of Computers to the Internet of Things. In *From active data management to event-based systems and more* (pp. 242-259). Springer, Berlin, Heidelberg.
- [32] Bruna Petreca. 2017. Giving Body to Digital Fashion Tools. In *Digital Bodies* (pp. 191-204). Palgrave Macmillan, London.
- [33] Irene Posch. 2017. The Embroidered Computer. Retrieved January 6, 2018 from <http://www.ireneposch.net/the-embroidered-computer/>
- [34] Erica Robles and Mikael Wiberg. 2010. Texturing the material turn in interaction design. In *Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction* (pp. 137-144). ACM.
- [35] Bruce Sterling. 2014. The epic struggle of the Internet of Things. Moscow: Strelka Press.
- [36] Bruce Sterling, 2012. An essay on the new aesthetic. *Group, I*, 1-4.
- [37] Melanie Swan. 2013. The quantified self: Fundamental disruption in big data science and biological discovery. *Big Data*, 1,2, 85-99.
- [38] Jenny Tillotson. 2015. eScent. Retrieved November 9, 2018 from <https://www.escent.ai/fashion-tech>
- [39] Anna Vallgårda, & Johan Redström. 2007. Computational composites. In *Proceedings of the SIGCHI conference on Human factors in computing systems* (pp. 513-522). ACM.
- [40] Ron Wakkary Doenja Oogjes, Sabrina Hauser, Henry Lin, Cheng Cao, Leo Ma, Tijs Duel. 2017, June. Morse Things: A Design Inquiry into the Gap Between Things and Us. In *Conference on Designing Interactive Systems* (pp. 503-514).
- [41] Mark Weiser. 1991. The Computer for the 21st Century. *Scientific american*, 265,3: 94-105.
- [42] Matthew Wynn, Sandra Rueda, Kyle Tillotson, Ryan Kao, Andrea Calderon, Andreas Murillo, Javier Camargo, Rafael Mantilla, Brahian Rangel, Alvaro A. Cardenas. 2017. Sexual Intimacy in the Age of Smart Devices: Are We Practicing Safe IoT?. In *Proceedings of the 2017 Workshop on Internet of Things Security and Privacy* (pp. 25-30). ACM.

[43] Danielle Wilde, Anna Vallgård and Oscar Tomico. 2017. Embodied design ideation methods: analysing the Power of estrangement. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems* (pp. 5158-5170). ACM.

[44] Danielle Wilde and Patricia Marti. 2018, June. Exploring Aesthetic Enhancement of Wearable Technologies for Deaf Women. In *Proceedings of the 2018 on Designing Interactive Systems Conference 2018* (pp. 201-213). ACM.