
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Development of a Facial Feature Based Image
Steganography Technology

Pranay Marella
Department of Computer
Science and Engineering

Mississippi State University
Starkville, MS, USA

pm1079@msstate.edu

Jeremy Straub, Benjamin Bernard
Department of Computer Science

North Dakota State University
Fargo, ND, USA

jeremy.straub@ndsu.edu,
ben.bernard@ndsu.edu

Abstract— A new image steganography method is proposed for
data hiding. This method uses least significant bit (LSB) insertion
to hide a message in one of the facial features of a given image. The
proposed technique chooses an image of a face from a dataset of 8-
bit color images of head poses and performs facial recognition on
the image to extract the Cartesian coordinates of the eyes, mouth,
and nose. A facial feature is chosen at random and each bit of the
binary representation of the message is hidden at the least
significant bit in the pixels of the chosen facial feature.

Keywords—steganography, facial features, image data hiding,
least significant bit, facial recognition

I. INTRODUCTION
As the world grows ever more digital, there is an increasing

need for individuals, businesses, and nations to employ data
hiding techniques when transferring sensitive data over the
Internet. Steganography is one way to address this need.
Steganography is a data hiding technique that seeks to make data
invisible in plain sight. Unlike cryptography, the process of
concealing the content of the method by encrypting it,
steganography seeks to prevent discovery of the actual data itself
as well as the fact that data is being transmitted at all.
Steganography does this by hiding the data within a cover
medium, making it less obvious that a message is being
transmitted.

The proposed method builds on prior work that has been
used to hide messages both in images and on the human body.
In fact, one of the first known uses of steganography was when
Greek messengers tattooed messages on their shaved heads and
delivered the messages after their hair grew back [1].

Modern steganography can be used to exchange secret
message between organizations, for securing online banking,
and voting systems [2]⁠. Not all uses are socially beneficial,
however, as it is also used by attackers to send viruses and
criminals use it for covert communication. Modern
steganography is also a noteworthy alternative form of secret
communication in countries where encryption is illegal [3]. It
can be divided into several sub-fields: network steganography,
text steganography, audio steganography, image steganography,
and video steganography. Image steganography is the most
widely used form of steganography [4].

In image steganography, picture data is usually stored in
either 24-bit or 8-bit image files [5]. Pixels in images are made
up of the three primary colors: red, green, and blue. Twenty-
four-bit images use 3 bytes per pixel to represent a color value
[5]. Most image steganography techniques fall within one of
two domains: the spatial domain and the frequency domain
(which is also sometimes referred to as the transform domain)
[6]. Spatial domain techniques typically implement some form
of a substitution method where redundant parts of a cover image
are substituted with the secret message [4]. Frequency (or
transform) domain techniques use the transformed coefficients
of the input image, through different transforms such as the
discrete Fourier transform and discrete cosine transform
processes [2]⁠.

This paper presents initial work on an implementation that
uses a targeted approach to image steganography. It uses least
significant bit encoding on selected facial features in order to
minimize data detectability within a carrier image.

Specifically, the proposed technique selects a picture from a
dataset of pictures of people with different head poses, from the
Head Pose Image Database [7]⁠. After selecting the picture, it
passes the picture through a facial feature recognition model,
built using a face recognition module [8]⁠, and extracts the
Cartesian (x, y) coordinates of three different features from the
face: the eyes, the mouth, and the nose. Facial imagery was
chosen specifically because of the availability of algorithms for
identifying facial features. The program then chooses one of the
features and uses least significant bit encoding to encode the
secret message. When decoding, the user has to provide the
picture that the data was encoded into and provide the facial
feature that was chosen for encoding. These two pieces of
information could easily be sent in a covert way, for example via
a social media post.

II. IMAGE STEGANOGRAPHY
Most image steganography techniques can be classified

under one of two domains: the spatial domain or the frequency
domain. Key goal of steganography techniques include hiding
the data in a way that avoids detection and maximizing the
amount of hidden data that can be stored [6] in a given cover
image.

A. Spatial Domain Techniques
Spatial domain techniques typically implement a substitution

method where redundant parts of a cover image are substituted
with the secret message [4]. In the spatial domain, a common
technique that is used is Least Significant Bit (LSB) insertion.
LSB insertion can follow two schemes: sequential or scattered.
The insertion in sequential embedding schemes place the
message bits in sequential order whereas in the scattered
embedding scheme, the message bits are scattered throughout
the image using a random sequence [9].⁠

LSB insertion changes the last bit in every byte of memory
in a pixel until the secret message has been embedded. For
example: if one wanted to embed the letter “A” (in 8-bit binary
representation: 10000001) into the following pixels:

 11001110 00000010 11110010 00110011.

 10110111 00000110 11110000 11110110

The least significant bit of each of the pixels is flipped to
embed the A, if the flip is needed. This results in:

 11001111 00000010 11110010 00110010.

 10110110 00000110 11110000 11110111

When performing steganography, image file formats are
critical to consider. Most images are not sent in a raw bitmap
form, instead they are compressed. There are two forms of
compression in images: lossless (reversible) and lossy
compression (irreversible) compression [10]. Examples of
lossless image formats include the Portable Network Graphics
(PNG) format and the Graphics Interchange Format (GIF) [5].
The most common type of lossy image compression is the Joint
Photographic Experts Group (JPEG) format. Least significant
bit insertion is most effective in lossless image formats.

For most modern purposes, 24-bit bitmap images are
commonly used. Because each pixel has red, green and blue
components, 3 bits can be stored in each pixel. However, 24-bit
images are larger in size than lower color fidelity ones, which
can – in some environments – cause unwanted attention to be
drawn to the picture. Alternately, 8-bit BMPs or GIFs could be
used, however these formats may not be able to hold larger sized
messages. Even 24-bit image files may have issues with
message size. Distortion can occur, depending on the size of the
message that is being encoded [11]⁠⁠. Splitting the message across
multiple images can correct this problem but, again, may draw
attention to the transmission in certain environments.

LSB insertion exploits the weakness of the human visual
system, as compared to the fidelity of image color [12].
Because, in a 24-bit bitmap, there are 8 bits representing each of
the red, green, and blue (RGB) values in each of the pixels, there
is not a significant or visibly noticeable difference between
11111111 of blue and 11111110 of blue to the human visual
system [6]. The LSB process can make significant changes to an
image. On average, LSB insertion changes about half of the bits
in an image [5].

Beyond this basic LSB technique, several enhanced
techniques exist. Yang, et al. [13]⁠, for example, proposed an
LSB method that used adjacent pixel value differentiating
(PVD). This method considers the difference value of two

consecutive pixels in order to estimate how many secret bits can
be embedded into the two pixels. Gupta, et al. [11]⁠, proposed an
enhanced least significant bit method for hiding data in a 24-bit
image. The method proposes performing LSB insertion on only
one-color channel to reduce distortion. Chang, et al. [14]⁠
developed an algorithm that embeds a message into a bitmap
image by dividing the bitmap image into a bit-plane image from
the LSB-plane to the MSB-plane for each pixel. Kharrazi, et al.
[15]⁠ proposed an LSB +/- method which operates by
incrementing or decrementing the last bit instead of changing it.
LSB insertion can also be used in other cover mediums such as
audio and video.

LSB insertion is easy to understand and implementation of
this technique can be performed easily. LSB insertion creates a
stego-image that is close to the cover image which makes it hard
for someone to recognize any modifications. LSB’s hidden data
capacity is low, due to only one bit per pixel being used for data
hiding [16]. LSB has some robustness problems. An attacker can
prospectively retrieve the secret message by retrieving the LSBs
[16], if the use of LSB steganography is detected or otherwise
identified for a particular image. Utilizing only a fraction of the
image may reduce the impact of this, somewhat, as it adds
another piece of information that the prospective decoder needs
to have in order to be successful in retrieving the stored data.
The embedded data can also be lost by manipulating the image
(resizing, compressing the image, etc.) [17].

B. Frequency Domain Techniques
Transform domain techniques use the transformed

coefficients of the input image through different transforms such
as the discrete Fourier transform and discrete cosine transform
techniques, among others [2]⁠. JPEG is the most common file
type in use and has been projected to account for up to 95% of
the images on the web [18]. JPEG takes high quality images
and compresses them using the lossy discrete cosine transform
(DCT) technique to achieve the requisite levels of compression
[5].

The JPEG process works as follows [19], [20]: The original
N x N image is split into 8 x 8 blocks. DCT is then applied to
each of the blocks resulting in coefficients. In the quantization
stage, the transformed coefficients are multiplied by a
quantization coefficient and the result is rounded to the nearest
integer. The rounded integers are ordered based on the zig-zag
sequence, for encoding. Finally, Huffman encoding is applied to
remove the redundant integers that occurred during quantization.

III. PROPOSED TECHNIQUE
The proposed technique seeks to use an unusual method of

determining where to store data, drawing on prior work in image
processing and facial recognition, to reduce data and
transmission detectability. The proposed approach can draw
from existing images on social media and other sources and,
through this, there is no need for any image file or key to be to
be transferred.

The algorithm begins with the selection of an 8-bit color
PNG image. A face recognition API [8] is used to identify the
Cartesian coordinates of the lip, top lip, chin, left eye, left
eyebrow, right eye, right eyebrow, nose bridge, and nose tip. It
then combines the points of the bottom lip, top lip, and chin into

the mouth. It combines the points of the left eye, left eyebrow,
right eye, and right eyebrow into the eyes, and it combines the
nose bridge and nose tip into the nose. A facial feature is
selected, and its Cartesian coordinates are added to and
subtracted from by 1, 2, 3 and 4 and appended to the list of the
Cartesian coordinates for use. A maximum payload capacity is
determined and a message (or portion thereof), the image and
coordinates are then sent to an encoding function. Each letter in
the message is turned into 8-bit binary form based on ASCII
value and the least significant bit of each of the pixels at the
given Cartesian points are changed until the message is encoded.

To decode the message, the image is sent through the feature
identification algorithm to identify the points for the feature that
has been used. The addition and subtraction step are again
performed for each point to get the complete point set. The
image and the point set are then sent to the decoding function
that retrieves the message from the identified points.

A test program was created which can both encode and
decode data stored in images in this way. For testing, a
collection of 8-bit color PNG images, which are a subset of the
Head Pose Image Database [7], were used. The dimensions of
all the images in the dataset are 384 pixels wide by 288 pixels
high. The dataset was created by feeding the images from the
Head Pose Image Database through a face recognition module
[8]⁠ and removing the images that the face recognition module
wasn’t able to extract facial features from. For each test, a
particular image was selected by the user.

The selected picture is sent to the facial feature recognition
API [8] to get the coordinates. The user is prompted to select
the facial feature for use for encoding. The name of the selected
image and the feature that was chosen are displayed to the user
and that information along with the list of points is passed into
the encoding function. The program prompts the user to enter
the message that is to be encoded with the maximum payload
capacity displayed in bytes. This message, along with the list of
points is passed into the encoding functions.

The receiver selects decode and provides the name of the
picture they want to decode, the path to the dataset with the
encoded picture, the path to the original dataset, and the facial
feature to target the decoding at when decoding the image. The
program takes the original image and sends it through the
coordinate identification function to identify the points that the
program needs to decode at. Thereafter, the points are sent to
decoding function which retrieves the original message.

Figures 1 to 3 demonstrate the technique in action. Figure 1
shows it being used to encode data in the area of a subject’s nose.
Figure 2 shows data being encoded in a subject’s mouth area and
Figure 3 shows data being encoded in the area of a subject’s
eyes. The images in Figures 1 to 3 show the subject image
before encoding (left), the region identified for data encoding
(second from left), the image after the data was encoded (third
from left) and the area where the data was hidden and recovered
from (right).

Fig. 1. Depicts feature identification of the subject’s nose.

Fig. 2. Depicts feature identification of the subject’s beard / facial hair.

Fig. 3. Depicts feature identification of the subject’s eyes and eyebrows.

Figure 4 provides a closer look at the particular area of
encoding for Figure 1 at a 200% zoom level. There is no visually
obvious change to the image from the data’s inclusion.

IV. CONCLUSIONS AND FUTURE WORK
This paper has proposed a method to embed secret messages

in images of human faces. This initial work has used 8-bit
colored PNG images; however, it can be generalized to other
formats and color fidelity levels. The proposed method embeds
the secret message in areas based on facial feature identification.
It can embed a secret message with little loss to image quality
and no noticeable impact to the image. Face images were used
initially because there are commonly available facial feature
recognition algorithms; however, this technique could
potentially be applied to other human features as well as objects
of different types.

Future work will involve more testing of the proposed
technique and, in particular, testing it with additional images, file
types and datasets. It will also focus determining on the extent
to which the payload size can be increased, relative to a given
image size without impairing functionality. Changing the facial
feature recognition model, to detect more points of the selected
facial feature, will also be pursued to prospectively increase the
supported message size. Studies of the technique with lossy
techniques and combined with cryptographic techniques are also
planned.

ACKNOWLEDGMENT
This work was supported by the U.S. National Science

Foundation (award # 1757659). Facilities and some equipment
were provided by the NDSU Institute for Cyber Security
Education and Research. Thanks are also given to Dr. Simone
Ludwig.

REFERENCES
[1] M. Warkentin, M. B. Schmidt, and E. Bekkering, “Steganography and

Steganalysis,” in Enterprise Information Systems Assurance and System
Security, IGI Global, 2006, pp. 287–294.

[2] K. Muhammad, J. Ahmad, M. Sajjad, and M. Zubair, “Secure Image
Steganography using Cryptography and Image Transposition,” NED
Univ. J. Res., vol. XII, no. 4, pp. 81–91, 2015.

[3] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital
watermarking and steganography. Morgan Kaufmann Publishers, 2008.

[4] C. P. Sumathi, T. Santanam, and G. Umamaheswari, “A Study of Various
Steganographic Techniques Used for Information Hiding,” Int. J. Comput.

Sci. Eng. Surv., vol. 4, no. 6, 2013.
[5] N. F. Johnson and S. Jajodia, “Exploring steganography: Seeing the

unseen,” Computer (Long. Beach. Calif)., vol. 31, no. 2, pp. 26–34, Feb.
1998.

[6] Y. J. Chanu, T. Tuithung, and K. Manglem Singh, “A short survey on
image steganography and steganalysis techniques,” in 2012 3rd National
Conference on Emerging Trends and Applications in Computer Science,
2012, pp. 52–55.

[7] N. Gourier, D. Hall, and J. L. Crowley, “Estimating Face Orientation from
Robust Detection of Salient Facial Features,” in ICPR
INTERNATIONAL WORKSHOP ON VISUAL OBSERVATION OF
DEICTIC GESTURES, 2004.

[8] A. Geitgey and J. Nazario, “Face Recognition,” GitHub Repository, 2017.
[9] N. Hamid, A. Yahya, R. B. Ahmad, and O. M. Al-Qershi, “Image

Steganography Techniques: An Overview,” Int. J. Comput. Sci. Secur.,
vol. 6, no. 3, 2012.

[10] A. Said and W. A. Pearlman, “An image multiresolution representation
for lossless and lossy compression,” IEEE Trans. Image Process., vol. 5,
no. 9, pp. 1303–1310, 1996.

[11] S. Gupta, G. Gujral, and N. Aggarwal, “Enhanced Least Significant Bit
algorithm For Image Steganography,” IJCEM Int. J. Comput. Eng.
Manag., vol. 15, no. 4, 2012.

[12] S. Das, S. Das, B. Bandyopadhyay, and S. Sanyal, “Steganography and
Steganalysis: Different Approaches,” Int. J. Comput. Inf. Technol. Eng.,
vol. 2, no. 1, 2008.

[13] C.-H. Yang, C.-Y. Weng, S.-J. Wang, and H.-M. Sun, “Adaptive Data
Hiding in Edge Areas of Images With Spatial LSB Domain Systems,”
IEEE Trans. Inf. Forensics Secur., vol. 3, no. 3, pp. 488–497, Sep. 2008.

[14] K. Chang, C. Jung, S. Lee, and W. Yang, “High Quality Perceptual
Steganographic Techniques,” Springer, Berlin, Heidelberg, 2004, pp.
518–531.

[15] M. Kharrazi, H. T. Sencar, and N. Memon, “Benchmarking
steganographic and steganalysis techniques,” 2005, vol. 5681, p. 252.

[16] N. Akhtar, P. Johri, and S. Khan, “Enhancing the Security and Quality of
LSB Based Image Steganography,” in 2013 5th International Conference
on Computational Intelligence and Communication Networks, 2013, pp.
385–390.

[17] Mohit, “An Enhanced Least Significant Bit Steganography Technique,”
Int. J. Adv. Res. Comput. Eng. Technol., vol. 5, no. 6, 2016.

[18] H. Liang, X. Zhang, and H. Cheng, “Huffman-code based retrieval for
encrypted JPEG images,” J. Vis. Commun. Image Represent., vol. 61, pp.
149–156, May 2019.

[19] A. A. Attaby, M. F. M. Mursi Ahmed, and A. K. Alsammak, “Data hiding
inside JPEG images with high resistance to steganalysis using a novel
technique: DCT-M3,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1965–1974,
Dec. 2018.

[20] Hsien-Wen Tseng and Chin-Chen Chang, “Steganography using JPEG-
compressed images,” in The Fourth International Conference onComputer
and Information Technology, 2004. CIT ’04., pp. 12–17.

Fig. 4. Image of Figure 1 region where data is encoded at 200% enlargement.

