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Abstract—The use of deep neural networks for speech 
recognition and recognizing speech commands continues to grow.  
This necessitates an understanding of the security risks that goes 
along with this technology. This paper analyzes the ability to 
interfere with the performance of neural networks for speech 
pattern recognition.  With the methods proposed herein, it is a 
simple matter to create adversarial data by overlaying audio of a 
command at a fairly unnoticeable amplitude.  This causes the 
neural network to lose around 20% accuracy and misidentify 
commands for other commands with an average to high 
confidence value. Such an attack is virtually undetectable to the 
human ear. 

 

I. INTRODUCTION 
The use of neural networks continues to grow each year as 

more and more uses for them are identified. As this increased 
use and reliance on neural networks grows, so does the danger 
of using them. While researchers find new and better ways to 
use and make neural networks, others are almost 
simultaneously finding new vulnerabilities and better exploits 
for them. The need to better understand the security of neural 
networks of all kinds is more pronounced than ever. Previous 
research has already shown that neural networks are highly 
vulnerable to adversarial examples [1].  These adversarial 
examples are comprised of data that is similar to natural or 
correct data but is labeled incorrectly by the network.  

 
Most existing work on adversarial examples and robustness 

of neural networks has focused on images; networks designed 
for image classification [2], facial recognition [3], face 
detection [4], or image segmentation [5]. There is not nearly as 
much work done in the space of audio classification, voice 
recognition, or speech to text transformations. Audio 
recognition is just as important from a security standpoint as 
image recognition with regards to neural network security as it 
has equally critical applications for its use. Just as fooling a 
facial recognition system could allow unauthorized access to 
systems that rely on facial recognition for security, this same 
approach can be taken to issue false commands to voice 
command systems. This concept has already been proven to be 
possible [1]. An attacker could also prospectively use an 
adversarial attack to gain access to systems that rely on voice 
recognition software for security [6]. 

 

Because of these vulnerabilities, what were thought to be 
much better security options than traditional passwords actually 
have a number of flaws that can be exploited. This paper 
presents and characterized the problem that speech recognition 
and other audio identification methods face.  It demonstrates a 
keen need for researchers to discover new methods for audio 
attacks and identify the flaws and vulnerabilities of these 
systems, so as to allow the next new neural network models to 
be even more secure than the current generation.  

II. BACKGROUND 
Neural networks, which are modeled loosely after the 

human brain, are a set of algorithms designed to recognize 
patterns [7].  They interpret sensory data and labeling or 
clustering it through machine perception algorithms.  Through 
this process, real-world data such as images, text, or audio is 
translated into numerical patterns.   

 
A process called supervised learning is used to train the 

neural network with a labeled dataset.  This process prepares 
the neural network to determine how to correctly cluster and 
classify unlabeled data, that is presented to it later.  The 
classification is based on the patterns discovered, through the 
learning process, in the labeled dataset. 

 
The term deep neural networks [8] is used to refer to a 

neural network that consists of several layers of related neural 
networks.  At minimum, there is an input and output layer, with 
one or more hidden layers in between.  Each layer trains on a 
unique set of features based on the previous layer’s output, 
performing specific ordering and sorting that builds a feature 
hierarchy.  Each layer added to the deep neural network allows 
for increased sophistication in the performance of the deep 
neural network to cluster and classify data.  Additionally, deep 
neural network accuracy can be improved with each additional 
dataset that is used to train it. 

 
Deep neural networks are being utilized in many industries 

to solve a wide variety of complex problems.  In transportation, 
deep neural networks solve fleet optimization problems [9] and 
provide predictive maintenance solutions.  In healthcare, deep 
neural networks can analyze complex imagery [10], such as 
radiology, to detect cancer.  The finance [11] and utility [12] 
sectors use  deep neural networks to detect fraud.  Consumer 



technology products make heavy use of deep neural networks.  
Examples include Tesla’s Autopilot [13], Facebook’s photo 
tags [14], and the Alexa, Siri, Google Assistant virtual assistant 
products [15]. 
 

One of the biggest threats to neural network operational 
security is what can be called a minimum adversarial example. 
The basic idea of this is that the natural data is perturbated to 
such a small degree that it would be almost or completely 
undetectable to humans but the neural network will misclassify 
the data as a result, corrupting the neural network’s training and 
producing incorrect, damaged or tampered output.  This type of 
attack is also called ‘data poisoning’.  Minimum adversarial 
data has been proven to be effective in the image recognition 
space, causing neural networks to misclassify images by 
changing as little as just one pixel of an image [16].  

This same idea can and has been successfully applied to 
voice recognition neural networks, specifically with a targeted 
approach that focused on speech to text software [1], [16], [17]. 
The minimum adversarial data approach has been successful in 
causing the Mozilla DeepSpeech [23] algorithm, for example, 
to interpret audio files as whatever phrase attackers want while 
the actual audio still sounds almost exactly like the original. 
The DeepSpeech model is what is used to power the voice 
command systems of many different products and services from 
speech to text software and devices like Amazon Echo. With 
the proposed methods, it is possible to issue unwanted 
commands to these systems while masking them in otherwise 
valid commands or non-command audio. It may even be 
possible to inject an unwanted command by playing the 

perturbations in the open air while an actual command is being 
given and remaining undetectable to human ears [18].   

 
One of the biggest concerns for these minimum adversarial 

examples is that they are, by design, made to seem 
indistinguishable to natural data.  Thus, if an easy to implement 
method for creating these adversarial examples were to be 
created, it would be possible for the databases used to train 
neural networks to become polluted with these adversarial 
examples. This could render both the datasets themselves and 
the networks that have been trained with them to be completely 
useless or, at least, highly susceptible to tampering.   

III. METHODOLOGY 
In this section, the dataset used to test and train the neural 

network is described.  Details on which neural network has 
been utilized and how it was trained with the dataset are also 
provided.  

A. The Dataset 
The AudioMNIST dataset developed for and used by 

Becker, et al. [8] was selected for use for these tests.  This dataset 
consists of 30,000 audio recordings of the numbers zero through 
nine spoken aloud by 60 different speakers of varying accents 
and dialects.  The database contains audio from both male and 
female speakers. 

 
 This dataset is well-suited for use, as it is large compared to 

some other datasets of this type, but it is still very manageable 
and fairly simple with just ten classes to classify. It is also a 

Figure 1: Shows the Mel Frequency Cepstrum Coefficients of the clean testing data 

 

Figure 2: Shows how the Mel Frequency Cepstrum Coefficients change with adversarial data added 



fairly robust dataset with a wide variety of speakers. The dataset 
was split into three portions for this experiment.  First, 5,000 
records were set aside as test data, 23,500 recordings were used 
for training, and all the adversarial data creation and testing was 
done with the test dataset split. The split dataset consists of all 
the recordings coming from ten of the speakers with 500 
recordings each of equal portions of each digit. This means that 
the tests run with this split are as accurate as possible as the 
network is seeing ten speakers with their unique voices from one 
another that it never saw in training. 

B. The Network Model 
 The neural network used for testing [21], [22] is well-suited 
for use because it has been demonstrated to perform with 97% 
accuracy on the test data.  There was also sufficient reference 
material available to ensure that the neural network was 
configured correctly for the testing.  This network,  named 
Audio-Classification, is a convolutional neural network 
consisting of 4 convolutional layers, a max pooling layer, and 3 
dense layers. The network looks at the Mel Frequency Cepstrum 
Coefficients of the audio files in order to identify them [19]. The 
network was trained for 50 epochs.  This took a few hours on a 
modest desktop computer. The training level of 50 epochs 
seemed appropriate, based on prior work, for reaching the 
highest levels of validation accuracy without risking overfitting 
the network. The implementation can also be tuned more to 
make the neural network even more accurate and robust. 

IV. EXPERIMENTATION 
Three tests were run on the neural network.  All of the tests 

used the same subset of the main dataset.  

A. The First Test 
The first of the tests was simply to generate a prediction for 

all of the test data with no modifications being made. This gave 
a baseline for how the network performs on clean data, which 
was 96.8% accurate.  

B. The Second Test 
The second test characterized how the neural network 

performed when some random white noise was added to the 
audio files before having the neural network make any 
predictions on them. This test was conducted by generating 
random noise and saving that into a NumPy array.  Then the 
clean audio file, in which the signals are also stored, was read 
in as NumPy arrays [20]. The two arrays were then added 
together and saved to a new wav file which was the modified 
audio. The network was then presented to the neural network 
which made its predictions on the modified files just like it did 
previously with the clean files.  This time, however, the results 
were 75% accurate and the neural network was far less 
confident in its choices overall. This test demonstrates how 
susceptible the network is to anything that is not ideal 
conditions and how that affects performance. 

 
 Overall, 75% accuracy is still suitable performance for 

many applications.  It is also impressive, considering how 
heavily modified the files were. If a human were to go back and 
listen to the modified files and compare the audio quality to the 

original files, they would notice a significant difference. The 
original files are nearly pristine, with little to no outside noise 
other than the person speaking. With the modified files, some 
have interference present that is so pronounced that it may be 
impossible for human listeners to understand and make out 
what the recorded audio words are. Even so, the tested neural 
network was still able to produce the correct classification 75% 
of the time.  

C. Third Test 
The third test was designed to determine whether the neural 

network would detect one number overlaid over another, with 
varying degrees of amplitude.  The attacker-side goal was that 
the neural network would be deceived into thinking that the 
original number was the overlaid number, or maybe even a 
different number entirely, with as little magnitude of the other 
number being overlaid as possible. Minimizing interference 
makes the attack as undetectable as possible, if a human were 
to listen to the modified files or if the tampered sounds were 
somehow being broadcast over a speaker in a live environment.  

 
One file of each number in the clean test that the neural 

network identified with as close as possible to 100% certainty 
was chosen to make up the base number data set.  Thus, the 
recordings being used represent the best possible situation for 
the neural network. The next step was to create the overlaid 
files. This was fairly trivial and used the same method as the 
white noise test: adding together two different NumPy arrays, 
only this time from two different audio files themselves rather 
than one being generated. For each number overlay 
combination, five different overlays with five different 
percentages of the amplitude of the second audio file that is 
being overlaid onto the first were created. The amplitude 
percentages used were 10%, 20%, 30%, 40%, and 50%.   

 
This test involved a much smaller portion of the testing split 

then previously used, with only ten of the files from the base 
sample being used. Each of these files generated 45 files after 
overlaid audio data was applied.  The base audio was overlaid 
with nine other files, each of which had five different amplitude 
levels.  This resulted in a total for 450 files for the test. The 
overall accuracy of this test was similar to the white noise test 
with an accuracy of 73.8%.  

V. DATA ANALYSIS 
Considering the experimentation with the clean data test 

there are a few interesting things that can be distilled from the 
results. The overall accuracy of the neural network on the clean 
data was 96.8%, and the system had an average max confidence 
of 78.5% for each of its guesses; overall, the neural network 
was fairly confident in the choices it was making.  

 
In the random white noise test the neural network had a 20% 

drop in accuracy, only achieving an accuracy of 75.04%. Still, 
the neural network performed well considering how heavily 
modified the audio sounds were, with most of them being 
difficult to understand with human ears. The neural network 
had an average confidence in the choices it was making of 



50.8%; compared to the clean data test’s 78% confidence.  This 
demonstrated that, with the added noise into the tested audio 
file, the network is more uncertain of what its choices were, 
even though it is still getting the correct answer a majority of 
the time.  

 
With the tests when the neural network did not correctly 

identify the audio sample a vast majority of the time, it was 
typically incorrectly classifying as the numbers seven, eight and 
nine. In almost all these cases, the neural network was only 
slightly more confident in choosing those numbers than it was 
any other number. It is unknown as to why the neural network 
was consistently more confident in choosing those numbers 
over others. This does suggest the possibility of trying to 
perform a very crude and simple adversarial attack where an 
attacker adds random noise to the audio or broadcasts it over 
the audio in some sort of way to try to throw off the neural 
network or force the neural network to consistently misclassify 
audio a majority of the time.  

 
In the number overlay test the neural network achieved an 

overall accuracy of 73.4%.  This test was created using only 
samples that the neural network earlier achieved 100% 
accuracy on in the clean test. In the number overlay test, the 
neural network had an average confidence value in its choices 
of 73.6%.  This is a significant increase from the 50% 
confidence in the random noise test and not that far lower than 
the 78.5% confidence for the clean data test.   In the clean data 
test, the neural network had an average confidence value, on its 
correct guesses, of 79.5% and in the overlay test the machine 
had an average confidence in its correct choices of 79.4%. 
Between this, and the overall confidence values, the neural 
network was approximately as confident on completely clean 
data as it was on data that had another number overlaid overtop 
of it.  

 
When it came to the neural network’s incorrect choices, in 

the clean data test, it had an average confidence of just 46.6%.  
However, in the test with the overlaid data the machine had an 
average confidence in its incorrect choices of 57.5%. Thus, in 
audio files that had completely different data overlaid on top of 
them, the neural network actually became more confident when 
it was wrong.  

 
Another very interesting data point is that, in the overlaid 

data test, there is a much higher number of high confidence 
incorrect choices than there are with the clean data test.  This is 
even despite the fact that the overlaid test had a much smaller 
amount of testing data, with only 450 files, compared to 5,000 
samples in the other test. The clean data test only had three 
incorrect choices with a confidence value of over 75% 
(approximately 0.06% of the test data). The overlaid data test 
had twenty of these high confidence value incorrect choices 
(approximately 4.4% of the total testing data). It even had a 
decent number of incorrect choices with confidence values in 
the upper 90% range. 

 

One of the most interesting things that can be gathered from 
the number overlay test is the frequency of different numbers 
the neural network chooses when it makes an incorrect choice. 
The neural network identified that, out of the 118 errors made 
out of a total pool of 450 total choices, 69.5% of them came 
from just the numbers seven and nine.  Each was identified 41 
times incorrectly. It is interesting to note that the average 
confidence the system had, when choosing the number nine 
incorrectly, was 68%.  This is greater than the confidence that 
the system had when identifying some numbers correctly.  

 
There were also a few numbers that were falsely identified 

as a seven or nine much more frequently than other numbers. 
For example, the files that should have been identified as the 
number three were misidentified as seven or nine 16 times 
(35%) out of the total 17 misidentifications. The neural network 
also had difficulty identifying the number six and misclassified 
it 73% of the time.  It classified it as a seven 39% of the time. 
These observations suggest that, perhaps, the neural network is 
experiencing overfitting to a degree, causing it to identify 
numbers as seven or nine more often than any other number. 
This behavior was not seen with the clean data and only showed 
up with the adversarial data with overlaying one of the files 
over the other.  

 
An alternate theory is that the neural network is more 

vulnerable to attacks against certain numbers than others. For 
example, the testing demonstrated that, overall, the numbers 
seven and nine were difficult numbers for the tested neural 
network to misidentify. It also demonstrates that some numbers 
may be more susceptible to this kind of attack, such as the 
number six which the neural network had difficulty identifying. 
Given this, it seems that users can fairly consistently make the 
neural network think that the number six is instead the number 
seven, but it is very difficult to make it think that it is instead an 
eight, with that misidentification only occurring once.  

 
It was also shown that it takes less of an overlay for certain 

numbers to be misidentified than it does for other numbers. For 
example, when overlaying most numbers, a misidentification 
can only happen with the highest amount of the amplitude being 
added (50% of the overlaid file making it roughly 33% of the 
total amplitude).  Some numbers, though, can trigger a 
misidentification at the lower amplitudes. For example, when 
overlaying the number eight over top of the number six the 
neural network did not trigger being misidentified until 50% of 
the amplitude of the number eight was added. When the number 
seven was overlaid, it was triggered right away with only 10% 
of the amplitude of the number seven needing to be added.  

 
This demonstrates that some numbers (like the numbers 

seven and nine) are much more effective to overlay than many 
other numbers. It is unclear what could be the reason behind 
this kind of behavior; it may be completely caused by 
overfitting, but this has not yet been conclusively determined. 
 



VI. OPEN QUESTIONS AND FUTURE WORKS 
All of these tests were performed with just one neural 

network model.  This model was not a state of the art or 
‘commercial grade’ example. Given this, one area of 
prospective future work is to run similar tests to determine if 
this kind of attack is feasible in numerous circumstances or if 
the results are caused by a quirk with this specific testing model.  
Additionally, it could be assessed as to if this confusion was 
only possible because of the simple nature of the specific neural 
network model tested. 

 
Another prospective approach, for future work, would be to 

use a different dataset that is a more diverse. While the 
interference seems to work well when dealing with spoken 
digits, it unknown if this same approach would work as well 
with other kinds of speech or audio. If this attack approach is as 
effective with other kinds of speech, there are significant 
ramifications for the security and robustness of neural networks 
used for recognizing voice passwords and commands.  

 
All of the tests described in this article were performed on a 

neural network using a series of digital audio samples.  Given 
this, another area for prospective future work would be to see if 
this kind of attack could be effectively carried out in a live 
environment.  For example, if a neural network is set up to take 
voice commands, could it be discretely attacked with a 
broadcast from another device so that the original voice 
command is tampered with or covertly replaced with the 
attacker’s commands 

 
Also, the neural network used was a convolutional neural 

network. Given this, training and testing with a recurrent neural 
network would be very interesting. 

 

VII. CONCLUSIONS 
This paper has presented data that suggests that simple 

adversarial attacks on speech recognition deep neural networks 
pose a significant security risk.  Moreover, it has been 
demonstrated that these overlays are difficult for humans to 
detect.  This can be especially true if an attack as crude and 
simple such as the one proposed is feasible to be carried out on 
a commercial deep neural network of this kind.  

 
A simple attack has been developed, focusing on the city 

and on transportation providers, that can be performed on a 
system of this type.  Future work should aim to improve on the 
methods outlined in this research and determine if these same 
issues exist in more robust systems. 
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