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Abstract—The use of deep neural networks for speech
recognition and recognizing speech commands continues to grow.
This necessitates an understanding of the security risks that goes
along with this technology. This paper analyzes the ability to
interfere with the performance of neural networks for speech
pattern recognition. With the methods proposed herein, it is a
simple matter to create adversarial data by overlaying audio of a
command at a fairly unnoticeable amplitude. This causes the
neural network to lose around 20% accuracy and misidentify
commands for other commands with an average to high
confidence value. Such an attack is virtually undetectable to the
human ear.

L. INTRODUCTION

The use of neural networks continues to grow each year as
more and more uses for them are identified. As this increased
use and reliance on neural networks grows, so does the danger
of using them. While researchers find new and better ways to
use and make neural networks, others are almost
simultaneously finding new vulnerabilities and better exploits
for them. The need to better understand the security of neural
networks of all kinds is more pronounced than ever. Previous
research has already shown that neural networks are highly
vulnerable to adversarial examples [1]. These adversarial
examples are comprised of data that is similar to natural or
correct data but is labeled incorrectly by the network.

Most existing work on adversarial examples and robustness
of neural networks has focused on images; networks designed
for image classification [2], facial recognition [3], face
detection [4], or image segmentation [5]. There is not nearly as
much work done in the space of audio classification, voice
recognition, or speech to text transformations. Audio
recognition is just as important from a security standpoint as
image recognition with regards to neural network security as it
has equally critical applications for its use. Just as fooling a
facial recognition system could allow unauthorized access to
systems that rely on facial recognition for security, this same
approach can be taken to issue false commands to voice
command systems. This concept has already been proven to be
possible [1]. An attacker could also prospectively use an
adversarial attack to gain access to systems that rely on voice
recognition software for security [6].
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Because of these vulnerabilities, what were thought to be
much better security options than traditional passwords actually
have a number of flaws that can be exploited. This paper
presents and characterized the problem that speech recognition
and other audio identification methods face. It demonstrates a
keen need for researchers to discover new methods for audio
attacks and identify the flaws and vulnerabilities of these
systems, so as to allow the next new neural network models to
be even more secure than the current generation.

II. BACKGROUND

Neural networks, which are modeled loosely after the
human brain, are a set of algorithms designed to recognize
patterns [7]. They interpret sensory data and labeling or
clustering it through machine perception algorithms. Through
this process, real-world data such as images, text, or audio is
translated into numerical patterns.

A process called supervised learning is used to train the
neural network with a labeled dataset. This process prepares
the neural network to determine how to correctly cluster and
classify unlabeled data, that is presented to it later. The
classification is based on the patterns discovered, through the
learning process, in the labeled dataset.

The term deep neural networks [8] is used to refer to a
neural network that consists of several layers of related neural
networks. At minimum, there is an input and output layer, with
one or more hidden layers in between. Each layer trains on a
unique set of features based on the previous layer’s output,
performing specific ordering and sorting that builds a feature
hierarchy. Each layer added to the deep neural network allows
for increased sophistication in the performance of the deep
neural network to cluster and classify data. Additionally, deep
neural network accuracy can be improved with each additional
dataset that is used to train it.

Deep neural networks are being utilized in many industries
to solve a wide variety of complex problems. In transportation,
deep neural networks solve fleet optimization problems [9] and
provide predictive maintenance solutions. In healthcare, deep
neural networks can analyze complex imagery [10], such as
radiology, to detect cancer. The finance [11] and utility [12]
sectors use deep neural networks to detect fraud. Consumer



technology products make heavy use of deep neural networks.
Examples include Tesla’s Autopilot [13], Facebook’s photo
tags [14], and the Alexa, Siri, Google Assistant virtual assistant
products [15].

One of the biggest threats to neural network operational
security is what can be called a minimum adversarial example.
The basic idea of this is that the natural data is perturbated to
such a small degree that it would be almost or completely
undetectable to humans but the neural network will misclassify
the data as a result, corrupting the neural network’s training and
producing incorrect, damaged or tampered output. This type of
attack is also called ‘data poisoning’. Minimum adversarial
data has been proven to be effective in the image recognition
space, causing neural networks to misclassify images by
changing as little as just one pixel of an image [16].

This same idea can and has been successfully applied to
voice recognition neural networks, specifically with a targeted
approach that focused on speech to text software [1], [16], [17].
The minimum adversarial data approach has been successful in
causing the Mozilla DeepSpeech [23] algorithm, for example,
to interpret audio files as whatever phrase attackers want while
the actual audio still sounds almost exactly like the original.
The DeepSpeech model is what is used to power the voice
command systems of many different products and services from
speech to text software and devices like Amazon Echo. With
the proposed methods, it is possible to issue unwanted
commands to these systems while masking them in otherwise
valid commands or non-command audio. It may even be
possible to inject an unwanted command by playing the
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perturbations in the open air while an actual command is being
given and remaining undetectable to human ears [18].

One of the biggest concerns for these minimum adversarial
examples is that they are, by design, made to seem
indistinguishable to natural data. Thus, if an easy to implement
method for creating these adversarial examples were to be
created, it would be possible for the databases used to train
neural networks to become polluted with these adversarial
examples. This could render both the datasets themselves and
the networks that have been trained with them to be completely
useless or, at least, highly susceptible to tampering.

III. METHODOLOGY

In this section, the dataset used to test and train the neural
network is described. Details on which neural network has
been utilized and how it was trained with the dataset are also
provided.

A. The Dataset

The AudioMNIST dataset developed for and used by
Becker, et al. [8] was selected for use for these tests. This dataset
consists of 30,000 audio recordings of the numbers zero through
nine spoken aloud by 60 different speakers of varying accents
and dialects. The database contains audio from both male and
female speakers.

This dataset is well-suited for use, as it is large compared to
some other datasets of this type, but it is still very manageable
and fairly simple with just ten classes to classify. It is also a

Figure 2: Shows how the Mel Frequency Cepstrum Coefficients change with adversarial data added



fairly robust dataset with a wide variety of speakers. The dataset
was split into three portions for this experiment. First, 5,000
records were set aside as test data, 23,500 recordings were used
for training, and all the adversarial data creation and testing was
done with the test dataset split. The split dataset consists of all
the recordings coming from ten of the speakers with 500
recordings each of equal portions of each digit. This means that
the tests run with this split are as accurate as possible as the
network is seeing ten speakers with their unique voices from one
another that it never saw in training.

B. The Network Model

The neural network used for testing [21], [22] is well-suited
for use because it has been demonstrated to perform with 97%
accuracy on the test data. There was also sufficient reference
material available to ensure that the neural network was
configured correctly for the testing. This network, named
Audio-Classification, is a convolutional neural network
consisting of 4 convolutional layers, a max pooling layer, and 3
dense layers. The network looks at the Mel Frequency Cepstrum
Coefficients of the audio files in order to identify them [19]. The
network was trained for 50 epochs. This took a few hours on a
modest desktop computer. The training level of 50 epochs
seemed appropriate, based on prior work, for reaching the
highest levels of validation accuracy without risking overfitting
the network. The implementation can also be tuned more to
make the neural network even more accurate and robust.

IV. EXPERIMENTATION

Three tests were run on the neural network. All of the tests
used the same subset of the main dataset.

A. The First Test

The first of the tests was simply to generate a prediction for
all of the test data with no modifications being made. This gave
a baseline for how the network performs on clean data, which
was 96.8% accurate.

B. The Second Test

The second test characterized how the neural network
performed when some random white noise was added to the
audio files before having the neural network make any
predictions on them. This test was conducted by generating
random noise and saving that into a NumPy array. Then the
clean audio file, in which the signals are also stored, was read
in as NumPy arrays [20]. The two arrays were then added
together and saved to a new wav file which was the modified
audio. The network was then presented to the neural network
which made its predictions on the modified files just like it did
previously with the clean files. This time, however, the results
were 75% accurate and the neural network was far less
confident in its choices overall. This test demonstrates how
susceptible the network is to anything that is not ideal
conditions and how that affects performance.

Overall, 75% accuracy is still suitable performance for
many applications. It is also impressive, considering how
heavily modified the files were. If a human were to go back and
listen to the modified files and compare the audio quality to the

original files, they would notice a significant difference. The
original files are nearly pristine, with little to no outside noise
other than the person speaking. With the modified files, some
have interference present that is so pronounced that it may be
impossible for human listeners to understand and make out
what the recorded audio words are. Even so, the tested neural
network was still able to produce the correct classification 75%
of the time.

C. Third Test

The third test was designed to determine whether the neural
network would detect one number overlaid over another, with
varying degrees of amplitude. The attacker-side goal was that
the neural network would be deceived into thinking that the
original number was the overlaid number, or maybe even a
different number entirely, with as little magnitude of the other
number being overlaid as possible. Minimizing interference
makes the attack as undetectable as possible, if a human were
to listen to the modified files or if the tampered sounds were
somehow being broadcast over a speaker in a live environment.

One file of each number in the clean test that the neural
network identified with as close as possible to 100% certainty
was chosen to make up the base number data set. Thus, the
recordings being used represent the best possible situation for
the neural network. The next step was to create the overlaid
files. This was fairly trivial and used the same method as the
white noise test: adding together two different NumPy arrays,
only this time from two different audio files themselves rather
than one being generated. For each number overlay
combination, five different overlays with five different
percentages of the amplitude of the second audio file that is
being overlaid onto the first were created. The amplitude
percentages used were 10%, 20%, 30%, 40%, and 50%.

This test involved a much smaller portion of the testing split
then previously used, with only ten of the files from the base
sample being used. Each of these files generated 45 files after
overlaid audio data was applied. The base audio was overlaid
with nine other files, each of which had five different amplitude
levels. This resulted in a total for 450 files for the test. The
overall accuracy of this test was similar to the white noise test
with an accuracy of 73.8%.

V. DATA ANALYSIS

Considering the experimentation with the clean data test
there are a few interesting things that can be distilled from the
results. The overall accuracy of the neural network on the clean
data was 96.8%, and the system had an average max confidence
of 78.5% for each of its guesses; overall, the neural network
was fairly confident in the choices it was making.

In the random white noise test the neural network had a 20%
drop in accuracy, only achieving an accuracy of 75.04%. Still,
the neural network performed well considering how heavily
modified the audio sounds were, with most of them being
difficult to understand with human ears. The neural network
had an average confidence in the choices it was making of



50.8%; compared to the clean data test’s 78% confidence. This
demonstrated that, with the added noise into the tested audio
file, the network is more uncertain of what its choices were,
even though it is still getting the correct answer a majority of
the time.

With the tests when the neural network did not correctly
identify the audio sample a vast majority of the time, it was
typically incorrectly classifying as the numbers seven, eight and
nine. In almost all these cases, the neural network was only
slightly more confident in choosing those numbers than it was
any other number. It is unknown as to why the neural network
was consistently more confident in choosing those numbers
over others. This does suggest the possibility of trying to
perform a very crude and simple adversarial attack where an
attacker adds random noise to the audio or broadcasts it over
the audio in some sort of way to try to throw off the neural
network or force the neural network to consistently misclassify
audio a majority of the time.

In the number overlay test the neural network achieved an
overall accuracy of 73.4%. This test was created using only
samples that the neural network earlier achieved 100%
accuracy on in the clean test. In the number overlay test, the
neural network had an average confidence value in its choices
of 73.6%. This is a significant increase from the 50%
confidence in the random noise test and not that far lower than
the 78.5% confidence for the clean data test. In the clean data
test, the neural network had an average confidence value, on its
correct guesses, of 79.5% and in the overlay test the machine
had an average confidence in its correct choices of 79.4%.
Between this, and the overall confidence values, the neural
network was approximately as confident on completely clean
data as it was on data that had another number overlaid overtop
of it.

When it came to the neural network’s incorrect choices, in
the clean data test, it had an average confidence of just 46.6%.
However, in the test with the overlaid data the machine had an
average confidence in its incorrect choices of 57.5%. Thus, in
audio files that had completely different data overlaid on top of
them, the neural network actually became more confident when
it was wrong.

Another very interesting data point is that, in the overlaid
data test, there is a much higher number of high confidence
incorrect choices than there are with the clean data test. This is
even despite the fact that the overlaid test had a much smaller
amount of testing data, with only 450 files, compared to 5,000
samples in the other test. The clean data test only had three
incorrect choices with a confidence value of over 75%
(approximately 0.06% of the test data). The overlaid data test
had twenty of these high confidence value incorrect choices
(approximately 4.4% of the total testing data). It even had a
decent number of incorrect choices with confidence values in
the upper 90% range.

One of the most interesting things that can be gathered from
the number overlay test is the frequency of different numbers
the neural network chooses when it makes an incorrect choice.
The neural network identified that, out of the 118 errors made
out of a total pool of 450 total choices, 69.5% of them came
from just the numbers seven and nine. Each was identified 41
times incorrectly. It is interesting to note that the average
confidence the system had, when choosing the number nine
incorrectly, was 68%. This is greater than the confidence that
the system had when identifying some numbers correctly.

There were also a few numbers that were falsely identified
as a seven or nine much more frequently than other numbers.
For example, the files that should have been identified as the
number three were misidentified as seven or nine 16 times
(35%) out of the total 17 misidentifications. The neural network
also had difficulty identifying the number six and misclassified
it 73% of the time. It classified it as a seven 39% of the time.
These observations suggest that, perhaps, the neural network is
experiencing overfitting to a degree, causing it to identify
numbers as seven or nine more often than any other number.
This behavior was not seen with the clean data and only showed
up with the adversarial data with overlaying one of the files
over the other.

An alternate theory is that the neural network is more
vulnerable to attacks against certain numbers than others. For
example, the testing demonstrated that, overall, the numbers
seven and nine were difficult numbers for the tested neural
network to misidentify. It also demonstrates that some numbers
may be more susceptible to this kind of attack, such as the
number six which the neural network had difficulty identifying.
Given this, it seems that users can fairly consistently make the
neural network think that the number six is instead the number
seven, but it is very difficult to make it think that it is instead an
eight, with that misidentification only occurring once.

It was also shown that it takes less of an overlay for certain
numbers to be misidentified than it does for other numbers. For
example, when overlaying most numbers, a misidentification
can only happen with the highest amount of the amplitude being
added (50% of the overlaid file making it roughly 33% of the
total amplitude). Some numbers, though, can trigger a
misidentification at the lower amplitudes. For example, when
overlaying the number eight over top of the number six the
neural network did not trigger being misidentified until 50% of
the amplitude of the number eight was added. When the number
seven was overlaid, it was triggered right away with only 10%
of the amplitude of the number seven needing to be added.

This demonstrates that some numbers (like the numbers
seven and nine) are much more effective to overlay than many
other numbers. It is unclear what could be the reason behind
this kind of behavior; it may be completely caused by
overfitting, but this has not yet been conclusively determined.



VI. OPEN QUESTIONS AND FUTURE WORKS

All of these tests were performed with just one neural
network model. This model was not a state of the art or
‘commercial grade’ example. Given this, one area of
prospective future work is to run similar tests to determine if
this kind of attack is feasible in numerous circumstances or if
the results are caused by a quirk with this specific testing model.
Additionally, it could be assessed as to if this confusion was
only possible because of the simple nature of the specific neural
network model tested.

Another prospective approach, for future work, would be to
use a different dataset that is a more diverse. While the
interference seems to work well when dealing with spoken
digits, it unknown if this same approach would work as well
with other kinds of speech or audio. If this attack approach is as
effective with other kinds of speech, there are significant
ramifications for the security and robustness of neural networks
used for recognizing voice passwords and commands.

All of the tests described in this article were performed on a
neural network using a series of digital audio samples. Given
this, another area for prospective future work would be to see if
this kind of attack could be effectively carried out in a live
environment. For example, if a neural network is set up to take
voice commands, could it be discretely attacked with a
broadcast from another device so that the original voice
command is tampered with or covertly replaced with the
attacker’s commands

Also, the neural network used was a convolutional neural
network. Given this, training and testing with a recurrent neural
network would be very interesting.

VII. CONCLUSIONS

This paper has presented data that suggests that simple
adversarial attacks on speech recognition deep neural networks
pose a significant security risk. Moreover, it has been
demonstrated that these overlays are difficult for humans to
detect. This can be especially true if an attack as crude and
simple such as the one proposed is feasible to be carried out on
a commercial deep neural network of this kind.

A simple attack has been developed, focusing on the city
and on transportation providers, that can be performed on a
system of this type. Future work should aim to improve on the
methods outlined in this research and determine if these same
issues exist in more robust systems.
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