

Graphics Card Based Fuzzing
Ryan Mower, Ben Bernard, Jeremy Straub

Department of Computer Science
North Dakota State University

Fargo, ND, USA
ryan.mower@ndsu.edu, ben.bernard@ndsu.edu, jeremy.straub@ndsu.edu

Abstract—Fuzzing is the art of creating data and using that
generated data as input for a target program. The goal behind
this is to crash the program in a manner that can be analyzed
and exploited. Software developers are able to benefit from
fuzzers, as they can patch the discovered vulnerabilities before
an attacker exploits them. Programs are becoming larger and
require improved fuzzers to keep up with the increased attack
surface. Most innovations in fuzzer development are software
related and provide better path coverage or data generation.

This paper proposes creating a fuzzer that is designed to

utilize a dedicated graphics card’s graphics processing unit
(GPU) instead of the standard processor. Much of the code
within the fuzzer is parallelizable, meaning the graphics card
could potentially process it in a much more efficient manner. The
effectiveness of GPU fuzzing is assessed herein.

I. INTRODUCTION
Along with the increase in the development of computer

applications has come an increase in the number of

vulnerabilities that these programs contain. These new

vulnerabilities open doors for attackers to exploit and gain

access. Vulnerable computer applications can leak sensitive

information such as names, credit cards, bank information,

social security numbers and much more. This information is

a target for criminals. After an attacker compromises a target,

they can cause severe financial and reputational damage. A

study by Livshits and Lam [1] discussed the value of this

information and how many business financial losses range

into the millions of dollars, due to its sensitivity. In order to

prevent criminals from gaining access to the sensitive data

within these programs, organizations will need to allocate

resources towards cyber defense.

When a zero-day, an exploitable vulnerability that has not

been released to the public yet, is discovered it can

prospectively be sold to criminals, companies, or nation states

for amounts ranging between $5,000 and $250,000 [2]. These

organizations are willing to spend money for these zero-days

attacks, because they are able to patch vulnerabilities before

attackers are able to exploit and compromise them – or, in the

case of state offensive actors and criminals, use them before

they are patched. Organizations who successfully patch

vulnerabilities and prevent criminals from stealing

information save money, prevent lawsuits, and increase their

reputation. In order to successfully discover new

vulnerabilities, before a prospective attacker does, companies

must innovate and move beyond the current methods of

discovering new vulnerabilities.

One valuable cyber defense tactic is automated

vulnerability discovery, which allows organizations to

discover flaws within their programs and applications before

attackers do. Many of these autonomous vulnerability

discovery programs are open source, meaning attackers also

have access to such tools.

A common dynamic analysis discovery technique is called

fuzzing. Fuzzing is the art of generating data that is used as

input toward a specific program to test different control paths

and make sure the program continues to run properly. The

American Fuzzy Lop (AFL) is a popular fuzzer with a unique

data generation technique. AFL generates data based upon a

test case that is provided as original input for the fuzzer. As

this data makes it further throughout the target’s program

parser, AFL keeps track of such progress and continues to

modify it accordingly. An example that highlights AFL’s data

generation is when the input string, “Hello” was used for a

JPEG parser. Through the cycles, the input made it further

through the parser and eventually became a valid JPEG image

[3].

 In addition to software innovations, hardware

enhancement can facilitate increased performance of many

automated vulnerability discovery tools. This paper considers

the use of a graphics card’s GPUs to accelerate the

parallelizable processes while fuzzing. This may improve the

performance of the automated vulnerability discovery tool,

increasing the number of discovered vulnerabilities in a

period of time and the speed of vulnerability discovery.

II. BACKGROUND
Automated vulnerability discovery can be broken down

into two main categories: static and dynamic analysis. Each is
now discussed. Then, fuzzing algorithms and CPU versus
GPU performance are considered.

A. Static Analysis
Static analysis is used when the tester can obtain and

evaluate the source code of the program. Using this, the code
can be analyzed and flaws and vulnerabilities within the
program, that could be exploited later, can be discovered.

Static analysis extracts information from the program being

tested to direct the fuzzing process without actually running
the program. There are different techniques and programs
that can automate this process. Pixy, for example, is a
program that uses “flow sensitive, interprocedural and
context-sensitive dataflow analysis to discover vulnerable
points in a program” [4]. There are numerous other static
vulnerability discovery tools, such as one created by Stanford
University. Their static analysis tool “is the first practical
static security analysis that utilizes fully context-sensitive
pointer analysis result” and has the added benefit of having a
simple graphical user interface [1].

Static analysis is not a complete solution as many

vulnerabilities can be missed because the static analysis tools
are not analyzing the program during runtime. This makes
automated static analysis a semi-effective vulnerability
discovery technique, due to techniques’ low accuracy and
high rate of false positives [5].

B. Dynamic Analysis - Fuzzing
Alternatively, there are dynamic analysis techniques such

as fuzzing. Fuzzing, which is the most commonly used
dynamic analysis vulnerability discovery process, can be
implemented with black-box, white-box, or grey-box testing
approaches.

Black-box testing is an uninformed testing strategy that

generates both valid and invalid input for target programs and
does not require any program analysis [6]. The black-box
fuzzer is unaware of the internals of the program it is testing;
it only observes the input and output behavior of the program.
The code within the fuzzer submits numerous forms of
generated data into the target program as standard input in an
attempt to crash the program. Once the generated data has
been submitted, there is an algorithm within the fuzzer that
mutates and alters the previous data to create a new data set.

White-box fuzzing analyzes the internals of the program

being tested and the information gathered when executing that
program. As a result, white-box fuzzing utilizes more system
resources to complete than black-box fuzzing [7]. Symbolic
execution tools are used to expose the control flow of the
tested software and treat inputs as variables and branch
conditions as variable constraints. Unfortunately, even
average programs can have thousands of challenging branch
conditions which consumes a significant amount of time [3].

Grey-box fuzzers obtain some limited static and dynamic

information internal to the tested program and use this
approximated information to speed up the processing of
testing more inputs, as comparted to a pure white-box
approach [7]. AFL is an example of a grey-box fuzzer. The

increased performance comes with the cost that the
approximated information can be wasted on redundant or
malformed inputs [3].

C. Fuzzing Algorithms
Fuzzers use a variety of algorithms to perform their testing

tasks. These algorithms are integral to the success of the
fuzzer because they generate the actual data that is used to test
programs’ integrity. Symbolic and concrete execution are
both traditional methods for test data generations.

Symbolic execution remembers which code triggers certain

code paths, increasing the amount of code covered. On the
other hand, concrete execution uses actual data. Concolic
testing is a hybrid between the two (concrete and symbolic).
It combines both techniques with the two parts feeding data
to each other, improving the overall data set [8]. Concolic
testing is also known as dynamic symbolic execution.

Once the data set is generated, the fuzzer repeats the data

submission process and cycles back to the beginning unless a
user terminates the program or a stop option is configured and
triggered within the program [9]. Concolic execution is a
unique and different approach to fuzzing. Instead of randomly
generating and inputting data, it will map the control flow of
the target program. When doing this, concolic execution
remembers which values trigger certain parts of the code,
allowing the data to test a wider range of control paths
throughout the program [8].

When a crash is occurs, in many cases it may be a false

positive. Because of this, programs and people have to go
through every crash instance to confirm that a real
vulnerability is present. Concolic testing is slower than many
other techniques. One approach to compensate for this is to
narrow the scope of the testing by letting the user specify parts
of the software to test [7].

Many fuzzers contain techniques that include code

coverage analysis, property checking, checksums, accelerated
fuzzed execution, instruction emulation, and concolic
execution [9], [10].

 Fuzzing is a way to prospectively discover zero-day

vulnerabilities. For defenders to stay ahead of attackers, they
will need to use tools such as efficient fuzzers that employ
innovative techniques. Improving the efficiency and accuracy
of fuzzing is vital because they currently produce significant
error [11]. Selecting which fuzzer to use can be a difficult
process because there are so many. A few examples are AFL,
Cert Bff Fuzz, Cluster Fuzz, and OSS-Fuzz. There are also a
number of closed-source fuzzers [7].

D. CPU vs GPU Performance
Hardware improvements can aid fuzzer performance.

Processor vendors are constantly refining their central
processing units (CPU) to add more cores and achieve greater

speeds. Processor capability improvement enhances overall
fuzzer performance.

An alternate approach is to use a dedicated graphics card

for fuzzing. These cards are designed with numerous cores
and the ability to run many operations in parallel. When
cracking passwords, the utility of this approach is
demonstrated by a tool called Hashcat (which is found in Kali
Linux). This program can operate with a CPU, however, those
using a graphics card achieve much higher performance level.
This is due to the ability of modern GPUs to perform hundreds
of billions of floating point operations per second [12].

GPU cards have been instrumental in allowing complex
video games to run at reasonable speeds. Video games are an
excellent example of parallelization because when rendering
all of the shapes, each area is independent of all the other
areas. Emphasizing this point even further is that the pixel
itself is oblivious towards the bigger picture that it is
constructing.

The concept of using a graphics card for fuzzing would

appear to be a prospectively excellent way to increase the
performance of the fuzzer, allowing for an increase of
vulnerabilities discovered. Bohme, Pham and Roychoudhury
[6] discuss how “converge-based greybox fuzzing is highly
parallelizable because the retained seeds represent the only
internal state”. If they are able to discover more
vulnerabilities, companies will be able to patch more of their
system flaws before they are exploited. This will further
enhance the difficulty of attempting to compromise the
system.

III. IMPLEMENTATION
In order to adequately compare the performance of the

GPU to the CPU for fuzzing, the inner workings of fuzzers
must be well understood. To begin the physical testing, the
CPU based version of AFL was executed first. Testing AFL
was essential because a baseline for comparison among the
two different fuzzers had to be established. AFL was the
selected fuzzer due to its popularity and high ratings
throughout the fuzzing community. Binutils was the first
program fuzzed with AFL due to its numerous tutorials and
walkthroughs online. Due to the well written documentation
and tutorials online, running an instance of AFL while
targeting Binutils was quite trivial. Successfully
implementing the GPU component required the code to be
parallelizable.

 Before starting on the fuzzer development, a simple

proof of concept was performed. This was a piece of software
that adds the elements within a vector together via the CPU
and then does the same calculation on a GPU. Both of these
functions were timed to see which processing unit could
complete the task quicker.

The next step within the project was to create a
pseudorandom data generator that utilized the GPUs. NumPy
and cuPy were two similar libraries that were designed for
Python. Both libraries generate pseudorandom numbers,
however, numPy is designed for the CPU while cuPy utilizes
the CUDA Toolkit to harness the power of the GPU. To create
the data generator, both numPy and cuPy would select a
random number and these random numbers would correspond
to the length of the word along with which characters to
append to the line of data. This random data was printed out
to the console (and could even potentially be fed into a
program to see if it would cause the program to crash).

Within the two different code libraries, timers that triggered

at the beginning of the data generation and terminated once
the random data was created were created. After testing the
two programs, cuPy seemed to be trailing numPy despite the
fact that cuPy was utilizing the power of the GPUs. After
further investigation, this seemed to be because numPy is an
incredibly efficient C program. Due to numPy outperforming
cuPy, additional testing had to be implemented. This
approach included running a local executable compiled with
NVCC (a CUDA compiler) to generate the random data, but
it still was not fast enough to beat the CPU based generator
with numPy.

When analyzing the programs, there are several

explanations as to why the GPU based fuzzer fails at beating
the CPU one. One of the reasons is that the graphics card takes
time to get up to full speed and is bottlenecked by all the data
transfers between it and the CPU. Also, numPy is an
extremely well written C program, so it is already incredibly
fast. In order to compete with numPy, lots of data along with
well written GPU code will be necessary.

IV. RESULTS
After selecting the AFL fuzzer, the chosen fuzzing target

was the Readelf file located within the Binutils program.
Binutils was the program of choice for testing due to the
numerous tutorials and walkthroughs online. These tutorials
were excellent step-by-step guides that assisted with the
success of the AFL Fuzzer setup. However, once AFL was up
and and fuzzing, no crashes were discovered. This could be a
result because of its setup being so trivial, everybody knew
how to fuzz the Readelf file from Binutils. From this, many
vulnerabilities were discovered quickly and the creators of
Binutils were able to patch such vulnerabilities quickly,
making it incredibly difficult and time consuming to discover
a vulnerability located within the Binutils program. Figure 1
is a snapshot of the AFL running.

The snapshot of the American Fuzzy Lop fuzzer, presented
in Figure 1, illustrates a few key important details. The first
key detail that is located in the top left box with the title

“Process Timing” is that it has been running for five days, ten
hours, thirty-five minutes and fifty-seven seconds, which is
quite a long time. One line down within that same box it
displays that it last discovered a new code path thirteen
minutes and twenty-two seconds ago. Further down the
vertical column, to the box titled “Stage Progress”, the next
important piece of information is that it is running at 406.7
executions per second, which is quite fast for most AFL
instances.

Beneath the “Stage Progress” box is a box titled “Fuzzing

Strategy Yields”. Within this box, it reports how many bit and
byte flips occurred along with a few other fields of data.
Arguably the most important box, “Overall Results” is located
at the top right of the screen shot. Inside this box, it displays
the amount of cycles done (zero), the number of total paths
(1821), the number of unique crashes (zero), and the number
of unique hangs (zero).

A cycle is complete and the indicator is incremented when

all of the generated data has been executed and the fuzzer has
to mutate the data set for another cycle of fuzzing. It is
important to note that one full cycle was not yet completed in
Figure 1. Many testers will run their fuzzer instances for ten
or more cycles to insure they have quality results. For this
project, a complete cycle was not achieved due to time
constraints.

The next goal was to develop a proof of concept system to

evaluate the prospective superiority of the GPU-based fuzzer.
To this end, a simple program that adds 1,000,000 elements
in a vector with the CPU and then repeats the same process
with a GPU was created and executed. After executing the
program, the CPU function finished with a time of 32.11
seconds while the GPU function took 1.23 seconds. Next, two

identical data generators were
created, one for the CPU and the
other for the GPU. The CPU
generator was written with the
numPy library and the other
generator was written with the
cuPy library. These libraries are
quite similar as their syntax is
the same with the exception that
one is identified with cuPy and
the other is identified by numPy.

When testing the two

programs to generate 5000 lines
of pseudorandom random data,
the CPU based program took
0.0599 seconds until
completion, while the GPU
version took 1.4127 seconds.
This seemed to be because the
GPU version was bottlenecked

by all the reading and writing of the lines of data.
Additionally, numPy is an incredibly fast program written in
C. To further the project, finding a GPU program that
generates data faster than the numPy program is essential for
success.

A GPU-based number generator was discovered and

executed. This number generated 10,027 random numbers
between one and zero. Next, a python script takes these
numbers and turns them into random data in a similar fashion
to the previous programs. The next steps consisted of
modifying the CPU based fuzzer to write all of its random
data to a file similar to how the GPU version was
implementing to keep the two programs as similar as possible.
Even with this version, the CPU data generator sill defeated
the GPU version. The CPU fuzzer took 0.0319 seconds to
generate 380 lines of data while the GPU version took 0.2968
seconds to generate the same amount of data.

V. CONCLUSIONS AND FUTURE WORK
The work this far would tend to suggest that the current

model of CPU-based fuzzing is preferable. Despite the
discouraging results for GPU use attained so far, it is not
entirely clear that the CPU based approach is superior and
GPU-based fuzzers still prospectively have the potential to
improve fuzzer performance. This is because the type of
process that generates the random data can be parallelized,
therefore making it an excellent candidate for GPU
processing. If GPU fuzzing issues can be resolved and use
becomes common, it is possible that there will be an increase
in executions per second, vulnerabilities discovered per unit
of time, and an overall increase in program security.

The next step in this work is to develop directly comparable

fuzzers and fuzzer components from the ground up. Beyond

Fig. 1. American Lop Fuzzer progress display

this, the testing protocol used above should remain relatively
similar. A program will be written in C, utilizing the CUDA
Toolkit that will generate pseudorandom data. When writing
the new programs, efficiency and (for the GPU-based version)
parallelization are key. The goal will be to compare a best-of-
breed CPU version to a best-of-breed GPU version.

A larger testing data set will also be desirable. Fuzzing

runs with similar inputs may complete at different speeds and
each fuzzing run may produce different results due to the use
of randomness by some of the fuzzing algorithms [13].

In the GPU version, intensive processes, such as data

generation, could be performed on the GPU allowing the CPU
to focus on other tasks. Once the GPU is able to successfully
and efficiently generate data, the data process could be refined
so that it never creates duplicate data. Another useful feature
would keep track of which types of data trigger certain code
paths so it could specialize the data generation to target certain
locations within the program itself. Overall, if the GPU was
able to handle most of the fuzzing process, it would improve
the speeds of the fuzzer. If all the data could be generated by
the graphics card, the CPU could focus on other main tasks,
significantly improving the fuzzer’s performance. Ideally
testing will be performed comparing the CPU and GPU
methods using a benchmark suite with meaningful
configuration parameters and sufficient time to gather
appropriate data [13]. Different GPU configurations could
also be tested.

Fundamentally, computer programs provide value due to

their ability to handle many tasks efficiently. However, this
value cannot be achieved if the systems are breached and data
is stolen. Prevention methods for impairing attacker activities
are quite common, but they must continue to improve, to stay
ahead of the modern threats. Many different security
strategies exist such as automated vulnerability discovery.
Both static and dynamic analysis can be used to this end.

Modification and development of new fuzzers must

continue to occur to stay ahead of attackers. There are many
different ways to improve the overall performance of a fuzzer,
but the main approach is to enhance the software itself.
Prospective improvements can include increased code
coverage, better data generation, and other means of
enhancing the fuzzer to produce more crashes and better
document the crashes that occur.

Innovating with regards to the hardware platform that the

fuzzer runs on is also option for improving the overall
performance of fuzzers. Fuzzing data consists of many
independent tasks including the generation along with testing
the data. These tasks are parallelizable, meaning a GPU could
prospectively improve the speed at which they are completed.
If the GPU approach is successfully implemented, the overall
fuzzer’s performance could increase significantly facilitating

greater levels of defect and bug detection. Discovering more
vulnerabilities leads to corporate savings as well as allowing
consumers and businesses to be more confident in the security
of their personal and corporate data.

ACKNOWLEDGMENT
This work was supported by the U.S. National Science

Foundation (award # 1757659) and the NDSU Institute for
Cyber Security Education and Research.

REFERENCES
[1] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in

Java Applications with Static Analysis.”

[2] L. Bilge and T. Dumitras, Before We Knew It. .

[3] S. Karamcheti, G. Mann, and D. Rosenberg, “Improving Grey-Box
Fuzzing by Modeling Program Behavior.”

[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Technical Report).”

[5] Y. Wang, P. Jia, L. Liu, and J. Liu, “A systematic review of fuzzing
based on machine learning techniques.”

[6] M. Bohme, V. T. Pham, and A. Roychoudhury, “Coverage-Based
Greybox Fuzzing as Markov Chain,” IEEE Trans. Softw. Eng., vol.
45, no. 5, pp. 489–506, May 2019.

[7] V. J. M. Manès et al., “The Art, Science, and Engineering of Fuzzing:
A Survey,” 2019.

[8] K. Sen, Concolic Testing. 2007.

[9] J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim,
“FUZZIFICATION: Anti-Fuzzing Techniques.”

[10] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” in Proceedings - IEEE Symposium on Security and
Privacy, 2010, pp. 497–512.

[11] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward Large-Scale Vulnerability Discovery using Machine
Learning,” 2016.

[12] E. Niewiadomska-Szynkiewicz, M. Marks, J. Jantura, M. Podbielski,
and P. Strzelczyk, “Comparative Study of Massively Parallel
Cryptalysis and Cryptography on CPU-GPU Cluster.”

[13] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
Fuzz Testing,” p. 16, 2018.

