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Abstract—Fuzzing is the art of creating data and using that 
generated data as input for a target program. The goal behind 
this is to crash the program in a manner that can be analyzed 
and exploited. Software developers are able to benefit from 
fuzzers, as they can patch the discovered vulnerabilities before 
an attacker exploits them. Programs are becoming larger and 
require improved fuzzers to keep up with the increased attack 
surface.  Most innovations in fuzzer development are software 
related and provide better path coverage or data generation.  

 
This paper proposes creating a fuzzer that is designed to 

utilize a dedicated graphics card’s graphics processing unit 
(GPU) instead of the standard processor. Much of the code 
within the fuzzer is parallelizable, meaning the graphics card 
could potentially process it in a much more efficient manner. The 
effectiveness of GPU fuzzing is assessed herein. 

I. INTRODUCTION 
Along with the increase in the development of computer 

applications has come an increase in the number of 

vulnerabilities that these programs contain. These new 

vulnerabilities open doors for attackers to exploit and gain 

access. Vulnerable computer applications can leak sensitive 

information such as names, credit cards, bank information, 

social security numbers and much more. This information is 

a target for criminals. After an attacker compromises a target, 

they can cause severe financial and reputational damage. A 

study by Livshits and Lam [1] discussed the value of this 

information and how many business financial losses range 

into the millions of dollars, due to its sensitivity.  In order to 

prevent criminals from gaining access to the sensitive data 

within these programs, organizations will need to allocate 

resources towards cyber defense.  

 

When a zero-day, an exploitable vulnerability that has not 

been released to the public yet, is discovered it can 

prospectively be sold to criminals, companies, or nation states 

for amounts ranging between $5,000 and $250,000 [2].  These 

organizations are willing to spend money for these zero-days 

attacks, because they are able to patch vulnerabilities before 

attackers are able to exploit and compromise them – or, in the 

case of state offensive actors and criminals, use them before 

they are patched.  Organizations who successfully patch 

vulnerabilities and prevent criminals from stealing 

information save money, prevent lawsuits, and increase their 

 
 

reputation. In order to successfully discover new 

vulnerabilities, before a prospective attacker does, companies 

must innovate and move beyond the current methods of 

discovering new vulnerabilities.  

 

One valuable cyber defense tactic is automated 

vulnerability discovery, which allows organizations to 

discover flaws within their programs and applications before 

attackers do. Many of these autonomous vulnerability 

discovery programs are open source, meaning attackers also 

have access to such tools. 

  

A common dynamic analysis discovery technique is called 

fuzzing. Fuzzing is the art of generating data that is used as 

input toward a specific program to test different control paths 

and make sure the program continues to run properly. The 

American Fuzzy Lop (AFL) is a popular fuzzer with a unique 

data generation technique. AFL generates data based upon a 

test case that is provided as original input for the fuzzer. As 

this data makes it further throughout the target’s program 

parser, AFL keeps track of such progress and continues to 

modify it accordingly. An example that highlights AFL’s data 

generation is when the input string, “Hello” was used for a 

JPEG parser. Through the cycles, the input made it further 

through the parser and eventually became a valid JPEG image  

[3]. 

 

 In addition to software innovations, hardware 

enhancement can facilitate increased performance of many 

automated vulnerability discovery tools. This paper considers 

the use of a graphics card’s GPUs to accelerate the 

parallelizable processes while fuzzing.  This may improve the 

performance of the automated vulnerability discovery tool, 

increasing the number of discovered vulnerabilities in a 

period of time and the speed of vulnerability discovery.   

II. BACKGROUND 
Automated vulnerability discovery can be broken down 

into two main categories: static and dynamic analysis. Each is 
now discussed.  Then, fuzzing algorithms and CPU versus 
GPU performance are considered.  

A. Static Analysis 
Static analysis is used when the tester can obtain and 



 
 

 

evaluate the source code of the program. Using this, the code 
can be analyzed and flaws and vulnerabilities within the 
program, that could be exploited later, can be discovered. 

 
Static analysis extracts information from the program being 

tested to direct the fuzzing process without actually running 
the program.  There are different techniques and programs 
that can automate this process. Pixy, for example, is a 
program that uses “flow sensitive, interprocedural and 
context-sensitive dataflow analysis to discover vulnerable 
points in a program” [4]. There are numerous other static 
vulnerability discovery tools, such as one created by Stanford 
University. Their static analysis tool “is the first practical 
static security analysis that utilizes fully context-sensitive 
pointer analysis result” and has the added benefit of having a 
simple graphical user interface [1].  

 
Static analysis is not a complete solution as many 

vulnerabilities can be missed because the static analysis tools 
are not analyzing the program during runtime.  This makes 
automated static analysis a semi-effective vulnerability 
discovery technique, due to techniques’ low accuracy and 
high rate of false positives [5].  

B. Dynamic Analysis - Fuzzing 
Alternatively, there are dynamic analysis techniques such 

as fuzzing. Fuzzing, which is the most commonly used 
dynamic analysis vulnerability discovery process, can be 
implemented with black-box, white-box, or grey-box testing 
approaches. 

 
Black-box testing is an uninformed testing strategy that 

generates both valid and invalid input for target programs and 
does not require any program analysis [6].  The black-box 
fuzzer is unaware of the internals of the program it is testing; 
it only observes the input and output behavior of the program. 
The code within the fuzzer submits numerous forms of 
generated data into the target program as standard input in an 
attempt to crash the program. Once the generated data has 
been submitted, there is an algorithm within the fuzzer that 
mutates and alters the previous data to create a new data set.  

 
White-box fuzzing analyzes the internals of the program 

being tested and the information gathered when executing that 
program.  As a result, white-box fuzzing utilizes more system 
resources to complete than black-box fuzzing [7].  Symbolic 
execution tools are used to expose the control flow of the 
tested software and treat inputs as variables and branch 
conditions as variable constraints.  Unfortunately, even 
average programs can have thousands of challenging branch 
conditions which consumes a significant amount of time [3]. 

 
Grey-box fuzzers obtain some limited static and dynamic 

information internal to the tested program and use this 
approximated information to speed up the processing of  
testing more inputs, as comparted to a pure white-box 
approach [7].  AFL is an example of a grey-box fuzzer.  The 

increased performance comes with the cost that the 
approximated information can be wasted on redundant or 
malformed inputs [3].   

C. Fuzzing Algorithms 
Fuzzers use a variety of algorithms to perform their testing 

tasks.  These algorithms are integral to the success of the 
fuzzer because they generate the actual data that is used to test 
programs’ integrity. Symbolic and concrete execution are 
both traditional methods for test data generations. 

 
Symbolic execution remembers which code triggers certain 

code paths, increasing the amount of code covered.  On the 
other hand, concrete execution uses actual data.  Concolic 
testing is a hybrid between the two (concrete and symbolic).  
It combines both techniques with the two parts feeding data 
to each other, improving the overall data set [8].  Concolic 
testing is also known as dynamic symbolic execution.   

 
Once the data set is generated, the fuzzer repeats the data 

submission process and cycles back to the beginning unless a 
user terminates the program or a stop option is configured and 
triggered within the program [9].  Concolic execution is a 
unique and different approach to fuzzing. Instead of randomly 
generating and inputting data, it will map the control flow of 
the target program. When doing this, concolic execution 
remembers which values trigger certain parts of the code, 
allowing the data to test a wider range of control paths 
throughout the program [8].   

 
When a crash is occurs, in many cases it may be a false 

positive.  Because of this, programs and people have to go 
through every crash instance to confirm that a real 
vulnerability is present.  Concolic testing is slower than many 
other techniques.  One approach to compensate for this is to 
narrow the scope of the testing by letting the user specify parts 
of the software to test [7]. 

 
Many fuzzers contain techniques that include code 

coverage analysis, property checking, checksums, accelerated 
fuzzed execution, instruction emulation, and concolic 
execution [9], [10].   

 
 Fuzzing is a way to prospectively discover zero-day 

vulnerabilities. For defenders to stay ahead of attackers, they 
will need to use tools such as efficient fuzzers that employ 
innovative techniques. Improving the efficiency and accuracy 
of fuzzing is vital because they currently produce significant 
error [11].  Selecting which fuzzer to use can be a difficult 
process because there are so many. A few examples are AFL, 
Cert Bff Fuzz, Cluster Fuzz, and OSS-Fuzz.  There are also a 
number of closed-source fuzzers [7].  

D. CPU vs GPU Performance 
Hardware improvements can aid fuzzer performance. 

Processor vendors are constantly refining their central 
processing units (CPU) to add more cores and achieve greater 



 
 

 

speeds. Processor capability improvement enhances overall 
fuzzer performance.  

 
An alternate approach is to use a dedicated graphics card 

for fuzzing.  These cards are designed with numerous cores 
and the ability to run many operations in parallel.  When 
cracking passwords, the utility of this approach is 
demonstrated by a tool called Hashcat (which is found in Kali 
Linux). This program can operate with a CPU, however, those 
using a graphics card achieve much higher performance level.  
This is due to the ability of modern GPUs to perform hundreds 
of billions of floating point operations per second [12].  
 

GPU cards have been instrumental in allowing complex 
video games to run at reasonable speeds. Video games are an 
excellent example of parallelization because when rendering 
all of the shapes, each area is independent of all the other 
areas. Emphasizing this point even further is that the pixel 
itself is oblivious towards the bigger picture that it is 
constructing.  

 
The concept of using a graphics card for fuzzing would 

appear to be a prospectively excellent way to increase the 
performance of the fuzzer, allowing for an increase of 
vulnerabilities discovered. Bohme, Pham and Roychoudhury 
[6] discuss how “converge-based greybox fuzzing is highly 
parallelizable because the retained seeds represent the only 
internal state”.  If they are able to discover more 
vulnerabilities, companies will be able to patch more of their 
system flaws before they are exploited.  This will further 
enhance the difficulty of attempting to compromise the 
system.  

III. IMPLEMENTATION 
In order to adequately compare the performance of the 

GPU to the CPU for fuzzing, the inner workings of fuzzers 
must be well understood. To begin the physical testing, the 
CPU based version of AFL was executed first. Testing AFL 
was essential because a baseline for comparison among the 
two different fuzzers had to be established. AFL was the 
selected fuzzer due to its popularity and high ratings 
throughout the fuzzing community. Binutils was the first 
program fuzzed with AFL due to its numerous tutorials and 
walkthroughs online. Due to the well written documentation 
and tutorials online, running an instance of AFL while 
targeting Binutils was quite trivial. Successfully 
implementing the GPU component required the code to be 
parallelizable. 

 
 Before starting on the fuzzer development, a simple 

proof of concept was performed. This was a piece of software 
that adds the elements within a vector together via the CPU 
and then does the same calculation on a GPU. Both of these 
functions were timed to see which processing unit could 
complete the task quicker.   

 

The next step within the project was to create a 
pseudorandom data generator that utilized the GPUs. NumPy 
and cuPy were two similar libraries that were designed for 
Python. Both libraries generate pseudorandom numbers, 
however, numPy is designed for the CPU while cuPy utilizes 
the CUDA Toolkit to harness the power of the GPU. To create 
the data generator, both numPy and cuPy would select a 
random number and these random numbers would correspond 
to the length of the word along with which characters to 
append to the line of data. This random data was printed out 
to the console (and could even potentially be fed into a 
program to see if it would cause the program to crash).  

 
Within the two different code libraries, timers that triggered 

at the beginning of the data generation and terminated once 
the random data was created were created. After testing the 
two programs, cuPy seemed to be trailing numPy despite the 
fact that cuPy was utilizing the power of the GPUs. After 
further investigation, this seemed to be because numPy is an 
incredibly efficient C program. Due to numPy outperforming 
cuPy, additional testing had to be implemented. This 
approach included running a local executable compiled with 
NVCC (a CUDA compiler) to generate the random data, but 
it still was not fast enough to beat the CPU based generator 
with numPy.  

 
When analyzing the programs, there are several 

explanations as to why the GPU based fuzzer fails at beating 
the CPU one. One of the reasons is that the graphics card takes 
time to get up to full speed and is bottlenecked by all the data 
transfers between it and the CPU. Also, numPy is an 
extremely well written C program, so it is already incredibly 
fast. In order to compete with numPy, lots of data along with 
well written GPU code will be necessary. 

IV. RESULTS 
After selecting the AFL fuzzer, the chosen fuzzing target 

was the Readelf file located within the Binutils program. 
Binutils was the program of choice for testing due to the 
numerous tutorials and walkthroughs online. These tutorials 
were excellent step-by-step guides that assisted with the 
success of the AFL Fuzzer setup. However, once AFL was up 
and and fuzzing, no crashes were discovered. This could be a 
result because of its setup being so trivial, everybody knew 
how to fuzz the Readelf file from Binutils. From this, many 
vulnerabilities were discovered quickly and the creators of 
Binutils were able to patch such vulnerabilities quickly, 
making it incredibly difficult and time consuming to discover 
a vulnerability located within the Binutils program. Figure 1 
is a snapshot of the AFL running.   
 

The snapshot of the American Fuzzy Lop fuzzer, presented 
in Figure 1, illustrates a few key important details. The first 
key detail that is located in the top left box with the title 



 
 

 

“Process Timing” is that it has been running for five days, ten 
hours, thirty-five minutes and fifty-seven seconds, which is 
quite a long time. One line down within that same box it 
displays that it last discovered a new code path thirteen 
minutes and twenty-two seconds ago. Further down the 
vertical column, to the box titled “Stage Progress”, the next 
important piece of information is that it is running at 406.7 
executions per second, which is quite fast for most AFL 
instances.  

 
Beneath the “Stage Progress” box is a box titled “Fuzzing 

Strategy Yields”. Within this box, it reports how many bit and 
byte flips occurred along with a few other fields of data. 
Arguably the most important box, “Overall Results” is located 
at the top right of the screen shot. Inside this box, it displays 
the amount of cycles done (zero), the number of total paths 
(1821), the number of unique crashes (zero), and the number 
of unique hangs (zero).  

 
A cycle is complete and the indicator is incremented when 

all of the generated data has been executed and the fuzzer has 
to mutate the data set for another cycle of fuzzing.  It is 
important to note that one full cycle was not yet completed in 
Figure 1. Many testers will run their fuzzer instances for ten 
or more cycles to insure they have quality results. For this 
project, a complete cycle was not achieved due to time 
constraints. 

 
The next goal was to develop a proof of concept system to 

evaluate the prospective superiority of the GPU-based fuzzer. 
To this end, a simple program that adds 1,000,000 elements 
in a vector with the CPU and then repeats the same process 
with a GPU was created and executed. After executing the 
program, the CPU function finished with a time of 32.11 
seconds while the GPU function took 1.23 seconds. Next, two 

identical data generators were 
created, one for the CPU and the 
other for the GPU. The CPU 
generator was written with the 
numPy library and the other 
generator was written with the 
cuPy library. These libraries are 
quite similar as their syntax is 
the same with the exception that 
one is identified with cuPy and 
the other is identified by numPy.  

 
When testing the two 

programs to generate 5000 lines 
of pseudorandom random data, 
the CPU based program took 
0.0599 seconds until 
completion, while the GPU 
version took 1.4127 seconds. 
This seemed to be because the 
GPU version was bottlenecked 

by all the reading and writing of the lines of data. 
Additionally, numPy is an incredibly fast program written in 
C. To further the project, finding a GPU program that 
generates data faster than the numPy program is essential for 
success.  

 
A GPU-based number generator was discovered and 

executed. This number generated 10,027 random numbers 
between one and zero. Next, a python script takes these 
numbers and turns them into random data in a similar fashion 
to the previous programs. The next steps consisted of 
modifying the CPU based fuzzer to write all of its random 
data to a file similar to how the GPU version was 
implementing to keep the two programs as similar as possible. 
Even with this version, the CPU data generator sill defeated 
the GPU version. The CPU fuzzer took 0.0319 seconds to 
generate 380 lines of data while the GPU version took 0.2968 
seconds to generate the same amount of data. 

V. CONCLUSIONS AND FUTURE WORK 
The work this far would tend to suggest that the current 

model of CPU-based fuzzing is preferable.  Despite the 
discouraging results for GPU use attained so far, it is not 
entirely clear that the CPU based approach is superior and 
GPU-based fuzzers still prospectively have the potential to 
improve fuzzer performance. This is because the type of 
process that generates the random data can be parallelized, 
therefore making it an excellent candidate for GPU 
processing. If GPU fuzzing issues can be resolved and use 
becomes common, it is possible that there will be an increase 
in executions per second, vulnerabilities discovered per unit 
of time, and an overall increase in program security. 

 
The next step in this work is to develop directly comparable 

fuzzers and fuzzer components from the ground up. Beyond 

Fig. 1.  American Lop Fuzzer progress display 



 
 

 

this, the testing protocol used above should remain relatively 
similar. A program will be written in C, utilizing the CUDA 
Toolkit that will generate pseudorandom data. When writing 
the new programs, efficiency and (for the GPU-based version) 
parallelization are key. The goal will be to compare a best-of-
breed CPU version to a best-of-breed GPU version. 

 
A larger testing data set will also be desirable.  Fuzzing 

runs with similar inputs may complete at different speeds and 
each fuzzing run may produce different results due to the use 
of randomness by some of the fuzzing algorithms [13].   

 
In the GPU version, intensive processes, such as data 

generation, could be performed on the GPU allowing the CPU 
to focus on other tasks. Once the GPU is able to successfully 
and efficiently generate data, the data process could be refined 
so that it never creates duplicate data.  Another useful feature 
would keep track of which types of data trigger certain code 
paths so it could specialize the data generation to target certain 
locations within the program itself. Overall, if the GPU was 
able to handle most of the fuzzing process, it would improve 
the speeds of the fuzzer. If all the data could be generated by 
the graphics card, the CPU could focus on other main tasks, 
significantly improving the fuzzer’s performance.  Ideally 
testing will be performed comparing the CPU and GPU 
methods using a benchmark suite with meaningful 
configuration parameters and sufficient time to gather 
appropriate data [13].  Different GPU configurations could 
also be tested. 

 
Fundamentally, computer programs provide value due to 

their ability to handle many tasks efficiently.  However, this 
value cannot be achieved if the systems are breached and data 
is stolen. Prevention methods for impairing attacker activities 
are quite common, but they must continue to improve, to stay 
ahead of the modern threats. Many different security 
strategies exist such as automated vulnerability discovery. 
Both static and dynamic analysis can be used to this end.  

 
Modification and development of new fuzzers must 

continue to occur to stay ahead of attackers. There are many 
different ways to improve the overall performance of a fuzzer, 
but the main approach is to enhance the software itself. 
Prospective improvements can include increased code 
coverage, better data generation, and other means of 
enhancing the fuzzer to produce more crashes and better 
document the crashes that occur.  

 
Innovating with regards to the hardware platform that the 

fuzzer runs on is also option for improving the overall 
performance of fuzzers. Fuzzing data consists of many 
independent tasks including the generation along with testing 
the data. These tasks are parallelizable, meaning a GPU could 
prospectively improve the speed at which they are completed. 
If the GPU approach is successfully implemented, the overall 
fuzzer’s performance could increase significantly facilitating 

greater levels of defect and bug detection. Discovering more 
vulnerabilities leads to corporate savings as well as allowing 
consumers and businesses to be more confident in the security 
of their personal and corporate data.  
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