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Abstract. We review recent theoretical and computational developments in

time-dependent density-functional theory (TDDFT) for periodic insulators and

semiconductors. To capture excitonic effects within a linear-response TDDFT

framework requires using exchange-correlation (xc) kernels with a proper long-range

behavior, which can be efficiently modeled with a class of so-called long-range corrected

xc kernels. While attractive from a computational standpoint, these xc kernels have

their limitations and require judicious use. We review the pros and cons of various xc

kernels in the literature, and discuss an empirical scaling approach to obtain accurate

exciton binding energies with TDDFT. We also discuss generalized TDDFT approaches

for excitons using hybrid functionals.
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1. Introduction

Among the most important properties of a material is the way in which it responds

to incident light. The optical response of a material is determined by the macroscopic

dielectric function ϵmac(ω), which depends on the light frequency ω [1]. The calculation

of ϵmac(ω) from first principles, which allows a direct comparison with experimental

optical spectra, is one of the prime tasks of electronic structure theory. Depending

on the material at hand, this can be quite a formidable challenge, especially if subtle

spectral features such as excitons are to be accurately described.

A quantum mechanical description of the electronic structure and excitations in

matter can be accomplished in more than one way. One approach, often referred

to as many-body perturbation theory, is based on the concept of quasiparticles: the

addition and removal of quasiparticles is described via Green’s functions, and excitation

processes involving quasielectron- and -hole pairs, including their screened interaction,

are treated using suitably defined correlation functions [2–5]. An alternative approach

is based on the electronic density: the electronic ground state is obtained using density-

functional theory (DFT) [6–8], and the dynamics is described with time-dependent

density-functional theory (TDDFT) [9–11], where all the physics of electronic excitations

is implicitly encoded in the fluctuations of the time-dependent density. Both approaches

are formally exact, and require approximations to be used in practice; both approaches

have their own advantages and drawbacks.

It is often said that the “gold standard” for calculating electronic excitations in

materials is via many-body perturbation theory, using the Bethe-Salpeter equation

(BSE) [12–18], usually combined with the GW approximation for the electronic

quasiparticle band structure [19, 20]. The GW/BSE approach is nowadays routinely

applied to a broad variety of systems and materials [21–29], and is available in several

noncommercial software platforms [30–34]. However, the GW/BSE approach, which is

based on many-body Green’s functions, tends to be computationally expensive, which

precludes its applications to systems beyond a certain degree of complexity.

As discussed above, an alternative to many-body perturbation theory is TDDFT

[9–11]. TDDFT is formally exact and therefore yields, in principle, the exact excitation

energies and optical spectra of any type of material: atoms, molecules, and periodic or

nonperiodic extended systems. In contrast with many-body theories based on Green’s

functions, which are functions of two or more spatial variables, TDDFT is based on

the particle density, which depends on a single spatial variable only; this promises to

make TDDFT computationally more efficient. However, the catch is that a crucial

ingredient, namely the exchange-correlation (xc) potential, needs to be approximated,

and the computational efficiency of TDDFT and the quality of results critically depend

on the choice of approximation.

In this review article, we will focus on a particular class of approximations to the

so-called xc kernel of linear-response TDDFT, known as long-range corrected (LRC)

approximations. The frequency-dependent xc kernel of TDDFT is formally defined
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within the linear-response framework as [35]

fxc(r, r
′, ω) =

∫
d(t− t′)eiω(t−t′) δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n0(r)

, (1)

where vxc[n](r, t) is the xc potential of TDDFT [a functional of the time-dependent

density n(r, t)], and n0(r) is the ground-state density of the unperturbed system. For

spatially periodic solids (the only type of system we will consider here), the xc kernel is

transformed into reciprocal space, fxc
GG′(q, ω), where q is a wave vector within the first

Brillouin zone (BZ) and G and G′ are reciprocal lattice vectors.

Linear-response TDDFT provides a formally exact framework for calculating

electronic excitations [36, 37]. In particular, ϵmac(ω) can be rigorously obtained from

TDDFT. In Section 3 we will review the TDDFT linear-response framework for the

optical response of periodic solids with a gap, i.e., insulators and semiconductors (for

earlier reviews on this subject see [2, 38–41]).

Of course, no TDDFT calculation is exact except for the very simplest of model

systems, since all practical calculations necessarily involve three distinct approximations:

(1) the electronic ground state (i.e., the Kohn-Sham band structure) must be obtained

with an approximate xc potential vappxc (r); (2) the linear-response TDDFT calculation

must be carried out with an approximate xc kernel f app
xc (r, r′, ω); (3) all computations

require some form of numerical discretization, either in the form of a finite basis or of a

real-space grid with finite spacing; in addition, many codes work with pseudopotentials,

which reduces the computational burden but introduces further approximations.

While all of this is well known, up until not too long ago it was quite commonly

believed that “TDDFT cannot do excitons”. The reason being that the standard

xc functionals that had been so successful in condensed matter, the local-density

approximation (LDA) and generalized-gradient approximations (GGAs) and their

adiabatic counterparts for the time-dependent case (ALDA and AGGA), indeed

perform very poorly when it comes to describing excitonic features in insulators and

semiconductors.

The reason for the failure of ALDA and AGGAs to capture excitons is now well

understood. The existence of excitons requires a screened electron-hole interaction

which, in the TDDFT picture, is entirely due to the xc kernel. More precisely, it is due

to a key feature of the exact xc kernel, namely the fact that it has a long spatial range in

systems with a gap: in real space, fxc ∼ −|r− r′|−1 in the limit of large separation, and

in reciprocal space fxc ∼ −1/q2 in the limit of small wave vector. Semilocal functionals

such as ALDA and AGGA, on the other hand, are spatially short-ranged, and their

electron-hole interaction is orders of magnitude too weak in extended solids (they still

work fine in small finite systems such as atoms and molecules).

In a series of groundbreaking papers beginning 2002 [2, 42–51], the connection

between the long-range behavior of fxc and excitons was revealed and analyzed, and

important proof of concept was given that TDDFT is indeed capable of producing

excitonic effects with similar accuracy as the BSE, provided the right physics is built
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into the approximate xc kernel. This can be accomplished using a reverse-engineering

approach [42], using input from many-body theory and constructing an xc kernel which

can be viewed as an effective localized BSE; unsurprisingly, this is computationally quite

costly.

Approximate xc kernels of a much simple form which are designed to have the

right long-range behavior became known as “long-range corrected” (LRC) kernels [49].

Today, there exists a whole family of LRC kernels in TDDFT, and in Sections 4 and

5 of this article we will review them and critically assess their performance. It turns

out that there are pros and cons: LRC kernels are numerically cheap and successfully

capture exciton binding, but they tend to work for parts of the spectrum only. We will

conclude this review with alternative TDDFT-based approaches, based on the idea of

hybrid functionals, which may hold considerable promise for future applications.

2. The Wannier model

We begin with a discussion of the time-honored Wannier-Mott model of excitons [52,53],

because this provides us with some insights which will be useful later on. According to

this model, excitons are described as effective two-particle systems, where an electron

is bound to a hole via screened Coulomb interaction (see insert of Fig. 1a). The

model can be derived from many-body theory [5,12] by using a two-band approximation

whereby the electronic band structure is reduced to one occupied valence band and one

empty conduction band, both taken to be parabolic. This then allows one to invoke the

effective-mass approximation [54, 55], where conduction band electrons have effective

massm∗
e and valence band holes have effective massm∗

h, and the exciton reduced effective

mass is mr = m∗
em

∗
h/(m

∗
e+m

∗
h). Excitons are then described by the following hydrogen-

like Schrödinger equation [56]:{
−~2∇2

2mr

− e2

4πϵ0ϵr

}
ψn(r) = Enψn(r) . (2)

Here, ϵ0 is the vacuum permittivity, e is the free electron charge, and ϵ is the dielectric

constant of the material.

Equation (2), which is also known as the Wannier equation, yields a Rydberg series

of bound states as well as a continuum of unbound states. The 3D exciton bound-state

energies are given by

En = −E0
1

n2
, n = 1, 2, ..., (3)

where E0, the binding energy of the lowest exciton, is

E0 =
~2

2mra20
, (4)

and the exciton Bohr radius a0 is

a0 =
~2ϵ0
e2mr

. (5)
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Figure 1. Absorption spectrum of the Wannier model, see Eq. (6). (a) Comparison

of excitonic spectrum (blue) with independent-particle spectrum (red). The dashed

vertical line shows the position of the band gap. The insert shows the exciton as a

bound electron-hole pair with center-of-mass momentum k. (b) Absorption spectra

with different exciton binding energies, illustrating the fact that the oscillator strength

of the excitonic peaks near the band edge grows as E
1/2
0 .

As an example, consider the lowest bound exciton in GaAs, a material in which the

Wannier equation works particularly well: one obtains E0 = 4.6 meV and a0 = 118 Å

(for comparison, the experiment gives Eexp
0 = 4.2 meV). This clearly shows that Wannier

excitons are weakly bound and extend over many lattice constants, thus justifying the

effective-mass treatment of Eq. (2).

Using the hydrogenic wave functions of the Wannier model, it is possible to derive

a closed expression for the optical absorption spectrum in the neighborhood of the band

edge [56]:

α(ω) =
2|dcv|2

~nbca30

~ω
E0

[
∞∑
n=1

4π

n3
δ

(
∆+

1

n2

)
+ θ(∆)

πeπ/
√
∆

sinh(π/
√
∆)

]
, (6)

where ∆ = (~ω−Eg)/E0 describes the detuning from the band gap Eg, dcv is the optical

dipole matrix element between valence and conduction band, and nb is the background

refractive index. Equation (6) is also known as the Elliott formula [55].

Figure 1a illustrates the absorption spectrum resulting from an evaluation of the

Elliott formula (6) using dimensionless units (blue line). The input parameters are

Eg = 10, E0 = 0.5, and an artificial line broadening of 0.05. A very pronounced first

excitonic peak at ω = 9.5 is observed; the exciton Rydberg series merges smoothly

with the continuum. For comparison, the independent-particle spectrum (red line) has

a much lower oscillator strength near the band edge.

We now want to know how the oscillator strength of the lowest exciton scales with

its binding energy. We evaluate the Elliott formula for ω = Eg−E0, so that ∆ = 1, and

α(Eg − E0) =
8π|dcv|2

nbc

(Eg − E0)

a30E0

. (7)
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But we can express a0 in terms of E0 via Eq. (4), so that

α(Eg − E0) =
8π|dcv|2(2mr)

3/2

nbc~3
(Eg − E0)

√
E0. (8)

Let us assume that Eg ≫ E0, which is the clearly the case in situations where the

Wannier model is valid. We then find that

α ∼
√
E0, (9)

so the oscillator strength of the lowest exciton grows like the square root of the exciton

binding energy. This is illustrated in Fig. 1b, which shows a series of absorption spectra

with values of E0 ranging from 0.01 to 1.5. The peak height grows with E0; as long as

E0 is less than about 0.5, the growth clearly follows a E
1/2
0 behavior. For larger values

of E0, the growth somewhat slows down, in accordance with Eq. (8).

3. Linear-response TDDFT for periodic solids with a gap

Here and in the following, k and q will denote wave vectors in the first BZ, and G

will denote reciprocal lattice vectors. From now on, we shall work in atomic units

(e = m = ~ = 4πϵ0 = 1).

3.1. Basic formalism and Casida equation for the optical absorption in solids

In the following, we will consider periodic solids with fixed nuclei within the Born-

Oppenheimer approximation, i.e., there are no phonons or electron-phonon interactions.

We assume that the temperature is zero and that there are no defects, impurities or

surface effects. Furthermore, we will limit the discussion to nonmagnetic materials in

which all spin-up and spin-down states are equally occupied, and we will only consider

spin-independent quantities.

Under these circumstances, the linear density response to a scalar perturbing

potential can be written as

n1G(k, ω) =
∑
G′

χGG′(k, ω)v1G′(k, ω) , (10)

where n1G(k, ω) is the density response in reciprocal space, v1G′(k, ω) is the perturbing

potential, and χGG′(k, ω) is the density-density response function of the system,

including electron-electron interactions.

In TDDFT, the full interacting density-density response function in a lattice

periodic system is given, in principle exactly, by

χGG′(k, ω) = χKS
GG′(k, ω) +

∑
G1,G2

χKS
GG1

(k, ω)fHxc
G1G2

(k, ω)χG2G′(k, ω). (11)

Here, the Kohn-Sham response function is

χKS
GG′(k, ω) =

2

V
∑
k′∈BZ

∞∑
j,l=1

fjk′ − flk+k′

ω + εjk′ − εlk+k′ + iη
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×
∫
cell

dr φ∗
jk′(r)e−i(k+G)·rφlk+k′(r)

∫
cell

dr′ φ∗
lk+k′(r′)ei(k+G′)·r′φjk′(r′), (12)

where V is the volume of the unit cell. To construct χKS
GG′(k, ω), we need the Kohn-

Sham band structure, that is, the Kohn-Sham single-particle Bloch functions φjk(r) and

energy eigenvalues εjk, where j is the band index. The second sum in Eq. (12) runs over

all occupied and unoccupied bands, where fjk is an occupation factor (1 if the state φjk

is occupied, 0 if empty). In the following, we will use a bra-ket notation to abbreviate

the integrals over the unit cell, so that

χKS
GG′(k, ω) =

2

V
∑
k′∈BZ

∞∑
j,l=1

fjk′ − flk+k′

ω + εjk′ − εlk+k′ + iη

× ⟨jk′|e−i(k+G)·r|lk+ k′⟩⟨lk+ k′|ei(k+G′)·r′ |jk′⟩, (13)

where r and r′ in the exponents are understood to be integrated over.

Equation (11) for the full response function has the form of a Dyson equation,

featuring the Hartree-xc kernel

fHxc
GG′(k, ω) =

4πδGG′

|k+G|2
+ fxc

GG′(k, ω), (14)

where the first term on the right-hand side is the Hartree kernel fH
GG′(k), which is

diagonal in G,G′ and independent of frequency. The xc kernel fxc
GG′(k, ω) will be the

subject of further discussion below.

Combining Eqs. (10) and (11), the density response is given within TDDFT as

n1G(k, ω) =
∑
G′

χKS
GG′(k, ω)

[
v1G′(k, ω) +

∑
G′′

fHxc
G′G′′(k, ω)n1G′′(k, ω)

]
.(15)

The standard approach in TDDFT to calculate excitation energies from the linear-

response formalism is known as the Casida equation [37]. The idea is to set the

perturbation to zero and look for self-sustained solutions to the density response

equation which correspond to “eigenmodes” of the density, oscillating with characteristic

frequencies: these are the excitation energies of the system [10].

The Casida approach is very widely used for finite systems such as molecules or

clusters. For the case of periodic systems, there are additional points to consider. We

start from Eq. (15), which is in principle exact. Now let us consider two phenomena

which are important in materials, namely electron energy loss and optical absorption.

These two effects differ from each other in the following ways [2, 5]:

• The loss function is related to the imaginary part of the density-density response

function associated with the response to a microscopic external scalar potential

(for example, caused by a charged projectile passing through the system). In loss

spectra one can observe plasmons. To calculate electron loss spectra using the

Casida approach amounts to setting v1G′(k, ω) = 0 in Eq. (15).
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Figure 2. Schematic illustration of the distribution of excitation energies from the

solution of the Casida equation. Eg is the Kohn-Sham band gap, and Eb is the exciton

binding energy.

• The optical absorption measures the response to the total macroscopic classical

perturbation, which includes the external scalar potential (in dipole approximation)

associated with the electromagnetic wave, and the macroscopic classical induced

field. In absorption spectra one can observe excitons. To calculate optical

absorption spectra from the Casida equation, one needs to set v1G′(k, ω) +

fH
00n10(k, ω) = 0 in Eq. (15). Thus, in the Casida equation the G = 0 part of

the Hartree kernel must be removed.

The derivation of the Casida equation for optical absorption in periodic solids

proceeds along similar lines as for finite systems [10]. As shown in Appendix A, one can

recast Eq. (15) into∑
k′jb

{
[(εak − εik)δjiδbaδkk′ +Kiak,jbk′ ]Xjbk′ +Kiak,bjk′Yjbk′

}
= − ωXiak(16)∑

k′jb

{
Kaik,jbk′Xjbk′ + [(εak − εik)δbaδjiδkk′ +Kaik,bjk′ ]Yjbk′

}
= ωYiak, (17)

which has the form of a (nonhermitian) eigenvalue problem. Here, i, j and a, b are

indices which run over occupied and unoccupied bands, respectively. Thus, εak−εik are

single-particle transitions with no momentum transfer (vertical Kohn-Sham excitation

energies). The coupling matrix elements are given by

Kiak,jbk′(ω) = lim
q→0

2

V
∑
GG′

⟨ik|ei(q+G)·r|ak⟩⟨bk′|e−i(q+G′)·r|jk′⟩

×
(

4πδGG′

|q+G|2
(1− δG,0) + fxc

GG′(q, ω)

)
. (18)

Here, the limit q → 0 indicates that we are considering the optical limits of vertical

excitations in momentum space. Furthermore, the xc kernel is in principle dependent on

the frequency ω, which would make the Casida equation a nonlinear eigenvalue problem.

In practice, this ω-dependence is almost always ignored, i.e., one makes the adiabatic

approximation.

The solution (i.e., the spectrum of eigenvalues) of the Casida equation (16), (17)

provides us with the excitation energies of the system. The distribution of excitation

energies is schematically illustrated in Fig. 2, assuming a frequency-independent xc
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kernel. There is a continuum of excitation energies starting at the Kohn-Sham band

gap Eg, shown as a broad red line. Excitons appear as isolated frequencies at energies

below the band gap. The distance between such isolated excitation energies and the

onset of the continuum is the exciton binding energy Eb. We here assume that only a

single bound exciton is present [57].

Notice further that the distribution of excitation energies has mirror symmetry

around zero. In other words, for every excitation energy ω0 there is a counterpart at

−ω0. This follows directly from the structure of the Casida equation (16), (17), and can

be viewed in the sense that every excitation comes with its corresponding de-excitation.

From the eigenvectors X
(m)
iak , Y

(m)
iak we can construct the density response which

corresponds to a given excitation energy ωm:

n1G(ωm) =
2

V
∑
k

∑
jb

{
⟨bk|e−iG·r|jk′⟩X(m)

jbk + ⟨jk|e−iG·r|bk′⟩Y (m)
jbk

}
. (19)

The density response of the eigenmodes is lattice periodic, so we see that n1G(ωn) only

depends on reciprocal lattice vectors. Transforming this back into real space gives

n1(r, ωm) = 2
∑
kjb

{
X

(m)
jbk φ

∗
bk(r)φjk(r) + Y

(m)
jbk φ

∗
jk(r)φbk(r)

}
. (20)

3.2. Constructing the macroscopic dielectric function

As we discussed above, the quantity of interest for excitons is the macroscopic dielectric

function ϵmac(ω), whose imaginary part determines the optical absorption in materials.

The microscopic dielectric function for lattice-periodic systems is defined as [5]

ϵGG′(k, ω) = δGG′ − vG(k)χ̃GG′(k, ω), (21)

where vG(k) = 4π/|k+G|2 and χ̃ is the so-called proper response function, which obeys

a Dyson equation similar to Eq. (11), but using only fxc
G1G2

instead of fHxc
G1G2

. Naively,

one might think that ϵmac(ω) simply follows from ϵGG′(k, ω) by setting G,G′ and k to

zero. However, the macroscopic limit is more subtle, and turns out to be given by [58,59]

ϵmac(ω) = lim
k→0

[
ϵ−1
GG′(k, ω)

∣∣∣
G=0
G′=0

]−1

. (22)

This expression is valid for crystals with cubic symmetry (the non-cubic case is more

complicated [60]). In other words, ϵmac(ω) emerges as the inverse of the inverse dielectric

function; this is so because local-field effects contribute to the macroscopic limit. The

matrix algebra in Eq. (22) can be worked out [2,10], and one finds that the macroscopic

dielectric function can be obtained from linear-response TDDFT as follows:

ϵmac(ω) = 1− lim
k→0

v(k)χ̄00(k, ω) , (23)

where χ̄GG′(k, ω) is the full response function calculated with the modified Hartree

kernel f̄H
GG′(k) = 4πδGG′(1 − δG,0)/|k + G|2 (which excludes the G = 0 term), and

v(k) = 4π/k2.
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There are two ways in which the full response function χ̄GG′(k, ω) can be obtained

from linear-response TDDFT. The first is by direct solution of the TDDFT Dyson

equation (11), which formally requires the solution of a matrix equation whose dimension

is the number of reciprocal lattice vectors G; it also requires the construction of the

Kohn-Sham response function χKS
GG′(k, ω), which involves a summation over occupied

and empty bands and over k-points within the BZ, see Eq. (12).

The second way to obtain χ̄GG′(k, ω) is from the solutions of the Casida equation,

which is a (nonhermitian) eigenvalue equation whose dimension is twice the number

of k-points times the numbers of occupied and unoccupied bands, which is typically

much larger than the dimension of the Dyson matrix equation (see above). It is

possible to reduce the dimension of the Casida equation by half, exploiting time-reversal

symmetry [61], but we will not pursue this here.

Let us now discuss how the interacting response function follows from the Casida

equation. Starting point is again the density response equation, Eq. (15). But now we

do not set the external perturbation to zero, as we did earlier; however, as before, we

set the long-range part of the Hartree kernel to zero, fH
00 = 0. We then repeat the earlier

derivation, which eventually leads to the following generalized Casida equation:∑
k′jb

{[
(εak − εiq+k)δjiδbaδkk′ +Kq

iak,jbk′

]
Xqω

jbk′ +Kq
iak,bjk′Y

qω
jbk′

}
+ ωXqω

iak

= − V qω
iak (24)∑

k′jb

{
Kq

aik,jbk′X
qω
jbk′ +

[
(εaq+k − εik)δbaδjiδkk′ +Kq

aik,bjk′

]
Y qω
jbk′

}
− ωY qω

iak

= − V qω
aik , (25)

where

V qω
iak =

∑
G

⟨iq+ k|ei(q+G)·r|ak⟩v1G(q, ω) (26)

and Kq
aik,jbk′ is defined as in Eq. (18), but without q → 0. Eqs. (24) and (25) are now

no longer an eigenvalue problem, but a system of linear equations, with the solutions

Xqω
iak, Y

qω
iak parametrically depending on the wave vector q and the frequency ω. From

the solutions, one can construct the density response to the perturbation v1G(q, ω) as

n1G(q, ω) =
2

V
∑
kia

{
⟨ak|e−i(q+G)·r|iq+ k⟩Xqω

iak

+ ⟨ik|e−i(q+G)·r|ak+ k⟩Y qω
iak

}
. (27)

The trick is now to choose a very special perturbation, namely,

v1G(q, ω) = δGG0 , (28)

where G0 is a certain fixed reciprocal lattice vector. From Eq. (10) we then immediately

obtain

n1G(q, ω) = χGG0(q, ω) . (29)
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For this special case, the matrix elements (26) of the perturbation become

V q;G0

iak = ⟨iq+ k|ei(q+G0)·r|ak⟩ (30)

independent of frequency, but depending on G0. The solutions will therefore depend on

G0 as well: Xqω;G0

iak , Y qω;G0

iak . The response function then follows as

χGG0(q, ω) =
2

V
∑
kia

{
⟨ak|e−i(q+G)·r|iq+ k⟩Xqω;G0

iak

+ ⟨ik|e−i(q+G)·r|aq+ k⟩Y qω;G0

iak

}
. (31)

So far so good; but constructing the full response function in this manner seems quite

cumbersome, since it requites solving a Casida-like system of linear equations, Eqs.

(24) and (25), for many different values of (q, ω). This can be elegantly avoided using

a spectral representation.

In a spectral representation, the solution vectors (X,Y) of the Casida equation in

the presence of an external frequency-dependent perturbation v are expanded in the

complete set of Casida eigenvectors (eigenmodes), calculated with v = 0. Explicitly,(
X

Y

)
=
∑
m

sign(ωm)

(
Xm

Ym

)
⟨Xm|v⟩+ ⟨Ym|v∗⟩

ω − ωm + iη
, (32)

where ωm is the mth excitation energy, (Xm,Ym) the corresponding eigenvector, and

the sum goes over both the positive and negative parts of the excitation spectrum, see

Fig. 2.

Specifically, for the perturbation (28) we have

⟨Xm|v⟩ =
∑
k

∑
ia

Xq∗
m,iak⟨iq+ k|ei(q+G0)·r|ak⟩ (33)

and similar for ⟨Ym|v∗⟩, where the (Xm,Ym) carry a superscript q, since we here

consider the Casida equation (16), (17) for generally nonvertical excitations. Taken

everything together, the final expression for the full response function is

χGG′(q, ω) =
2

V
∑
m

sign(ωq
m)

ω − ωq
m + iη

∑
kk′

∑
ia,jb

×
{
⟨bk|e−i(q+G)·r|jq+ k⟩Xq

m,jbkX
q∗
m,iak′⟨iq+ k′|ei(q+G′)·r|ak′⟩

+ ⟨jk|e−i(q+G)·r|bq+ k⟩Y q
m,jbkY

q∗
m,iak′⟨aq+ k′|ei(q+G′)·r|ik′⟩

}
(34)

We can now immediately obtain the macroscopic dielectric function (23):

ϵmac(ω) = 1− lim
q→0

v(q)
∑
m

sign(ωm)

ω − ωm + iη

×
{∣∣∣∑

kjb

⟨bk|e−iq·r|jk⟩X(m)
jbk

∣∣∣2 + ∣∣∣∑
kjb

⟨jk|e−iq·r|bk⟩Y (m)
jbk

∣∣∣2}. (35)

With the above theoretical framework it is possible, at least in principle, to exactly

calculate ϵmac(ω) for any given material, provided the exact xc kernel is used. However,
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it is already a tough mission to construct high-quality xc functionals for ground-state

DFT, let alone finding the xc kernel fxc via Eq. (1), in particular for periodic solids.

Approximations will have to be made, which will be reviewed in the next section.

4. Overview of approximate xc kernels

4.1. Long-range behavior of the exact xc kernel and (semi)local approximations

The xc kernel in reciprocal space, fxc
GG′(q, ω), can be written as a matrix in the space

of reciprocal lattice vectors G,G′:

fxc(q, ω) =


fxc
00 (q, ω) fxc

01 (q, ω) fxc
02 (q, ω) . . .

fxc
10 (q, ω) fxc

11 (q, ω) fxc
12 (q, ω) . . .

fxc
20 (q, ω) fxc

21 (q, ω) fxc
22 (q, ω) . . .

...
...

...
. . .



=


head wing

wing body

 , (36)

where the subscripts are labels enumerating the reciprocal lattice vectors, and the dashed

lines demarcate different regions of the matrix. Specifically, the subscript 00 means that

G = 0 and G′ = 0, which is called the “head” of the matrix. The “wings” of the matrix

are those elements where G = 0 and G′ is nonvanishing (01, 02, ...), or vice versa (10,

20, ...). The remaining elements of fxc
GG′(q, ω), where both G and G′ are nonvanishing,

constitute the “body” of the matrix.

As pointed out after Eq. (18), for optical excitations the limit q → 0 of the xc

kernel is needed. The analytic form of the small-q limit is known to have the following

form [62–64]:

lim
q→0

fxc(q, ω) =


κ00

q2
κ01

q
κ02

q
. . .

κ10

q
κ11 κ12 . . .

κ20

q
κ21 κ22 . . .

...
...

...
. . .

 , (37)

where the coefficients κij are independent of q but may in general be ω-dependent;

formally, they are functionals of the ground-state density n0. Thus, the head of

fxc diverges as q−2, the wing elements diverge as q−1, and the body elements are q-

independent (to leading order) as q → 0.

The coupling matrix (18) involves a sum over G,G′ of the Hartree and xc kernels,

weighted with the matrix elements ⟨ik|ei(q+G)·r|ak⟩⟨bk′|e−i(q+G′)·r|jk′⟩. For G = 0, the

matrix element ⟨ik|ei(q+G)·r|ak⟩ vanishes linearly in q when q → 0; more precisely [65],

lim
q→0

⟨ik|eiq·r|ak⟩ = q · ⟨ik|p|ak⟩
εik − εak

, (38)
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where p is the momentum operator, and similarly for the other matrix element,

⟨bk′|e−i(q+G′)·r|jk′⟩. This means that the head contribution (G = G′ = 0) to Kxc
iak,jbk′

will remain finite since fxc
00 (q) diverges as q−2, as we have seen above. Likewise, the

wing contributions (G = 0 and G′ finite, and vice versa) remain finite since the wings

of the xc kernel diverge at as q−1. The body contributions to Kxc
iak,jbk′ are nonvanishing

as well, but in general make smaller contributions than head and wings, especially for

large G and G′.

Thus, we see that the small-q limit of the xc kernel matrix, especially the q−2

divergence of the head, is crucial to capture the optical properties close to the band gap

correctly. Since q → 0 corresponds to |r− r′| → ∞, this divergence in q-space implies

a spatially long-range behavior of the xc kernel of the type 1/|r− r′|.
By contrast, all local and semilocal xc kernels (ALDA and AGGAs) remain finite

for all G, G′ and q. As a case in point, consider the ALDA xc kernel, whose real-space

form is

fALDA
xc (r, r′) =

d2exc(n)

dn2

∣∣∣∣
n=n0(r)

δ(r− r′) , (39)

where exc(n) is the xc energy density of a homogeneous electron gas of uniform density

n and n0(r) is the actual ground-state density of the system. The q-dependence of the

Fourier transformed ALDA kernel simply drops out [66]:

fALDA
xc,GG′(q) =

1

V

∫
cell

dr e−i(G−G′)·r d2exc(n)

dn2

∣∣∣∣
n=n0(r)

. (40)

If fALDA
xc,GG′(q) is substituted into Eq. (18), then the contributions from the head and

wings of fxc to K
xc
iak,jbk′ will vanish, which only leaves body contributions, but these are

very weak. As a result, no excitonic binding is produced. The AGGA xc kernels behave

in a similar fashion. An even more extreme example is the contact xc kernel, whose

real- and reciprocal-space forms are

f cont
xc (r, r′) = −Acontδ(r− r′), f cont

xc,GG′(q) = −AcontδGG′ , (41)

where Acont is a positive constant. The contact xc kernel is diagonal in G,G′ and q-

independent. After what was said, it may come as a big surprise that ultra-short-range

xc kernels such as f cont
xc can actually lead to bound excitons, if the constant Acont is

properly chosen [38, 44, 57]. Likewise, a scaled ALDA, αfALDA
xc,GG′ , would be capable of

producing excitons, although the scaling factor α would have to be quite large (typically

of order ∼ 103). How is this possible? The answer lies in the local-field effects.

As we have seen, for ALDA and AGGA xc kernels, the head and wings cannot

affect the optical spectrum, even after scaling with a large α; similarly for the contact

xc kernel (which doesn’t even have wings). Thus, the only remaining possibility is

through the body contributions to the coupling matrix Kxc
iak,jbk′ . This means that the

missing long-range behavior must be compensated by ultrastrong short-range electron-

hole interactions, which dominate the repulsive Hartree kernel and lead to electron-hole

attraction. It turns out [38, 43] that the contact xc kernel can be tuned to reproduce
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certain features of the optical spectrum (for instance, a bound excitonic peak at the

right position) but at the cost of a poor description of other parts of the spectrum.

Thus, short-range excitonic kernels may be conceptually interesting but are of limited

usefulness in practice.

4.2. Kernels from many-body theory

4.2.1. The exact-exchange kernel The frequency-dependent xc kernel can be formally

constructed from many-body perturbation theory, using a diagrammatic expansion

[67, 68]. The first-order term of this expansion is the exact exchange kernel fx(r, r
′, ω),

which can be represented as the sum of five diagrams:∫
dr1

∫
dr2 χKS(r, r1, ω)fx(r1, r2, ω)χKS(r2, r

′, ω) =

x
v

x
v (42)

Here, vx is the exact exchange potential of DFT, which is defined as an orbital

functional via the optimized effective potential (OEP) method [69, 70], and χKS is

the noninteracting Kohn-Sham response functions using the orbitals obtained with vx.

Explicit expressions for these diagrams were given by Hellgren and von Barth [71, 72].

Alternatively, the exact exchange kernel can also be directly derived as the functional

derivative fx(ω) = δvx(ω)/δn(ω) [73–75].

Kim and Görling [63] showed that the exact-exchange kernel (42) has the long-range

behavior (37) that is necessary for the formation of excitons in periodic insulators.

However, the electron–hole interaction in exact-exchange TDDFT turns out to be

unscreened, which leads to a dramatic overbinding of the excitons. This can cause

the exciton binding energy to be larger than the band gap, which leads to a collapse

of the optical spectrum. To prevent this spectral collapse, the Coulomb interaction has

to be screened [38,76]. The effects of screening can be mimicked within exact-exchange

TDDFT through a reciprocal-space cutoff of the Coulomb singularity [63,77].

4.2.2. The “nanoquanta” kernel In general, Kohn-Sham band structures, even if

calculated with the exact xc potential, have gaps that disagree with the exact

quasiparticle gaps. To produce the correct onset of optical absorption, the xc kernel

fxc
GG′(q, ω) has to fulfill two important and challenging tasks: it has to correct the gap

and shift the Kohn–Sham band edge to the true quasiparticle band edge, and it has to

give rise to the effective electron–hole attraction that is needed for excitonic features in

the spectrum. Formally, the xc kernel can be separated into two parts [42, 43,48],

fxc = fqp
xc + f ex

xc . (43)

The two parts, fqp
xc and f ex

xc , are responsible for the opening of the gap and the excitonic

effects, respectively, and they can be approximated separately.
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Let us introduce the proper response function χ̃ through the following Dyson-type

equation:

χ̃ = χKS + χKSfxcχ̃, (44)

where we use a shorthand notation that omits arguments and integrals. It is then easy

to write down the following relations for the two parts of fxc [48]:

χqp = χKS + χKSf
qp
xc χqp , (45)

χ̃ = χqp + χqpf
ex
xc χ̃ . (46)

Here, χqp is formally defined as the response function of the noninteracting quasiparticle

system, which has the correct quasiparticle gap. To construct it from the Kohn-Sham

band structure via Eq. (45), the quasiparticle xc kernel fqp
xc is needed. In the second

step, the optical spectrum, including excitons, is then obtained from Eq. (46).

The first step of this two-step approach is almost always skipped in TDDFT, and

the quasiparticle band structure (and hence χqp) is directly calculated without invoking

fqp
xc . This can be done with various techniques such as the GW approach, generalized

Kohn-Sham schemes using hybrid functionals, or a straightforward correction of the

Kohn-Sham band structure which opens up the gap using the so-called scissors operator.

Very recently, Cavo et al. [78] proposed to relate the quasiparticle gap correction to the

derivative discontinuity of ground-state DFT, which they approximate using an explicit

expression in terms of Kohn-Sham ground-state quantities [79–81].

The next step is then to construct an approximation for f ex
xc from Eq. (46). To do

this, we first replace χqpf
ex
xc χ̃ ≈ χqpf

ex
xcχqp. Next, we find a diagrammatic representation

of χ̃ − χqp. It turns out [3, 10, 38] that this can be accomplished by comparison with

the BSE [2], which can be brought to a form that is analogous to Eq. (46), involving

a suitable contraction of two-particle Green’s functions and four-point vertex functions.

This diagrammatic representation leads to the following expression:∫
d3

∫
d4 χqp(1, 3)f

ex
xc (3, 4)χqp(4, 2) =∫

d3

∫
d4Gqp(1, 3)Gqp(4, 1)W (3, 4)Gqp(3, 2)Gqp(2, 4), (47)

where the numbers represent space-time arguments, e.g., 1 = (r1, t1). Equation (47)

defines the xc kernel of Reining et al. [42] and many others (also known as the

“nanoquanta” kernel). Here, Gqp is a quasiparticle Green’s function, andW is a screened

interaction, formally defined as

W (1, 2) = w(1, 2) +

∫
d3

∫
d4 w(1, 3)χqp(3, 4)W (4, 2) , (48)

where w(1, 2) is the bare Coulomb interaction.

The excitonic xc kernel f ex
xc of Eq. (47) has been tested in a variety of systems,

and has been shown to perform in close agreement with the full BSE [2, 42, 43, 45, 47,

76, 82]. Unfortunately, the many-body xc kernel (47) is not simple to implement and

computationally essentially as expensive as the BSE.



Time-dependent density-functional theory for periodic solids 16

4.3. Long-range corrected kernels

In Section 3.1, we discussed the long-range behavior of the exact xc kernel, see Eq.

(37). If we now boldly assume that these long-range effects dominate all other xc

contributions—which is rather well justified for the case of weakly bound excitons in

semiconductors—then we can simply approximate the xc kernel by its long-range form.

The only remaining problem is to find suitable expressions for the coefficients κij of the

xc kernel matrix (37).

The first such approximation was put forward by Reining et al. [42], and has become

known as the long-range corrected (LRC) kernel:

fLRC
xc,GG′(q) = − α

|q+G|2
δGG′ , (49)

where α is an empirical parameter. In Ref. [42], the choice of α = 0.2 led to a good

description of the continuum excitons for silicon. In a more detailed follow-up study,

Botti et al. [49] pointed out that a single value of α can, in general, only reproduce parts

of the optical spectrum. Using a fit of the continuum parts of the optical spectra for a

few materials, the following relation was suggested [49]:

α = 4.651ϵ−1
∞ − 0.213 . (50)

The xc kernel thus becomes roughly proportional to the inverse dielectric constant ϵ−1
∞ ,

which makes sense since the construction of the nanoquanta xc kernel, Eq. (47), shows

that matrix elements of the xc kernel are directly related to matrix elements of the

screened Coulomb interaction.

A frequency-dependent form of the LRC kernel was proposed in Ref. [50],

fLRC
xc,GG′(q, ω) = −α + βω2

|q+G|2
δGG′ , (51)

which led to some improvement over the static kernel (49). A recent study [83], however,

showed that the frequency dependence of the xc kernel is, in general, more complicated

than the quadratic dependence assumed in Eq. (51).

The LRC kernel demonstrates that it is possible to capture the essential excitonic

physics of a broad range of materials in a very simple manner. However, empirical input

is required in the form of the parameter α. In the following, we will discuss approximate

xc kernels which have the same dominating long-range behavior as the LRC kernel, but

do not depend on empirical fitting parameters.

4.4. The “bootstrap” kernel

Let us begin by deriving an exact expression for the xc kernel, starting from the Dyson-

like equation for the full response function, Eq. (11), which we symbolically write as

χ = χKS + χKSfHxcχ , (52)

where the Hartree kernel fH = v is just the bare Coulomb interaction v. Hence, the xc

kernel becomes

fxc =
1

χKS

− 1

χ
− v , (53)
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where we treat operators as numbers, i.e., we represent a matrix inverse simply as an

algebraic inverse. Combining Eqs. (52) and (53), we get

fxc =
1− vχKS

χKS

− 1− fHxcχKS

χKS

. (54)

Now let us introduce the so-called proper response function χ̃, defined similar to Eq.

(53) as χ̃ = χKS + χKSfxcχ̃. In terms of the proper response function, the dielectric

function is given by ε = 1− vχ̃, and it is not difficult to show that one gets

ε =
1− fHxcχKS

1− fxcχKS

. (55)

If we substitute this into Eq. (54), we get the following expression for the xc kernel:

fxc =
εRPA

χKS

− ε(1− fxcχKS)

χKS

, (56)

where the dielectric function within the random phase approximation (RPA) is defined

as εRPA = 1− vχKS. Solving Eq. (56) for fxc finally gives

fxc =
ε− εRPA

(ε− 1)χKS

. (57)

The purpose of this exercise is to show that the xc kernel can be formally written

entirely in terms of the inverse Kohn-Sham response function combined with the full

and RPA dielectric functions. So far, everything has been exact, keeping in mind that

all quantities in Eq. (57) are matrices in G,G′.

Expression (57) shows immediately that the head of the xc kernel, fxc
00 (q, ω), behaves

as q−2, since the head of χKS goes as q2 and the heads of the dielectric functions ε and

εRPA both approach constants. Equation (57) thus suggests that fxc ∼ χ−1
KS can be used

as the basis for constructing xc kernels which will have the correct long-range behavior,

featuring density-dependent approximations of κ00.

The first such approximation, termed the “bootstrap” kernel, was proposed by

Sharma et al. [39, 84]:

fB
xc,GG′(q) =

ε−1
GG′(q, ω = 0)

χKS
00 (q, ω = 0)

. (58)

This approximate xc kernel can be related to the exact expression (57) by making

three assumptions: (i) The head of the Kohn-Sham response function is dominant;

(ii) in the denominator of Eq. (57), ε − 1 can be replaced by ε, which clearly works

best for strong screening such as in small-gap semiconductors; (iii) ε and εRPA roughly

differ by a constant (of order 1) in the q-range of interest. These assumptions may

hold under some circumstances, but are certainly not generally valid. Thus, Eq. (57)

should best be viewed as a generalized LRC kernel with a somewhat more sophisticated

form for the parameter α. In particular, the “bootstrapping” here means that the

inverse dielectric function is constructed self-consistently using fB
xc,GG′(q) as input, i.e.,

ε−1 = 1 + vχs[1− (v + fB
xc)χs]

−1.

To ensure that the bootstrap kernel is well defined, it should be implemented using

the symmetrized quantities f sym
xc,GG′(q) = v

−1/2
G (q)fxc,GG′(q)v

−1/2
G′ (q) and χsym

GG′(q) =
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v
1/2
G (q)χGG′(q)v

1/2
G′ (q). This then leads to the following form of the original bootstrap

kernel [84]:

fB
xc,GG′(q) =

v
1/2
G (q)ε−1

GG′(q, 0)v
1/2
G′ (q)

1− εRPA,00(q, 0)
, (59)

where vG(q) = 4π/ |q+G|2 is the Coulomb potential. In matrix form, the bootstrap

kernel in the small-q limit is given by

fB
xc =


β00

q2
β01

|q||G1|
β02

|q||G2| · · ·
β10

|G1||q|
β11

G2
1

β12

|G1||G2| · · ·
β21

|G2||q|
β21

|G2||G1|
β22

G2
2

· · ·
...

...
...

. . .

 , (60)

where

βGG′ =
4πϵ−1

GG′(q, 0)

1− ϵRPA,00(q, 0)
. (61)

If we compare the head element of fB
xc to the head of the LRC kernel (49), we can define

the LRC α-parameter for the Bootstrap kernel as

αB =
4πϵ−1

00 (0, 0)

ϵRPA,00(0, 0)− 1
. (62)

We also consider two simpler variations of the Bootstrap kernel. The first one,

referred to as the 0-Bootstrap kernel, is the Bootstrap kernel (60) without the built-in

self-consistency. This means that ε−1
GG′(q, 0) is replaced by ε−1

RPA,GG′(q, 0). The LRC

α-parameter for the 0-Bootstrap kernel is thus given by

α0B =
4πϵ−1

RPA,00(0, 0)

ϵRPA,00(0, 0)− 1
. (63)

The second simplified Bootstrap kernel is the RPA-Bootstrap kernel, first proposed

by Rigamonti et al. [85]. This xc kernel is defined by replacing the self-consistent

ε−1 with ε−1
RPA, as in the 0-Bootstrap kernel above, and in addition by replacing

the Kohn-Sham response function χKS in Eq. (58) with the RPA response function

χRPA = χKS/ϵRPA. The associated head-only LRC α-parameter is

αRPAB =
4πϵ−1

RPA,00(0, 0)

1/ϵ−1
RPA,00(0, 0)− 1

. (64)

In a related development, Berger [86] combined the head-only RPA-Bootstrap

kernel with the Vignale-Kohn functional of current-TDDFT [87–89]. The resulting

formalism accounts for spectral line broadening from first principles, and also describes

Drude tails in metallic systems.
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4.5. The jellium-with-a-gap model

As we saw in Section 3.1, local and semilocal xc kernels (ALDA and GGAs) fail to give

excitonic binding. From a physical standpoint this is hardly surprising: the construction

of the ALDA and GGA xc kernels is based on the electron gas as reference system. An

electron gas is a metallic system, that is, it does not have a gap. Therefore, (semi)local

xc kernels are very good at describing plasmons, but simply do not contain the right

physics to capture excitons.

It is natural to ask, then, whether one could find a reference system that does have

a gap but is of a similar degree of simplicity as the electron gas. Such a system is

known as the jellium-with-a-gap model (JGM), an idea that has been around for quite

a while [90,91]. Based on the JGM model, Trevisanutto et al. proposed an xc kernel of

the following limiting form [92]:

fJGM
xc (q → 0) = −

E2
g

nq2
, (65)

where Eg is the energy gap of the JGM (in practice, the experimental gap), and n is

taken as the local density. Expression (65) was derived by assuming that the head of

the xc kernel goes as fxc ∼ χ−1
KS, see Eq. (57). The Kohn-Sham response function can

then be expressed in terms of the RPA dielectric function, χKS = q2

4π
(1 − εRPA), but

Trevisanutto et al. replaced εRPA by the dielectric function of Levine and Louie [90],

which has the limiting behavior εJGM(q → 0) = 1+ 4πn/E2
g . This immediately leads to

Eq. (65).

The full form of the JGM xc kernel [92] (includingG,G′-dependence) is constructed

in such a way that it reduces to the static, q-dependent xc kernel of the homogeneous

electron gas of Ref. [93]. A simplified version of the JGM xc kernel was proposed by

Patrick and Thygesen [94], and a gradient-corrected form was proposed by Terentjev et

al. [95].

The JGM kernel is an empirical kernel since it requires the band gap as input,

and its derivation relies on several ad-hoc assumptions. Owing to its 1/q2 long-range

behavior, the JGM xc kernel belongs to the family of LRC kernels, where the parameter

α depends on the local density (and, in the newest version [95], its gradients). As we

will see, the performance of the JGM kernel is similar to that of the other kernels from

the LRC family.

5. Practical considerations and assessment of xc kernels

5.1. Preliminary remarks: interfacing DFT and TDDFT

What is the proper way to assess approximate xc kernels of TDDFT? This is a rather

complex question, and requires some discussion.

The formally correct way to do an approximate TDDFT calculation is as follows.

First, find the self-consistent Kohn-Sham ground state with a given approximate xc

potential vgs,appxc (r), where the superscript “gs” indicates that it is an xc potential defined
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within ground-state DFT. The approximate xc kernel f app
xc to be investigated should

be compatible with vgs,appxc (r). This means that it is defined using Eq. (1) involving

the functional derivative δvappxc (r, t)/δn(r′, t′), where the time-dependent xc potential

vappxc (r, t) reduces to vgs,appxc (r) when it is evaluated at the stationary ground-state density

n0(r). A typical example is the LDA ground state matched with an ALDA xc kernel.

This protocol has been followed in numerous studies, for instance in quantum

chemistry, where TDDFT approximations were tested for molecular benchmark sets

[96, 97]. In these studies, the same xc functionals were used to determine the Kohn-

Sham ground states and to calculate the excitation energies. In other words, the xc

kernels were always tested together with the underlying ground-state xc functionals.

The situation is very different when assessing TDDFT for excitonic effects in

periodic solids. In essentially all studies, the approximations used for calculating the

electronic band structure and for calculating the optical spectra with TDDFT are

unrelated to each other. Most notably, the xc kernels belonging to the LRC family

do not match the ground-state DFT approaches (such as LDA + scissors or GW ) used

for calculating the band structure. In fact, it turns out that many of the approximate

xc kernels (such as the various forms of the bootstrap kernel) cannot even be written as

functional derivatives at all!

This may be somewhat troubling from a formal perspective, but there are several

points to keep in mind:

• Keeping the same method for the electronic band structure while testing different

xc kernels allows one to assess the xc kernels just on their own merits.

• Using a band structure with the correct band gap as input to TDDFT will produce

optical spectra in closer agreement with experiment. This makes the assessment of

the excitonic xc kernels more systematic, and can tell us whether they produce the

right answer for the right reasons. By contrast, an underestimated DFT band gap

plus an underestimated TDDFT exciton binding energy can accidentally produce

an excitonic peak just at the right position, simply by error cancellation.

• In Section 4.2.2 we showed that the xc kernel can be written as Eq. (43), and that

the gap-opening effects of fqp
xc can be approximated in various ways. Thus, one can

always argue that approaches like the scissors operator are part of approximating

the total xc kernel (the sum of quasiparticle plus excitonic contributions).

5.2. Choices of implementation

In the light of the above discussion, let us accept that we can test xc kernels

independently of the method used for calculating the electronic band structure. To

achieve a meaningful practical assessment of the xc kernels now requires making a

number of choices and specifications, and to be clear and consistent with each of them.

As indicated in Fig. 3, these choices can be grouped into three main categories: Band

structure method, implementation of the xc kernel, and numerical details [98,99].
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Numerical details:

G-vectors, k-points,

number of bands,

line broadening

Band structure method:

All-electron or pseudopotential,

DFT + scissors: GW or exp. gap

TDDFT/kernel implementation:

Tamm-Dancoff vs. full Casida,

full, diagonal, or head-only xc matrix,

local-field effects

xcf

Figure 3. Schematic illustration of the many choices one needs to make when assessing

the performance of excitonic xc kernels in TDDFT.

5.2.1. Band structure Each TDDFT calculation of optical spectra needs a ground-state

electronic structure as input. Thus, the first choice to make is which code to use, and

which methodology: all-electron or pseudopotential, and what type of basis (plane-wave,

atom-centered, etc.). The differences between the outputs of the most popular codes

are minor [100]. Here, we mainly worked with Abinit [30] and Quantum Espresso [101].

Once a code has been decided upon, the next choice concerns the method of

calculation: DFT with semilocal functionals with or without scissors corrections

[102,103], generalized DFT (hybrid functionals) [104–116], GW [2,20], or other methods.

Standard local and semilocal xc functionals (LDA and GGAs), while computationally

cheaper, tend to systematically underestimate band gaps, which means that the onset

of absorption will be substantially redshifted. This can be easily corrected ex post facto

by a simple rigid shift of the optical spectrum. We have often used this approach.

Hybrid functionals or GW produce band gaps Eg in much better, often excellent,

agreement with experiment. However, differences remain: for instance, in wide-gap

insulators the GW gap can be off by up to 1 eV. These differences can be comparable

with the exciton binding energy Eb, which can lead to fortuitous error cancellations

between errors in Eg and Eb.

The DFT+scissors approach is a computationally less costly, semiempirical

approach to correct the band gap. The idea is that the conduction band energy levels

εck are shifted by an amount ∆ with respect to the valence bands, i.e., εck → εck +∆,
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where ∆ is the difference between the quasiparticle gap Eg and the Kohn-Sham gap.

The former can be calculated from GW or taken from experiment. The scissors shift

also implies that the momentum operator p̂ must be modified as follows [117]:

p̂→
{εck +∆− εvk

εck − εvk

}
p̂ . (66)

In general, one would expect that the scissors operator simply causes a rigid shift of the

entire optical spectrum, and does not have much impact on the calculation of excitonic

effects. However, it turns out that excitonic effects using LRC kernels can be quite

sensitive to the particular implementation of the scissors correction [99].

5.2.2. Implementation of the xc kernel In solving the BSE, it is standard practice

to make the Tamm-Dancoff approximation (TDA), which significantly reduces the

computational effort. It turns out that TDA is an excellent approximation for the

BSE [61,118], but not necessarily for TDDFT. We found [98] that the TDA significantly

underestimates Eb of insulators using the bootstrap kernel, at times by more than a

factor of two.

The next item to be decided is how to handle the so-called local-field effects, which

come from the non-head elements (wings and body, with finite G,G′) of the Hartree

and xc kernels. Among other things, the local-field effects are responsible for the fact

that ϵ00 ̸= 1/ϵ−1
00 , which follows from calculating the dielectric tensor by solving the

Dyson equation (11).

For all xc kernels of the matrix form (36) one has the choice of implementing the full

matrix, the diagonal elements, or the head only. One typically finds [99] that the body of

the LRC kernel has a relatively minor effect on the optical spectra of semiconductors, but

can produce significantly different results for insulators [84, 85, 119, 120]. One therefore

needs to state very clearly which version of the xc kernel is used: full, diagonal, or

head-only.

5.2.3. Numerical details The accuracy of the excitonic effects predicted with TDDFT

requires careful testing of convergence with respect to standard parameters: the number

and geometric arrangement of k-points, the number of G-vectors, and the number

of bands included in the construction of response functions, the Casida equation, or

the bootstrap kernel. GW/BSE calculations of course require similar tests, but the

convergence behavior can be quite different: we found that the BSE tends to need much

fewer unoccupied conduction bands than TDDFT-LRC.

When calculating optical spectra, it is common practice to put in a Lorentzian line

broadening by hand (alternatively, one can use frequency-dependent xc kernels [78,86]).

The Lorentzian line broadening simulates the effects of quasiparticle lifetimes, phonons,

or disorder, with commonly used values in the range of 0.1 to 0.2 eV. The line broadening

parameter obviously has a strong effect on spectral line shapes and peak heights;

however, using it as a fitting tool to reproduce experimental spectral features should be

avoided, especially if this involves broadening parameters outside the established range.
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Figure 4. Comparison of experimental and calculated exciton binding energies Eb

for various materials, using LRC-type xc kernels. The solid line indicates perfect

agreement between theory and experiment. Reproduced with permission from [99]

c⃝2017 American Physical Society.

5.2.4. Choice of materials Ideally, a good approximate xc functional in DFT or

TDDFT should be universal, that is, it should work for any material. Thus, to assess the

quality of excitonic xc kernels in an unbiased manner, it is important to test them for

a range of different systems, including semiconductors, small-gap insulators, and wide-

gap insulators. Ideally, the tested materials should include elemental solids, main-group

binary compounds, oxides, as well as materials containing d-electrons. In addition, the

xc kernels should also be tested for quasi two-dimensional systems. Needless to say, the

computational cost of such systematic tests can be considerable.

5.3. Results

LRC-type kernels have been used in a number of applications to calculate optical

properties of materials [121–129]. A critical assessment of LRC-type kernels was recently

carried out [98,99] (for numerical details, please consult these references). In this section

we will present an overview of the key results of this assessment, and give general

recommendations for the use of LRC-type xc kernels in TDDFT.

5.3.1. Exciton binding energies and optical spectra Figure 4 shows exciton binding

energies calculated for a range of materials, from semiconductors and small-gap

insulators (GaAs, GaN) all the way to large-gap insulators (LiF, Ar, Ne). The

calculations were done with the original LRC kernel (49)+(50), the jellium-with-a-gap

model, and three versions of the bootstrap kernel (original, zero, and RPA). All of

the above methods lead to a significant underestimation of the exciton binding energy
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Figure 5. Calculated and experimental optical absorption spectra of GaAs, MgO, LiF,

and Ne. Reproduced with permission from [99] c⃝2017 American Physical Society.

compared to experiment.

In addition to the kernels of the LRC family that were discussed in Section 4, an

empirically scaled LRC kernel was introduced in Ref. [99], of the following form:

f sB
xc = A(x)fRPAB

xc , (67)

where the material-dependent scaling factor A(x) is a smooth function of x = ϵ−1
RPA,

interpolating between A ≈ 1 for large-gap insulators to A ≈ 6 for semiconductors. The

scaling factor A(x) was empirically determined such that f sB
xc produces exciton binding

energy in agreement with experiment. Indeed, the red squares in Fig. 4 are very close

to the experimental data.

The associated optical spectra for four of the materials, GaAs, MgO, LiF, and Ne,

are shown in Fig. 5. The optical spectrum of GaAs has the well-known double-peak

structure; the first peak at around 3 eV is a continuum exciton. The bound exciton is

not visible on the scale of this plot. All LRC-type xc kernels underestimate the height

of the continuum exciton peak, and the scaled bootstrap kernel somewhat overestimates

it, but still reproduces the overall spectral shape.

The situation is very different for MgO. Here, the LRC-type kernels completely

miss the bound exciton peak below the experimental gap. The f sB
xc kernel, on the other
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Figure 6. Exciton binding energy versus (head-only) LRC scaling parameter,

illustrating the material-dependent sensitivity.

hand, creates a bound exciton peak at the right position, but completely distorts the

spectral shape. Similar trends for MgO were observed in Ref. [95].

For the two cases with strongly bound excitons, LiF and solid Ne, we find again that

the empirically scaled LRC kernel puts the exciton at the right position, but dramatically

exaggerates the oscillator strength. In fact, looking at the case of Ne, we see that

the increase of oscillator strength with Eb closely follows the
√
Eb behavior that was

predicted from the Wannier model in Section 2, see Fig. 1b.

From these results, we conclude that with static LRC-type xc kernels it is impossible

to obtain correct exciton binding energies and good spectral shapes at the same time.

If we choose approximations that deliver good Eb, the oscillator strengths tend to be

drastically exaggerated. In fact, this suggests that the xc kernel must have a pronounced

frequency-dependence behavior, even for weakly bound excitons such as in silicon [46].

5.3.2. Sensitivity of the LRC-type kernels Getting the correct exciton binding energy

of a material is still a significant accomplishment for TDDFT, even if the peak height

is wrong. The scaled bootstrap kernel (67), or any other empirically scaled LRC-type

kernel, could therefore be quite useful in practice. However, for some materials, scaled

LRC kernels are plagued by an extremely high sensitivity.
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Table 1. Evaluation of Eq. (68) for the materials shown in Fig. 6.

|χKS
00 |/q2 Eg (eV) Eb (meV) dEb/dα

GaAs 11.18 0.86 4.2 45

α-GaN 5.50 1.97 20 110

Si 13.98 0.59 15.2 210

AlN 5.14 4.34 46 236

In Fig. 6 we plot Eb versus the LRC parameter α, see Eq. (49), for GaAs, α-GaN,

Si and AlN. In all materials, Eb increases with α, but the rate of increase is vastly

different. Whereas the slope dEb/dα is moderate around the experimental value for

GaAs and α-GaN, the slope is extremely steep for Si and AlN. In other words, small

fluctuations of the LRC parameter cause huge differences of the exciton binding energy.

This sensitivity makes it extremely hard to come up with a universal, useful model xc

kernel based on LRC.

It is possible to approximately predict the sensitivity of the LRC kernel for a given

material. We show in Appendix B that

dEb

dα
≈ lim

q→0

Eb

q2
χKS
00 (q, ω). (68)

Thus, the sensitivity of the LRC kernel is determined by the electronic band structure

via the head of the Kohn-Sham response function. In Table 1 we evaluate Eq. (68)

for the materials shown in Fig. 6, using the experimental values of Eb as input. The

rightmost column shows that our estimates produce the right ordering of the materials

according to their sensitivity.

5.3.3. How should LRC xc kernels be used? All tests and assessments of the various

types of LRC kernels have shown that they cannot reproduce all aspects of excitonic

optical spectra, but only certain parts. Typically, the xc kernels proposed in the

literature, such as bootstrap or jellium-with-a-gap, underestimate the exciton binding

energy, but yield decent peak heights of bound excitons or continuum excitons. This

suggests that there are two ways in which LRC kernels can be properly used.

The first approach takes advantage of the fact that LRC kernels can produce good

line shapes, but put the bound excitons at the wrong position. Thus, in addition to

the LRC parameter α one can introduce an empirical correction into the scissors shift.

This is illustrated in Fig. 7, which shows results for lithium niobate LiNbO3 [125]. The

original bootstrap and RPA bootstrap kernels produce a wrong exciton peak height,

compared to the BSE (dashed red line). The best results (black line) are achieved using

the simple LRC kernel (49) with a value of α = 0.44 and a scissors shift that is reduced

from 2 eV to 1.4 eV.

The second approach is the semi-quantitative calculation of exciton binding energies

Eb using an empirical scaling model [99]. As we have seen, this method only works

reliably for materials where the LRC-type kernels are not very sensitive to fluctuations
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of the scaling parameter. An example where this approach could be very useful is for

calculating excitonic effects in semiconductor alloys, or in materials with defects.

6. Generalized TDDFT: hybrid kernels for excitons

We now briefly discuss an alternative approach to the calculation of optical properties

in solids, based on generalized TDDFT using hybrid functionals. Over the past

decade, there have been several applications of hybrid xc functionals to describe

excitations in periodic solids [130–133]. In particular, the so-called optimally tuned

range-separated hybrids have been shown to yield good results for organic molecular

crystals [26, 134], see the right panel of Fig. 8. More recently, range-separated hybrids

with an empirical parameter were shown to agree well with GW/BSE results for several

materials [135,136].

There is a direct connection between the BSE and generalized TDDFT [137, 138].

The BSE can be expressed as a matrix equation similar in form to the Casida equation

of TDDFT, Eqs. (16), (17). Making the Tamm-Dancoff approximation, one obtains[
(εck − εvk′)δvv′δcc′δkk′ +KBSE

cvk,c′v′k′

]
Y = ωY. (69)

Here, v and c denote occupied valence and unoccupied conduction bands, respectively.

Equation (69) features the BSE coupling matrix KBSE = Kd + Kx. The first part of

KBSE is the direct (Hartree) interaction,

Kd =
2

V
∑
G̸=0

4π

|G|2
⟨ck|eiG·r|vk⟩⟨v′k′|e−iG·r|c′k′⟩. (70)
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The second part is the exchange kernel,

Kx =
2

V
∑
GG′

WGG′(q, ω)δq,k−k′⟨ck|ei(q+G)·r|c′k′⟩⟨v′k′|e−i(q+G′)·r|vk⟩, (71)

which contains the screened Coulomb interaction

WGG′(q, ω) = − 4πϵ−1
GG′(q, ω)

|q+G||q+G′|
, (72)

featuring the RPA inverse dielectric function ε−1
GG′(q, ω). In most applications of the

BSE, one uses the static limit ε−1
GG′(q, ω = 0). But even then, the RPA calculation for

the dielectric function remains a computational bottleneck, requiring a summation over

the q-grid in addition to a double sum over GG′. Furthermore, a fully converged ε−1

usually requires including many unoccupied bands.

If one were to ignore dielectric screening by setting ε−1 = 1 in Eq. (72), one would

arrive at the time-dependent Hartree-Fock (TDHF) approach. It is well known that this

leads to a drastic overbinding of excitons (except in extreme cases of strongly bound

excitons such as in solid Ar or Ne), which can cause a complete spectral collapse.

A simple compromise between the BSE (full dielectric screening) and TDHF (no

screening) is to use a simplified form of dielectric screening. Yang et al. [137] proposed

to replace the dielectric matrix with a single screening parameter γ, diagonal in GG′:

ε−1
GG′(q, ω = 0) → γδGG′ . (73)

The screening parameter can be calculated from first principles as γ = (ϵRPA)−1
00 (q = 0).

Alternately, one can use a more sophisticated model,

ε−1
GG′(q, ω = 0) → ϵm(q)

−1δGG′ , (74)

where ϵm(q) is a model dielectric function [139]. Recently, Sun et al. [138] performed an

assessment of these two approximations, (73) and (74), termed screened exact exchange

(SXX) and model-BSE (m-BSE), respectively. In addition, a simple nonempirical hybrid

xc kernel for generalized TDDFT was proposed [138]:

Khybrid
xc = KSXX + (1− γ)KALDA

xc . (75)

It was found that all three approximations, SXX, m-BSE and the hybrid kernel (75),

produce exciton binding energies in closed agreement with the BSE, at a much reduced

computational cost. An illustration for LiF is shown in Fig. 8, left panel. Not only is

the excitonic peak at the right position, it also has the right oscillator strength.

Thus, generalized TDDFT using specialized hybrid kernels is beginning to emerge

as a very promising and cost-effective alternative to full BSE calculations. However,

compared to pure TDDFT, especially if using simple LRC-type xc kernels, the

computational effort of these hybrid approaches is still significantly higher.
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7. Conclusions and outlook

In this paper we have reviewed the TDDFT linear-response formalism for first-principles

calculations of optical spectra in periodic solids. The approach, while in principle

exact, heavily relies on finding suitable approximate xc kernels. The standard semilocal

approximations (LDA and GGAs) that have been so successful in many areas of science

do not work for excitons; this has motivated the development of new approaches specific

to the description of periodic semiconductors and insulators.

The development of excitonic xc kernels for TDDFT, which began with the

groundbreaking work of Reining et al. in 2002 [2, 42], has led to a number of

approximations of various degrees of sophistication. The common feature of all

successful excitonic xc kernels is their 1/q2 long-range behavior. In fact, the 1/q2-feature

alone is already sufficient to construct a rudimentary xc kernel, known as the long-range

corrected (LRC) kernel, which successfully reproduces parts of the optical spectrum in

insulators and semiconductors. This was recognized early on [42,49], and over the years

has formed the basis for the development of a number of other xc kernels, such as the

bootstrap kernel or the jellium-with-a-gap model, which we have here referred to as the

family of LRC-type kernels.

A detailed numerical assessment of the family of LRC-type xc kernels has shown

their potential as well as their limitations. On the plus side, LRC kernels are numerically

very simple and efficient, especially compared to full GW/BSE calculations. With some

tricks (such as empirically adjusting the strength of the head of the xc kernel, and

introducing a variable scissors shift), LRC kernels can produce useful results for parts of

the optical spectrum. In particular, they can be used to obtain semiquantitative results

for systems that are too complex to be treated with full BSE.

On the other hand, it is now clear that there are no LRC-type kernels which
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universally work for all materials, and for all aspects of the optical spectra in

semiconductors and insulators. With the presently used xc kernels, it is impossible

to obtain accurate exciton binding energies and spectral oscillator strengths at the same

time. Furthermore, applications are often plagued by strong sensitivity with regard

to the numerical implementation and the material under consideration. This means

that empirically fitted parametrizations strongly depend on the choices of numerical

implementation, and will have to be refit for other choices.

There are several directions to move the field forward. First of all, better xc kernels

for the optical properties of periodic solids are needed. The current generation of LRC-

type xc kernels, notably the bootstrap kernels, suffer from the lack of a convincing

derivation. Furthermore, the practical implementation is often limited to head-only or

diagonal in GG′. To remedy the deficiencies mentioned above, it will be crucial to

take advantage of the full, nonlocal matrix form of the xc kernel. This will require new

derivations, with guidance from many-body physics.

As we discussed, hybrid functionals may be a promising alternative, although

at a somewhat elevated computational cost. One of the main advantages of hybrid

functionals is that in this way one can match ground-state DFT (with good band gaps)

and TDDFT (with good optical spectra), using the same type functional, rather than

two unrelated approaches.

Lastly, there has been increased activity in real-time TDDFT for periodic solids in

the past few years [65,140–147]. A real-time TDDFT description of excitonic effects in

semiconductors and insulators would be of tremendous interest for many applications

in optoelectronics and ultrafast spectroscopy. This will require a proper account of

long-range xc effects, along similar lines as in the linear-response TDDFT framework

discussed here.
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Appendix A. Derivation of the Casida equation

Starting point of the derivation of the Casida equation for periodic solids is the response

equation (15) without external perturbing potential:

n1G(k, ω) =
∑
G′

χKS
GG′(k, ω)

∑
G′′

fHxc
G′G′′(k, ω)n1G′′(k, ω). (A.1)

We multiply both sides from the left with the Hxc kernel, and sum over G. Defining

gG1 =
∑

G f
Hxc
G1G

n1G and using the explicit expression (13) of the Kohn-Sham response
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function, this leads to

gG1(k, ω) =
2

V
∑
k′jl

fjk′ − flk+k′

ω − εlk+k′ + εjk′ + iη

∑
G

fHxc
G1G

(k, ω)

× ⟨jk′|e−i(k+G)·r|lk+ k′⟩
∑
G′

⟨lk+ k′|ei(k+G′)·r′ |jk′⟩gG′(k, ω). (A.2)

Introducing Hl′j′k′′(k, ω) =
∑

G1
⟨l′k+ k′′|ei(k+G1)·r|j′k′′⟩gG1(k, ω), we obtain

Hl′j′k′′(k, ω) =
∑
k′jl

fjk′ − flk+k′

ω − εlk+k′ + εjk′ + iη
Kl′j′k′′,ljk′(k, ω)Hljk′(k, ω), (A.3)

where we define the coupling matrix elements

Kl′j′k′′,ljk′(k, ω) =
2

V
∑
GG1

⟨l′k+ k′′|ei(k+G1)·r|j′k′′⟩fHxc
G1G

(k, ω)

× ⟨jk′|e−i(k+G)·r|lk+ k′⟩. (A.4)

Next, we drop the infinitesimal iη in the denominator, which can be justified assuming

a discretized k-space, and define

βljk′(k, ω) =
Hljk′(k, ω)

ω − εlk+k′ + εjk′
. (A.5)

Equation (A.3) then becomes∑
k′jl

[
(εl′k+k′′ − εj′k′′)δjj′δll′δk′k′′

+ (fjk′ − flk+k′)Kl′j′k′′,ljk′(k, ω)
]
βljk′(k, ω) = ωβl′j′k′′(k, ω). (A.6)

Now let us specifically consider optical excitations with k = 0. With this, Eq. (A.6)

simplifies to ∑
k′jl

[(εl′k − εj′k)δjj′δll′δkk′ + (fjk′ − flk′)Kl′j′k,ljk′ ] βljk′ = ωβl′j′k. (A.7)

Only transitions between occupied and empty bands will contribute, and the occupation

numbers are simply 0 or 1. We can then rewrite (A.7) as two equations:∑
k′jb

[(εik − εak)δjiδbaδkk′βjbk′ −Kiak,jbk′βjbk′ +Kiak,bjk′βbjk′ ] = ωβiak(A.8)∑
k′jb

[(εak − εik)δbaδjiδkk′βbjk′ −Kaik,jbk′βjbk′ +Kaik,bjk′βbjk′ ] = ωβaik(A.9)

where a, b are indices of empty bands and i, j are indices of occupied bands. Lastly,

defining Xiak = −βiak and Yiak = βaik we end up with Eqs. (16) and (17). These two

coupled equations can be represented as a single equation of the matrix-vector form(
A B

B∗ A∗

)(
X

Y

)
= ω

(
−1 0

0 1

)(
X

Y

)
, (A.10)

and this is what is usually referred to as the Casida equation [10,37].
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Appendix B. Derivation of Eq.(68)

In this Appendix we provide details of the derivation of Eq. (68).

Starting point is the Casida equation for periodic solids, Eqs. (16) and (17). Within

the Tamm-Dancoff approximation, and using a two-band model with only one valence

band v and one conduction band c, the Casida equation reduces to∑
k′

[(εck − εvk)δkk′ +Kcvk,cvk′ ]Yvck′ = ωYvck. (B.1)

The eigenvectors Yvck reflect the mixing of k-states in an excitation. For instance, for

single-particle excitations in the continuum, Yvck is peaked at a single k-value, whereas

for bound excitons a whole range of k-values contributes. We will now make the rather

drastic approximation that the exciton mixes all k-states equally, setting Yvck ∼ const.

This is certainly true for the states close to the band gap, which are dominant in

the formation of the exciton. The constant follows from the normalization condition

1 =
∑

k Y
∗
vckYvck so that Yvck = 1/

√
VBZ, where VBZ is the volume of the first BZ.

Next, let us consider the coupling matrix Kcvk,cvk′ . Using a head-only xc kernel

and dropping the Hartree part, the coupling matrix becomes

Kvck,v′c′k′ = lim
q→0

2

V
⟨vk|eiq·r|ck⟩fxc

00 (q)⟨c′k′|e−iq·r|v′k′⟩, (B.2)

where we consider α-dependent LRC kernels fxc
00 (q) = −α/q2. Substituting this into

Eq. (B.1), and taking the derivative with respect to α on both sides, leads to

− lim
q→0

2

V
1

VBZ

∑
kk′

⟨vk|eiq·r|ck⟩ 1
q2
⟨ck′|e−iq·r|vk′⟩ = dω

dα
. (B.3)

Next, we consider the Kohn-Sham response function, Eq. (13). The head of the

response function, in the two-band model and in the limit q → 0, is

χKS
00 (q → 0, ω) =

2

V
∑
k

1

ω + εvk − εck
⟨vk|e−iq·r|ck⟩⟨ck|eiq·r′ |vk⟩

− 2

V
∑
k

1

ω + εck − εvk
⟨ck|e−iq·r|vk⟩⟨vk|eiq·r′ |ck⟩. (B.4)

We keep only the dominant (resonant) terms and drop the antiresonant ones, and we

approximate the difference of the single-particle energies by εck − εvk ≈ Eg. Since the

exciton binding energy is Eb = Eg − ω, the response function becomes

χKS
00 (q → 0, ω) = − 2

V
1

Eb

∑
k

|⟨vk|eiq·r|ck⟩|2 . (B.5)

Eqs. (B.3) and (B.5) are very similar, except that in Eq. (B.3) there is an extra

summation over k′. However, one may get rid of it by arguing that the Bloch states

|ck⟩ and |vk⟩ are plane-wave-like (which, by the way, is one of the key assumption of

the Wannier model). Equation (B.3) can thus be written as

− lim
q→0

2

V
1

q2

∑
k

∣∣⟨vk|eiq·r|ck⟩∣∣2 = dω

dα
. (B.6)
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Comparison with Eq. (B.5) then gives the desired final result:

dω

dα
= lim

q→0

Eb

q2
χKS
00 (q, ω). (B.7)
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