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ABSTRACT
The use of computer-based systems in classrooms has provided
teachers with new opportunities in delivering content to students,
supplementing instruction, and assessing student knowledge and
comprehension. Among the largest benefits of these systems is their
ability to provide students with feedback on their work and also
report student performance and progress to their teacher. While
computer-based systems can automatically assess student answers
to a range of question types, a limitation faced by many systems
is in regard to open-ended problems. Many systems are either un-
able to provide support for open-ended problems, relying on the
teacher to grade them manually, or avoid such question types en-
tirely. Due to recent advancements in natural language processing
methods, the automation of essay grading has made notable strides.
However, much of this research has pertained to domains outside
of mathematics, where the use of open-ended problems can be
used by teachers to assess students’ understanding of mathemati-
cal concepts beyond what is possible on other types of problems.
This research explores the viability and challenges of developing
automated graders of open-ended student responses in mathemat-
ics. We further explore how the scale of available data impacts
model performance. Focusing on content delivered through the
ASSISTments online learning platform, we present a set of analyses
pertaining to the development and evaluation of models to predict
teacher-assigned grades for student open responses.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Machine learning approaches.
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1 INTRODUCTION
With classrooms progressively adopting free online educational
resources (OER’s) and curricula, such as Engage New York (En-
gageNY), Illustrative Mathematics, or Utah Math, a large number
of teachers and students are gaining access to expert-authored con-
tent. The benefit of using such resources extends to give teachers
the ability to assign content aligned with developed standards, sup-
plying them with a range of problems which can be used to provide
students opportunities to practice each skill and also can help to
assess students’ knowledge and understanding of such skills. While
the resources themselves provide promise to help teachers gain
these benefits, OER’s are merely content-based and are not a tech-
nology aimed at helping teachers beyond providing the problems
and suggested structure of the curriculum.

Conversely, one of the goals of computer-based learning plat-
forms is to help teachers deliver content to students in order to
supplement instruction, provide aid to students, and report student
learning progress and assessment to the teacher. In doing so, these
systems often record large amounts of fine-grained student data to
help the teacher make more data-driven decisions in the classroom
(e.g. helping to identify which homework problems on which to fo-
cus a class discussion). In many cases, this is accomplished through
the system’s ability to automatically grade student content in order
to then report that information back to the teacher.

As open educational resources such as EngageNY, Illustrative
Mathematics andUtahMath aremore content-focused, and computer-
based learning platforms are more instruction-, assessment-, and
feedback-focused, the incorporation of OER content into these sys-
tems can wed the benefits of each to support both teachers and
students. ASSISTments, the learning platform from which we have
acquired the data used in this work, is one such system that has
incorporated such content. While these learning platforms have
many strengths, a current limitation exists in many systems regard-
ing the support for open response questions which comprises a
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Figure 1: Percent of Assigned Open Response Problemswith
Grades and Feedback

large percentage of the content within these OERs, but of course
open-ended problems are not limited to these content sources alone.

The task of automating the grading of student responses to prob-
lems in computer-based learning platforms has largely been limited
to well-defined or well-structured types of problems. These types
of questions include, for example, those problems which have a
standard correct response, such as solving a simple mathematical
expression (i.e. 6 * 6 = ?). Likewise, there are those problems which
could be represented by a mathematical expression (i.e. solve for
x: 8x + 3 = 7) where the correct answer could take the form of a
fraction or a decimal value (i.e. 0.5 or 1/2), where either would be
considered correct. While these problem types aim to evaluate stu-
dents’ knowledge of a given topic, questions that require students
to explain their reasoning further provide the opportunity to assess
students’ understanding of the assigned concepts. In order to do so,
however, the grader needs to be able to parse and, to some degree,
understand the semantics of each response to measure the student’s
comprehension of the material.

Many of the widely used Intelligent Tutoring Systems, such
as McGraw Hill’s ALEKSTM and Carnegie Learning’s Cognitive
TutorTM, have no concept of open response questions, likely due to
their inability to automatically assess students’ responses. Others,
such as ASSISTments, do provide a tool for teachers to grade stu-
dent responses but make no attempt to automatically grade them.
While a wide range of automatic short answer grading systems
have been developed and documented [1], grading responses to
open-ended questions in mathematics remains a task that teachers
predominantly do manually.

In ASSISTments, the manual grading of open responses is not
common, likely due to the arduous nature of reading and assessing

student work. Figure 1 illustrates the percentage of open response
problems in ASSISTments that are ultimately graded by teachers
as well as the percentage of such problems where the teacher has
provided feedback (i.e. in the form of a comment or message) for
the work. In that figure, it is apparent that less than 15% of assigned
open response problems in the system are given a grade by the
teacher and even fewer (less than 4%) receive feedback. Further-
more, this percentage decreases over the course of the school year,
presumably as teachers realize how much time it takes to prop-
erly attend to student responses. This figure illustrates the need to
provide teachers with better support in assessing student work.

In this paper, we study the viability and challenges of developing
models for the automatic grading of mathematics open response
questions using data collected from real teachers assigning content
within the ASSISTments online learning platform. Toward this goal,
we seek to:

(1) Examine variations in teacher grading policies of open re-
sponses within ASSISTments

(2) Evaluate howwell models are able to predict teacher-assigned
grades of student open responses given the currently avail-
able data from within ASSISTments.

(3) Investigate how the performance of our models are affected
by the scale of available training data.

The goal of this research is to serve as tool and framework
for future studies and experiments involving the automated grad-
ing of and generation of feedback for open response questions in
computer-based learning platforms

a2

2 BACKGROUND
There have been many previous works utilizing natural language
processing (NLP) to provide feedback on responses to open-ended
short answer essay questions; the specific NLP techniques used in
these works, however, have ranged in complexity in an attempt
to extract information from the language. Studies such as [22]
have developed systems which use hand-crafted pattern matching
to grade one-to-two sentence student responses to open-ended
questions. Others, like c-rater [21], make use of grading rubrics
breaking down scores into multiple knowledge components for
evaluation; student responses are parsed to detect the presence of
either a paraphrasing of a concept or statements that infer a concept
pertaining to such knowledge components. Recent studies like [16]
have also shown promising results using neural network models
with no need for feature engineering. In many recent works, several
deep learning methods, such asWord2Vec [13] and GloVe [14], have
been used for their ability to capture the semantic and contextual
information of words, while another approach has attempted to
use memory-augmented networks to better incorporate labeled
examples of essays [25].

While these deep learning methods have gained popularity for
use in NLP tasks, the methods often require large amounts of lan-
guage data to train and pre-trained models may be limited to words
that were in the original corpus (which often excludes the specific
math words and symbols that may be found in student responses
to open-ended questions). It is for this reason that another, albeit
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much simpler technique, known as ”bag of words” has been ap-
plied with some success in certain NLP tasks; this method observes
the frequency of each word within and across the given samples,
generating a weight measure representing the prominence of that
word. While bag of words is a simplistic approach, it is one that has
been around for a long time with studies such as [8]. Today, bag
of words is the foundation of many studies and strategies. Studies
such as Alessandro Sordoni’s dynamic context generative models
utilize bag of words as an input to their RLMT generating responses
from text [20]. In addition, one of the more common approaches,
latent semantic analysis, is based on the bag of words approach,
essentially allowing for the comparison of the K-dimensional vec-
tors of two bag of words representations and evaluating the match
between these vectors [4].

Whilemost of the discussed non-deep learning approaches utilize
bag of words, a known flaw is that the structure of the sentence
is not understood. A simple approach is a n_gram model. This
will allow the model to save and understand spatial information
of the sentences. Studies such as [17] utilized this approach to
create the variables within their logistic regression to predict course
completion.

Although the majority of research pertaining to the automatic
grading of student open-ended responses has largely focused on
non-mathematical content, there have been several works applied
within the domain of mathematics. [10] have explored mathemati-
cal language processing for open responses by utilizing clustering
methods and bag of words. However, in the case of that study, the
focus was on limiting the model to analyze only the mathemat-
ical expressions while disregarding text; when the independent
variables (i.e. the corresponding prominence of each word) were
generated for the model, all non-algebraic text was omitted. This
current work, which will be discussed further in the Methodology
Section, uses multiple of these approaches including bag of words
to include both mathematical expressions and non-algebraic text,
and utilizing pre-trained word embedding within deep learning
methods to help find the semantics within the open response text.

As it will become more apparent by the description of our data
in the Dataset Section, there are several factors that differ between
the task described in this work and that of previous related works.
These factors can be summarized in terms of the domain of focus,
the scale of available data, and the consistency of grading (out-
come label). The work of [16], for example, used datasets from
state-level assessments spanning science, biology and ELA (Eng-
lish Language Arts), with an average of 2200 responses for each
question; in addition to this, the consistency of labels within the
data were arguably more consistent as they were scored by two
human annotators. Other studies such as [3] and [23], consist of
equally large datasets of 80 questions and 2273 student responses
(approximately 28 responses for each question) from ten assign-
ments consisting of four-to-seven questions each, and two exams
containing ten questions each. Similar to the Riordan study, two
human judges were used to score the student responses. In the
case of [10], the dataset consisted of 116 learners solving 4 open re-
sponse mathematical questions (2 high school level math questions
and 2 college level signal processing questions) in an edX course.
Similarly, [17] utilized a single education focused HarvardX course
to collect data from 41,946 enrolled students.

This study aims to enable the ability to automatically grade stu-
dent open responses within online tutoring systems. As discussed
prior, support for open response questions on current platforms,
such as ASSISTments, are limited and automatic grading is lacking.
As shown earlier, the lack of automatic grading leads to a sharp
decline in open response questions as the year gets busier and
the efficiency of multiple choice questions becomes more enticing.
Studies such as [19] support this, discussing how multiple choice
are prioritized for the ease, accuracy and speed of grading. [9] high-
lighted the advantages to a wider variety of question types; that
providing evaluations of just one question type is insufficient in
testing the students true critical thinking and understanding. Other
studies [12] discussed how constructed response questions (open
response questions) elicit a larger range of cognition’s than that of
just multiple choice.

In the case of standard essay grading (e.g. pertaining to non-
mathematics content and ranging from one sentence to multi-
paragraph), there are often very large datasets on which to train
NLP models as it is understood that large scale is often necessary;
the ASAP Kaggle competition [15] is an example of such data that
has been made publicly available. Open ended responses in the con-
text of mathematics, however, differs greatly from those observed in
other domains as the structure of the language is often secondary to
the students’ ability to demonstrate knowledge and understanding
of the concepts in regard to what is considered when determining
appropriate scores. The lack of publicly available data on which
to build automated graders of student open-responses, within the
domain of mathematics, further makes it difficult for the field to
progress in this task. It is for this reason that we not only focus on
teacher generated content, but also on OER content. As it is widely
used by teachers, supporting an opportunity to make meaningful
strides to support teachers on material already being used in real
classrooms. While many previous works used a larger pool of data
per question or better consistency across labels, our dataset is com-
prised of student responses to content assigned in true classroom
settings by teachers, and is therefore representative of the type of
information that would be available to models deployed in such
settings.

3 PILOT STUDY: VARIATIONS AMONGST
GRADERS

Among the largest challenges in developing models to automate
the assessment of student open responses is the subjective nature
of grading labels. In systems that allow teachers to manually grade
responses to open-ended problems, such as in ASSISTments, such
teachers are not prescribed a rubric to follow or a set of criteria
by which they must assess students; teachers grade their own stu-
dents based on how well they feel the student has met their own
requirements. In most cases, teachers presumably assess students
based on how well they are able to articulate and demonstrate their
knowledge of assigned content. Others, however, may also grade
based on effort, perhaps based on grammar, or even based solely
on completeness rather than the content of the response. While
some of these cases can be detected (i.e. teachers who only grade
based on completion of the problem), other causes of variation are
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likely more difficult to detect and normalize to help a model learn
to assess students on a common scale.

In order to better understand the degree to which teachers’ grad-
ing policies vary, we conducted a pilot study with 14 teachers1 who
use ASSISTments to regularly assign content from open educational
resources. As it is normally difficult to measure variations in grad-
ing due to differences in both assigned content and the wording of
student responses, we presented these teachers with a subset of a
group of 125 student responses to a set of 3 problems that had been
assigned in the previous month; each teacher was given a random
subset of 25 responses from their own and other teachers’ students
plus an additional set of up to 10 anonymized responses from their
own students (e.g. if the random set of 25 student responses con-
tained 5 responses from a teacher’s own students, an additional
5 responses from their class were selected for that teacher). This
selection process allowed for multiple teachers to grade a same
subset of student responses as well as re-grade a subset of their
own student responses in an anonymized manner (as the pool of
responses were selected from those that had been assigned and
graded by the 14 teachers previously).

From this data, we were able to calculate inter-rater agreement
on the set of teachers to understand how much variation existed
in how teachers assess student open-ended work. We apply Fleiss’
Kappa as we have more than two raters per response and found that
therewas just under 17% agreement above random chance on grades
between the teachers (kappa=0.167) when assessing on the 5-point
scale. When the grades are dichotomized into a binary value (where
a grade less than 2 is treated as a 0 and grades equal to or greater
than 2 are treated as 1), the agreement rises to 41% above random
chance (kappa=0.417). These levels of agreement are surprisingly
low, suggesting that there is very large variation in how teachers
approach grading these open responses questions. It was also found,
when looking at the internal consistency of teachers’ grades of their
own students, their Cohen’s kappa ranged from 23% agreement
(kappa=0.231) to over 67% agreement above chance (kappa=0.677);
again, these later kappa values are calculated by observing the
agreement between the given grades with those previously given
for the responses of their own students (all presented anonymously).
In following interviews with these teachers, it was suggested that
this low internal consistencymay be attributable to other contextual
factors that are considered when grading students.

The large variation in grades and potential contextual factors
that may exist external to the content of a given open response
highlight potential challenges faced in developing models that seek
to automate this process; such models need to be able to generalize
across teachers and students, and the results of our pilot study
suggest that this will be difficult. It is for this reason that we include
a teacher-level factor in our analysis described in Section 5.4 and
discussed further in the Results Section.

4 DATASET
For the goal of developing models to automatically assess student
open responses in mathematics, we collected a dataset comprised
of authentic student answers to open response questions within

1The teachers in this pilot study were recruited through a funded NSF grant (Blinded
for Review)

Figure 2: Example Problem Selected from Illustrative Math
open educational resource

ASSISTments[6] [18]; while the source of content does vary, a large
portion of the open response problems contained within the dataset
are from open educational resources such as EngageNY, Illustrative
Mathematics, and Utah Math. ASSISTments is used by real teachers
and students for classwork and homework, and is developed around
the idea of providing immediate feedback to students (on all but
open-ended problems) and the reporting of student performance
for teachers. As stated in the Introduction Section, ASSISTments
has incorporated several OER curricula into its available content,
providing the means to collect the student responses to EngageNY,
Illustrative Mathematics and Utah Math open-ended questions (as
well as others) as they were assigned and graded by teachers.

In the raw and unfiltered state, the dataset consisted of 27,199
unique students with 150,447 total student responses to 2,076 unique
problems, and graded by 970 unique teachers. In the data, there were
a number of empty responses provided by students caused by either
a student submitting nothing (i.e. submitting an answer consisting
of only a ‘space’ character) or by a student submitting an image
as their response; images were not included in the data resulting
in what appears to be an empty response. As such, any empty
responses are omitted from the dataset for the analyses described
in subsequent sections, as it is also the case that few would argue
that a truly empty response should be given a grade of 0, and the
omission of such cases will avoid inflatingmodel performance. Once
the filter was applied, the total number of graded student responses
dropped to 141,612, the number of unique problems was decreased
to 2,042, and left 25,069 unique students and 891 unique teachers.
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An example of the types of responses and their variations can be
seen in Table 1. What is clear is that there are a wider variety of
responses from students, with inconsistent spelling, mathematical
functions written differently and random text. This is one of the
main challenges of this study. Another challenge presented in the
dataset, and of this study, is that each student response is graded
by one teacher with the exception of a small number of samples
where multiple teachers assessed the same student responses.

4.1 Response Feature Extraction
To support our model development, we take two steps to extract
features from the text of the student responses: we first tokenize the
student responses and then create a numeric representation of these
parsed words using one of several methods. It is common in natural
language processing approaches to tokenize, or identify individual
words from provided text. For instance, a student may respond with
“I didn’t know the answer, so I guessed 4” where the text would
be divided into each component; a simple approach here would
be to simply split the text using spaces, but other approaches may
attempt to additionally separate punctuation or contractions into
separate components. Within this analysis, the text is tokenized
utilizing two different approaches: what is known as standard count
vectorizer splitting, as well as the Stanford Tokenizer[11]. This later
tokenizer was applied to better support our deep learning approach
described later in this section.

To describe the standard count vectorizer, this approach will
take our full corpus of responses, split the words and create a list
of those words. Table 2 shows an example of the initial processing
to extract words/features from student responses. From there, the
text which is being trained on is passed through this list, creating
a RxW matrix where R is the number of responses by students in
the training set, and W is the number of unique words within the
overall corpus. Then in each column ofW, a count of the occurrence
of the word in the student’s response is tallied.

In the end, the final RxW matrix acts as the bag-of-words ap-
proach described in Section 2; by adding the frequency values, a
numeric representation is given to each word describing its weight
amongst other words in the corpus. While this representation ap-
proach could result in undesirable omissions, where, for example,
the method may partition an equation contained in a student re-
sponse (as shown in Table 2 with 6x4 = 6 recognized as simply
6x4); it does, however, allow for more flexibility in capturing similar
numeric occurrences. As is the case in a bag-of-words approach, the
ordering of words within each response is not maintained by the
representation and instead relies on a measure of word prominence.
With just the count, it is apparent that certain ‘stop’ words such
as ‘i’, ‘me’, ‘my’, ‘it’, ‘this’, ‘that’ would carry more weight given
that the words are used often. To combat this, the term frequency-
inverse document frequency (tf-idf) statistic is calculated across the
matrix. These features will later be used in the non-deep learning
models described in the next section.

The other approach to extracting the features from text utilized in
this study is the Stanford Tokenizer [11] combined with Global Vec-
tors for Word Representation (GloVe)[14]; GloVe word embeddings,
pre-trained on large datasets, have been made openly available to
researchers conducting natural language processing research. In

the pre-trained embeddings used in this work, the Stanford Tok-
enizer was used in the generation of such word representations, so
the same tokenizer is applied to maximize the number of words
recognized by that model. The Stanford Tokenizer was applied,
which increases the amount of words which are able to be resp-
resented by a GloVe vector. For example, the Stanford Tokenizer
will represent “didn’t” as “did" and ”n’t” which is necessary for the
pre-trained GloVe model to recognize each component (i.e. there
is no pre-trained GloVe representation for “didn’t” but there are
representations for “did” and “n’t”). We used the 100-dimensional
GloVe vectors pre-trained on a large Wikipedia dataset with the
hypothesis that such a corpus is more likely to include mathemat-
ics terms than other pre-trained models using, for example, news
sources.

5 METHODOLOGY
To develop our models, we use both traditional machine learning
techniques and more complex deep learning algorithms combined
with natural language processing approaches. The range of models
observed in this work is intended to compare models of varying
complexity and flexibility in regard to how such models represent
the presented data. Specifically, we compare two decision tree-
based models with a deep learning network within the context of a
probabilistic baseline model.

With the tree-based machine learning approaches including ran-
dom forest and XGBoost, each described within this section, there
is a decrease in flexibility of the model (in comparison to deep learn-
ing algorithm’s such as a neural network or LSTM), but greater
likelihood in being able to interpret results and identify impactful
words/equations within the student’s response in order to justify
the model’s prediction (a potentially desirable quality of a model
that will be suggesting grades to teachers). With the inclusion
of deep learning, our analysis is taking advantage of the newest
approaches and allows us utilize embedding’s to help our mod-
els understand the semantics of the words/equations within the
student’s response. Additionally, the final models utilize the pre-
dictions from the traditional machine learning and deep learning
models as covariates within a Rasch model. The following sections
detail the methodologies applied to address the goals outlined at
the end of the Introduction Section.

5.1 Random Forest
While there has been an expansion of deep learning models (and
we attempt as well) within natural language processing, mathe-
matics student open responses are not necessarily comparable to
the corpus in most prior analyses. For example, the datasets made
available through competitions (cf.[15]) have largely focused on
non-mathematics content to which others have been able to explore
a range of methods including that of deep learning[24]. However,
the differences in data sources may be worth noting in comparing
this to prior works. Namely, many deep learning methods, particu-
larly those using pre-trained embedding models as we describe later
in this work, are unable to effectively represent numbers and equa-
tions well in the context of other words; while such representations
recognize some numbers, the corpus is limited. It is for this reason
that a bag-of-words type of approach begins to make more sense as
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Table 1: Sample Responses from Example Problem Selected from Illustrative Math open educational resource

Grade Example Responses
5 Because B is 2x biggest than A
4 I didn&rsquo;t understand ?
5 Because 2/12 time 2 equals 5
5 2.5 x 2=5
5 2.5 times 2 is 5 so the scale factor is 2 oops that is what I meant
5 Cause 2.5 divided by 5 is 0.5
3 Because the top one is 2.5 and 1.5 goes to 2.5
1 I guessed
3 Because the part on a is half the size of the one on part b.
5 2.5 times 2 is 5.
5 A has 2.5 on top and B has 5_2.5 x2is withc means that it was 2
2 I said that because two of them are equal

Table 2: Example Tokenization: Standard Count Vectorizer

Raw Student Text Count Vectorizer Tokenizater Stanford Tokenizer

“The answer couldn’t be 6x4 = 6”
“skies are blue"
“It’s something I dont understand”
“I didn’t know, so is this right? x+4=8 6x1”

[“6x1”, “6x4”, “answer” “are”
“be”, “blue”, “couldn”, “didn”
“dont”, “is”, “it”, “know”

“right”, “skies”, “so”, “something”, “the”
“this”, “understand”]

[“The”, “answer”, “could”, “n’t”
“be”, “6x4”, “=”, “6”

“skies”, “are”, “blue”, “It”
“’s”, “something”, “I”, “dont”
“understand”, “I”, “did”, “n’t”

“know”, “,”, “so”, “is”
“this”, “right”, “?”, “x”
“+4”, “=”, “8”, “6x1”]

it is easier to train such a method to recognize all words within our
specific context. Additionally, the tree-based methods likely require
fewer training examples than a complex deep learning model but
still offer a large degree of non-linearity in their representations of
data.

In regard to the random forest model explored in this work, as
discussed earlier, the input of this model is the term frequency
inverse document frequency value. This assists in lowering the
weight of less important stop words. We allowed the forest to con-
tain 100 decision tree’s. By having a more slightly more robust
dataset, there is less of a chance of over fitting. Additionally, this
allows the forest to identify as many important words within the
student responses. For each of the 100 trees, pruning is not per-
formed. This allows for each of the trees to expand out and identify
as many words as impactful. Once again, this does bring in the
risk of overfitting. Training and testing is performed with a 10-fold
cross validation. The model then output a probability that the grade
would belong to each of the 5 categories. These probabilities are
then used as covariate within the final Rasch model described later
in this section.

5.2 XGBoost
Continuing with the tree approachs, XGBoost was another flexible
model applied. This method will apply gradient boosted decision
trees. As [2] describe, there are three parts to the tree boosting. First,
a regularized learning objective is calculated to prevent overfitting.

It starts by calculating a prediction thru summing all the indepen-
dent tree structures and leaf weights from ensembled decision trees.
From there, the model attempts to understand what were the effec-
tive set of functions learned within the model by minimizing the
loss function. This function is calculating the difference between the
predictions and the targets, while attaching a complexity penalty.
By attaching this penalty, as the authors discuss, the final weights
of the ensembled trees are smoothed to avoid overfitting.

From there, the model aims to optimize the ensembled trees, but
the authors [2] noted that with functions as the parameters, a tra-
ditional euclidean space is not able to be used for the optimization.
This lends itself to an additive modeling approach by adding more
functions and calculating the loss function. The model adds the
functions which minimise the loss function and most improves the
current model.

Additionally, the model aims to combat overfitting by utilizing
shrinkage, also commonly referred to as regression to the mean. As
the authors note[2], by utilizing the shrinkage, it can help to reduce
how much influence each tree has on the overall ensembling. This
then can help create more room for additional, potentially stronger
trees, thus improving the model while reducing the chances of
overfitting. Lastly, the XGBoost takes one aspect from the Random
Forest model, and that is feature subsampling.

Similar to the Random Forest, the term frequency inverse docu-
ment frequency matrix is used as input to the model. We set the

620



The Automated Grading of Student Open Responses in Mathematics LAK ’20, March 23–27, 2020, Frankfurt, Germany

model to perform multi-class classification with a softmax probabil-
ity learning task. This then allows the model to produce a separate
probability for each possible grade. Once again, all training and
testing is performed using 10-fold cross validation.

5.3 LSTM
The final student grade prediction model for comparison is a deep
learning long-short term memory (LSTM) network [7]. As men-
tioned previously, deep learning has been on the forefront of recent
advancements in natural language processing. Such models differ
from the more traditional methods described above in that such
networks consider the ordering of words. Contrary to approaches
using a bag-of-words approach, LSTMs recognize that the ordering
of words may contribute to the interpretation of the responses and
considers this within the network structure.

Before modeling, each sentence is first processed to remove
unwanted characters such as line endings. Next, stop words are
removed from each sentence to help reduce the sentence to only the
most representative words; by shortening the sequence of words it
is also believed that the model will be able to more efficiently learn
from the data in that it will not need to learn to ignore such common
words. From here, each sentence is tokenized using the Stanford
Tokenizer and subsequently vectorized using the pre-trained 100-
dimensional GloVe embeddings described in Section 4.1.

We apply a bi-directional LSTM model consisting of 3 layers:
a 100-dimensional input layer that accepts the pre-trained GloVe
vectors of each word, a 40-node hidden LSTM layer (20 nodes
that observe the sequence in order and 20 nodes that observe the
sequence reversed), and finally a 5 node output softmax layer corre-
sponding to each of the 5 possible grade values with a cross-entropy
loss applied. The application of a bi-directional network is believed
to help the model learn order dependencies between words as well
as help it learn more prominent long-term dependencies at the
beginning and end of each response.

The model is trained using a 10-fold cross validation with an
Adam optimizer with a step size of 0.03. The small step size com-
bined with the comparably small network size (it is not uncommon
for such networks to contain many more layers with hundreds of
nodes per layer) is meant to help reduce model overfitting; while the
overall dataset is arugably large enough to support deep learning
models, a separate model is trained per problem which, in some
cases, exhibit smaller sample sizes than would normally support a
deep learning model. However, given the model size and the pre-
trained nature of the GloVe embeddings (the model does not need
to learn new word representations), we feel that the application of
this model is justified for the given prediction task.

The model is trained using a variable stopping criterion based on
the performance of a holdout validation set consisting of 1-fold’s
worth of data (approximately 1/9th of the available training data).
The model is trained over many epochs, or cycles through the
training data, until the performance on the validation set plateaus.

Similar to the other previously describedmodels, the LSTM treats
each grade as mutually exclusive classes for training; despite the
ordinal nature, this aspect of the output is not explicitly included
in the model

5.4 Rasch Model
While the previously described machine learning and deep learning
models are the focus of comparison for this work, we utilize one
final model as a baseline and a means of more fairly evaluating the
performance of the previous models. For this, we use a two- and
three-component Rasch model. A Rasch model, commonly applied
in item response theory (IRT), is a probabilistic model (in this case,
a variational bayes model) that uses fully connected data to learn
components that describe the users and content independently
of each other. In IRT, it is common that such a model may learn
a student ability parameter for each student as well as an item
difficulty parameter describing each problem. In our specific appli-
cation, we use the Rasch model to learn a student ability parameter,
item difficulty parameter, and, for an additional comparision, a
teacher strictness parameter following the results of our pilot study
described in Section 3.

The formulation of the Rasch model is as follows:

𝑔𝑟𝑎𝑑𝑒 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑖𝑡𝑒𝑚_𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦
+ 𝛽 ∗ 𝑋 )

(1)

𝑔𝑟𝑎𝑑𝑒 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑖𝑡𝑒𝑚_𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦
− 𝑡𝑒𝑎𝑐ℎ𝑒𝑟_𝑠𝑡𝑟𝑖𝑐𝑡𝑛𝑒𝑠𝑠 + 𝛽 ∗ 𝑋 )

(2)

In the first Rasch model in Equation 1, it is formulated as an
ordinal logistic regression observing a learned value per student and
a learned value per problem. In addition to this, a set of covariates X
will be used to evaluate the previously described machine learning
models. Since the base Rasch model, where X is an empty matrix,
observes no information of the problem text itself, a model that is
able to effectively learn from student response text should lead to
notable improvements in model performance. It is for this reason
that we use this model as a means of comparison. The predictions
of each of the previous models will be incorporated into the Rasch
systematically to compare the added benefit (if any) beyond the
attributes of student ability and item difficulty. For example, the 5
predicted probabilities produced by the LSTM model are presented
to the Rasch model as X and the performance of such a model
is compared to the Rasch model without such covariate data (as
well as compared to the Rasch model containing the other machine
learning predictions).

The Raschmodel in Equation 2 incorporates an additional learned
parameter of teacher grading strictness, in observance of the re-
sults of our pilot study. By including this term, we should gain an
understanding of how well such a model is able to perform when
observing that different teachers grade with different policies, par-
ticularly in regard to being more or less strict (i.e. a less-strict grader
may apply higher grades on average than a more-strict grader).

In both of these cases, the Rasch model helps to observe the
model performance independent of student “goodness” and item
difficulty that may otherwise inflate or deflate model performance.
In addition to this, the Rasch incorporates an ordinal regression
which was not observed by any of the other machine learning
models; as such, the combination of the two methods holds promise
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Table 3: Rasch Model Performance

Model AUC RMSE Kappa
Rasch Model with teacher component 0.696 1.09 0.162

Rasch Model without covariates 0.827 0.709 0.370
Rasch Model with number words covariates 0.829 0.696 0.382

Rasch Model number words and Random Forest covariates 0.850 0.615 0.430
Rasch Model number words and XGBoost covariates 0.832 0.679 0.390
Rasch Model number words and LSTM covariates 0.841 0.637 0.415

to produce better results by observing the ordered relationship
between grades.

As one additional baseline model, we include the Rasch model
with a single covariate representing the number of words in the
student response. It seems plausible that longer responses may, on
average, receive higher grades, so we include this term alongside
the others as a more appropriate baseline of comparison.

6 RESULTS
We report three evaluation metrics with which to compare each
model: AUC, RMSE and Cohen’s Kappa. AUC is calculated using a
simplified multi-class calculation of ROC AUC [5], where values
close to 0.5 represent performance at chance and values close to
1 represent higher performance. RMSE is calculated as the root
of average squared errors when observing the ordinal predictions
and labels (i.e. observing that the difference between a prediction
of 3 and an actual grade of 4 is a value of 1); this differs from
the other metrics that observe the 5-point labeling scale as a multi-
class classification problem. Finally, we observe multi-class Cohen’s
kappa as a measure of inter-rater agreement above random chance
(observing that some labels such as 4 and 0 appear more frequently
than others.

Overall, each of models managed to predict student open re-
sponse better than the simple Rasch model baseline. The baseline
model, of just a basic Rasch model without any additional covari-
ates, managed to classify students’ open response grades with an
AUC of 0.827, as shown in Table 3. In fact, all models manage to
classify student grades with an AUC greater than 0.820 aside from
the Rasch model incorporating a teacher strictness component; it is
possible that the model is either unable to learn three parameters
from the given data or the influence of variations in teacher grading
are not as impactful as the pilot study suggested. Likewise, aside
from the identified Rasch model, the Kappa values are moderately
high, all models are able to classify and predict the student’s grade
at least 37% above chance.

However, its is apparent that the incorporation of the machine
and deep learned grade prediction covariates provide the Rasch
model with insight previously not identified. While the LSTM and
XGBoost manage to improve the models performance, Random
Forest managed to provide the most additional insight to the Rasch
model. What is also evident is our model’s ability to become more
confident in our predictions with more covariates. Our RMSE man-
ages to drop in the Rasch model with any of our additional co-
variates and, once again, the Random Forest managed the lowest
RMSE.

In the end, it is clear in Table 3 that the best overall model was
the Rasch model with Random Forest covariates. This model was
able to classify/predict student’s open response grades with an
increase in the AUC of 0.023, a drop in error rate (RMSE) of 0.094,
and an increase in the kappa of 0.060 over the baseline Rasch model
without additional covariates.

7 EXPLORATION OF SAMPLE SIZES
While the results in the previous analysis suggest that the models
are performing moderately well in comparison to our baseline, this
research aimed to explore the impact the amount of data has on
our performance. It is unclear if, given more data, we would expect
to see large increases in model performance. We selected a problem
from our dataset to exemplify this process here, but it is intended
that this analyses can be repeated on all problems to assess the
impact of available data at a finer level of granularity. Of the 10
problems with the closest grade distribution to that of the overall
population, we selected the problem with the largest sample size
(shown in Figure 2).

This last analysis was performed with a leave one out cross
validation and an increasing training set sample size. Starting at 5
training points, we train and predict the test point. We repeat this
sampling 10 times to allow us to calculate our confidence intervals.
Following the 10th iteration, the sample size is increased to 15,
and the process repeats for the same test point. This is repeated,
increasing the sample size by 10 until it can’t sample anymore.
Once this is finished, the model moves to the next test point of the
leave one out cross validation and repeats. In this way, we create a
bootstrapping example of how model performance changes at each
sample size; where we see the model performance stabilizing and
beginning to plateau, it is suggestive that additional data would not
lead to substantial gains in model performance. For this analysis,
we used the random forest model alone without the Rasch for
exemplary purposes.

In terms of the sample size and its effect on our ability to predict
a student’s open response grade, it is clear from Figure 3 and the
confidence that we see a statistically significant improvement in
the performance from sampling 5 training points to just under 55
training points. However, what is evident is that the model has
maxed out its potential in its current form at just under 55 training
points, and that additional data is not significantly improving the
ability to predict the student’s grade. With plots such as Figure 3
it suggests that any further improvement’s would require updates
to the model and data representation rather than simply collecting
more data.
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Figure 3: Selected for exemplary purposes, this plot illustrates the random forest model performance within a single problem
over increasing sample sizes. Similar plots are generated for every problem to observe where our models may benefit from
more data.

8 DISCUSSION
Overall, the study aimed at utilizing modern machine and deep
learning approaches to predict grades from authentic student open
responses. With the ensembling of machine and deep learning with
Rasch models, we have shown a strong ability to predict a students
grade. Additionally, this study showed that in some cases more
data wouldn’t necessarily improve performance. Thus providing us
the understanding that our ability to predict a grade, for a specific
problem, may or may not improve with more data. However, given
there are 2,042 unique problems, a limitation of this part of the study
is that it’s difficult to ascertain this information for each individual
problem.

9 FUTURE WORK
With the overall strong model performance, there are a couple next
steps we wish to address in future work. There is still a weakness in
our model’s ability to understand text. Currently, the best perform-
ing model, the Random Forest, is utilizing a bag of words approach,
counting the words within student responses. There is no consid-
eration of the structure of the student’s response or what words
relate to other words within the student’s response. We attempt to
combat this hindrance by utilizing the LSTM, but the lesser results
of that model in Table 3 suggest that either the semantics and con-
text of the words did not provide additional insight to the model,
or, more likely, there is not enough data within each problem for
such a model to effectively learn. The representation of data may
also be an issue across these models, specifically in reference to
the pre-trained GloVe embeddings. While a very powerful tool, as
shown in previous research and discussed in this paper, models
which utilize this are bound to the words in the pre-trained corpus.
Even with the use of a Wikipedia trained GloVe embedding, our
LSTM did not gain much in terms of additional information. Un-
derstandably, many functions and formulas students write aren’t
represented in the pre-trained embeddings. Currently, our team is
developing an approach to expand these pre-trained embeddings
to account for missing words, functions or math terms without
requiring re-training of a GloVe embedding.

It is our goal to use these findings and the continued development
of these grading models to deploy tools that can help teachers save
time in assessing their student work so that they may direct their
attention to the students who would most benefit from additional
feedback.
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