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Abstract—The performance of low-density parity-check
(LDPC) codes at high signal-to-noise ratios (SNRs) is known to
be limited by the presence of certain sub-graphs that exist in the
Tanner graph representation of the code, for example trapping
sets and absorhing sets, This paper derives a lower bound on the
frame error rate (FER) of any LDPC code containing a given
problematic sub-graph, assuming a particular message passing
decoder and decoder quantization. A crucial aspect of the lower
bound is that it is code-independent, in the sense that it can be
derived based only on a problematic sub-graph and then applied
to any code containing it. Due to the complexity of evaluating the
exact bound, assumptions are proposed to approximate it, from
which we can estimate decoder performance. Simulated results
obtained for both the quantized sum-product algorithm (SPA)
and the quantized min-sum algorithm (MSA) are shown to be
consistent with the approximate bound and the corresponding
performance estimates. Different classes of LDPC codes, includ-
ing both structured and randomly constructed codes, are used
to demonstrate the robustness of the approach.

Index Terms-—LDPC codes, absorbing sets, trapping sets, mes-
sage passing decoders, decoder quantization, error-floor behavior.

I. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes [1] are a class

of error correcting codes with asymptotic performance
approaching the Shannon limit. However, practical LDPC
decoders, such as those that implement message-passing algo-
rithms based on belief propagation (BP), can introduce an
error floor that limits error probability at high signal-to-noise
ratios (SNRs). A number of structures in a code’s Tanner
graph representation have been identified as significant factors
in error floor performance, e.g., near-codewords [2], trapping
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sets [31, and absorbing sets {4]. Absorbing sets are known to
be problematic in a variety of LDPC codes and stable under bit
flipping decoding [5], [6]. Other classes of trapping sets, such
as elementary trapping sets and leafless elementary trapping
sers, have been shown to be the dominant cause of the error
floor for certain codes [7]-[10].

Several papers have addressed the problem of predicting the
error floor performance of LDPC codes on the additive white
Gaussian noise (AWGN) channel based on the existence of
these problematic structures. In [3], Richardson proposed a
varfation of importance sampling to estimate the frame error
rate (FER) of a code based on trapping sets. In {11}, an error
floor estimate was introduced based on the dominant absorbing
sets (those empirically determined to cause most errors) in
structured array-based codes, and the results were compared
to those derived from importance sampling. In [12], 2 method
similar to [11] was applied to the min-sum algorithm (MSA).
In[13], the contribution of the shortest cycles in acode’s graph
was used to estimate its performance. Also, [14] and [15]
developed a state-space model for a code’s dominant absorbing
sets to estimate its FER. Later, [16] applied this method
to the case where the log-likelihood-ratios (LLRs) used for
decoding are constrained to some maximum saturation value.
Each of these references considered the problematic structures
of a particular code. In contrast, the authors of {5] derived a
real-valued threshold associated with a particular absorbing set
irrespective of the code; the threshold indicates if the absorbing
set can be “deactivated” and hence not contribute to the FER
at high SNR in any code that contains it.

This paper obtains sub-graph specific, or code-independent,
lower bounds on the performance of an LDPC code when
a finite precision (quantized) LDPC decoder is used. These
bounds are general, in that they apply to any code contain-
ing a particular problematic sub-graph; however, calculating
the bound is complex, so we introduce assumptions and
approximations to simplify its calculation, resulting in what
we call an approximate lower bound. Given a description
of a dominant problematic sub-graph and its multiplicity in
a code, an estimate of the resulting FER performance is
obtained. Extensive simulation results justify the validity of
the assumptions and approximations used for various decoders,
quantizers, problematic sub-graphs, and codes.

We first create a simplified model for the Tanner graph of a
code containing a particular problematic sub-graph; this model
captures the structure of the code outside the sub-graph with a
single edge connected to each check node incident to a variable
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Fig. I. An illustration of a (4, 2) absorbing set with girth 6. This sub-graph
can also be referred to as an elementary trapping set or a leafless elementary
trapping set.

LDPC codes, for example, and we see that it contains a cycle
of length six (the highlighted edges in the figure). The girth of
an absorbing set is the length of its shortest cycle, and it can be
readily observed that the girth of the absorbing set in Fig. 1 is
six.

Other classifications of problematic sub-graphs have been
referred to as elementary trapping sets (ETS), which contain
only degree-1 and degree-2 check nodes [9], and leafless
elementary trapping sets (LETS), in which each variable node
is connected to at least two even-degree check nodes [7].
As such, Fig. 1 can also be referred to as a (4,2) ETS or
LETS.

C. Quantizers

Since quantized decoding may have different performance
characteristics than unquantized decoding, considering the
effect of quantization on decoder performance is of great
importance:

« Uniform Quantization: Following convention, we let
Qy, .4, denote a quantizer that represents each message
with ¢ = g1 + g2 +1 bits: gy bits to represent the integer
part of the message, g bits to represent the fractional
part, and one bit to represent the sign. In this case, there
are t = 27 quantization levels, where the levels (ie.,
the quantized message values) range from £, = 2%
to £, = 20 — 2792 with step size A = 279 between
levels. The quantizer thresholds are equidistant between
the levels and range from b, to b,_y, where b, = -’%—‘
forie {1,2,...,¢ -1}

« Quasi-Uniform Quantization: In [17], the authors pro-
posed a non-uniform quantizer, denoted as “quasi-
uniform” due to its structure, which uses g bits for
uniform quantization, thus maintaining precision, plus an
extra bit to increase the range of the quantizer compared
to a g+1 bit uniform quantizer. It is shown in [17] that the
increased range of this quantizer improves the error-floor
performance.

III. SYSTEM MODEL

In this section, we propose a general model for representing
a problematic sub-graph in an arbitrary code. We also formu-
late expressions for the quantized LLR values received at the
variable nodes and check nodes in the sub-graph. As men-
tioned earlier, we focus on absorbing sets as our sub-graph of
interest in the development of our system model; however,
the system model can be generalized in a straightforward
manner to any sub-graph.
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Fig. 2. An illustration of a (4,2) absorbing set with an unspecified number
of edges connected to cach check node.
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Fig. 3. An illustration of a (4, 2) absorbing set decoder graph D{A) with
single edges connected from auxiliary variable node a; to cach check node
¢;(A), where cach u; represents the LLR input to check node ¢;(A) from
outside G(A).

A. Absorbing Set Model

We consider the general case of an (e,b) absorbing set
with an unspecified number of edges connected to each of its
check nodes. The variable nodes are represented by A C V.
We partition the edges connected to each ¢;(A) into two
groups depending on whether they connect to a variable node
in A or V'\ A. We denote the neighboring nodes of ¢;(A) in
A as N'(cy(A)) and the neighboring nodes of ¢y (A) in V' A
as N*(c;(A)). If there are p; > 1 edges connected to A and
75 = 0 edges connected to V' \ A, then [N'(¢;(A))| = py
and |N"(c;(A))| = 7. In Fig. 2, a (4,2) absorbing set is
illustrated in which p; = 2, j = 1,2,...,5, pg = p7 = 1,
and 74 is arbitrary for j = 1,2,...,7 (note that 75 can be
Z€ero).

To simplify the calculation of the LLRs sent from each
check node ¢;(A) to the variable nodes »,(A) € A in the
case where 7; > 0, we represent the 7, edges from the variable
nodes in N”(c;(A)) with a single edge (see Fig. 3). This edge
has an LLR u, that is a function of all the external LLRs
coming from the set N”(c;(A)) to ¢;(A) and can be derived
as follows:

« SPA:

Sign(u]) == Hi'EN"(Cj) sign (Vx'-q) 3 (6)
oy (lujl) = ZpeNu(cj) L3} (lvu_.Jl) b
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The resulting array is deterministic, i.e., it is not a function of
the channel SNR. A pictorial representation of the decodability
array is shown below:

X1 Xy Xga
Wi slnawy o Ixews 0 Dewn
Wi | w0 Leawn o Lixewy)

Lot,a . Wins)
(12)

We now define the absorbing region of an absorbing set
decoder as the set of all pairs {x,, W) with ‘I’ entries in the
decodability array.” Letting v represent the absorbing region,
fe, ¢ = {0, Wi)|Pr(e(A)ls =%, U =Wy) =1},
Pr(¢{A)) in (10) can be written as

Prig(A) = > Prs=xU=Wy), 13
(%, W ey
where (8) and (9) indicate the dependence of Pr{£(A)} on
SNR. Evaluating (13) is computationally complex, since the
size of the decodability array ¢°F x ¢ is typically extremely
large. In the rest of this section, we propose an approach to
simplify the problem of finding the probability Pr(¢{A)) of
the absorbing region.
We proceed by proposing to lower bound Pr(£(A})). Assum-
ing that s and U are chosen independently, (13) becomes

Pr(¢(A)) = Z Pr(s =x;)-Pr(U=W;), (14)
(x;,Weley
where we note that, in an absorbing set decoder, we are
independently choosing an s and a U, running the decoder
to see if it is decoded incorrectly, which results in a “1"”
in the decodability array, and then repeating this process for
every possible combination in the array. After the process is
complete, each entry in the array is either a *1” or a “0".
We now define the following sets, which can be under-
stood by referring to the decodability array. First, for a
given W (row of the decodability array), denote the set
of all x, (columns of the decodability array) for which the
{x¢, W) pairs cannot be decoded correctly as ¥ (Wy), ie,
¥ (W) = {x,{ (3, W) € ¥}. This is equivalent to the set
of all columas with entries ‘1" in a given row Wj of the
decodability array. Additionally, we let (1) denote the set of
all columns in the decodability array with ‘1” entries in every
row, ie, Y(W) = {x (x;,, Wi) € ¢,¥ Wy € W}, where
we note that

Wine X1, Wenp) B, Wonp)

P
V(W)= [) ¥ (Wy). (15)

k=1
In (14), the error probability is a function of Pr(U = W),
which involves computing the probability of a particular set

A related definition of an shsorbing region was defined in {11]. We note
that, g Iy, the decodability array can be constructed in this way for any
problematic sub-graph and the corresponding “absorbing region” would refer
to the portion of the army with ‘1" entries.

of « check node inputs (from outside G({A)) for each of the p
iterations. If we are interested only in a lower bound on the
probability of {x,, W) belonging to the absorbing region,
this term can be eliminated from the calculation by including
in the sum only entries whose columns have a ‘1’ in every
row, i.e., the set W(1¥), which results in the following lower
bound

PréA) = Y Pr(s=x) Pr(U=Wp)
(%, W hey

> Pr(s = %} - Pr (U = Wy)

2 W W, eW

> Pris=x) Y. Pr(U=Wy)

x: € (W) Weew

> Pris=x). (16)

xEH(W)

v

f

I

The lower bound in (16) implies that

Pri¢(A)) 2 N4) 2 Y Pris=x), (7
%W {W)

so that instead of including all the pairs in the decodability
array with ‘1" entries, we only need to include the columns
with all “1" entries, which leads to the removal of the term
Pr{U = W} from the expression for Pr{£(A)). This makes
the evaluation of the lower bound in {17) dependent only
on the absorbing set A and not on the structure of the code
containing A3

V. BouNDING THE FER oF AN LDPC CODE

In this section, we begin by deriving a lower bound on the
FER of any LDPC code whose Tanner graph representation
comtains at least one instance of a given (a,b) absorbing
set G(A) in Section V-A. We then provide a series of
approximations in Section V-B to reduce the complexity of
evaluating the bound. Finally, in Section V-C we provide some
remarks concerning the application, evaluation, and merits of
a code-independent bound on the FER of an LDPC code.

A. A Lower Bound on the FER of an LDPC Code

We define £(V') as the event that there is at least one bit
error in the set of variable nodes V after the quantized received
vector r is decoded using a quantized decoder operating on the
full code graph for p iterations. Then the FER of the LDPC
code can be written as

o

FER = Pr(E(V)) = Y Pr(E(V)Ir = z¢) - Pr(r = 2),
fe==1
(18)
since there are ¢™ possible realizations of r.

Hf every column of the armay has at least one “0” entry, that means that every
possible input to the “absorbing set” can be decoded with some combination
of check node inputs and we would obtain the trivial bound A = 0; however,
since such an object isn't problemntic by our definition, a lower bound of
zero makes sense.
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Furthermore, since

N ) N
Pe (U z:(,e;‘)) > 3 Pr(E(AN)
=i t=1

— Y Pr{E(A)NEA4), 29
1€t <N
(27) and (29) can be combined to give the following lower
bound

N
FER > Y "Pr(£(A))— Y Pr(E(A)nE(4y). (30)

=1 1€z EN

We now assume that any two error events £(A;) and £(Ay)
associated with the same (g, &) absorbing set are independent,
i.e.,

(3n

This assumption is made for simplicity and is based on the
observation that most pairs of a given absorbing set appearing
in a code are disjoint, in the sense that they do not have any
nodes in common. Using this assumption, the right hand side
of (30) can be wrilten as

Pr(E(Ad) NE(4y)) = Pr(E(A)) - Pr(£(Ay)).

v

N Pr(E(4) - (‘Z) (Pr(E(A)>.

Further, as noted in [11], the fact that the channel LLRs
in the error floor region are typically large implies that the
chance of more than one absorbing set G(A) receiving low
channel LLRs, and thus causing decoding errors, is small.
This, combined with the fact that the second term in (32) will
not have a significant impact (since Pr(£(A)) will be small
and thus (Pr(£{A)})? < Pr(£(A)) in the error floor) and can
thus be neglected, results in the following approximate lower
bound on the FER in the error floor region of an LDPC code
containing N instances of the absorbing set G(A):

FER 2 N Pr(£(A)) = NA(A),

(32)

(33)

where the accuracy of the approximate bound in (33) depends
on the tightness of the bound in (17). Furthermore, if G(A} is
the most harmful or deminant absorbing set in a code, N A{A)
represents an estimate of its FER performance in the error floor
region.

Expressions (28) and (33) represent a true lower bound and
an approximate lower bound, respectively, valid in the error
floor region, in terms of A(A), defined in (17). The multiplici-
ties of the different absorbing sets needed to evaluate (33) may
be derived either using analytical or semi-analytical methods,
such as those given in [4], [18}, [19],

B. Approximating the Lower Bound on FER

In this section, we propose a reduced complexity method
to approximate A(A). Although the term Pr (U = W) was
climinated from the expression for Pr(¢(A)) in (16), thus
making the lower bound code-independent and simplifying

51n the case where more than one absorbing set is believed to be dominant,
the maximum of afl the lower bounds can be used to form an error estimate.

d use li

the expression, calculating MA) in (17) still depends on
finding (W), which, in-turn requires examining all W, €
W as shown in (15). In other words, all ¢* rows of the
decodability array should be examined for each of the ¢*
columns x,. Therefore, instead of finding ¥ (W), we consider
the less computationally complex set

M
YWy = () ¥ (Wi, ), kb, km € {12,000, 897,

m=1

(34)

which involves examining only a subset of M rows of the
decodability array. By properly choosing the M rows and
finding the columns with all ‘1" entries in these rows, it is
possible to obtain a good approximation to the set of columns
with ‘1" entries in every row, allowing us to compute

MAY2 37 Pr(s=x) = MA), (35)
x; b (W)
which results in the approximate lower bound®
FER 2 NA(A). (36)

In the following, we explain how the approximate lower
bound A A} is calculated. We first assume that M rows of the
decodability array, denoted by Wy, for m = 1,2,..., M,
have been selected, The calculation of (35) then involves two
steps:

1) Finding the set ¥(W). This is achieved by operating

the absorbing set decoder on A for each (8 = x,, U =
W, ). Then, using (34), if the decoder fails to correctly

decode 5 = x, for all the Wy ,m = 1,2,... M,
it follows that 8 = x; € ¥{W). Otherwise, s = X;
is discarded.

2) Summingthe Pr(s = x,) foralls = x; € \il(W), where
Pr{s = X,) is obtained using (8) and (9).

In order to obtain a computationally efficient approximation,
we should choose rows expected to have a small number
of *I's, since they eliminate more columns than rows with
a large number of ‘I's. In other words, the M rows should
be chosen as a set of check node input matrices U = Wy,
that we expect to result in a small number of input vectors to
the absorbing set s = X; that cannot be decoded correctly.
Rows which we expect will lead to incorrect decoding of
most input vectors s = X, on the other hand, are not useful.
Therefore, we try to avoid such rows. Before proceeding,
we review some important facts regarding the dynamics of
absorbing sets in the high SNR region (with highly reliable
input channel values). For such absorbing sets, after a certain
number of iterations, it is common for the LLRs received
by the check nodes in C({A) from the variable nodes in
V \ A lo grow rapidly and reach the maximum quantizer
level £; (or the saturation level) within a few iterations [20].
For example, the analysis in {5] starts from the point where
all the LLRs have already converged to £,. This motivates
our choice of Row Set I, where we consider only the row

5We use this term to emphasize the fact that approximations are used in
calculating A A).
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the probability of correct decoding. Therefore, we conclude
that Assumption 1, which is based on ML decoders, is not
necessarily valid for all MP decoders. This suggests choosing
U = W/, where W is a check node input matrix correspond-
ing to some other row of the decodability array, can lead to
correct decoding of some absorbing set input vectors s = X,
when U = W,ax does not lead to correct decoding. In [14]-
[16], the authors model the dynamics of an absorbing set by
applying Density Evolution (DE) to the messages coming from
outside the absorbing set, where a Gaussian distribution for the
LLRs received by the check nodes in C(A) at each iteration
is assumed. These distributions are represented by their mean
and variance, which are shown to be increasing with iteration
number. Here, we make use of those results and extend them to
our code-independent framework by considering a check node
input matrix U = Wiq, for which the LLRs increase gradually
until reaching the maximum quantizer levels, thereby slowing
down the convergence speed of the LLRs passed along the
edges of the absorbing set decoder. To this end, the elements
of U(‘nx ) are set equal to the lowest positive quantizer level.
We then let this value increase with the iteration number p,
so that each of the § positive quantizer levels is used h
times before moving to the next larger level, for a total
of p = h(3) iterations, resulting in the check node input
matrix®

= W= [[55“]

and the set

. [Et}(xxhj]( . (39

(sxh) i %p)

U(W) = T (Wine) . (40)

As in the case of Row Set I, :\(A) is significantly less complex
to calculate than A{A). The choice of h and the general
trajectory of the increasing quantizer levels give us some
options for choosing U = Wi,.. According to our experience
for a (6,0) absorbing set with a 5-bit quasi-uniform quantizer,
increasing h beyond 3 did not improve the approximate lower
bound based on U = Wiy,

3) Row Set III: Finally, we can apply (34) to the two
proposed sets U (W) and ¥ (W, ) to obtain

(W) = ¥ (Wig) N ¥ (Wina ). “n

& (W) again yields a A(A) that is significantly less complex
to calculate than A(A). The procedure to find the proposed
¥(W) is described in Algorithm 1.

As noted previously, the calculation of AA) can be seen
as a two-step process: finding the set (W) by operating
the absorbing set decoder and then calculating the probability
of (W) using (35). In Fig. 6, for the (6,0) absorbing
set, the approximate lower bound of (36) based on the set
(W) = ¥(Wig) N ¥ (Wiax), the bound based only on
the set ¥ (Wa), and the simulated performance are shown
for a (3,61) array code [22] with a 5-bit quasi-uniform
quantizer and an MSA decoder. We observe that in this case

%We do not use negative quantizer values because we are interested in rows
that can decode most of the input pattems, and check node input matrices
with negative values typically have a small probability of correct decading
(e.g., see [17]).

Algorithm 1 Calculate )\(A) = Zx‘.e.g,(“,) Pr(s =x)

I: \il(W) «— @ (the empty set)
2: for all x, € X do
3. The absorbing set decoder tries to decode x; with U =
Wm:n(;
4 if the absorbing set decoder fails then
The absorbing set decoder tries to decode x, with U =
Wi
if the absorbing set decoder fails then
Y(W) =T(W)ux,;
end if
end if
: end for
: return

b4

—S e %m0

0
el
&‘3 10

Simulation array code (3,61),
© MSA 5-bit quasi-uniform
N Pr( (W) N2 (Wiye)), (6,0) AS,
MSA 5-bit quasi-uniform
N Pr(¥ (W), (6,0) AS,
MSA 5-bit quasi-uniform

1 1 1 1 1

4 5 6 1
By [No(dB)

W e

-2}
1y 3

Fig. 6. Approximate lower bound of (36) based on Row Sets I and 111
for a (6,0) shsorbing set in a {3,61) array code with a 3-bit quasi-uniform
quantizer and an MSA decoder (IV = 2, 195, 390).

the approximate lower bound based on Row Set IIT gives a
better result than the one obtained using only ¥ (Wpa), 6.,
Row Set I. It is worth noting that, to reduce the complexity of
applying Algorithm 1, we start with Wi,., since it is likely
to eliminate the most input vectors s = x;. Then we look for
other rows that might succeed where W, fails, so that, after
checking Wy, it is only necessary to run the absorbing set
decoder for those x;’s with a *I" in the row of the decodability
array associated with Wi,

C. Remarks

Due to its generality and simplicity, the code-independent
approximate lower bound on the FER in (36) is a useful
tool in predicting the high SNR performance of quantized
LDPC decoders based on the presence of a given absorbing
set (or general problematic sub-graph). Below we summarize
this concept and pinpoint its strengths.

» Application: The lower bound A(A) indicates that any
code containing at least one instance of a given absorbing
set A cannot achieve an FER lower than that value. This
statement, although not strictly true for the approximate
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O Simulation, Qga, ®(1) = 4.25
4-(1,0) AS, R=10.5,d, =3
L6-(5,1) AS, R = 0.5, d, =3

e (4,2) AS, R = 0.5, d, = 3
5-(5,3) AS, R = 0.5, d, = 3

L (3,3) AS, R=05,d, =3
H-(6,4) AS, R=05,d. =3
le-(4,8) AS, R=0.89,d, =5

4
B,/ No(dB)

Fig. 7. Approximate lower bound X based on various absorbing sets with
different variable node degrees dw and differcnt rates 2. The SPA is used and
the quantization scheme is Qg o with ®{0) = 4.25.

i.e., each variable node in the absorbing set is connected to 3
check nodes of the absorbing set. The results demonstrate that
increasing a or b leads to a lower A, as expected. The simulated
performance of the randomly constructed R = 0.5, (3,6)-
regular code with length n» = 4000 from [25] is also depicted
in Fig. 7 for the same decoder and quantizer parameters.
A (4,2) absorbing set (or LETS), as shown in Fig. 1, exists in
this code, and we see that the calculated A provides a lower
bound of its performance.

We have also computed \ for some absorbing sets with fixed
variable node degrees d, > 3. The results confirm that these
absorbing sets typically have a lower X than for absorbing
sets with d, = 3. (Again, this is to be expected, since larger
variable node degrees generally correspond to stronger codes.)
As an illustration, the bound for the (4, 8) absorbing set with
d, = 5, which was identified as the dominant absorbing set
for the length n = 2209 and rate R = 42/47 = 0.89, (5,47)
array code using the Qg 5 quantizer with &(0) = 4.25 in [20],
is seen to be much lower than any of the bounds for the d,, = 3
absorbing sets shown in Fig. 7.1

B. FER Performance Estimates N A for Various Codes

In this section, the randomly constructed code of [25],
several array codes [22], a Tanner code [26], and a Euclid-
ean Geometry (EG) code [27] are considered. Based on the

12These results do not yet consider the multiplicity of the absorbing set,
which plays a significant role for structured codes.

2(3,3) AS, R=05,d, =3

© Simulation, Qy2, #(0) = 4.25
£(4,2) AS, R=05,d,=3 |4

P 3 4 s 6 71 8 9 b
Ey{No(dB)

Fig. B. Simulation results (dashed blue line) for a (3, 6) code with length
n = 4000 and rate R = 0.5 of [2] and estimated FER performance NA
(solid lines) based on a (4, 2) absorbing set and a (3, 3) absorbing set with
multiplicities N = 1 and N = 171, respectively, decoded uwsing the SPA
with a Q4 » uniform quantizer.

dominant absorbmg set for each code, their estimated FER
performance N is evaluated.'?

We first consider again the (3,6) randomly constructed
code of length n = 4000 and rate R = 0.5 [25]. Fig. 8
shows the simulated FER performance obtained with an SPA
decoder and a 6-bit uniform quantizer. Also shown are the
FER estimates VA for the (4,2) and (3,3) absorbing sets,
where the multiplicities N = 1 and N = 171, respectively,
were obtained from [19]. It is observed that, even though
a single (3,3) absorbing set (also classified as a LETS) is
much less harmful than a single (4,2) absorbing set (see
Fig. 7), when the multiplicitics are considered the (3,3)
absorbing set is dominant in the error floor region for this
decoder.'

In Fig. 9, the simulated FER performance (dashed blue
circles) is shown for the (3,61) array code [22] of length
n = 3721 and rate R = 0.9514 when decoded using
the SPA and a 6-bit uniform quantizer. Also shown is the
estimated FER performance N X (solid red dots), where A was
computed for a (4,2) absorbing set and the same decoder
with multiplicity N = 334,890 obtained from [4]. We see
that the performance estimate is accurate, since this absorbing
set is dominant. The simulated performance is also shown
for the MSA decoder and a 5-bit quasi-uniform (dashed blue
crosses). We observe here that the MSA outperforms the SPA,
as previously noted in [17], for this code. The estimated
FER performance N X is shown (solid red triangles), where
X was computed for a (6,0) absorbing set and the same MSA
decoder, with multiplicity N = 2,195, 390 obtained from [18].

13A code might have diffcrent dominant absorbing sets, depending on the
decoding algorithm. Also, the dominant absorbing set might depend on SNR.
Here, we consider the absorbing sets that are dominant in the error floor (high
SNR) region.

14We sce from the results in Fig. 8 that it is not unusual for the simulated
performance to diverge from the estimated performance in the waterfall region,
where the concept of a single dominant absorbing sct is no longer relevant.
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the binary-input AWGN channel. The bounds and estimates
are general, in the sense that they apply to any code containing
a given absorbing set and only depend on the rate of the code.
For a given absorbing set, we used the concept of an absorbing
set decoder to derive a lower bound on its FER by finding
the set of channel input patterns to the absorbing set that are
not correctly decoded under any circumstances imposed by
the LLRs coming from outside the absorbing set. We then
showed that, instead of considering all possible realizations of
the LLRs coming into the check nodes of the absorbing set,
it suffices to examine only a few realizations to obtain a good
approximate lower bound on the FER, thus making its compu-
tation much simpler. We also showed that, if the multiplicity
of the dominant absorbing set in a code is known, an accurate
estimate of the code’s FER performance in the error floor (high
SNR) region is obtained. Finally, using various examples,
we showed that the approximate lower bound and the FER
performance estimates, which can be evaluated much faster
than performing conventional Monte-Carlo simulations, are
useful tools in predicting the high SNR behavior of quantized
LDPC decoders.
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