
37

Ascending-Price Algorithms for Unknown Markets

XIAOHUI BEI, Nanyang Technological University

JUGAL GARG, University of Illinois at Urbana-Champaign

MARTIN HOEFER, Goethe University Frankfurt

We design a simple ascending-price algorithm to compute a (1 + ε)-approximate equilibrium in Arrow-
Debreu markets with weak gross substitute property. It applies to an unknown market setting without exact
knowledge about the number of agents, their individual utilities, and endowments. Instead, our algorithm
only uses price queries to a global demand oracle. This is the first polynomial-time algorithm for most of the
known tractable classes of Arrow-Debreu markets, which computes such an equilibrium with a number of
calls to the demand oracle that is polynomial in log 1/ε and avoids heavy machinery such as the ellipsoid
method.
Demands can be real-valued functions of prices, but the oracles only return demand values of bounded

precision. Due to this more realistic assumption, precision and representation of prices and demands become
a major technical challenge, and we develop new tools and insights that may be of independent interest.
Furthermore, we give the first polynomial-time algorithm to compute an exact equilibrium for markets with
spending constraint utilities. This resolves an open problem posed by Duan and Mehlhorn.

CCS Concepts: • Theory of computation → Market equilibria;

Additional Key Words and Phrases: Market equilibrium, equilibrium computation, weak gross substitutes,
spending constraint utilities

ACM Reference format:

Xiaohui Bei, Jugal Garg, and Martin Hoefer. 2019. Ascending-Price Algorithms for Unknown Markets. ACM
Trans. Algorithms 15, 3, Article 37 (May 2019), 33 pages.
https://doi.org/10.1145/3319394

1 INTRODUCTION

The concept of market equilibrium is central in economics and captures fair, stable, and efficient
outcomes in competitive allocation scenarios. The most prominent model to study market equi-
libria are exchange markets [2], which consist of a set of divisible goods and a set of agents. Each
agent has an initial endowment of goods and a utility (preference) function over bundles of goods.

A one-page abstract of this work appeared in the proceedings of ACM EC’16 [4].
Jugal Garg was supported by NSF CRII Award 1755619.
Authors’ addresses: M. Hoefer, Institute for Computer Science, Goethe University Frankfurt, Robert-Mayer-Strasse 11-15,
60325 Frankfurt am Main, Germany; email: mhoefer@cs.uni-frankfurt.de; J. Garg, Department of Industrial and Enterprise
Systems Engineering, University of Illinois at Urbana-Champaign, 104 S Mathews Ave, Urbana, IL 61801, USA; email:
jugal@illinois.edu; X. Bei, Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore, 637371; email: xhbei@ntu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1549-6325/2019/05-ART37 $15.00
https://doi.org/10.1145/3319394

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

https://doi.org/10.1145/3319394
mailto:permissions@acm.org
https://doi.org/10.1145/3319394

37:2 X. Bei et al.

Given prices of goods, each agent buys a most preferred bundle (called demand) that is affordable
from the earned money. At equilibrium, market clears (i.e., demand meets supply).
The computation of market equilibrium is a fundamental problem in economics and computer

science [3, 27, 28, 45]. The challenge is to provide algorithms to compute an (approximate) market
equilibrium efficiently. After more than a decade of research on this issue in theoretical computer
science [9, 10, 16, 17, 22, 35, 50], there is a fairly good understanding of tractable and intractable
domains (assuming P � PPAD). For exchange markets, the tractable case is essentially1 given by
markets with a weak gross substitute (WGS) property, where any increase in prices of a set of
goods does not strictly decrease the demand of unaffected goods. This includes markets with many
popular and interesting classes of utility functions [41], such as utilities with constant elasticity of
substitution (CES) with 0 < ρ < 1, Cobb-Douglas utilities, linear utilities, or utilities with spending
constraints2 [24, 49].

Even beyond the economic interpretation, algorithms for computing market equilibria have
wide applicability. For example, proportionally fair allocations, which result from market equi-
libria, are widely used in the design of computer networks [40]. Recent applications also include
energy-efficient scheduling [38] and fair allocation of indivisible resources [1, 5, 18, 20, 32]. In the
latter application, combinatorial polynomial-time algorithms are developed for variants of linear
markets, for which no convex programming formulation is known.
A prerequisite for all of these efficient algorithms is the entire description of the market includ-

ing number of agents, their utility functions, and initial endowments. Obtaining this description is
a highly non-trivial task; an entire theory of revealed preferences [44, 47, 48] was developed to study
how to infer market parameters from observed prices and buying patterns. Further, sometimes
agents’ preferences can be complicated, and their utility function may not have any succinct rep-
resentation. This gives rise to the following question: Can we design efficient algorithms that are
oblivious to a priori knowledge ofmarket parameters? In otherwords, are there efficient algorithms
for unknown markets, where one can learn the correct prices only via aggregate demand feedback?
In this work, we design a simple ascending-price algorithm for WGS exchange markets. Under

the standard assumptions that the most preferred bundles are unique and continuous in all prices,
our algorithm computes a strongly (1 + ε)-approximate market equilibrium [17] in polynomial
time (i.e., in time polynomial in market parameters and log 1/ε). In these states, all buyers spend
exactly their endowment. Moreover, for every buyer individually, it is guaranteed that she receives
a bundle of goods with a utility that is at most a factor (1 + ε) worse than the optimal bundle. In
addition, our algorithms only rely on aggregate demand feedback, and only require polynomially
bounded precision in the numbers.
In markets with linear and spending constraint utilities, the uniqueness and continuity assump-

tions do not hold. Thus, even with tie-breaking rules that imply the WGS property, the existing
algorithms for general WGS markets are not applicable. Instead, our algorithm can be adapted
when using an appropriate tie-breaking rule for demands. In contrast to the FPTAS [24] for spend-
ing constraint exchangemarkets with a running time that depends on 1/ε2, the running time of our
algorithm only growswith a factor of log 1/ε . Notably, this log 1/ε-dependence allows us to convert
an approximate equilibrium to an exact one in polynomial time when given all utility parameters.
Thus, we obtain the first polynomial-time algorithm for computing an exact market equilibrium
for spending constraint utilities and settle an open question raised by Duan and Mehlhorn [26].

1The other tractable cases are CES utilities with −1 ≤ ρ < 0 [14].
2Spending constraint utilities are a piecewise linear concave generalization of linear utilities, which satisfy many desirable
properties and have many additional applications.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:3

All of our results are achieved by a unifying framework that works directly on the price vector.
It uses simple binary search to identify suitable multiplicative price updates for subsets of goods.
As such, our approach is extremely easy to implement and, in particular, avoids black-box use of
the ellipsoid method. Furthermore, by working on the full generality of exchange markets, our
algorithms can be applied to the simpler case of Fisher markets [8].3

To compute approximate equilibria, our algorithms do not require access to an explicit de-
scription of the utility functions and endowments of the agents. Instead, the number of agents,
the agents’ endowments, and utilities all remain unknown. As in the case of tâtonnement algo-
rithms [6, 7, 11, 12, 13, 19, 46], we assume that these parameters can only be queried implicitly
via aggregate demand queries. In such a query, we present a non-negative price for each good.
For each agent, the oracle translates the endowment of each agent into money and determines a
utility-maximizing bundle of goods for the money. It then aggregates the demands for each good
and returns the vector of aggregate demands as an answer to the query. Note that for many WGS
markets, these demand oracles can be easily implemented. For example, for CES utilities, there
are even closed-form formulas. For suitable tie breaking, we can even apply the algorithms to un-
knownmarkets with linear and spending constraint utilities, which have non-continuous demand.
Perhaps surprisingly, our tâtonnement-style algorithms succeed to implicitly detect all relevant in-
formation and changes in preferences in an unknown market setting. This requires overcoming a
number of technical challenges and introduction of new techniques that we discuss in more detail
in the following.
Our approach overcomes significant restrictions in some previous tâtonnement-style algorithms

to compute equilibria in exchange markets [16, 31, 36]. These algorithms either use the ellipsoid
method and convex feasibility programs but need to add auxiliary buyers to the markets [16],
or apply only to linear markets and rely on a careful assignment and reallocation for each indi-
vidual buyer upon price change [36], or provide weak convergence guarantees in the sum of all
excess demands over all goods but yield no guarantee on the (individual) optimality of the assigned
bundles [31].

1.1 Model and Notation

Exact and approximate market equilibrium. In an exchange market, there is a set A of n agents and
a set G of m goods. Each agent i has an initial endowment wi j ∈ R≥0 of good j. By default, we
use index i to denote agents and index j to denote goods throughout the article. We denote the
total endowment of good j by w j =

∑
i ∈Awi j . Without loss of generality, we choose the units of

measurement such that w j = 1,∀j ∈ G. An allocation x = (xi j)i ∈A, j ∈G is an assignment of goods
to agents such that xi j ≥ 0,∀i ∈ A, j ∈ G, and ∑i xi j = 1. Each agent i has a utility function ui (xi)
that specifies the value agent receives from his bundle xi . An (exact) market equilibrium is a pair
(x, p), where x is an allocation and p = (pj)j ∈G is a vector of non-negative pricespj ≥ 0. In a market
equilibrium, each agent obtains a budget of money by selling his endowment at the given prices.
Then xi represents a utility-maximizing bundle of goods that he can afford to buy at the current
prices for his budget. We call such a bundle a demand bundle of agent i . In addition, we say x j =∑

i xi j is the demand for good j in allocation x.

Definition 1.1. A bundle xi is a demand of agent i at prices p if ui (xi) = max{ui (yi) | yi ∈
Rm
≥0, p

T
yi ≤ p

T
wi }. A pair (x, p) is a market equilibrium if (1) xi is a demand of agent i at p, and

(2)
∑

i xi j = 1 for each good j ∈ G. If a pair (x, p) is not a market equilibrium, the excess demand
zj = x j − 1 is non-zero for at least one good j ∈ G.

3Fisher markets are a subclass of exchange markets where buyers and sellers are different agents. Buyers bring money to
buy goods, whereas sellers bring goods to earn money.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:4 X. Bei et al.

Let us consider a concept of strong approximate market equilibrium [16]. It relaxes only the
market clearing constraint but not the condition that xi is a demand for each agent i .

Definition 1.2. A pair (p, x) is a μ-approximate equilibrium (μ ≥ 1) if (1) for each agent i , xi is a
demand of agent i at prices p, and (2)

∑
i xi j ≤ μ

∑
i wi j for each good j.

In Fisher markets [8], agents are divided into buyers and sellers. Each buyer i comes with an
initial endowment of money Bi . Each seller i has an initial endowment of goods wi . Each buyer
has no value for money and is only interested in buying goods, and each seller is only interested in
obtaining money. Fisher markets are a special case of exchange markets when we interpret money
as a separate good.
Note that if we scale all prices in p by a positive constant c > 0, the demands stay unaffected, as

income and spending scale exactly by c . Hence, the equilibrium conditions for exact and approx-
imate equilibria are invariant under such scaling. In the classes of markets we study here, there
is always an exact equilibrium with strictly positive prices. As such, we will normalize our price
vectors throughout and assume that the smallest price minj pj = 1.

Utility functions. Algorithms for computing market equilibria rely on structural properties of
the utility functions. A natural class are linear utilities when each agent i has non-negative values
ui j ≥ 0 for each good j ∈ G, and ui (x) =

∑
j ∈G ui jxi j . As a generalization, we consider spending

constraint utilities [24], where the utility derived by agent i from good j is given by a piecewise
linear concave (PLC) function fi j . The overall utility of agent i is additively separable among goods
(i.e., ui (x) =

∑
j ∈G fi j (xi j)). Each fi j is a PLC function with a number of linear segments. Each

segmentk has two parameters: the rate of utilityui jk per unit of good derived on segmentk and the
maximum fraction4 Bi jk of budget that can be spent on segment k .5 All Bi jk are strictly positive,
and concavity implies ui jk > ui j (k+1) . Here we assume that all ui jk ’s are integers, all Bi jk ,wi j ’s
are rational numbers, and the whole input can be represented in no more than L bits. Markets
with spending constraint utilities have an equilibrium composed of rational numbers under mild
sufficiency conditions (see Section 3 for details).

WGS markets. More generally, we consider non-decreasing utility functions that generate mar-
kets with the WGS property—when we increase a price of some good j, the demand for unaf-
fected goods does not strictly decrease. If the demand function of each agent is continues and

differentiable, then WGS property can be written as
∂x j′

∂pj
≥ 0,∀j � j ′. Note that this also implies

that increasing the price of a subset of goods will result in the complementary set having non-
decreasing demand, because one can increase the prices one by one and apply the WGS property
sequentially. For general WGS markets, we will assume that all demand bundles of agents are
unique. Prominent examples are markets with Cobb-Douglas utilities ui (x) =

∏
x
ui j
i j , or CES util-

ities ui (x) = (
∑

j ∈G ui jx
ρ
i j)

1/ρ with ui j > 0 and 0 < ρ < 1. Note that in such markets, even if all
utility and endowment parameters are rationals of finite size, the demand bundles and the mar-
ket equilibrium might involve irrational numbers. In this case, we are interested in approximate

4Since, unlike Fisher markets, the budget of an agent in exchange markets depends on the prices of goods, the second
parameter of a segment is defined as the fraction of the agent’s budget that can be spent on that segment. In addition,
we note that the spending constraint utilities are different from the other well-studied separable piecewise linear concave
(SPLC) utilities [33]. In SPLC, each linear segment k has two parameters: the rate of utility and the maximum amount of
good that can be bought on k . However, unlike the spending constraint utilities, equilibrium computation in markets with
SPLC utilities is PPAD-complete [9, 50].
5Suppose agent i decides to spend a fraction Bi j of his budget on good j . The budget constraint implies that the agent gets
a utility ui j1 per unit of good j only for the amount bought by the first Bi j1-fraction of his money, then ui j2 per unit for
amount bought by the next Bi j2-fraction of his money, and so on, until Bi j is reached.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:5

market equilibria, and our prices will use a pre-specified precision depending on the desired ap-
proximation factor.

Oracles. Our algorithm queries demands for the agents by publishing prices p. Then an oracle
returns the total demand x j for each good j ∈ G. It assumes that each agent can sell his initial
endowment at the given prices and then requests a utility-maximizing bundle of goods for the
money he has available. For ease of notation, given any price vector p, let O (p) denote the surplus
vector s = (s1, . . . , sm) for the return of the oracle, where sj = pjzj is the surplus (in terms of money)
of good j ∈ G. In other words, assuming that we publish p, the oracle returns an excess demand
vector z = (z1, . . . , zm), then6 O (p) = p · z.
In general WGS markets, the surplus vector might contain irrational values. Thus, we use an

approximate demand oracle Õ (p, μ), which is a blackbox algorithm that takes any price vector p and
positive rational μ as input. It returns a surplus vector s such that |si − O (p)i | ≤ μ holds for every
good i . Note that for many WGS markets, the demand oracle can be implemented very quickly—
for CES utilities, there are even closed-form expressions for the demand of each agent for each
good as a function of prices, utility, and endowment. More generally, we assume that the oracle
can be implemented in time polynomial in the input size and log 1/μ. This standard assumption
for demand oracles has also been used in previous work [15, 16].

In linear and spending constraint markets, a major challenge for an algorithm in unknown
markets is non-uniqueness of demands. Here, an oracle needs to do tie breaking between several
different bundles of goods that yield the same maximum utility for an agent. Ideally, it should
satisfy the following properties: (1) the output demand is always deterministic and unique; (2) if
p are equilibrium prices, the output demand equals supply for every good; and (3) the oracle can
be implemented in time polynomial in the input size. Based on these criteria, we use a demand
oracle that yields demands minimizing the �2-norm of the surplus vector. More formally, for prices
p, our oracle returns a set of demand bundles for the agents such that

∑
i s

2
i is minimized, where

si is the surplus of good i . Such a tie-breaking rule was introduced by Devanur et al. [23], and it
has been later used in several market algorithms, such as those presented in other works [25, 26,
49]. This oracle satisfies all three properties. Furthermore, if utilities, endowments, and prices are
all given as integers with a number of bits polynomial inm and L, we can represent every surplus
si also with a number of bits polynomial inm and L. Hence, by setting μ sufficiently small, we can

convert an approximate demand oracle Õ into an exact oracle in polynomial time. Therefore, we
will assume that in spending constraint markets, we are equipped with an exact demand oracle O
instead of an approximate one.

1.2 Results and Contribution

We present simple ascending-price algorithms that converge to market equilibrium in WGS and
spending constraint markets. Our algorithm for WGS markets in Section 2 converges to a (1 + ε)-
approximate equilibrium in time polynomial in m, log 1/ε , and other market parameters. In our
algorithm, the number of agents, the agents’ endowment, and utilities are initially all unknown.
We only query a global demand oracle that provides aggregate demands for goods at given prices.
This information is then used to increase prices of a selected set of goods whose demand is
more than their supply. In Section 2, we ignore for simplicity all precision and representation
issues to highlight the general proof technique. The complete analysis with all details of our algo-
rithm is provided in Appendix A, where we specify in advance a precision for prices and rely on

6We define the surplus vector as price times excess demand because it satisfies
∑
i si = 0. This invariant is useful in design

and analysis of our algorithms in the following.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:6 X. Bei et al.

approximate demand oracles whose output is within our desired bit precision. One can view our
algorithm as a particular form of tâtonnement. It improves over previous approaches for WGS
markets [15, 31] by decreasing the dependence of the running time to log 1/ε , by working directly
with aggregate demands without transformations like adding auxiliary agents, and by providing
a strong guarantee on the optimality of individual bundles.
Next, we apply our approach in Section 3 to spending constraint utilities—a PLC generalization

of linear utilities, which has many additional applications due to its natural diminishing returns
property. Since these markets have demands that are non-continuous in the prices, we cannot
directly apply our algorithm or other previous algorithms for WGS markets. Instead, we adjust
our approach to implicitly capture the non-continuity events when using a global demand oracle
with suitable tie breaking. When all parameters are represented by at most L bits, our algorithm
computes even an exact market equilibrium in time polynomial inm and L. All prices and demands
occurring during the algorithm require a bit precision polynomial inm and L. It first computes a
(1 + ε)-approximate equilibrium using a precision that is polynomial inm, L, and log 1/ε . The exact
demands returned by the demand oracle have the same precision. For a small enough ε (using only
polynomial bit length), we can then use a rounding procedure to turn it into a price vector of an
exact market equilibrium.
Note that our algorithm requires only access to a suitable demand oracle to compute an approx-

imate equilibrium. However, in contrast to WGS markets, for spending constraint markets the
oracle uses global tie breaking. To obtain an exact equilibrium, our final rounding procedure relies
on full information about the utilities. Thus, we obtain in polynomial time an approximate equi-
librium in unknownmarkets (with global tie breaking) and an exact equilibriumwith full informa-
tion. This represents the first polynomial-time algorithm to compute an exact market equilibrium
for spending constraint utilities and settles an open question raised by Duan and Mehlhorn [26].
An important open problem is to construct efficient tâtonnement algorithms that avoid global tie
breaking and full-information rounding.
We use and extend ideas of algorithms for linear markets with full information [23, 26]. These

ideas were also used in spending constraint markets [24] to compute a (1 + ε)-approximate equi-
librium in time polynomial inm, L, and 1/ε . Roughly speaking, they are intimately tied to linear
and spending constraint utilities, where they work on the agents’ side and increase prices until
structural changes occur in the optimal bang-per-buck relations. The progress toward equilibrium
is measured in the reduction of the �2-norm of surplus. Our approach works for all WGS markets,
which generally do not exhibit such structural events that can be used for analysis. This turns out
to be much more demanding, and we developed an approach that works entirely on the goods’
side, based only on prices and aggregate demands obtained via oracle access.
An issue that plays a central role in our algorithms for spending constraint utilities is precision of

prices and demands. This seems to have been treated only in minor detail in some of the previous
works. For the algorithm of Duan and Mehlhorn [26] in linear exchange markets, these issues
are discussed in depth. Their solution is to change the agents’ side and alter utility values for
maintaining bounded precision throughout the algorithm. However, computing an approximate
equilibrium in unknown markets with demand oracle access seems impossible via this route.
As a consequence, unlike for the existing algorithms in the linear case, the surpluses encountered

by our algorithms might now become negative. Hence, additional events have to be taken into
account upon increasing prices. Moreover, a significant challenge lies in maintaining the precision
of prices to be polynomial throughout the algorithm. To overcome this problem, we make use of
a novel tool that we term the ratio graph. This graph is defined for a vector of prices p. The goods
are the vertices, and we draw an undirected edge between goods j and k if the ratio of prices pj/pk
can be expressed by two L-bit numbers. For an intuition, observe that if some agent i has the same

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:7

bang per buck for two goods j and k , thenui j/pj = uik/pk orpj/pk = ui j/uik (i.e., the ratio of prices
can be expressed by two L-bit numbers). Maybe surprisingly, the broad structure of the ratio graph
indeed contains enough information to implement algorithms for finding approximate equilibria
in unknown spending constraint markets.

1.3 Related Work

The problem of computing market equilibria has been intensively studied, and the literature is too
vast to survey here. We provide an overview of the work most directly relevant to ours. There
is a large body of work on algorithms for computing equilibrium using full market information.
The first combinatorial polynomial-time algorithm for linear Fisher markets was given by Deva-
nur et al. [23]. Later, Vazirani [49] provided a polynomial-time algorithm for Fisher markets with
spending constraint utilities by extending combinatorial techniques of Devanur et al. [23]. Strongly
polynomial-time algorithms are also known for Fisher markets with linear [43, 51] and spending
constraint utilities [51]. A simplex-like polynomial time algorithm to compute an approximate
equilibrium for spending constraint utilities is given in Garg et al. [34].

For linear exchange markets, Jain [39] and Ye [53] obtained polynomial-time algorithms based
on ellipsoid and interior point methods on a convex program, respectively. Duan and Mehlhorn
[26] gave the first combinatorial polynomial-time algorithm for this problem, which was recently
improved by Duan et al. [25]. For exchange markets with spending constraint utilities, Devanur
and Vazirani [24] gave an algorithm to compute a (1 + ϵ)-approximate equilibrium, for which the
running time dependence on ϵ is O (1/ϵ2). Eaves [28] gave a strongly polynomial-time algorithm
for markets with Cobb-Douglas utilities.
For the general case of WGS markets with unique and continuous demands, a polynomial-time

algorithm was obtained by Codenotti et al. [16]. Note that this algorithm relies heavily on the el-
lipsoid method. For the Fisher setting, the famous Eisenberg-Gale convex program [30] captures
market equilibrium under linear utilities. Eisenberg [29] generalized it to work for any homoge-
neous utility functions, many of which satisfy the WGS property.
As an alternative approach to compute market equilibrium, tâtonnement was defined by Walras

[52]—algorithms that have access to endowment and utilities only via demand oracles. Usually,
tâtonnement procedures conduct price updates separately for each good, sometimes based on
derivatives of the demand as a function of price. In the computer science literature, Codenotti et al.
[15] gave a discrete tâtonnement process that converges to an (1 + ϵ)-approximate equilibrium
for WGS markets. It has a convergence time polynomial in the input size and 1/ϵ , and it does
not query the original market because one needs to add auxiliary agents. By taking a different
approach, our algorithm for the same market setting improves this rate to polynomial in the input
size and log 1/ϵ . In addition, we only rely on approximate demand queries to the original market.
More recently, Cole and Fleischer [19] established the first fast-converging discrete version of

tâtonnement for WGS markets. The convergence time depends on various market parameters. It
requires a non-zero amount of money in the market, so it works for the special case of Fisher
markets and beyond, but it is not applicable to the full range of exchange markets. For Fisher
markets, many additional results [6, 11–13] on the convergence of tâtonnement processes beyond
WGS markets were derived.
An auction-based ascending-price algorithm to compute an approximate equilibrium in linear

exchange markets was obtained by Garg and Kapoor [36]. Its running time is polynomial in the
input size and 1/ϵ . Later, it was generalized to a class of WGS markets for the case of Fisher
markets [37]. Another tâtonnement-style algorithm is obtained by Fleischer et al. [31] for markets
where the function of prices and income that gives the maximum utility achievable is convex. It
was shown that this condition is satisfied by a certain class of Fisher markets that also include

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:8 X. Bei et al.

non-WGS markets. However, it provides weak convergence guarantees where budget constraints
are satisfied only in the aggregate sense, in which some buyers may be spending significantly more
than their budget.

2 WGS EXCHANGE MARKETS

In this section, we describe the algorithm for WGS exchange markets. As mentioned previously,
we assume that we are only granted access to an approximate demand oracle and are restricted to
finite precision arithmetic computations. To make our algorithm and its analysis more accessible,
we will simplify the problem in the remainder of this section by assuming that we are equipped
with (1) exact real arithmetic and (2) an exact demand oracle. This significantly simplifies the
analysis in terms of notation and calculations, and as such concentrates on the key ideas of the
algorithm. A complete and rigorous version of this section, presenting the entire algorithm and its
proof with approximate precision, can be found in Appendix A.
We apply algorithm Alg-WGS-Precise given in the following. The main idea is to repeatedly

identify a subset of goods G1 by finding a gap in the sorted order of surpluses. If no such gap
exists, let G1 be the set of goods with positive surpluses. Note that in line 6 of the algorithm, the
index k always exists because the surpluses of all goods add up to zero, which means the smallest
surplus is always non-positive. Thus, setG1 can always be identified. It then raises the prices ofG1

by a common factor x until the surplus gap is closed or the smallest surplus of G1 becomes zero.
More formally, given price vector p = (p1, . . . ,pm), value x ∈ R+ and subset S ⊆ G, the algorithm
uses Update(p,x , S), which is the price vector p′ = (p ′1, . . . ,p

′
m) with p ′i = x · pi if i ∈ S and p ′i = pi

otherwise. To implement this process, the algorithm relies on two parameters D1 and D2 based on
the following assumptions.

Assumption 2.1 (Bounded Price). There exists a market equilibrium (p∗, x∗) with 1 ≤ p∗i ≤
2D1 ,∀i ∈ G.

Assumption 2.2 (Continuity). For any price vector p such that 1 ≤ pi ≤ 2D1 for each i , | ∂si∂pj
| <

2D2 for every i, j, where si is the surplus money of good i in O (p), and D2 is a polynomial of the input
size.

These two assumptions are precisely the ones from Codenotti et al. [15, 16]. Assumption 2.1
about bounded prices is fairly mild and in many cases necessary for an efficient algorithm to com-
pute a (strong) approximate market equilibrium. Assumption 2.2 about continuity is also satisfied
by many natural markets, such as markets with CES utilities with 0 < ρ < 1. Note, however, that it
is not satisfied for linear and spending constraint markets, and hence we must develop new tools
and procedures in Section 3.
To measure progress toward equilibrium, we use a potential functionΦ(pt) = ‖O (pt)‖22 . We start

by proving a number of claims about the price vector pt . The first claim shows that with respect
to exact demands, our algorithm monotonically reduces the 1-norm of the surpluses of all goods
from 2m.

Claim 2.1. In Alg-WGS-Precise, |O (p0) | ≤ 2m and |O (pt) | is non-increasing in t .

Proof. Let di be the exact demand for good i under price p0, then |O (p0) | =
∑

i |di − 1| ≤∑
i di +m = 2m. Next, by the criteria to define G1 and G2 in each round, we have {i | O (pt−1)i <

0} ⊆ G2.
During round t , only prices of goods in G1 are increased. By the WGS property, we know
O (pt)i ≥ O (pt−1)i for every i ∈ G2. Further, note that min{O (pt)i | i ∈ G1} ≥ 0 since min{O (pt)i |
i ∈ G1} ≥ 0. Hence, we do not introduce any new negative surplus in O (pt). Thus, we have

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:9

ALGORITHM 1: Alg-WGS-Precise
Input: number of goodsm, demand oracle O, precision bound ε > 0
Output: Prices p of an (1 + ε)-approximate market equilibrium

1 Set initial price p0 ← (1, 1, . . . , 1) and round index t ← 0.

2 repeat //round t
3 t ← t + 1

4 s = (s1, . . . , sm) ← O (pt−1)
5 Sort s such that si1 ≥ si2 ≥ · · · ≥ sim .

6 Find smallest k such that sik+1 ≤ 0 or sik > (1 + 1
m)sik+1 .

7 Set G1 ← {i1, . . . , ik } and G2 ← [m] \G1

8 Find the largest x such that in s
′ = O (Update(pt−1,x ,G1)), it holds

min{s ′i | i ∈ G1} = max{{s ′i | i ∈ G2} ∪ {0}}.
9 pt ← Update(pt−1,x ,G1)

10 until ‖O (pt)‖2 < ε2

11 return pt

|O (pt−1) | = −2
∑

O (pt−1)i<0
O (pt−1)i ≥ −2

∑
O (pt)i<0

O (pt−1)i ≥ −2
∑

O (pt)i<0
O (pt)i = |O (pt) |. �

The next two claims bound the range of prices we encounter, which is important for showing
that we approach the unique market equilibrium.

Claim 2.2. Throughout the run of Alg-WGS-Precise, every good with negative surplus has price
1. Hence, there will be at least one good whose price remains 1.

Proof. Observe the following three simple facts about the surplus O (pt) resulting from exact
demands. First, throughout the algorithm, we never increase the price of any good with negative
surplus. Second, the surplus of any good does not change from non-negative to negative. Third, for
any non-equilibrium price vector, there will always be a good with negative surplus. These facts
are direct consequences of the conditions used to classify goods based on O (pt) in the algorithm.
Together they prove the claim. �

Claim 2.3. In Alg-WGS-Precise, the x that satisfies the condition in Step 8 always exists. Further,
for any t ≥ 0, all prices in pt are bounded by 2D1 .

Proof. Let p∗ be equilibrium prices according to Assumption 2.1. Let t ≥ 0 be any round
such that pt is pointwise no larger than p

∗. Let G1 be the set as defined in the algorithm in

round t , and x∗ = mini ∈G1 {
p
∗
i

(pt)i
}. In the following, we will show that with p = Update(pt ,x∗,G1),

there must exist some i ∈ G1 such that O (p)i ≤ 0. If this assertion is true, by the continuity As-
sumption 2.2 we know (1) there exists some x ≤ x∗ that satisfies the condition in Step 8, and
(2) pt+1 = Update(pt ,x ,G1) is pointwise no larger than p, which in turn is pointwise no larger
than p

∗. Thus, the claim holds by induction.
Assume that this assertion is not true—that is, O (p)i > 0 for every i ∈ G1. Let S = {i | pi = p

∗
i } ∩

G1. Note that by the definition of x∗, S is non-empty, and p is still pointwise no larger than p
∗.

Next, we increase pj to p∗j for every j � S . Then p becomes exactly p∗. By the WGS property of the
market, during this process the surplus of any good in S will not decrease, and hence we still have
O (p∗)i ≥ O (p)i > 0 for every i ∈ S . This contradicts the assumption that p∗ are prices of a market
equilibrium. �

The following claim establishes a relation between the surplus of a good with respect to exact
demands before and after a multiplicative price update step.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:10 X. Bei et al.

Claim 2.4. For any price vector p, x > 1 and S ⊆ [m], O (Update(p,x , S))i ≤ x · O (p)i for any
i ∈ S .

Proof. Because prices are scalable in exchange markets, we have O (x · p) = x · O (p) for any
value x > 0. In addition, by the WGS property, when we decrease any set of prices, this will
not increase the demand for unaffected goods. Since these goods have unaffected price and non-
decreasing demand, they also enjoy non-decreasing surplus. Therefore, for any i ∈ S , we have
O (Update(p,x , S))i ≤ O (x · p)i = x · O (p)i . �

The next lemma is the key step in the proof of our main result. It establishes a multiplicative
decrease of the potential function at the end of many of the rounds. Let R = 48e2 in all following
lemmas within this section.

Lemma 2.1. If x < 1 + 1
Rm3 at the end of round t in Alg-WGS-Precise, then Φ(pt) ≤ (1 − 1

16e2m3)
Φ(pt−1).

Proof. We let s = O (pt−1) and s
′ = O (pt) throughout the proof. An intuition of the proof

is as follows. In Alg-WGS-Precise, by the conditions used to define G1 and G2, we always
have si1 ≤ (1 + 1

m
)si2 ≤ · · · ≤ (1 + 1

m
)k−1sik < e · sik and sik − sik+1 > sik /(m + 1) ≥ si1/e (m + 1).

Hence, roughly speaking, every good in G1 has reasonably large surplus, and there is a reason-
ably large gap between the surpluses in G1 and G2. Next, at the end of the current round, we
decreased the minimum surplus of a good in G1 to either min{s ′i | i ∈ G1} = 0 (Case (1) shown
later) or min{s ′i | i ∈ G1} = max{s ′i | i ∈ G2} (Case (2) shown later). In both cases, the total value of
Φ must decrease by at least a factor of 1 − 1/16e2m3.

More formally, if the algorithm proceeds to round t , then ‖s‖ > ε2. By the definition of set G1,
we have si1 ≤ (1 + 1

m
)si2 ≤ · · · ≤ (1 + 1

m
)k−1sik < e · sik . Hence, s2ik > (si1/e)

2 ≥ Φ(pt−1)/(me2) >

(ε/(
√
me))2, so the surpluses of goods inG1 are similar up to a factor of e and bounded from below.

In addition, we have (sik − sik+1)2 > (si1/e (m + 1))
2 ≥ Φ(pt−1)/(e

2 (m + 1)2m).
Next we relate the surplus in the beginning and the end of a round as follows. For every i ∈ G1,

by Claim 2.4, the surplus from exact demands satisfies s ′i ≤ x · si . Since x < 1 + 1
Rm3 , it holds that

s ′i < (1 + 1
Rm3)si . We do not touch the price of any good j ∈ G2, so the WGS property implies for

exact demands s ′j ≥ sj .
Now, to bound the change of Φ(pt), we consider s′ according toG1 andG2. We distinguish two

cases:

Case 1: max{s ′i | i ∈ G2} < 0. In this case, the algorithm has decreased the surplus of some good
inG1 to 0. This decrease alone brings down the potential function Φ by a factor of 1 − Ω(1/m). All
other surpluses will cause an increase by a factor of at most 1 +O (1/m3).

More formally, the contribution of goods of G1 to Φ(pt) can be upper bounded by

k∑
j=1

s ′2i j <
k−1∑
j=1

(
1 +

1

Rm3

)2
s2i j . (1)

Furthermore, for every i ∈ G2, by the WGS property of the market, we know si ≤ s ′i < 0. Thus, the
contribution of goods of G2 to Φ(pt) can be upper bounded by

m∑
j=k+1

s ′2i j ≤
m∑

j=k+1

s2i j <
m∑

j=k+1

(
1 +

1

Rm3

)2
s2i j . (2)

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:11

Combining equations (1) and (2),

Φ(pt) =
m∑
j=1

s ′2i j <
∑
j�k

(
1 +

1

Rm3

)2
s2i j

=

(
1 +

1

Rm3

)2 (
Φ(pt−1) − s2ik

)

<
(
1 +

1

Rm3

)2 (
1 − 1

e2m

)
Φ(pt−1)

<
(
1 +

3

Rm3

) (
1 − 1

e2m

)
Φ(pt−1)

<
(
1 − 1

2e2m

)
Φ(pt−1),

where the last two inequalities hold for anym ≥ 2 with our choice of the value of R.

Case 2: max{s ′i | i ∈ G2} ≥ 0. In this case, the gap between surpluses in G1 and G2 decreases to
0. In the following, we show that the closing of this gap yields a decrease of the potential function
Φ by a factor of 1 − Ω(1/m3). All other surpluses will increase by a factor of at most 1 +O (1/m3).
In combination, it turns out that Φ will decrease by a factor of 1 − Ω(1/m3).
More formally, in this case, min{s ′i | i ∈ G1} = max{s ′j | j ∈ G2}. Let sG1 = min{s ′i | i ∈ G1} and

sG2 = max{s ′j | j ∈ G2}. For every i ∈ G1, let s ′i = x ′si − δi , where x ′ = (1 + 1
Rm3), and for every j ∈

G2, let s ′j = sj + δ j . Hence, δi ,δ j ≥ 0 for all i, j. Further, we have
∑m

i=1 si =
∑m

i=1 s
′
i = 0, and hence∑

i ∈G1

δi =
∑
i ∈G1

x ′si −
∑
i ∈G1

s ′i

≥
∑
i ∈G1

si +
∑
j ∈G2

s ′j =
∑
i ∈G1

si +
∑
j ∈G2

(sj + δ j)

=
∑
j ∈G2

δ j

and ∑
i ∈G1

δi ≥
1

2
(sik − sik+1).

Now we have

Φ(pt) =
∑
i

s ′2i =
∑
i ∈G1

(x ′si − δi)2 +
∑
j ∈G2

(sj + δ j)
2

=
��
�

∑
i ∈G1

x ′2s2i +
∑
j ∈G2

s2j
��
�
+
��
�

∑
j ∈G2

δ j (sj + δ j) −
∑
i ∈G1

δi (x
′si − δi)��

�
−
∑
i ∈G1

x ′siδi +
∑
j ∈G2

δ jsj (3)

< x ′2Φ(pt−1) +
��
�
sG2

∑
j ∈G2

δ j − sG1

∑
i ∈G1

δi
��
�
− sik

∑
i ∈G1

δi + sik+1

∑
j ∈G2

δ j (4)

< x ′2Φ(pt−1) − (sik − sik+1)
∑
i ∈G1

δi (5)

< x ′2Φ(pt−1) −
1

2
(sik − sik+1)

2 (6)

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:12 X. Bei et al.

<

(
1 +

2

Rm3
+

1

R2m6
− 1

2e2 (m + 1)2m

)
Φ(pt−1) (7)

<
(
1 +

3

Rm3
− 1

8e2m3

)
Φ(pt−1) (8)

=

(
1 − 1

16e2m3

)
Φ(pt−1). (9)

Here, (3) can be derived by expanding the quadratic formula and appropriately reorganizing the
terms. For the step from (3) to (4), in the first bracket we overestimate the quadratic terms of s into
x ′2Φ(pt−1). In the second bracket, the terms are bounded correctly using sG1 for all i ∈ G1 and sG2

for all j ∈ G2. For the final two terms in (3) and (4), we use the definition of sik and sik+1 and the
fact that x ′ > 1. For the step from (4) to (5), for the second bracket of (4) we note sG1 ≥ sG2 and
the two sets G1 and G2 have the same sums of δ -terms. By the same argument, we can transform
the last two terms of (4) as shown. From (5) to (6) and then to (7), we use the bound for

∑
i ∈G1

δi
and (sik − sik+1)2 > Φ(pt−1)/(e

2 (m + 1)2m) as shown earlier.
Finally, the multiplicative term in (7) can be decreased to strictly less than 1 for everym ≥ 2 by

our choice of the value of R. The final expression in (9) proves the lemma. �

Observe that the previous lemma shows a decrease in the potential only for rounds in which the
factor x is rather small. The next lemma shows that there can be only a limited number of rounds
with a larger value of x .

Lemma 2.2. During a run of Alg-WGS-Precise, there can be onlyO (m4D1) many rounds that end
with x ≥ 1 + 1

Rm3 .

Proof. By Claim 2.3, every price can be increased by a factor of 1 + 1
Rm3 at most

O (log1+1/Rm3 2D1) = O (m3D1) times. Hence, there can be at most O (m4D1) many rounds with

x ≥ 1 + 1
Rm3 . �

Finally, we can assemble the properties to show the number of rounds to reach an (1 + ε)-
approximate market equilibrium is polynomially bounded.

Lemma 2.3. For any market that satisfies Assumptions 2.1 and 2.2, and for any ε > 0, Alg-WGS-
Precise returns the price vector of an (1 + ε)-approximate market equilibrium in a number of rounds
polynomial in the input size and log 1/ε .

Proof. Let xt be the value of x we find in round t of Alg-WGS-Precise. First, because at least
one price will increase by a factor of xt in round t , by Claim 2.3 we have

∏
t xt ≤ 2mD1 . At the

end of round t , if xt ≥ 1 + 1
Rm3 , let s = max{si | si ∈ O (pt−1)} and s ′ = max{si | si ∈ O (pt)}, then

by Claim 2.4 we have Φ(pt) ≤ ms ′2 ≤ mx2t s
2 ≤ mx2tΦ(pt−1). Moreover, by Lemma 2.2, there will be

at most O (m4D1) such rounds. Hence, the total increase of Φ(pt) in these rounds will be no more
than a factor of

∏
xt ≥1+1/Rm3 mx2t ≤ mO (m4D1)22mD1 =mO (m4D1) .

For all other rounds, we have x < 1 + 1
Rm3 , and by Lemma 2.1, the potential function is decreased

by a factor of 1/(1 − Ω(1
m3)). Therefore, the total number of rounds before Φ(pt) ≤ ε2 will be at

most

O �
�
log1/(1−Ω(1

m3))

mO (m4D1)

ε2
�
�
= O
(
D1m

7 logm +m3 log
1

ε

)
. �

The final step is to argue that the total running time (in terms of oracle queries) of the algorithm
is polynomial. Given Lemma 2.3, it remains to show that each round only invokes polynomially
many oracle queries. Intuitively, this can be achieved by searching for x in Alg-WGS-Precise

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:13

via binary search. However, for a formal proof, it is unavoidable to make statements about the
required bit precision of p, x , and the approximate demand oracle, which we did not discuss here.
In the following, we present the statement of the main theorem. The formal proof, together with
the statement of algorithm Alg-WGS based on bounded precision and full details on its analysis,
is deferred to Appendix A.

Theorem 2.4. For any market that satisfies Assumptions 2.1 and 2.2, and for any ε > 0, Alg-WGS
returns the price vector of an (1 + ε)-approximate market equilibrium in time polynomial in the input
size and log 1/ε .

Remark 2.1. Our main goal in the analysis was to establish a bound on the running time that
is polynomial in m, L, and log 1/ε . For the sake of simplicity, we did not optimize the bounds
beyond being polynomial. It appears that the dependence onm can be significantly improved, for
example, by a more precise analysis of the actual number of rounds with x ≥ 1 + 1

Rm3 and their
impact on the potential. Moreover, based on our preliminary experiments, it appears that instead of
the precision parameter μ = Θ(ε/m7) (for details, see Appendix A), a value ofΘ(ε/m4) is sufficient,
and the algorithm converges to an equilibrium much faster than the bound predicts.

3 EXCHANGE MARKETS WITH SPENDING CONSTRAINT UTILITIES

In this section, we discuss our algorithm for exchange markets with spending constraint utilities.
Spending constraint utilities are defined in Devanur and Vazirani [24] and Vazirani [49], where the
utility derived by agent i from good j is given by a PLC function fi j . The overall utility of agent i
is additively separable among goods (i.e., ui (x) =

∑
j ∈G fi j (xi j)). Each fi j is a PLC function with a

number of linear segments. Each segment k has two parameters: the rate of utility ui jk per unit of
good derived on segment k and the maximum fraction Bi jk of budget that can be spent on segment
k . All Bi jk are strictly positive, and concavity implies ui jk > ui j (k+1) . Here we assume all ui jk ’s are
integers, all Bi jk ,wi j ’s are rational numbers, and the whole input can be represented in no more
than L bits.
Spending constraint markets may not have an equilibrium [21]; however, under mild conditions,

there is always a rational equilibrium [42]. Henceforth, we will assume the following sufficient
condition. Let Γ(S) = {j ∈ G | wi j > 0, i ∈ S }.

Assumption 3.1 (Sufficiency Condition). For any subset S of agents, if Γ(S) � G then there
exists i ∈ S and j ∈ G \ Γ(S) such that ui j1 > 0.

Let us first characterize the demand of each agent i under spending constraint utilities. Given
nonzero prices p, define the bang -per buck relative to p for segment k in fi j to be ui jk/pj .
Sort all segments of agent i by decreasing bang-per-buck value and partition them into t classes
Q1,Q2, . . . ,Qt , such that segments in the same class have the same bang-per-buck value. Then an
allocation is a demand bundle of agent i if and only if there is an integer ti such that all segments
in partitionsQ1, . . . ,Qti−1 are all fully allocated and no segments in partitionsQti+1,Qti+2, . . . are
allocated. Furthermore, the total money spent on partitionsQ1, . . . ,Qti−1 is no more than agent i’s
total budgetmi =

∑
j ∈G pjwi j . We term Qti agent i’s current partition and Q1, . . . ,Qti−1 agent i’s

allocated partition. Let spentai denote the total money of agent i spent on allocated segments, and
let spentдj denote the total money spent on allocated segments of good j. Agent i can freely demand
any segments in her current partition, fully or partially, until her remaining budgetmi − spentai is
exhausted.

Equality graph. The main tool for the analysis of previous algorithms in spending constraint
markets is an equality graph, denoted by EG (p). This graph remains completely unknown to our

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:14 X. Bei et al.

algorithm, but it proves useful when proving properties of the convergence process. The vertex
set of this bipartite graph consists of the set of agents A and the set of goods G. Given a price
vector pt , we introduce an edge from agent i to good j if and only if agent i’s current partitionQti

contains one segment that belongs to utility function fi j for good j. The edges in EG (p) are called
equality edges. Observe that this graph changes throughout the process when we update the price
vector pt .
Based on EG (p), we can construct an equality network denoted by N (p): First, for each edge in

EG (p) from agent i to good j, let k be the corresponding segment for fi j that belongs to Qti . We
assign a capacity of ci j = Bi jkmi to this edge. Next, add a source vertex s and a sink vertex t . For
each agent i , add an edge from s to i with capacitymi − spentai , and finally add an edge from every
good to sink t with infinite capacity. It is easy to see that every maximum flow inN (p) corresponds
to a feasible demand allocation for each agent.
Similar to Devanur et al. [23] and Vazirani [49], we define a balanced flow as a maximum flow in

N (p) that minimizes
∑

j ∈G (�jt + spent
д
j − pj)2, where �jt is the flow along edge (j, t), which also

denotes the money spent on good j on segments of current partitions, and spent
д
j is the amount

of money spent on allocated partitions of good j. By assumption, O (p) returns the surplus vector
derived from (any) balanced flow of the network N (p). From Vazirani [49], we know that every
balanced flow gives the same surplus vector, and such surplus vector can be computed using at
most n max-flow computations.

There exists an algorithm for computing exact equilibrium prices in Fisher markets with spend-
ing constraint utilities [49]. Devanur and Vazirani [24] give an FPTAS for exchange markets with
spending constraint utilities. The algorithm finds an (1 + ε)-approximate equilibrium in time poly-
nomial in the input size and 1/ε .
For spending constraint markets, we extend our approach for WGS markets. The challenge is

that surplus can change in a non-continuous way when prices change the current partitions of
the agents. However, we show how to use the linear structure of the market to get rough infor-
mation about these breakpoints. In addition, we maintain prices within a polynomial precision
and guarantee convergence to an approximate market equilibrium. Finally, when Φ(p) becomes
small enough, we convert the approximate equilibrium to an exact one using a procedure Alg-
Spending-Exact.
Our only assumption is that the whole input can be represented within L bits, and L is known

to the algorithm. This implies as a corollary a variant of Assumption 2.1—there is an exact mar-
ket equilibrium with prices p subject to maxi pi

mini pi
≤ 2D1 , where D1 is a polynomial of m and L. As

mentioned before, Assumption 2.2 does not hold in spending constraint markets.

3.1 The Framework

Alg-Spending specifies the general framework of our algorithm, which is similar to the approach
taken previously forWGSmarkets but with two notable differences at lines 8 and 10. As mentioned
in Section 1.1, here we do not resort to approximation parameter μ, but instead compute the exact
surplus. We first analyze Alg-Spending and show that it needs only a polynomial number of
rounds to converge to an approximate market equilibrium. For now, our analysis disregards all
precision and representation issues. In particular, we assume to find the exact value x using binary
search, irrespective of the number of bits needed for representation. In addition, the update of
prices from pt−1 to pt will multiply all prices of goods in G1 by x , irrespective of the number
of bits required to represent them. In our final algorithm in the following, we will show how to
address these issues to obtain a (true) polynomial-time algorithm.
The analysis of Alg-Spending proceeds roughly as in the previous section. We rely on the

following lemma.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:15

ALGORITHM 2: Alg-Spending: Framework for Spending Constraint Markets

Input: number of goodsm, demand oracle O, number of bits L to represent the whole input (including
each ui jk ,Bi jk ,wi j); solution precision ε

Output: Prices p of a (1 + ε)-approximate market equilibrium
Parameters: ε ′ = ε

2
√
m

1 Set initial price p0 ← (1, 1, . . . , 1) and round index t ← 0.

2 repeat //round t
3 t ← t + 1

4 s = (s1, . . . , sm) ← O (pt−1)
5 Sort s such that si1 ≥ si2 ≥ · · · ≥ sim .

6 Find smallest k such that sik+1 ≤ 0 or sik > (1 + 1
m)sik+1 .

7 Set G1 ← {i1, . . . , ik } and G2 ← [m]\G1

8 Binary search the smallest x ∈ (1,∞) such that in s
′ = O (Update(pt−1,x ,G1)), it holds

min{s ′i | i ∈ G1} ≤ max{{s ′i | i ∈ G2} ∪ {0}}.
9 pt ← Update(pt−1,x ,G1)

10 until ‖O (pt)‖2 < ε ′2

11 return pt

Lemma 3.1. The demands returned by O (p) satisfy the WGS property.

Proof. We make use of a max-min fair property for balanced flows in linear markets proved
in previous work. A vector s is called max-min fair if and only if for every feasible vector s′ and
i such that si < s ′i , there is some j with sj < si such that sj > s ′j . The following claim is proved by
Devanur et al. [23]. �

Claim 3.1. [23] The surplus vector of a balanced flow in N (G) is max-min fair among all feasible
surplus vectors.

Although this claim is for linear markets, it can also be directly applied to spending constraint
markets because the network flows are designed only with respect to the current partition of each
agent i . Within this domain, the spending constraint market behaves exactly like a linear market.

We proceed to prove Lemma 3.1 by contradiction to this claim. Suppose we increase the price
of some good k from pk to pk + δ . We denote the old prices by p and the new prices by p

′. Let s =
O (p) and s′ = O (p′). Now assume for contradiction that there exists some � � k such that s ′

�
< s� .

Let SG = {j ∈ G | sj ≥ s�, j � k } and SA = {i ∈ A | there exists j ∈ SG such that fi j > 0 in N (p)}. It
is easy to verify the following properties:

(a) For any edge (i, j) in N (p) with j � k , let seд be the segment in agent i’s current partition
that corresponds to this edge. Then with new prices p′, either seд belongs to the allocated
partition (i.e., is fully allocated) or seд is still in agent i’s current partition (i.e., (i, j) also
exists in N (p′)).

(b) For any edge (i, j) ∈ N (p′) with i ∈ SA and j � SG , let seд be the segment in agent i’s current
partition that corresponds to this edge with prices p′. If seд is also in i’s current partition
with prices p, then seд is fully allocated with price p (otherwise, agent i can reroute some
flow from SG to this segment to obtain a more balanced flow7 in N (p)). If seд is not in i’s
current partition with price p, then all segments in i’s current partition with price p must
be fully allocated in the demand allocation with prices p′.

7Here “more balanced” means the new flow has a smaller value of
∑
j∈G (�jt + spent

д
j − pj)

2.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:16 X. Bei et al.

The preceding two observations imply that with prices p′, we can rearrange flows from SA to
SG to get a new feasible surplus vector s′′ such that for all j ∈ SG , s ′′j ≥ sj , and for all other edges
j � SG , s ′′j = s

′
j . In particular, we have s ′′j ≥ sj ≥ s� > s ′

�
for all j ∈ SG . This contradicts the fact that

s
′ is max-min fair and proves Lemma 3.1.

Now the following properties can be proved using literally the same proofs as for WGS markets
before. Again we set the constant R = 48e2.

Claim 3.2. For Alg-Spending, the following properties hold.

(1) In Alg-Spending, |O (p0) | ≤ 2m, and |O (pt) | is non-increasing in t .
(2) O (Update(p,x , S))i ≤ x · O (p)i , for any price vector p, x > 1, S ⊆ [m], and i ∈ S .
(3) The number of rounds that end with x ≥ 1 + 1

Rm3 in Alg-Spending is O (m4D1).

We also show a version of Claim 2.2 for spending constraint markets, which needs some extra
work. Unlike for WGS markets, the surplus of a good can change from non-negative to negative.
Thus, the proof of Claim 2.2 does not directly transfer to spending constraint markets. Instead, we
first show the following.

Claim 3.3. Let St be the set of goods with negative surplus and price strictly greater than 1 at the
end of round t in Alg-Spending. For anyT ⊆ St , let Γ(T , pt) be the neighbors of setT in EG (pt)—for
instance, Γ(T , pt) is the set of agents who are interested in at least one good in T under price pt . Let
B (Γ(T , pt)) be the sum of budgets of agents in Γ(T , pt). Then we have B (Γ(T , pt)) >

∑
i ∈T (pt)i .

Proof. We prove this claim by induction. The claim is trivially true for round 0. Assume that it
is true for any round t ≤ t ′, then at the end of round t = t ′ + 1, consider two cases:

• min{s ′i | i ∈ G1} ≥ 0. Because the surplus of any good in G2 is non-decreasing in round t ,
we have St ⊆ St−1. Further, the algorithm does not increase the price of any good in T in
round t . Hence, we also have Γ(T , pt−1) ⊆ Γ(T , pt). By the induction assumption, we have
B (Γ(T , pt)) ≥ B (Γ(T , pt−1)) >

∑
i ∈T (pt−1)i =

∑
i ∈T (pt)i .

• min{s ′i | i ∈ G1} < 0. Assume that during this round we start from x = 1 and increase
x continuously until it reaches its final value. We also assume that the equality graph
EG (Update(pt−1,x ,G1)) and the corresponding balanced flow are implicitly being main-
tained throughout the process. For each agent i and any moment during this round, let Γ(i)
denote the neighbors of agent i in the equality graph. There are two cases:
Case (a):. Γ(i) ∩G1 � ∅ and Γ(i) ∩G2 � ∅. This means agent i’s current partition contains

segments of goods in both G1 and G2. When we continue to increase x (and consequently
the prices of goods inG1), the segments of goods inG1 will have worse bang-per-buck value
than segments of goods inG2. Hence, they will be removed from agent i’s current partition.
Furthermore, for any good j1 ∈ Γ(i) ∩G1 and j2 ∈ Γ(i) ∩G2, because we have sj1 > sj2 and
the balanced flow condition, it cannot happen that �i j1 > 0 and �i j2 < ci j2 . Otherwise, agent
i would be able to route some flow from edge (i, j1) to edge (i, j2) to reach a more balanced
flow. Thus, two possibilities remain:
—�i j2 = ci j2 for every j2 ∈ Γ(i) ∩G2. This means that all segments of goods inG2 are already
fully allocated. When x increases, the new current partition of agent i will only contain
segments of goods in Γ(i) ∩G1, and the surpluses will change continuously with the
change of x .

—�i j1 = 0 for every j1 ∈ Γ(i) ∩G1. This means that when x increases, the segments that
are being removed from i’s current partition are all unallocated in the current allocation.
Hence, the surpluses will again change continuously at the current point.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:17

In summary, in this case, the change of the surpluses will always be continuous in the
change of x . Note that when the surpluses are changing continuously, Case 2 cannot occur
before Case 1 happens. Therefore, the claim follows via Case 1.
Case (b):. Γ(i) ⊆ G1 or Γ(i) ⊆ G2. This means that we will always change the prices of all

segments in i’s current partition by the same rate. Hence, if set Qti changes, it can only be
merged with some segments inQti−1 orQti+1. In either case, the final value of x must be at a
pointwhere at least one new edge emerges in the equality graphEG (pt) from Γ(G1) ⊆ A (the
set of agents incident to at least one good inG1) toG2. Suppose we alter the equality graph
by removing these emerging edges from EG (pt). If we recompute the balanced flow, then
min{s ′i | i ∈ G1} > max{{s ′i | i ∈ G2} ∪ {0}}. For anyT ⊆ St , letT1 = T ∩G1 andT2 = T ∩G2.
In this new graph, let Γ′(T1) be the set of agents who have positive flow to at least one good
in T1, and let Γ′(T2) be the set of agents incident to at least one good in T2. Since min{s ′i |
i ∈ T1} > max{s ′i | i ∈ T2}, by the balanced flow condition we know Γ′(T1) ∩ Γ′(T2) = ∅. In
addition, we have B (Γ′(T1)) >

∑
i ∈T1 (pt)i because every good in T1 has positive surplus,

and B (Γ′(T2)) >
∑

i ∈T2 (pt)i because the claim is true in round t − 1. Combining these two
inequalities gives us B (Γ(T , pt)) >

∑
i ∈T (pt)i . �

Corollary 3.2. At the end of each round t in Alg-Spending, for any good i with negative surplus
and price greater than 1, there exists another good j with price 1 that is connected to i in EG (pt)

Proof. Assume for contradiction that the statement is false. Let T be the set of goods with
negative surplus and connected with good i in EG (pt). By the balanced flow condition, none of the
agents in Γ(T , pt) can have any positive flow to goods outside set T . Thus, we have 0 >

∑
i ∈T s

′
i =

B (Γ(T , pt)) −
∑

i ∈T (pt)i . This contradicts Claim 3.3. �

We obtain the following corollary, an analog of Claim 2.2 for spending constraint markets.

Corollary 3.3. Throughout the run of Alg-Spending, there will be at least one good whose price
remains 1.

The set of properties shown so far allows to establish the following lemma, which is the key
step for observing convergence to equilibrium. It can be seen as an adjustment of Lemma 2.1 to
spending constraint markets.

Lemma 3.4. If x < (1 + 1
Rm3) at the end of round t in Alg-Spending, then Φ(pt) ≤ Φ(pt−1) (1 −

1
16e2m3).

Proof. Our proof uses the arguments of the proof for Lemma 2.1. We consider two cases:

Case 1: min{s ′i | i ∈ G1} = max{{s ′i | i ∈ G2} ∪ {0}}. This case can be verified by observing that
Claim A.4 holds with μ = 0. Then the proof follows using exactly the same proof as for Lemma 2.1.

Case 2: min{s ′i | i ∈ G1} < max{{s ′i | i ∈ G2} ∪ {0}}. Using the same argument as in the proof of
Claim 3.3, one can show that in this case x must be at a point where at least one new edge emerges
in the equality graph EG (pt) from Γ(G1) ⊆ A. Without these emerging edges, we have min{s ′i | i ∈
G1} ≥ max{s ′i | i ∈ G2}. This means that we can further reduce the flows along the new edges to
get another feasible flow in N (pt) such that with the resulting surplus vector s ′′,we have min{s ′′i |
i ∈ G1} = max{s ′′i | i ∈ G2}.

Next, using again the same proof as for Lemma 2.1, for our choice of the value of constant R it
follows that ‖s ′′‖2 ≤ Φ(pt−1) (1 − 1

16e2m3). Hence, Φ(pt) ≤ ‖s ′′‖2 ≤ Φ(pt−1) (1 − 1
16e2m3). �

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:18 X. Bei et al.

ALGORITHM 3: Rounding (p,M): Rounding Procedure

Input: price vector p in which mini pi = 1, rounding boundM ≥ L
Output: Rounded price vector p′

1 Let P = { a
b
| a,b ∈ Z+,a,b ≤ 2M } and p

′ ← p.

2 while RG (M, p′) is not connected do

3 Let C1,C2, . . . ,Ck be the connected components of RG (M, p′)
4 Assume without loss of generality that C1 is a component with mini ∈C1∩A p′i = 1

5 For every i, j, let ri j = p′i/p
′
j .

6 Let hi j = min{ xri j | x ∈ P,x ≥ ri j } and Hi j = min{hi′j′ | i ′ ∈ Ci , j ′ ∈ Cj }.
7 Let (i, j) ∈ argmini>j Hi j .

8 p
′ ← Update(p′,Hi j ,Ci)

9 end

10 return p
′

3.2 Precision and Representation

It is now tempting to think that using a similar argument as in the general WGS case, Claim 3.2,
Corollary 3.3, and Lemma 3.4 provide an algorithm that converges to an approximate market equi-
librium in polynomial time. However, an issue arises with regard to the precision and represen-
tation of the prices: In each round, x could potentially be a rational number involving prices and
surpluses, and after multiplying each price inG1 by x , the bit length to represent a price can double
in one round. This means that after a polynomial number of rounds, wemay require an exponential
number of bits to represent the prices of some goods and the desired factor x .

Ratio graph.

Definition 3.5. The ratio graph RG (M, p) is an undirected graph withm vertices (wherem is the
number of goods in the market), and for any two goods i and j, (i, j) is an edge if and only if pi/pj
can be represented as a ratio of two integers, each of value at most 2M − 1.

The reason for defining such ratio graph is that, although the equality subgraph with respect to
a price vector is unknown to us, we can use the ratio graph, which can be computed using only
the price vector and the input size bound, to retrieve some information about the hidden structure
of the equality subgraph.

Claim 3.4. Let L be the upper bound on the number of bits to represent each utility parameter and
p be a price vector. For any price vector p and goods i, j that are connected in EG (p), i and j are also
connected in RG (M, p) for anyM ≥ L.

Proof. If good i and good j are connected in EG (p), then there exist goods i =
i0, i1, . . . , ik−1, ik = j such that for each t < k , there exists some agent at that has the same bang per
buck for two segments for goods it and it+1, respectively. Then we have pit /pit+1 = uat itk1/uat it+1k2
for some k1 and k2. This is a ratio of two integers, each of value at most 2L − 1. This implies
(it , it+1) ∈ RG (M, p), so i and j are connected in RG (M, p). �

As an adjustment, we run the following procedure Rounding(p,M) at the end of each iteration
of the main loop in Alg-Spending. Its purpose is to round the prices within polynomial bit length
while maintaining the structure of equality and ratio graphs. Thereby, we will show that the value
of potential function Φ(p) will not be increased dramatically.
Our new algorithm Alg-Spending-Rounding is simply the framework Alg-Spending with the

following modifications:

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:19

(1) Set M = log2
5m7

ε ′2 . In each round, binary search x within domain P = { a
b
| a > b,a,b ∈

Z+,a,b ≤ 22mM+L } instead of (1,∞).
(2) At the end of each round t , update pt ← Rounding(pt ,M) withM as earlier.

Lemma 3.6. Given any price vector p, Rounding(p,M) terminates in time polynomial inm,M and
the bit length to represent p. The returned price vector p′ satisfies:

(a) there exists i ∈ G with pi = p ′i = 1,
(b) every price can be represented as a ratio of two integers, each of value at most 2mM ,
(c) EG (p′) contains every edge present in EG (p), and
(d) pi ≤ p ′i ≤ pi + 2−M for every i ∈ G.

Proof. Property (a) holds since we never increase the price of goods in setC1, and property (b)
can be derived based on property (a) and the fact that RG (M, p′) is connected when the algorithm
terminates.
Next we claim that for any i, j, there does not exist any x ∈ P such that pi/pj ≤ x < p ′i/p

′
j . This

is because by design, pi/pj has to reach x in some iteration before it grows beyond x . But starting
from that moment until the end of the algorithm, i and j will be connected in RG (M, p). The ratios
between two prices in the same connected component in RG (M, p) remain unchanged. Hence,
pi/pj will never grow beyond x .

This claim also proves property (c). By Claim 3.4, a pair of goods i and j connected in EG (p)
remain connected in RG (M, p). Hence, their ratio of prices will remain the same in p

′, and they
are connected in EG (p′).
For property (d), according to the algorithm, no price will decrease from p to p

′. Next, number
the goods such that p1 = p ′1 = 1. For any i � 1, let xi = min{x ∈ P | x ≥ pi }. Then we have p ′i/p

′
1 =

p ′i ≤ xi , as well as xi ≤ pi + 2−M . Therefore, pi ≤ p ′i ≤ pi + 2−M .
Finally, in each iteration, we add at least one edge between two connected components in

RG (M, p). Thus, the algorithm will terminate after at mostm − 1 iterations, and it is easy to check
that each iteration runs in polynomial time. This proves the claim. �

Once the prices are bounded by a fixed polynomial bit length, we can also bound the length
needed to encode the desired x in each round. This implies that we can find x in the framework in
polynomial time using binary search.

Lemma 3.7. In every round of Alg-Spending-Rounding, the desired x can be represented as a ratio
of two integers, each of value at most 2mM+L+2 logm − 1.

Proof. Let p = pt−1 and consider the structure of EG (p). We let A1 = Γ(G1) be the agents con-
nected to goods inG1. In addition, letA2 = A \A1. There is no (i, j) ∈ EG (p) with i ∈ A1 and j ∈ G2,
as otherwise O (pt−1) could increase the money spent on goods inG2 and further decrease Φ(pt−1).
For simplicity, we will also assume that there is no edge (i, j) ∈ A2 ×G1, as no agent spends money
along these edges and they immediately disappear once we start increasing prices in G1.

Now we increase p on goods in j ∈ G1 by x and get a new price vector p(x). This only generates
new edges (i, j) ∈ A1 ×G2. Furthermore, we drop only edges (i, j) ∈ A1 ×G1. To verify this, let us
consider the other possibilities. The relation between marginal utility values ui jk/pj and ui j′k ′/pj′
for goods in j, j ′ ∈ G1 does not change, as both pj and pk are both multiplied by x . Hence, there
are no new edges (i, j) ∈ A1 ×G1. For the same reason, there are no new edges (i, j) ∈ A2 ×G2.
The bang per buck of goods in G1 decreases, so we also do not introduce edges (i, j) ∈ A2 ×G1.
In fact, this also implies that we do not drop any edges (i, j) ∈ A2 ×G2—prices and bang-per-buck
relations among goods in G2 do not change at all, and G2 becomes more attractive compared to

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:20 X. Bei et al.

G1. Finally, there exist no edges (i, j) ∈ (A1 ×G2) ∪ (A2 ×G1) that could be removed. This shows
that we only generate new edges between A1 andG2, and we only drop edges between A1 andG1.

For any given x , consider the residual graph of N (Update(p,x ,G1)). LetC be an arbitrary con-
nected component in this graph. Let CA be the set of agents in C and CG be the set of goods in C .
Then we know that all goods in CG have the same surplus, and all flow going through CG comes
from agents in CA. This implies the following equation:∑

i ∈CA\G1

pi + x
∑

i ∈CA∩G1

pi =
∑

i ∈CG \G1

pi + x
∑

i ∈CG∩G1

pi + |CG |s,

where s is the surplus of (any) good in this component.
Now let us focus on the moment where x reaches the desired value at the end of round t ac-

cording to the algorithm. At this moment, one of the following properties must hold:

(1) min{s ′i | i ∈ G1} = 0. Then for the connected component that contains a good of surplus
0, we have s = 0 in the preceding equation. All initial prices pi are ratios of integers with
values at most 2mM , so when we solve the equation for x , the solution is a ratio of two
integers with value at mostm2mM = 2mM+logm .

(2) min{s ′i | i ∈ G1} = max{s ′j | j ∈ G2}. In this case, we have two possibilities:
—There exist two connected components in the residual graph of N (Update(p,x ,G1))
that have the same surplus. Applying the preceding equation to these two components,
we can solve for x , and the solution will be a ratio of two integers with value at most
m22mM = 2mM+2 logm .

—A new edge (i, j) ∈ A1 ×G2 appears, then for agent i good j ∈ G2 becomes equally at-
tractive as some k ∈ G1: ui j/pjx = uik/pk , or, equivalently, x = (ui jpk)/(uikpj). pi j and
pk can be represented as ratio of integers of value at most 2mM by Lemma 3.6, and ui j
and uik are both integers of value at most 2L − 1. Hence, every value of x at which a
new edge evolves in EG (p(x)) can be presented as a ratio of integers of value at most
22mM+L . �

We now bound the impact of replacing pt by Rounding(pt ,M) in the function Φ(pt).

Lemma 3.8. Φ(Rounding(pt ,M)) < Φ(pt) + 5m32−M for any round t .

Proof. Let p′t = Rounding(pt ,M). By Lemma 3.6(c), we know this rounding procedure does
not remove any edges in EG (pt). Let f be a balanced flow in N (pt). Then by Lemma 3.6(d), we can
construct a feasible flow f ′ in N (Rounding(pt ,M)) such that fi j ≤ f ′i j ≤ fi j + 2−M for every i, j.

Let s be the surplus vector derived from f ′, then we have |si − O (pt)i | < m2−M for every i . Hence,

‖s‖22 − ‖O (pt)‖22 =
∑
i

(s2i − O (pt)2i)

≤
∑
i

(2m2−M |O (pt)i | +m22−2M)

= 2m22−M |O (pt) | +m32−2M

≤ 4m32−M +m32−2M

< 5m32−M .

Note that s is just one feasible surplus vector for price vector p
′
t , and Φ(p′t) minimizes the

�2-norm of surpluses among all feasible surplus vectors. Hence, Φ(Rounding(pt ,M)) ≤ ‖s‖22 <
‖O (pt)‖22 + 5m32−M . This proves the lemma. �

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:21

Rounding can be used to obtain an algorithm that converges to an approximate market equi-
librium in polynomial time.

Lemma 3.9. For every spending constraint exchange market satisfying Assumption 3.1, an (1 + ε)-
approximate market equilibrium can be computed in time polynomial inm, L, and log 1/ε .

Proof. In the Alg-Spending framework with Alg-Spending-Rounding, we know by
Lemma 3.4 that at the end of each round t and before calling Rounding, Φ(pt) ≤ Φ(pt−1) (1 −
Ω(1

m3)). If Φ(pt) > ε ′2, we have 5m32−M = ε ′2/m4 < Φ(pt)/m
4. Thus, by Lemma 3.8,

Φ(Rounding(pt ,M)) ≤
(
1 +

1

m4

)
Φ(pt)

≤
(
1 +

1

m4

) (
1 − Ω

(1
m3

))
Φ(pt−1)

=

(
1 − Ω

(1
m3

))
Φ(pt−1).

This implies that we can employ the same proof as for Theorem 2.4 to show that after finishing
Alg-Spending-Rounding, we arrive at a (1 + ε)-approximate market equilibrium. Because M is
a polynomial in the input size and log 1/ε , the binary search and the Rounding procedure run in
polynomial time in each round of the framework. Hence, the running time is polynomial in the
input size and log 1/ε . �

Finally, it remains to convert the approximate equilibrium to an exact one. To achieve this, we
rely on full information about the spending constraint utilities. Although this step can be seen
as an extension of the technique developed in the work of Duan and Mehlhorn [26] for the linear
exchange markets, there are several challenges due to the much more involved setting of spending
constraint utilities, where the allocated partitions make the remaining budgets of agents and the
values of goods dependent on too many parameters. Using a more involved procedure, we are able
to handle the extra complexity of the problem. Our result resolves an open question of Duan and
Mehlhorn [26] of finding an exact polynomial-time algorithm for exchange markets with spending
constraint utilities. A detailed discussion of this final step can be found in Appendix B. This yields
the final theorem in this section.

Theorem 3.10. For every spending constraint exchange market satisfying Assumption 3.1, Alg-
Spending-Exact returns the price vector of a market equilibrium in time polynomial inm and L.

APPENDIX

A WGS EXCHANGE MARKETS WITH APPROXIMATE PRECISION

In this section, we describe the complete algorithm Alg-WGS for WGS exchange markets. Recall
the assumptions from Section 2, which we restate here for completeness.

Assumption 2.1. There exists a market equilibrium (p∗, x∗) with 1 ≤ p∗i ≤ 2D1 ,∀i ∈ G.

Assumption 2.2. For any price vector p such that 1 ≤ pi ≤ 2D1 for each i , | ∂si∂pj
| < 2D2 for every

i, j, where si is the surplus money of good i in O (p), and D2 is a polynomial of the input size.
Throughout the analysis and proofs that follow, if s = O (p) for some p, we use s̃ to denote the

surplus vector returned by the μ-approximation demand oracle with the same price vector (i.e.,

s̃ = Õ (p, μ)). We proceed along similar lines as in Section 2, and the proofs of the first claims
closely resemble the versions for the exact oracle. For completeness, we provide them here for the
approximate oracle.

Claim A.1. In Alg-WGS, |O (p0) | ≤ 2m and |O (pt) | is non-increasing in t .

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:22 X. Bei et al.

ALGORITHM 4: Alg-WGS

Input: number of goodsm, approximate demand oracle Õ, precision bound ε > 0
Output: Prices p of a (1 + ε)-approximate market equilibrium
Parameters: R1 = 1728e2, μ = ε

R1m7 , Δ =
1
μ (2

D1+D2+logm), ε ′ = ε
2
√
m

1 Set initial price p0 ← (1, 1, . . . , 1) and round index t ← 0.

2 Let P = { a
b
| a > b,a,b ∈ Z+,a,b ≤ Δ}

3 repeat //round t
4 t ← t + 1

5 s̃ = (s̃1, . . . , s̃m) ← Õ (pt−1, μ)
6 Sort s̃ such that s̃i1 ≥ s̃i2 ≥ · · · ≥ s̃im .

7 Find smallest k such that s̃ik+1 ≤ μ or s̃ik > (1 + 1
m)s̃ik+1 .

8 Set G1 ← {i1, . . . , ik } and G2 ← G \G1

9 Binary search the largest x ∈ P such that in s̃
′ = Õ (Update(pt−1,x ,G1)), it holds

min{s̃ ′i | i ∈ G1} ≥ max{{s̃ ′i | i ∈ G2} ∪ {μ}}.
10 pt ← Update(pt−1,x ,G1)

11 until ‖Õ (pt)‖2 < ε ′2

12 return pt

Proof. Let di be the exact demand for good i under price p0, then |O (p0) | =
∑

i |di − 1| ≤∑
i di +m = 2m. Next, by the criteria to define G1 and G2 in each round, we have {i | O (pt−1)i <

0} ⊆ G2: To see this, observe that the surplus resulting from the approximate Õ (pt−1) differs by at
most an additive μ = ε/(R1m

7), so a good i with O (pt−1)i < 0 will always be classified in G2 with

respect to Õ (pt−1)i .
During round t , only prices of goods in G1 are increased. By the WGS property, we know

O (pt)i ≥ O (pt−1)i for every i ∈ G2. Further, note that min{O (pt)i | i ∈ G1} ≥ 0 since min{Õ (pt)i |
i ∈ G1} ≥ μ. Hence, we do not introduce any new negative surplus in O (pt). Thus, we have

|O (pt−1) | = −2
∑

O (pt−1)i<0
O (pt−1)i ≥ −2

∑
O (pt)i<0

O (pt−1)i ≥ −2
∑

O (pt)i<0
O (pt)i = |O (pt) |. �

The next two claims bound the range of prices we encounter, which is important for showing
that we approach the unique market equilibrium.

Claim A.2. Throughout the run of Alg-WGS, every good with negative surplus has price 1. Hence,
there will be at least one good whose price remains 1.

Proof. Observe the following three simple facts about the surplus O (pt) resulting from exact
demands. First, throughout the algorithm, we never increase the price of any good with negative
surplus. Second, the surplus of any good does not change from non-negative to negative. Third, for
any non-equilibrium price vector, there will always be a good with negative surplus. These facts

are direct consequences of the conditions used to classify goods based on Õ (pt) in the algorithm.
Together they prove the claim. �

Claim A.3. In Alg-WGS, for any t ≥ 0, all prices in pt are bounded by 2D1 .

Proof. Let p∗ be equilibrium prices according to Assumption 2.1. We show that for any t ≥ 0,
pt is always pointwise smaller than p

∗. Assume that this is not true, and let t be the smallest
value such that there exists (pt)i > p

∗
i for some i . Note that according to the algorithm, we have

pt = Update(pt−1,x ,G1) for some x > 1 and G1 ⊆ [m]. Further, by our classification based on Õ,

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:23

it is easy to see that O (pt)i > 0 for any i ∈ G1. This means from pt−1 to pt , only prices of goods in
G1 are increased. Let S = {i | (pt)i > p

∗
i }, then we have S ⊆ G1.

Next, we apply a sequence of price changes to pt . First, for every j � S, we increase (pt)j to p
∗
j .

Let p be the new price vector, and consider the surplus O (p) resulting from exact demands. By the
WGS property of the market, the surplus of any good in S will not decrease, and hence we still
have O (p)i > 0 for every i ∈ S . The sum of all surpluses in an exchange market is always 0, so∑

j�S O (p)j < 0.
Now, we decrease the price of every good i ∈ S from pi to p

∗
i . Then, p becomes exactly p

∗.
This process will not increase surplus of any good j � S . Thus, we still have

∑
j�S O (p∗)j < 0. This

contradicts the assumption that p∗ are prices of a market equilibrium. �

At this point, let us recall Claim 2.4 that establishes a relation between the exact surplus of a
good before and after a multiplicative price update step. It does not involve the approximate oracle.
Next, we establish a statement about the surpluses at the end of each round, which was not

necessary for the version with exact oracles and precision. Intuitively, we increase the prices of
goods in G1 until the minimum surplus in G1 reaches the maximum surplus in G2 or 0. Note that
μ is very small and can be thought of as 0. The main complication here is that we need to work
with μ-approximation demands in the algorithm and the resulting surpluses s ′.

Claim A.4. At the end of each round in Alg-WGS, min{s̃ ′i | i ∈ G1} ≤ max{{s̃ ′i | i ∈ G2} ∪ {μ}} +
6μ.

Proof. According to the binary search procedure, we know that if we increase prices inG1 by a
factor of x , then s̃ ′ satisfies the condition min{s̃ ′i | i ∈ G1} ≥ max{{s̃ ′i | i ∈ G2} ∪ {μ}}. Furthermore,
an increase by x+ = min{y ∈ P | y > x } < x + 1

Δ would result in a surplus vector that does not
satisfy this condition. Let s+ = O (Update(pt−1,x+,G1)). By Assumption 2.2, we have

|s̃+i − s̃ ′i | ≤ |s+i − s ′i | + 2μ < 2D2 · (x+ − x) |pt−1 | + 2μ ≤
2D2 |pt−1 |

Δ
+ 2μ ≤ 2D2+D1+logm

Δ
+ 2μ = 3μ .

for every i , where the last inequality is derived by Claim A.3. Thus,

min{s̃ ′i | i ∈ G1} < min{s̃+i | i ∈ G1} + 3μ < max{{s̃+i | i ∈ G2} ∪ {μ}} + 3μ
< max{{s̃ ′i | i ∈ G2} ∪ {μ}} + 6μ . �

We are now ready for the key lemma in the proof of the main result—the multiplicative decrease
of the potential function at the end of each round.

Lemma A.1. If x < 1 + 1
R2m3 at the end of round t in Alg-WGS with R2 = 288e2, then Φ(pt) ≤

Φ(pt−1) (1 − 1
18e2m3).

Proof. We use the following notation. Let s = O (pt−1), s̃ = Õ (pt−1, μ), and s
′ = O (pt), s̃′ =

Õ (pt , μ). The intuition of the proof is similar to the version with exact precision. By the conditions
used to define G1 and G2, we always have s̃ik ≥ s̃i1/e and s̃ik − s̃ik+1 > s̃ik /(m + 1) ≥ s̃i1/e (m + 1).
Hence, roughly speaking, every good in G1 has reasonably large surplus, and there is a reason-
ably large gap between the surpluses in G1 and G2. Next, at the end of the current round, we
decreased the minimum surplus of a good in G1 to either min{s̃ ′i | i ∈ G1} ≈ μ (Case (1) shown
later) or min{s̃ ′i | i ∈ G1} ≈ max{s̃ ′i | i ∈ G2} (Case (2) shown later). In both cases, the total value of
Φ must decrease by a factor of 1 − Ω(1/m3).

More formally, if the algorithm proceeds to round t , then ‖s̃‖ > ε ′2. By the definition of set G1,
we have s̃i1 ≤ (1 + 1

m
)s̃i2 ≤ · · · ≤ (1 + 1

m
)k−1s̃ik < e · s̃ik . Hence, s̃2ik > (s̃i1/e)

2 ≥ Φ(pt−1)/(me2) >

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:24 X. Bei et al.

(ε ′/(
√
me))2, so the surpluses of goods in G1 are similar up to a factor of e and bounded from

below. In addition, we have (s̃ik − s̃ik+1)2 > (s̃i1/e (m + 1))
2 ≥ Φ(pt−1)/(e

2 (m + 1)2m).
Since we rely on an approximate demand oracle, the surpluses of goods inG1 might not change

in a monotone fashion when increasing their prices. Nevertheless, we can relate the surplus in the
beginning and the end of a round as follows. For every i ∈ G1, by Claim 2.4, the surplus from exact
demands satisfies s ′i ≤ x · si . Thus,

s̃ ′i ≤ s ′i + μ ≤ xsi + μ ≤ x (s̃i + μ) + μ = xs̃i + (1 + x)μ .

Since x < 1 + 1
R2m3 , it holds that (1 + x)μ < 3μ ≤ s̃i/(R2m

3). This means that the increase within

a round is bounded by s̃ ′i < (1 + 2
R2m3)s̃i . Since we do not touch the price of any good j ∈ G2, the

WGS property implies for exact demands s ′j ≥ sj . Hence, s̃ ′j ≥ s̃j − 2μ.
Now, to bound the change of Φ(pt), we consider s̃′ according toG1 andG2. We distinguish two

cases:

Case 1: max{s̃ ′i | i ∈ G2} < μ. Intuitively, in this case, the algorithm has decreased the surplus of
some good inG1 to approximately 0 (recall that μ is sufficiently small). This decrease alone brings
down the potential function Φ by a factor of 1 − Ω(1/m). All other surpluses will cause an increase
by a factor of at most 1 +O (1/m3).

More formally, Claim A.4 gives us μ < min{s̃ ′i | i ∈ G1} < 7μ. Hence, the contribution of goods
of G1 to Φ(pt) can be upper bounded by

k∑
j=1

s̃ ′2i j <
k−1∑
j=1

(
1 +

2

R2m3

)2
s̃2i j + 49μ

2. (10)

Furthermore, for every i ∈ G2, if −m3μ ≤ s̃ ′i ≤ μ, we have s̃ ′2i ≤ m6μ2, and if s̃ ′i < −μ, by the WGS
property of the market, we know si ≤ s ′i ≤ s̃ ′i + μ < 0. Thus, since s̃ ′j ≥ s̃j − 2μ,

∑
j∈G2

s̃′
j
<−m3μ

s̃ ′2j ≤
∑
j∈G2

s̃′
j
<−m3μ

(s̃j − 2μ)2 ≤
∑
j∈G2

s̃′
j
<−m3μ

(
1 +

2

R2m3

)2
s̃2j .

Hence, the contribution of goods of G2 to Φ(pt) can be upper bounded by

m∑
j=k+1

s̃ ′2i j ≤
m∑

j=k+1

max
⎧⎪⎨⎪⎩

(
1 +

2

R2m3

)2
s̃2i j ,m

6μ2
⎫⎪⎬⎪⎭
<

m∑
j=k+1

(
1 +

2

R2m3

)2
s̃2i j +m

6μ2. (11)

Combining Equations (10) and (11),

Φ(pt) =
m∑
j=1

s̃ ′2i j <
∑
j�k

(
1 +

2

R2m3

)2
s̃2i j + (m6 + 49)μ2

=

(
1 +

2

R2m3

)2
(Φ(pt−1) − s̃2ik) + (m6 + 49)μ2

<

(
1 +

2

R2m3

)2 (
1 − 1

e2m

)
Φ(pt−1) +

(
4

R2
1m

7
+

196

R2
1m

13

)
ε ′2

<
(
1 − 1

2e2m

)
Φ(pt−1),

where the last inequality holds for anym ≥ 2 with our choice of values of R1,R2.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:25

Case 2: max{s̃ ′i | i ∈ G2} ≥ μ. Intuitively, in this case, the gap between surpluses in G1 and G2

decreases to approximately 0. In the following, we show that the closing this gap yields a decrease
of the potential function Φ by a factor of 1 − Ω(1/m3). All other surpluses will increase by a factor
of at most 1 +O (1/m3). In combination, it turns out thatΦwill decrease by a factor of 1 − Ω(1/m3).

More formally, in this case, min{s̃ ′i | i ∈ G1} ≥ max{s̃ ′j | j ∈ G2}. Let sG1 = min{s̃ ′i | i ∈ G1} and
sG2 = max{s̃ ′j | j ∈ G2}. For every i ∈ G1, let s̃ ′i = x ′s̃i − δi ,where x ′ = (1 + 2

R2m3), and for every j ∈
G2, let s̃ ′j = s̃j − 2μ + δ j . Hence,δi ,δ j ≥ 0 for all i, j. Further, we have |∑m

i=1 s̃i | ≤ mμ and |∑m
i=1 s̃

′
i | ≤

mμ , and hence ∑
i ∈G1

δi =
∑
i ∈G1

x ′s̃i −
∑
i ∈G1

s̃ ′i

≥
∑
i ∈G1

s̃i +
∑
j ∈G2

s̃ ′j −mμ =
∑
i ∈G1

s̃i +
∑
j ∈G2

(s̃j + δ j − 2μ) −mμ

≥
∑
j ∈G2

δ j − 4mμ

and ∑
i ∈G1

δi ≥
1

2
(s̃ik − s̃ik+1 − 4mμ) ≥ 1

4
(s̃ik − s̃ik+1).

Now we have

Φ(pt) =
∑
i

s̃ ′2i =
∑
i ∈G1

(x ′s̃i − δi)2 +
∑
j ∈G2

(s̃j − 2μ + δ j)2

=
��
�

∑
i ∈G1

x ′2s̃2i +
∑
j ∈G2

(s̃j − 2μ)2��
�
+
��
�

∑
j ∈G2

δ j (s̃j − 2μ + δ j) −
∑
i ∈G1

δi (x
′s̃i − δi)��

�
−
∑
i ∈G1

x ′s̃iδi

+
∑
j ∈G2

δ j (s̃j − 2μ) (12)

<
��
�
x ′2Φ(pt−1) − 4μ

∑
j ∈G2

s̃j + 4mμ2��
�
+
��
�
sG2

∑
j ∈G2

δ j − sG1

∑
i ∈G1

δi
��
�
− s̃ik

∑
i ∈G1

δi

+(s̃ik+1 − 2μ)
∑
j ∈G2

δ j (13)

< x ′2Φ(pt−1) − 4s̃mmμ + 4mμ2 + 4sG1mμ + 4s̃ik+1mμ − (s̃ik − s̃ik+1)
∑
i ∈G1

δi (14)

< x ′2Φ(pt−1) + 4mμ2 + 24m2μ − 1

4
(s̃ik − s̃ik+1)

2 (15)

<

(
1 +

4

R2m3
+

4

R2
2m

6
+

16

R2
1m

12
+

96

R1m4
− 1

4e2 (m + 1)2m

)
Φ(pt−1) (16)

=

(
1 − 1

18e2m3

)
Φ(pt−1). (17)

Here, (12) can be derived by expanding the quadratic formula and appropriately reorganizing the
terms. For the step from (12) to (13), in the first bracket we overestimate the quadratic terms of
s̃ into x ′2Φ(pt−1) and |G2 | bym. In the second bracket, we return to s̃ ′i and s̃ ′j , which in turn are
bounded correctly using sG1 for all i ∈ G1 and sG2 for all j ∈ G2. For the final two terms in (12)

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:26 X. Bei et al.

and (13), we use the definition of s̃ik and s̃ik+1 and the fact that x ′ > 1. For the step from (13) to
(14), for the first bracket of (13) we use s̃j ≥ s̃m for every j ∈ G2. For the second bracket of (13),
we note s̃G1 ≥ s̃G2 and the difference between the sums of δ -terms is bounded by 4mμ as noted
earlier. By the same argument, we can transform the last two terms of (13) as shown. Note that we
simply drop −2μ∑j ∈G2

δ j < 0. From (14) to (15), we use the fact that every surplus is bounded by
2m in its absolute value by Claim A.1. For the last term, we use the bound for

∑
i ∈G1

δi as noted
earlier. From (15) to (16), we just replace μ by its definition and use the bound Φ(pt−1) > ε ′2 and
(s̃ik − s̃ik+1)2 > Φ(pt−1)/(e

2 (m + 1)2m) as shown earlier.
Finally, the multiplicative term in (16) can be decreased to strictly less than 1 for everym ≥ 2

with our choice of values of R1 and R2. The final expression in (17) proves the lemma. �

The previous lemma shows a decrease in the potential only for rounds inwhich the x determined
by binary search is rather small. Lemma 2.2 continues to hold here and bounds the number of
rounds with a larger value of x . The following variant differs only in the constant R2, and its proof
is literally the same as for Lemma 2.2.

Lemma A.2. During a run of Alg-WGS, there can be only O (m4D1) many rounds that end with
x ≥ 1 + 1

R2m3 .

Finally, we can assemble the properties to show the main result.

Theorem A.1. For any market that satisfies Assumptions 2.1 and 2.2, and for any ε > 0, Alg-WGS
returns the price vector of an (1 + ε)-approximate market equilibrium in time polynomial in the input
size and log 1/ε .

Proof. Let xt be the value of x we find in round t of Alg-WGS. First, because at least one
price will increase by a factor of xt in round t , by Claim A.3 we have

∏
t xt ≤ 2mD1 . At the end

of round t , if xt ≥ 1 + 1
R2m3 , let s = max{si | si ∈ Õ (pt−1)} and s ′ = max{si | si ∈ Õ (pt)}, then by

Claim 2.4 we have Φ(pt) ≤ ms ′2 ≤ mx2t s
2 ≤ mx2tΦ(pt−1). Moreover, by Lemma A.2, there will be

at most O (m4D1) such rounds. Hence, the total increase of Φ(pt) in these rounds will be no more
than a factor of

∏
xt ≥1+1/R2m3 mx2t ≤ mO (m4D1)22mD1 =mO (m4D1) .

For all other rounds, we have x < 1 + 1
R2m3 , and by Lemma A.1, the potential function is de-

creased by a factor of 1/(1 − Ω(1
m3)). Therefore, the total number of rounds before Φ(pt) ≤ ε ′2

will be at most

O �
�
log1/(1−Ω(1

m3))

mO (m4D1)

ε ′2
�
�
= O
(
D1m

7 logm +m3 log
1

ε

)
.

In each round, the number of queries to the oracle is nomore thanO (logΔ) = O (D1 + D2 + logm +
log 1

ε
). We conclude that the total number of queries during the algorithm is O ((D1m

7 logm +
m3 log 1

ε
) (D1 + D2 + logm + log

1
ε
)), which is a polynomial in the input size and log 1/ε . �

B EXACT EQUILIBRIUM FOR EXCHANGE MARKETS WITH SPENDING

CONSTRAINT UTILITIES

Here we show how to obtain an exact market equilibrium in exchange spending constraint mar-
kets. Using the Alg-Spending-Exact framework, we convert the approximate market equilibrium
obtained in Section 3.2 into an exact equilibrium. To achieve this, we rely on the full information
of the spending constraint utilities. This step is an extension of the technique developed in the
work of Duan and Mehlhorn [26] for the linear exchange markets. However, there are several
challenges due to the much more involved setting of spending constraint utilities, where the al-
located partitions make the remaining budgets of agents and the values of goods dependent on

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:27

too many parameters. In the following, we present how to handle the extra complexity of the
problem, and this result resolves an open question of Duan and Mehlhorn [26] of finding an exact
polynomial-time algorithm for exchange markets with spending constraint utilities.
Let p be the price vector of an (1 + ε)-approximate equilibrium. We first construct a bipartite

graph EG ′(p) = (A ∪G,E), where the edge set E is a union of equality edges in EG (p), edges due
to positive endowments, and edges due to allocated segments. The main idea here is to construct
a set of components of agents and goods such that there is no interaction across the components.
In addition, we want at least one good with price 1 in every such component. To achieve this
latter condition, whenever there is a component C of EG ′(p) without a good with price 1, we
raise the prices of goods in C by a common factor x > 1 until a new equality edge appears. By
Assumption 3.1, a new equality edge will always emerge in during this procedure because prices
of goods inC are increasing, which makes goods outsideC more and more attractive to the agents
in C .

The next lemma shows that the updated price vector after the price increase still remains a
(1 + ε)-approximate equilibrium.

Lemma B.1. The price vector p at the end of the while loop in Alg-Spending-Exact is a (1 + ε)-
approximate equilibrium.

Proof. Note that we increase prices of goods in a component C when each good has price
greater than 1. Corollary 3.2 implies that the surplus of each good inC is 0. Hence, the old allocation
will still be feasible after the price change, and the surpluses remain the same. Therefore, the
updated p will remain a (1 + ε)-approximate equilibrium. �

At this stage, we can assume that each component of EG ′(p) has a good with price 1. We then
work on each component of EG ′(p) separately. We assume for convenience that EG ′(p) is a single
component.
Next we set up a system of linear equations in price variables of the formAp = b and show that

the matrix A has full rank. Finally, we show that by perturbing the vector b slightly, we can get
an exact equilibrium. Consider the components of EG (p), for instance, after removing edges due
to endowment and allocated segments from EG ′(p). Let C1, . . . ,CK be the set of components of
EG (p). In each Cl , 1 ≤ l ≤ K , all goods are connected with each other through a set of equality
edges. Whenever there are two current segments (i, j,k) and (i, j ′,k ′) of the same agent i , we have
the following relation between the prices of goods j and j ′:

ui jkpj′ = ui j′k ′pj . (18)

This implies that for each componentCl , |Cl ∩G | − 1 of these equations are linearly independent,
and there is essentially one free price variable. Further, since there is no money flow across com-
ponents with respect to the current allocations, we have the budget balance condition for each
component:

Remaining worth of goods – remaining budgets of agents (after allocated segments)

= sum of surpluses.

For component Cl , the condition reads

∑
j ∈Cl∩G

��
�
pj −

∑
(i, j,k)∈F

Bi jk
∑
j′

wi j′pj′
��
�
−
∑

i ∈Cl∩A

��
�

∑
j′

wi j′pj′ −
∑

(i, j,k)∈F
Bi jk
∑
j′

wi j′pj′
��
�
=
∑

j ∈Cl∩G
εj ,

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:28 X. Bei et al.

ALGORITHM 5: Alg-Spending-Exact
Input: Exchange market with a set A of agents and a set G of goods;wi j ,ui jk ,Bi jk are market

parameters as defined in Section 1.1
Output: Prices p of an exact market equilibrium

1 m ← |G |; n ← |A|; L ← total bit length of all input parameters; ε ← 1/m4m24m
2L

2 p← (1 + ε)-approximate equilibrium using Alg-Spendingwith Alg-Spending-Rounding

3 s← O (p). If s = (0, 0, . . . , 0), then return p.

4 EG (p) ← (undirected) equality graph at prices p /*as defined at the beginning of Section 3*/

5 F ← {(i, j,k) | (i, j,k) is an allocated segment}
6 EG ′(p) ← EG (p) ∪ {(i, j) | wi j > 0} ∪ {(i, j) | (i, j,k) ∈ F for some k }.
7 while EG ′(p) contains a connected component C that does not has a good with price 1 do
8 Binary search the smallest x > 1 such that EG (p) ⊂ EG (Update(p,x ,C)).

9 p← Update(p,x ,C).

10 Recompute EG (p) and EG ′(p).
11 end

12 /* Without loss of generality, we assume that EG ′(p) consists of only one connected component. If there

are more than one, then apply the following procedure individually to each component */

13 Let C1, . . . ,CK be the connected components of EG (p)

14 Set up the following system of linear equations in price variable

(1) p′i = 1 for a good i whose price is 1
(2) For each component Cl , 1 ≤ l ≤ K

a. |Cl | − 1 linearly independent equations of the form ui jkp
′
j′ = ui j′k ′p

′
j , where (i, j,k) and

(i, j ′,k ′) are the current segments.
b.
∑
j ∈Cl∩G p′j −

∑
j Rl jp

′
j = 0, where

Rl j =
∑
i ∈Cl∩Awi j (1 −

∑
(i, j′,k)∈F ;j′�Cl∩G Bi j′k) +

∑
i�Cl∩Awi j

∑
(i, j′,k)∈F ;j′ ∈Cl∩G Bi j′k

15 p
′ ← the solution of the preceding system of equations

16 return p
′

where F is the set of allocated segments. Rearranging the preceding equation, we get∑
j ∈Cl∩G

pj −
∑
j ∈G

pjRl j =
∑

j ∈Cl∩G
εj , (19)

where Rl j =
∑

i ∈Cl∩A
wi j

��
�
1 −

∑
(i, j′,k)∈F ;j′�Cl∩G

Bi j′k
��
�
+
∑

i�Cl∩A
wi j

∑
(i, j′,k)∈F ;j′ ∈Cl∩G

Bi j′k ,

Each Rl j is a rational number with denominator at most 22L , where L is the total bit length of all
input parameterswi j ,ui jk and Bi jk .

Lemma B.2. For every 1 ≤ l ≤ K and j ∈ Cl ∩G, 0 ≤ Rl j ≤ 1. For every j ∈ G, ∑l Rl j = 1.

Proof. We have
∑

i wi j = 1,∀j. Further, both ∑(i, j′,k)∈F ;j′�Cl∩G Bi j′k and
∑

(i, j′,k)∈F ;j′ ∈Cl Bi j′k
take values in [0, 1], and hence the first claim of the lemma follows. For the second claim,∑
l Rl j =

∑
i wi j = 1. �

LetM be the coefficient matrix of the system of equations (19). Then

Ml j =

{
1 − Rl j if j ∈ Cl ∩G
−Rl j , otherwise.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:29

From Lemma B.2, each column j of M has at most one positive entry, namely Ml j , where j ∈
Cl ∩G, and each column of M sums to 0. There are in total L equations of type (19), one for each
component. Next we eliminate the equations of type (18). Then there will be only one price variable
per component. We designate a representative good for each component, say good l for Cl . Then
each price pj in Cl is a constant multiple of price pl of good l . Let pj = α jpl , where α j is a rational
number whose numerator and denominator are products of at mostm ui jk ’s. Now we can rewrite
the budget balance equation (19) for Cl in terms of L price variables as follows:

pl
∑

j ∈Cl∩G
α j −
∑
l ′

pl ′
∑

j ∈Cl ′∩G
α jRl j =

∑
j ∈Cl∩G

εj .

Let Tl =
∑

j ∈Cl∩G α j , Sl l ′ =
∑

j ∈Cl ′∩G α jRl j , and εl =
∑

j ∈Cl∩G εj . The preceding equation becomes

plTl −
∑
l ′

pl ′Sl l ′ = εl . (20)

Let N be the coefficient matrix of the system of equations (20). Then

Nl l ′ =

{
Tl − Sl l if l = l ′

−Sl l ′, otherwise.

Since both Tl and Sl l ′ are rational numbers with denominator at most 2mL and 22mL , respectively,
each Nl l ′ is a rational number with denominator at most 23mL .

Lemma B.3. 0 ≤ Nl l for every l , Nl l ′ ≤ 0 for every l � l ′, and
∑
l Nl l ′ = 0 for every l ′.

Proof. The proof essentially follows using Lemma B.2. The first two claims are straightforward,
and for the last claim we have∑

l

Sl l ′ =
∑
l

∑
j ∈Cl ′∩G

α jRl j =
∑

j ∈Cl ′∩G
α j
∑
l

Rl j =
∑

j ∈Cl ′∩G
α j = Tl ′ . �

Since there is a good i with price 1, we assume without loss of generality that good i belongs
to component K , and hence αKpK = 1. The next lemma is an adaptation of a result of Duan and
Mehlhorn [26].

Lemma B.4. TheK equations consisting of Equation (20) for components 1, . . . ,K − 1 and the equa-
tion αKpK = 1 are linearly independent.

Proof. Let N ′ be the coefficient matrix of this system of equations. It is easy to check that
N ′ is the same as N except N ′Li = 0, 1 ≤ i ≤ K − 1. Assume by contradiction that there is a non-
zero vector a = (a1, . . . ,aK) such that aTN ′ = 0. Let al0 be the entry in {a1, . . . ,aK−1} that has
the largest absolute value, and without loss of generality we assume that al0 > 0 and the first K ′

entries of a are equal to al0 , i.e., a1 = · · · = aK ′ = al0 .
For each l ≤ K ′, we have

0 =
∑

1≤h<K
ahNhl + aK · 0

= al0

∑
1≤h≤K

Nhl − al0NKl +
∑

K ′<h<K

(ah − al0)Nhl

= −al0NKl +
∑

K ′<h<K

(ah − al0)Nhl .

Using LemmaB.3, the preceding implies thatNhl = 0 forK ′ < h ≤ K and l ≤ K ′. Nextwe show that
Nlh = 0 for 1 ≤ l ≤ K ′ and K ′ < h ≤ K as well. By summing up the Equations (20) for 1 ≤ l ≤ K ′,

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:30 X. Bei et al.

we get

∑
l ≤K ′

εl =
∑
l ≤K ′

Nl lpl +
∑
h

∑
l ≤K ′;l�h

Nlhph

=
∑
l ≤K ′

Nl lpl +
∑
h≤K ′

∑
l ≤K ′;l�h

Nlhph +
∑
h>K ′

∑
l ≤K ′

Nlhph

=
∑
h≤K ′

Nhhph +
∑
h≤K ′

∑
l�h

Nlhph +
∑
h>K ′

∑
l ≤K ′

Nlhph

=
∑
h≤K ′

ph
∑
l

Nlh +
∑
h>K ′

∑
l ≤K ′

Nlhph

=
∑
h>K ′

∑
l ≤K ′

Nlhph .

Since ph ≥ 1 for every h, if some Nlh is non-zero for l ≤ K ′ and h > K ′, then the right-hand side
is at most −1/23mL , which is a contradiction. It implies that Nlh � 0 if and only if both l and h
are either less than or equal to K ′ or larger than K ′. Let A1 and G1 denote the set of agents and
goods of components C1, . . . ,CK ′ , respectively. Let A2 = A \A1 and G2 = G \G1. We can further
conclude the following:

• wi j = 0 for every i ∈ A1, j ∈ G2, and otherwise Nlh � 0 for l ≤ K ′ and h > K ′. Similarly,
wi j = 0 for every i ∈ A2, j ∈ G1.

• Agents in A1 have no allocated goods in G2, and otherwise budget balance equations of
components Cl , l > K ′ will have some non-zero pj , 1 ≤ j ≤ K ′ and that will make Nlh � 0
for l > K ′ and h ≤ K ′. Similarly, agents in A2 have no allocated goods in G1.

This is impossible because we have assumed that EG ′(p) consists of one single component.
Therefore, N ′ must have full rank. �

Overall, we have established that Equations of (18), (19), and pi = 1 are linearly independent.
We can write this system in the matrix form as Ap = b, where A is invertible and all entries are
rational numbers with common denominator at most 22L .
Consider the system Ap′ = b ′ for a price vector p′, where b ′ is a unit vector with a one in the

row corresponding to the equation pi = 1. Next we show that p′ gives an exact equilibrium. For
that, we need to show the following:

(a) Equality edges with respect to p
′ and p are the same. This will imply that all allocated

segments remain allocated.
(b) (s,A ∪G ∪ t) is a min-cut in N (p′). Combining the equation (2b) in step 13 of Alg-

Spending-Exact, this will imply that there is a feasible allocation on current segments
that gives surplus of each good.

By Cramer’s rule and Lemma B.2, the solution of Ap′ = b ′ is a vector of rational numbers with
common denominator D ≤ mm22m (m+1)L . In other words, all p ′i are of form qi/D, where qi ,D are
integers. Since | |b | − |b ′ | | ≤ 2ε , we have |p ′i − pi | ≤ 2εD for every i . Let ε ′ = 2D2ε , then |Dpi − qi | =
D |pi − p ′i | ≤ 2εD2 = ε ′. For part (a), suppose ui jkpj′ ≤ ui j′k ′pj and then

ui jkqj′ ≤ ui jk (Dpj′ + ε
′) ≤ Dui j′k ′pj + ui jkε

′ ≤ ui j′k ′qj + (ui j′k ′ + ui jk)ε
′

< ui j′k ′qj + 1.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:31

Since both ui jkqj′ and ui j′k ′qj are integers, we have ui jkp ′j′ ≤ ui j′k ′p
′
j . This implies that all equality

edges with respect to p′ and p are the same. That further implies that all allocated segments remain
allocated.
For part (b), consider the network N (p′) with respect to prices p′. Recall that in N (p′),

• the capacity of edge from source node s to agent i is
∑

j′wi j′p
′
j′ (1 −

∑
j,k :(i, j,k)∈F Bi jk), and

• the capacity of a MBB edge from agent i to good j is Bi jk
∑

j′wi j′p
′
j′ .

Since p ′j ’s are all rational numbers with a common denominator D ≤ mm22m (m+1)L , all capacities

in N (p′) are rational numbers with a common denominator no more than D2. In addition, because
|p ′i − pi | ≤ 2εD, the capacity of each edge e in N (p) is at most the capacity of e in N (p′) plus 4εD.
Let c be the capacity of cut (s,A ∪G ∪ t) in N (p′). Suppose there is a min cut in N (p′) with value
less than c . Then that value is at most c − 1/D2. This same cut in N (p) will have value at most
c − 1/D2 + (m + n +mn)4Dε . In addition, the capacity of the cut (s,A ∪G ∪ t) in N (p) is at least
c − 4nεD. Therefore, the total surplus of goods in N (p) is at least

c − 4nεD −
(
c − 1

D2

)
− (m + n +mn)4εD =

1

D2
− 4(m + 2n +mn)εD > ε,

which is a contradiction. Hence, condition (b) also holds.
We conclude with our main theorem.

Theorem B.5. For every spending constraint exchange market satisfying Assumption 3.1, Alg-
Spending-Exact returns the price vector of a market equilibrium in time polynomial inm and L.

Proof. By Lemma 3.9, we know that we arrive at a (1 + ε)-approximate equilibrium in time
polynomial inm, L, and log 1/ε . For the exact equilibrium, Alg-Spending-Exact solves a system
of K ≤ m linear equations whose entries are polynomially bounded inm and L, and hence can be
done in polynomial time. Further, log 1/ε is a polynomial ofm and L as ε = 1/m4m24m

2L . Since M
is a polynomial ofm, L, binary search and Rounding run in polynomial time in each round of the
framework. Hence, the total running time of the algorithm is polynomial inm and L. �

REFERENCES

[1] NimaAnari, TungMai, Shayan Oveis Gharan, and Vijay Vazirani. 2018. Nash social welfare for indivisible items under
separable, piecewise-linear concave utilities. In Proceedings of the 29th Symposium on Discrete Algorithms (SODA’18).
2274–2290.

[2] Kenneth Arrow and Gerard Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22,
3 (1954), 265–290.

[3] Kenneth Arrow and Leonid Hurwicz. 1958. On the stability of the competitive equilibrium. Econometrica 26, 4 (1958),
522–552.

[4] Xiaohui Bei, Jugal Garg, and Martin Hoefer. 2016. Ascending-price algorithms for unknown markets. In Proceedings
of the 17th Conference on Economics and Computation (EC’16). 699.

[5] Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2017. Earning limits in Fisher markets with spending-
constraint utilities. In Proceedings of the 10th Symposium on Algorithmic Game Theory (SAGT’17). 67–79.

[6] Benjamin Birnbaum, Nikhil Devanur, and Lin Xiao. 2011. Distributed algorithms via gradient descent for Fisher
markets. In Proceedings of the 12th Conference on Electronic Commerce (EC’11). 127–136.

[7] Michael Blad. 1978. On the speed of adjustment in the classical tatonnement process: A limit result. Journal of Eco-
nomic Theory 19, 1 (1978), 186–191.

[8] William Brainard and Herbert Scarf. 2000. How to Compute Equilibrium Prices in 1891. Discussion Paper 1270. Cowles
Foundation.

[9] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. 2009. Settling the complexity of Arrow-Debreu equilibria in
markets with additively separable utilities. In Proceedings of the 50th Symposium on Foundations of Computer Science
(FOCS’09). 273–282.

[10] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. 2017. The complexity of non-monotone markets. Journal of the
ACM 64, 3 (2017), Article 20, 56 pages.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

37:32 X. Bei et al.

[11] Yun Kuen Cheung and Richard Cole. 2016. A unified approach to analyzing asynchronous coordinate descent and
tatonnement. arXiv:1612.09171.

[12] Yun Kuen Cheung, Richard Cole, and Nikhil Devanur. 2013. Tatonnement beyond gross substitutes? Gradient descent
to the rescue. In Proceedings of the 45th Symposium on Theory of Computing (STOC’13). 191–200.

[13] Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. 2012. Tatonnement in ongoing markets of complementary
goods. In Proceedings of the 13th Conference on Electronic Commerce (EC’12). 337–354.

[14] Bruno Codenotti, BentonMcCune, Sriram Penumatcha, and Kasturi R. Varadarajan. 2005. Market equilibrium for CES
exchange economies: Existence, multiplicity, and computation. In Proceedings of the 25th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’05). 505–516.

[15] Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. 2005. Market equilibrium via the excess demand func-
tion. In Proceedings of the 37th Symposium on Theory of Computing (STOC’05). 74–83.

[16] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. 2005. On the polynomial time computation of equi-
libria for certain exchange economies. In Proceedings of the 16th Symposium on Discrete Algorithms (SODA’05). 72–81.

[17] Bruno Codenotti and Kasturi Varadarajan. 2007. Computation of market equilibria by convex programming. In Algo-
rithmic Game Theory, N. Nisan, É. Tardos, T. Roughgarden, and V. Vazirani (Eds.). Cambridge University Press, New
York, NY, 135–158.

[18] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay Vazirani, and Sadra Yazdanbod. 2017.
Convex program duality, Fisher markets, and Nash social welfare. In Proceedings of the 18th Conference on Economics
and Computation (EC’17). 459–460.

[19] Richard Cole and Lisa Fleischer. 2008. Fast-converging tatonnement algorithms for one-time and ongoing market
problems. In Proceedings of the 40th Symposium on Theory of Computing (STOC’08). 315–324.

[20] Richard Cole and Vasilis Gkatzelis. 2015. Approximating the Nash social welfare with indivisible items. In Proceedings
of the 47th Symposium on Theory of Computing (STOC’15). 371–380.

[21] Nikhil Devanur, Jugal Garg, and László Végh. 2016. A rational convex program for linear Arrow-Debreu markets.
ACM Transactions on Economics and Computation 5, 1 (2016), Article 6, 13 pages.

[22] Nikhil Devanur and Ravi Kannan. 2008. Market equilibria in polynomial time for fixed number of goods or agents.
In Proceedings of the 49th Symposium on Foundations of Computer Science (FOCS’08). 45–53.

[23] Nikhil Devanur, Christos Papadimitriou, Amin Saberi, and Vijay Vazirani. 2008. Market equilibrium via a primal–dual
algorithm for a convex program. Journal of the ACM 55, 5 (2008), Article 22, 18 pages.

[24] Nikhil Devanur and Vijay Vazirani. 2004. The spending constraint model for market equilibrium: Algorithmic, exis-
tence and uniqueness results. In Proceedings of the 36th Symposium on Theory of Computing (STOC’04). 519–528.

[25] Ran Duan, Jugal Garg, and Kurt Mehlhorn. 2016. An improved combinatorial polynomial algorithm for the linear
Arrow-Debreu market. In Proceedings of the 27th Symposium on Discrete Algorithms (SODA’16). 90–106.

[26] Ran Duan and Kurt Mehlhorn. 2015. A combinatorial polynomial algorithm for the linear Arrow-Debreu market.
Information and Computation 243 (2015), 112–132.

[27] B. Curtis Eaves. 1976. A finite algorithm for the linear exchange model. Journal of Mathematical Economics 3 (1976),
197–203.

[28] B. Curtis Eaves. 1985. Finite solution of pure trade markets with Cobb-Douglas utilities. In Economic Equilibrium:
Model Formulation and Solution. Mathematical Programming Studies, Vol. 23. Springer, 226–239.

[29] Edmund Eisenberg. 1961. Aggregation of utility functions. Management Science 7, 4 (1961), 337–350.
[30] Edmund Eisenberg and David Gale. 1959. Consensus of subjective probabilities: The Pari-Mutuel method. Annals of

Mathematical Statistics 30, 1 (1959), 165–168.
[31] Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit Khandekar, and Amin Saberi. 2016. A simple and efficient algorithm

for computing market equilibria. ACM Transactions on Algorithms 12, 3 (2016), Article 34, 15 pages.
[32] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. Approximating the Nash social welfare with budget-additive

valuations. In Proceedings of the 29th Symposium on Discrete Algorithms (SODA’18). 2326–2340.
[33] Jugal Garg, Ruta Mehta, Milind Sohoni, and Vijay Vazirani. 2015. A complementary pivot algorithm for market equi-

librium under separable, piecewise-linear concave utilities. SIAM Journal on Computing 44, 6 (2015), 1820–1847.
[34] Jugal Garg, Ruta Mehta, Milind A. Sohoni, and Nisheeth K. Vishnoi. 2013. Towards polynomial simplex-like algo-

rithms for market equilibria. In Proceedings of the 24th Symposium on Discrete Algorithms (SODA’13). 1226–1242.
[35] Jugal Garg, Ruta Mehta, and Vijay Vazirani. 2014. Dichotomies in equilibrium computation, and complementary

pivot algorithms for a new class of non-separable utility functions. In Proceedings of the 46th Symposium on Theory
of Computing (STOC’14). 525–534.

[36] Rahul Garg and Sanjiv Kapoor. 2006. Auction algorithms for market equilibrium.Mathematics of Operations Research
31, 4 (2006), 714–729.

[37] Rahul Garg and Sanjiv Kapoor. 2007. Market equilibrium using auctions for a class of gross-substitute utilities. In
Proceedings of the 3rd Workshop on Internet and Network Economics (WINE’07). 356–361.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

Ascending-Price Algorithms for Unknown Markets 37:33

[38] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. 2018. Competitive algorithms from competitive equilibria:
Non-clairvoyant scheduling under polyhedral constraints. Journal of the ACM 65, 1 (2018), Article 3, 33 pages.

[39] Kamal Jain. 2007. A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear util-
ities. SIAM Journal on Computing 37, 1 (2007), 306–318.

[40] Frank Kelly and Vijay Vazirani. 2002. Rate Control as a Market Equilibrium. Retrieved April 10, 209 from http://www.
cc.gatech.edu/∼vazirani/KV.pdf.

[41] Andreu Mas-Colell, Michael Whinston, and Jerry Green. 1995. Microeconomic Theory. Oxford University Press.
[42] Robert Maxfield. 1997. General equilibrium and the theory of directed graphs. Journal of Mathematical Economics 27,

1 (1997), 23–51.
[43] James Orlin. 2010. Improved algorithms for computing Fisher’s market clearing prices. In Proceedings of the 42nd

Symposium on Theory of Computing (STOC’10). 291–300.
[44] Paul Samuelson. 1948. Consumption theory in terms of revealed preference. Economica 15, 60 (1948), 243–253.
[45] Herbert Scarf. 1973. The Computation of Economic Equilibria. Yale University Press, New Haven, CT.
[46] H. Uzawa. 1960. Walras’ tatonnement in the theory of exchange. Review of Economic Studies 27, 3 (1960), 182–194.
[47] Hal Varian. 1982. The non-parametric approach to demand analysis. Econometrica 50 (1982), 945–974.
[48] Hal Varian. 2005. Revealed preference. In Samuelsonian Economics and the Twenty-First Century, M. Szenberg, L.

Ramrattan, and A. Gottesman (Eds.). Oxford University Press, Oxford, UK, 99–115.
[49] Vijay Vazirani. 2010. Spending constraint utilitieswith applications to theAdwordsmarket.Mathematics of Operations

Research 35, 2 (2010), 458–478.
[50] Vijay Vazirani and Mihalis Yannakakis. 2011. Market equilibrium under separable, piecewise-linear, concave utilities.

Journal of the ACM 58, 3 (2011), 10.
[51] László Végh. 2016. A strongly polynomial algorithm for a class of minimum-cost flow problemswith separable convex

objectives. SIAM Journal on Computing 45, 5 (2016), 1729–1761.
[52] Léon Walras. 1874. Éléments d’économie politique pure, ou théorie de la richesse sociale (Elements of Pure Economics, or

the Theory of Social Wealth). Lausanne, Paris.
[53] Yinyu Ye. 2007. Exchange market equilibria with Leontief’s utility: Freedom of pricing leads to rationality. Theoretical

Computer Science 378, 2 (2007), 134–142.

Received April 2018; revised November 2018; accepted March 2019

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 37. Publication date: May 2019.

http://www.cc.gatech.edu/protect $
elax sim $vazirani/KV.pdf
http://www.cc.gatech.edu/protect $
elax sim $vazirani/KV.pdf

