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Abstract

Data augmentation is widely used to increase data vari-
ance in training deep neural networks. However, previous
methods require either comprehensive domain knowledge
or high computational cost. Can we learn data transfor-
mation automatically and efficiently with limited domain
knowledge? Furthermore, can we leverage data transfor-
mation to improve not only network training but also net-
work testing? In this work, we propose adaptive data trans-
formation to achieve the two goals. The AdaTransform can
increase data variance in training and decrease data vari-
ance in testing. Experiments on different tasks prove that it
can improve generalization performance.

1. Introduction

The remarkable success of deep learning, from the data
perspective, benefits from the capability of optimizing mil-
lions of free parameters [10, 11] to capture extensive data
variance. Yet, sufficient data varieties are not always avail-
able in practice due to data scarcity and annotation cost [33].

The technique of perturbing data without changing class
labels, also known as data augmentation, is widely used to
address this issue. Generally speaking, data augmentation
can be either sampled from predefined distributions or gen-
erated by learnable agents. The former, known as random
augmentation [5, 8], usually relies on hand-craft rules with-
out optimization, yielding insufficient training. The latter,
known as auto or adversarial augmentation [19, 27, 16],
also suffers from various limitations.

Auto augmentation [19] explores a huge solution space
to achieve an optimal solution on the validation set, which
is extremely time-consuming. The network training has to
be repeated 15,000 times to get the final policy. Adver-
sarial augmentation, on the other hand, follows a greedy
design to speed up learning. However, the current designs
[27, 16] rely on comprehensive domain knowledge to spec-
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ify the transformation types and boundaries. This inevitably
results in restricted transformation space. Moreover, previ-
ous methods mainly focus on network training, neglecting
the potential to apply data transformation in testing.

This raises research questions: 1) Can we learn data
transformation more efficiently? 2) Can we explore the
transformation space (types and boundaries) without com-
prehensive domain knowledge? 3) Can data transformation
also help improve network deploying?

In this paper, we answer the questions by proposing Ada-
Transform: adaptive data transformation. We leverage rein-
forcement learning in conjunction with adversarial training
to compose meta-transformations (discrete transformation
operations). This enables us to efficiently explore a large
transformation space with limited domain knowledge.

Specifically, we learn data transformation in bi-direction:
At the training stage, AdaTransform performs a competitive
task to increase data variance, reducing over-fitting; at the
testing stage, AdaTransform performs a cooperative task to
decrease data variance, yielding improved deploying. The
two tasks are learned through optimizing a triplet: a trans-
former, a discriminator, and a target network, as illustrated
in Figure 1. To summarize, our key contributions are:

e To the best of our knowledge, we are the first to inves-
tigate adaptive data transformation in order to improve
both network training and testing.

e We propose to learn a competitive task (for training)
and a cooperative task (for testing) simultaneously by
jointly optimizing a triplet online.

e AdaTransform can automatically and efficiently ex-
plore the data transformation space, yielding a highly
flexible and versatile solution for broad applications.

e Extensive experiments on image classification, human
pose estimation, and face alignment prove the favor-
able performance of AdaTransform especially when
testing perturbations exist.
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Figure 1: Overview of the adaptive data transformation. It consists of two tasks: competitive training and cooperative testing,
and three components: a transformer 7', a discriminator D, and a target network /N. T  increases the training data variance by
competing with both D and . It also cooperates with N in testing to reduce the data variance.

2. Related Work

We provide a brief overview of related works in the cat-
egories of data transformation, adversarial learning, rein-
forcement learning, hard example mining, human pose esti-
mation, and face alignment.

Data transformation. Data transformations are com-
monly used to augment the training data [10, 8]. Recently,
the adversarial data augmentations [27, 16] are proposed.
But they heavily rely on human knowledge and can only
handle limited transformations. Some works [4, 19] try to
learn the data augmentation policy automatically. However,
either they suffer from severe efficiency issue [4] or the pol-
icy learning is isolated with the target network training [19].
The high computational cost is due to the optimization of
validation accuracy. The lack of joint optimization with the
target network prevents it from dynamically increasing the
data variance based on the individual images and target net-
work state. Others [21, 2] learn to transfer the data transfor-
mations from large datasets to augment few-shot examples.
The above methods are only to augment training data but
cannot reduce the testing data variance. The Spatial Trans-
former Network (STN) [12] is designed to reduce the spatial
variance of data. However, it can only handle differentiable
spatial transformations, largely restricting its applications.
Besides, it is only for the variance reduction but cannot in-
crease the training data variance.

Adversarial learning. Generative Adversarial Net-
works (GANs) [9] includes two networks: generator and
discriminator which compete against each other to improve
generation performance. GANs are widely used in the im-
age generations [9, 37] and translations [36]. Here we use
the transformer to transform input images. It competes with
the discriminator to make the transformed images still real-
istic but different from the original ones.

Reinforcement learning. In reinforcement learning
(RL), an agent takes actions and then receives feedback

from the environment, which may reward or penalize it.
The agent learns to maximize its reward by taking appro-
priate actions. Reinforcement learning has been used with
deep learning to play the Go game [23], search the neural
network architecture [17], etc. In this paper, we use it to
learn the transformer to handle data transformations.

Hard example mining. Hard example mining usually
alternates between optimizing models and updating training
data. Once a model is optimized on the current training set,
it is used to collect more hard data for further training. This
method was used in training SVM models for object detec-
tion [26]. Recently, Shrivastava et al. [22] adapted it into
the neural network based object detector. The hard example
mining focuses on selecting hard examples from existing
data, the adaptive data transformation actively transforms
the data to either increase or reduce their variance.

Human pose estimation. With recent advances in Deep
Neural Networks (DNNs), image-based human pose esti-
mation has achieved significant progress in the past few
years [25, 24, 3]. DeepPose [25] is one of the first attempts
of using DNNs for human pose estimation. Recently, multi-
stage human pose prediction methods such as Convolutional
Pose Machine [28] and stacked hourglasses [15] have be-
come popular. The prediction results could be refined state-
by-stage. Instead of designing a new pose estimator, we im-
prove pose estimation performance by increasing the train-
ing data variance and reducing the testing data variance.

Face alignment. Similarly, DNNs have largely reshaped
the field of face alignment. Traditional methods like [29]
could be easily outperformed by the DNNs based [34, 14].
In the recent Menpo Facial Landmark Localization Chal-
lenge [31], stacked hourglasses [15] achieves state-of-the-
art performance. Given an off-the-shelf face alignment
DNN, the adaptive data transformation can be used to im-
prove its performance.
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Figure 2: Incremental transformation. The transformer,
conditioning on the input, outputs the distribution over the
meta-transformations. A meta-transformation is sampled
and transforms the input. Then the transformed data be-
come the input and continue to be transformed.

3. Problem Definition and Task Modeling

Given a target network, e.g. an image classifier [10] or
a human pose estimator [24], etc, the adaptive data trans-
formation, named as AdaTransform, aims to improve both
training and testing of the target network. More specifi-
cally, the agent performs two different tasks: (1) At the
training stage, it performs a competitive task to increase
data variance, improving the training of the target network.
(2) At the testing stage, it performs a cooperative task to
reduce data variance, boosting its testing performance. The
two tasks are learned simultaneously by jointly optimizing
a triplet: a transformer 7', a discriminator D, and a target
network V. An illustration is given in Figure 1.

3.1. Transformer T

The transformer 7" is designed to increase the data vari-
ance in the competitive task, while it learns to decrease the
data variance in the cooperative task.

Transformation Definition. Transformation is domain-
specific. It relies on both the data type and the target prob-
lem. Data of different modalities have dissimilar transfor-
mations. For example, images can utilize scale and rotation,
while word replacement and switch may happen in text data.

Further, a transformation must preserve the data property
of interest in the target problem. For instance, the shear op-
eration can be applied in image classification since it does
not change the image class labels. However, it is not a
good choice for face recognition as it may alter the identity.
The AdaTransform only needs limited domain knowledge
to specify some meta-transformations. Then I" learns to
compose them for both competitive and cooperative tasks.

Competitive task. 7" learns to enlarge the data variance
in training through increasing the loss of target network .
At the same time, it tries to fool the discriminator D by
making the transformed data realistic. Thus, 7" must learn

to satisfy the constraints from both N and D:

[L(N(7(x)),y) + Alog(D(7(x)))],
ey

where 2 is the training data, and 7 is the transformation
operation sampled from 7'(z,0) in the competitive mode.
L(-,-) is a predefined target loss function. A balances the
weight of two losses. T competes with both N and D in the
competitive task. The competitive 7 is trained and applied
to the training data.

Cooperative task. 7" also learns to reduce the data vari-
ance by lowering the loss of target network N:

[L(N(T(x)), y)]- @

max E E
0r  (x,y)~Q 7~T(x,0)

min E

0  (x,y)~Q 7~T(x,1)
where 1 indicates the cooperative mode of 7. The discrim-
inator D is not used in the cooperative task. Because the
transformed data of reduced variance can hardly fall out of
the real data distribution. 7" cooperates with /N in the co-
operative task. The cooperative T is trained on the training
data and generalized to the testing data.

3.2. Discriminator D

The discriminator D aims to control the variance of
transformed data. It learns to assign low scores to out-
of-distribution transformed data and high scores to in-
distribution data. To this end, D learns from both the origi-
nal and transformed data as follows:

max B E . e-DrE)+ E [log(D(2"))].
(3)

D competes with the transformer 7" in the competitive task.
It is a critical design to automate competitive training. Hu-
man users can be saved from the heavy burden of specifying
the transformation boundaries, especially when multi-types
of transformations are available. Without D, T" would prob-
ably produce out-of-distribution transformations.

3.3. Target Network IN

The goal of target network NN is to generalize well on the
testing data. The training data usually have some distribu-
tion shift from the testing data. The current neural networks
are so powerful that they can easily overfit the training data.
The transformer 7" can reduce the overfitting by adaptively
increasing the training data variance. N learns from both
the original and the transformed training data as follows:

min [E E
On  (x,y)~Q 7~T(x)

[L(IN(T(x)),y) + LN (x), y)], 4)

The target network N competes with the transformer 7T’
through learning from its transformed data.
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Algorithm 1: Mini batch training of transformer 7'

Algorithm 2: Joint training scheme of 7', D, and N

Input: Mini-batch B, triplet 7', D, and V.

Output: Transformer 7'
1 Replicate B s times to get X of size M
Apply T on X to get X and polices {m!} € RM*K,
Compute rewards {r?} € RM*X of X by Eq. 5 and 6;
Get accumulated rewards {Ri} € RM*K by Eq. 8;
Normalize { Ri} to { R} by Eq. 9 and Eq. 10;
Call the gradient ascent on the sum of { k! log 7} };

A i A W N

4. Learning Strategy

The triplet 7', D, and N are jointly learned in the adap-
tive data transformation. The main challenge comes from
learning 7' since many transformation operations are not
differentiable. The gradients cannot flow to 7" directly from
D and N. To deal with this issue, we use reinforcement
learning with meta-transformations to train 7.

4.1. Meta-transformation

The meta-transformations define the small transforma-
tion operations [19]. Table 1 lists examples of meta-
transformations in natural images. A large transformation
can be decomposed as a combination of multiple meta-
transformations. Despite some precision loss, it barely
affects the target network training. Specifying the meta-
transformations requires much less domain knowledge than
tuning the boundaries of multi-type transformations and
choosing their combinations [27, 16].

The meta-transformation offers flexibility and scalability
to achieve complex transformations. We can efficiently ex-
plore an ample transformation space by traversing the com-
binations of meta-transforms. More importantly, the meta-
transformations make it possible to train 7" in a tractable
manner via reinforcement learning.

4.2. Reinforcement Learning Formulation

The transformer 7" incrementally transforms the data us-
ing meta-transformations. An illustration is shown in Fig-
ure 2. Let x and 2 denote the original and transformed data
points. At step ¢, T' conditioning on Z;_1 outputs the dis-
tribution T'(Z;_1) over all the meta-transformations. Then
the meta-transformation 7, is sampled from it. The loss of
transformed data &; = 7+(Z;—1) is computed as:

_‘C(N('%t)a y)a
&)
where £ denotes the loss function for the target task and A
is the weight of the discriminator loss. In the competitive
mode, the transformer learns to expand the data variance by

competitive case.

coopemtive case.

Input: Training data X, triplet 7', D, and N.
QOutput: Triplet 7', D, and N.

1 while not end do

2 for mini batch B in X do

3 Apply T on B with probability p to get B;
" Train N with the mixed data B;

5 end

6 for mini batch B in X do

7 Train competitive 7" with D, N by Alg. 1;
8 Train cooperative 7" with N by Alg. 1;

9 end
10 end

increasing the target network loss. On the other hand, it also
tries to keep high probabilities of transformed data being
realistic. In the cooperative mode, the transformer learns
to reduce the data variance by increasing the negative target
loss, i.e., decreasing the target loss.

The reward r; for meta-transformation 7 is the incre-
mental loss:

ry = f(:i?t) — Z(ft_l). (6)

Suppose the transformer 7" is applied K steps, a reward se-
quence {ry,r2, - ,rx} is produced, where reward r is
r1 = £(&1) — £(z). Summing up these rewards results in

K

> = L(ik) — (). (7)

t=1

The discriminator and target network are fixed when train-
ing the transformer. Given an original data point z, ¢(x) is a
constant, which can be ignored. £(Z ) is the objective in ei-
ther Equations 1 or 2 since 2 i is the final transformed data
point. Therefore, optimizing the objectives in Equations 1
or 2 can be converted into maximizing the sum of rewards.
We apply the policy gradients to maximize the sum of
rewards. Two common techniques are used to reduce the
variance in estimating the rewards. First, we compute the
reward for transformation 74 as the accumulated future re-
ward Zt];:t, r, rather than rp only. A discounting factor
~ is used to model the delaying effects of future rewards.
Therefore, the accumulated discounted reward Ry is:

K
Ry=Y " ~+""r, ®)

t>=t’

where we set v = 0.5 in the experiments.

Also, the raw value of reward Ry may not be meaning-
ful. Positive values do not necessarily mean rewards. We
only push up the probability of a meta-transformation, if its
reward is higher than the expectation. Here we use the mean
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Figure 3: Meta-movements. AdaCutout/AdaErasing first
samples a random mask, then moves it up, right, down, left.

of reward R, within each mini-batch of h training samples
as the reference. For each original data point, we sample s
different rewards ;.. Thus, the mean of Ry is:

1 hxs )
e g
=1

Note that it is important to compute the reward mean online
within the mini-batches instead of using the moving aver-
ages of all history rewards. Because the discriminator and
target network become more and more powerful in training.
The history rewards cannot reflect their current states well.

At step t/, each reward Ry is normalized by subtracting
its mean by. A positive normalized value means reward,
whereas a negative normalized one means penalty. Accord-
ing to the policy gradients formula, we compute the gradient
of transformer 7" at step t':

by =

hxs

Vo, T(ir) =Y (Ris = by) Vo, logmo, (rv|dr), (10)

=1

where 7y,. (7| %) is the policy, i.e., the probability of tak-
ing meta-transformation 74 given the input z,. Updat-
ing transformer 7" with the gradient ascent can push up
or pull down the probabilities if the corresponding meta-
transformations yield rewards or penalties at step t’.
Finally, we sum up the gradients of 7" from all K steps:

K
Vo, T() =) Vo, T(iv).

t'=1

(11

Basically, the transformer 7" is updated each time using the
accumulated gradients from K steps and A x s samples.
Algorithm | summarizes the training scheme of 7'

4.3. Joint learning of T, D, and N

The transformer 7' is jointly optimized with the discrimi-
nator D and target network IV during the training. The train-
ing procedure is described in Algorithm 2. More specifi-
cally, we train N for several epochs and then update 7" and

Table 1: Examples of meta-transformations in natural im-
ages. A meta-transformation defines a small operation. A
combination of multiple meta-transformations can approxi-
mate a large transformation space.

Type Meta-values
Rotation 2.5°, —2.5°,5°, —5°
Zoom 0.9x, 1.1x, , 0.75x, 1.25x
Shear/Swirl 0.1°, —0.1°,0.25°, —0.25°
Hue Shift 0.1,-0.1, 0.25, -0.25
Brightness/Color 0.75,1.25,0.5, 1.5
Sharpness/Contrast 0.75,1.25,0.5, 1.5
Horizontal Flip -

D once. N needs to learn from both the transformed and
original data. To this end, we apply 7" with some probabil-
ity p(0 < p < 1) on the training data of N.

T and D are updated alternately inside each iteration.
Given a mini-batch of data, D is updated on both the origi-
nal (real) and transformed (fake) data of 7". Then we update
T separately in the competitive and cooperative modes. T'
receives the feedback from NV in the cooperative case while
it requires the additional feedback from D in the competi-
tive case. We add a zero or one map to the input of 7" as the
condition of competitive or cooperative modes.

5. Applications of AdaTransform

AdaTransform provides a versatile solution for general
data analytic tasks with proper domain knowledge. In this
paper, we focus on its application to visual tasks.

AdalmgTransform. For natural images, there are many
available transformation types such as scale, rotation, trans-
lation, flipping, swirl, shear, contrast enhancement, color
enhancement, brightness enhancement, sharpness enhance-
ment, and hue shift. Table 1 lists the corresponding meta-
transformations. We can adjust the meta-transformation
pool according to domain knowledge of a specific task.
We apply adaptive data transformation to learning to com-
bine the proper meta-transformations conditioning on the
input image, target network state, and the transformer mode.
They can be used to either increase or reduce data variance.

AdaCutout/AdaErasing. Occlusions are quite common
in natural images where the object of interest is partially oc-
cluded. The cutout [6] and random erasing [35] are recently
proposed to simulate the occlusions on the images. To be
specific, a fixed-size square mask (cutout) or a flexible one
(erasing) are used to occlude the image region centered at a
randomly chosen position. We apply the adaptive transfor-
mation to control cutout or erasing. More specifically, we
use random cutout or erasing for the initialization. Then the
transformer learns to move the cutout mask progressively.
Each step it can be moved up, right, down, left, or stay still.
Figure 3 illustrates the five meta-movements.
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6. Experiment

The experiments include three parts: ablation study, ro-
bustness test, and comparison with state-of-the-art methods.
We evaluate AdaTransform on three different tasks: image
classification, human pose estimation, and face alignment.
We apply meta-transformations given in Table 1 for image
classification. For the other two tasks, we remove shear and
swirl due to the shifting of ground truth.

6.1. Experimental Settings

Transformer 7" and discriminator D. The transformer
and discriminator use the common networks. More specif-
ically, the transformer has the architecture of ResNet-18
[10]. Besides, we add the dropout layers after each 3 x 3
convolution layer and before the fully connected layer. The
discriminator is the same as the one in DCGAN [18].

Target network N. Different tasks have their target net-
works. In image classificatin, we use the 32-layer ResNet
(ResNet32) [10] in the ablation study. The comparisons
with state-of-the-art data augmentation method AutoAug-

Table 2: Evaluation of AdaCutout and AdaErasing using
10% training data of CIFAR-10 and CIFAR-100.

Method CIFAR-10 CIFAR-100
Cutout [6] 77.21 40.41
AdaCutout 78.02 41.02
Erasing [35] 77.25 40.53
AdaErasing 78.12 41.21

ment [4] are based on more complex models: Wide-ResNet-
28-10 [32], Shake-Shake [7] and ShakeDrop [30]. For hu-
man pose estimation and face alignment, we use the two
stacked hourglasses [15] in all the experiments.

Hyperparameters. We use two transformers for adap-
tive cutout (AdaCuout) and adaptive image transformation
(AdalmgTransform). The AdaCutout transformer is trained
with learning rate 3e-5 and weight decay le-5 whereas the
AdalmgTransform transformer has learning rate le-4 and
weight decay le-4. AdaCutout moves the occlusion mask
2 pixels each step. We set step number K = 3 for Ada-
Cutout and K = 8 for the AdalmgTransform. Besides,
AdaCutout is applied with probability 0.3 on each mini-
batch when training the target network. On the other hand,
we use AdalmgTransform on all the training data but stop it
for the last ten epochs.

Datasets. We use the benchmark datasets: CIFAR-10
and CIFAR-100 for image classification; MPII Human Pose
[1] and Leeds Sports Pose (LSP) [13] for human pose es-
timation; 300-W challenge [20] for face alignment. The
300-W test set consists of easy and challenging subsets. We
use the classification accuracy/error, Percentage of Correct
Key points (PCK), and normalized mean error (NME) as
the measurements of image classification, human pose es-
timation, and face alignment. In particular, MPII and LSP
use PCKh@0.5 and PCK@0.2.
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the better) and face alignment (right two, the lower the better). Network (V) trained using adaptive data transformation
outperform random ones with substantial margins. The performance improvements are more significant when increasing
perturbations, indicating the effectiveness in learning more robust models.

Table 3: Effect of different types of adaptive transformation
in human pose estimation. We report per-joint PCKh (%).
A single kind of adaptive transformation would improve the
performance compared with randomly performed. Jointly
applying all transformations has the best performance.

Table 4: Robustness against texture (color, brightness, con-
trast, sharpness, and hue) perturbations. We investigate
standard (top two rows) and perturbed (bottom two rows)
testing. In particular, AdaIlmgTexture is more robust against
texture perturbations.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

RandomAugment. 95.7 95.0 89.1 83.4 88.2 84.0 80.2 88.1
AdalmgTexture  95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7
AdaCutout 95.5 95.2 89.7 84.6 88.5 84.7 80.9 88.6
AdaScaleRotation 95.5 95.6 89.8 85.0 89.4 84.7 80.8 88.9
AdaAll 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3

6.2. Ablation Study

Effect of transformation steps. The transformer incre-
mentally transforms an image for several steps. It is inter-
esting to observe how test accuracy changes with the step
number. We train 6 models for each step number using 10%
CIFAR-10 training data. Figure 5 shows the mean and std of
the testing accuracy. A modest increase of step number can
produce more complex transformations, increasing testing
accuracy. However, more transformation steps are difficult
to learn and result in high model variance.

Validation of competitive and cooperative tasks. We
incrementally add each component and observe the changes
in test accuracy. Figure 4 gives the comparison of four vari-
ants. They all use eight transformation steps and the same
meta-transformation pool in Table 1. The competitive train-
ing and cooperative testing can both increase test accuracy
with different percentages of training data. In the case of
only 1% training data, the competitive training can improve
~5% accuracy on both CIFAR-10 and CIFAR-100 over the
pre-trained transformer, indicating the importance of joint
training with the target network. The cooperative testing,
on the other hand, further brings ~2% gain for the two
datasets. Even with 100% training data, they can separately

RandomAugment. 95.7 95.0 89.1 83.4 83.2 84.0 80.2 88.1
AdalmgTexture  95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7
RandomAugment. 94.4 93.9 86.9 81.5 86.7 82.0 77.0 86.3
AdalmgTexture  94.9 94.9 88.5 83.2 88.2 83.6 79.7 87.8

get ~1% improvements on both datasets.

Evaluation of AdaCutout and AdaErasing. Apart
from the above AdalmgTransform, we also evaluate Ada-
Cutout and AdaErasing. The results are given in Table 2.
Cutout and random erasing obtain similar accuracy. Ada-
Cutout and AdaErasing can both improve the baselines.

Effect of different types of adaptive transformation.
We categorize the transformations into three groups: spatial
variations (scale and rotation), occlusion (Cutout [6]), and
texture changes (image color, brightness, contrast, sharp-
ness, and hue). It may be interesting to study their separate
contributions. AdaTransform can utilize them both inde-
pendently and jointly. Table 3 gives the results on human
pose estimation. The spatial transformations bring more
improvement (0.8%) than the other two (0.5% and 0.6%),
indicating its importance in human pose estimation.

6.3. Robustness Test

In the traditional test, testing images are usually static
with no perturbations. However, in practice, an image may
be affected by many factors, such as scale and rotation. A
robust model should handle well not only the original image
but also its variants under reasonable perturbations. In this
experiment, we test models under the condition of different
scales, rotations, and texture variations of testing data. To
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Table 5: Comparison with AutoAugment [4] in terms of
image classification errors. AdaTransform has comparable
performance with all the three classifiers. However, it is
much more efficient than AutoAugment.

Model CIFAR-10 CIFAR-100

AutoAug. Ours | AutoAug. Ours

Wide-ResNet [32] 2.68 2951 17.09 17.42
Shake-Shake[7] 1.99 2.11| 1428 15.01
ShakeDrop[30] 1.48 1.72 | 10.67 11.21

Table 6: Comparison with adversarial data augmentation
[16] in human pose estimation. We use two stacked hour-
glasses and report PCKh@0.5 on MPII validation set (top)
and PCK@0.2 on LSP test set (bottom).

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
AdvAug. [16] 96.5 95.5 89.8 84.5 89.4 85.0 80.7 88.9
AdaTransform 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3
AdvAug. [16] 96.8 93.7 90.9 88.0 92.0 93.7 92.4 92.5
AdaTransform 96.9 94.1 91.0 87.8 93.0 94.5 93.3 92.9

Table 7: Comparison with adversarial data augmentation
[16] in face alignment (NME) on 300-W dataset.

Method Easy Subset  Hard Subset  Full Set
AdvAug. [16] 2.87 4.98 3.28
AdaTransform 2.82 4.96 3.24

evaluate the robustness of AdaTransform, we compare the
models trained with it and random augmentation.

Robustness against scale and rotation perturbations.
Figure 6 shows the robustness comparisons in two tasks.
AdaTransform can consistently improve testing perfor-
mance over a range of scales and rotations, especially at the
ends. In human pose estimation, we observe ~3% accuracy
increase for scales 0.7/1.3 and ~5% increase for rotations
—60°/60°. For face alignment, the large error drops ~12%
and ~2% happen at scale 0.7 and rotations —60°/60°.

Robustness against texture perturbations. To get rea-
sonable texture perturbations, we train transformer with
only discriminator using CIFAR-10. During testing, we use
15 trained transformer models to perturb the testing images.
Table 4 gives the robustness comparisons with random aug-
mentation. AdaTransform can get higher PCKh on both the
standard test and test with texture perturbations. Moreover,
the PCKh gap 1.5% in the perturbed test is much larger than
the 0.6% in the standard test.

6.4. Comparison with State-of-the-art Methods

Image classification. We first compare AdaTransform
(AdalmgTransform + AdaCutout) with state-of-the-art Au-
toAugment [4]. Table 5 shows the comparisons on both

Figure 7: Cooperative zoom-out (left) and zoom-in (right)
in human pose estimation. False positives, marked by red
circles, are detected on the original scales (top). Zoom-
out (bottom) can help detect the joints, such as head, wrist,
and ankle, falling out of scope in the original scale. Zoom-
in (bottom), on the other hand, can reduce the ambiguity
sometimes caused by the background noise.

CIFAR-10 and CIFAR-100. AdaTransform obtains compa-
rable performance as the AutoAugment. However, it needs
to train only three models. In contrast, the AutoAugment
requires to train fifteen thousand models to search the final
augmentation policy. Although each model in AdaTrans-
form may take longer to train, it is still much more efficient.

Please note that the AutoAugment cannot work if only
training several models. It is a purely reinforcement-based
method, optimizing the validation error. The trained model
number represents its search space. AdaTransform, on the
other hand, integrates the adversarial training with rein-
forcement learning, optimizing the training loss.

Human pose estimation. We also compare AdaTrans-
form with state-of-the-art adversarial data augmentation
[16] on human pose estimation. Table 6 gives the compar-
isons based on two stacked hourglasses [15]. AdaTrans-
form obtains %0.4 mean improvements on both datasets.
AdaTrasnform can search a larger transformation space by
composing multi-type meta-transformations.

Face alignment. AdaTransform and state-of-the-art ad-
versarial data augmentation [16] can both apply to face
alignment. We use two stacked hourglasses as the target
network. The results are shown in Table 7. AdaTransform
obtains %0.05 and %0.02 lower errors on the easy and chal-
lenging subsets respectively.

7. Conclusion

We have proposed AdaTransform to manipulate data
variance in bi-direction at the training and testing stages.
It can be learned efficiently by jointly optimizing a triplet
online. Experimental results on three different tasks: image
classification, human pose estimation, and face alignment
demonstrate its superior performance in network training
and testing especially when perturbations exist.
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