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Earning limits and utility limits are novel aspects in the classic Fisher market model. Sellers with earning
limits have bounds on their income and lower the supply they bring to the market if income exceeds the
limit. Buyers with utility limits have an upper bound on the amount of utility that they want to derive and
lower the budget they bring to the market if utility exceeds the limit. Markets with these properties can have
multiple equilibria with different characteristics.

We analyze earning limits and utility limits in markets with linear and spending-constraint utilities. For
markets with earning limits and spending-constraint utilities, we show that equilibrium price vectors form a
lattice and the spending of buyers is unique in non-degenerate markets. We provide a scaling-based algorithm
to compute an equilibrium in time O (n3� log(� + nU )), where n is the number of agents, � ≥ n a bound on
the segments in the utility functions, and U the largest integer in the market representation. We show how
to refine any equilibrium in polynomial time to one with minimal prices or one with maximal prices (if it
exists). Moreover, our algorithm can be used to obtain in polynomial time a 2-approximation for maximizing
Nash social welfare in multi-unit markets with indivisible items that come in multiple copies.

For markets with utility limits and linear utilities, we show similar results—lattice structure of price vectors,
uniqueness of allocation in non-degenerate markets, and polynomial-time refinement procedures to obtain
equilibria with minimal and maximal prices. We complement these positive results with hardness results for
related computational questions. We prove that it is NP-hard to compute a market equilibrium that maxi-
mizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate
satiation points for each buyer and each good.
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1 INTRODUCTION

The concept of market equilibrium is a fundamental and well-established notion in economics to
analyze and predict the outcomes of strategic interaction in large markets. Initiated by Walras
in 1874, the study of market equilibrium has become a cornerstone of microeconomic analysis,
mostly due to general results that established existence under very mild conditions [3]. Since effi-
cient computation is a fundamental criterion to evaluate the plausibility of equilibrium concepts,
the algorithmic aspects of market equilibrium are one of the central domains in algorithmic game
theory. Over the past decade, several new algorithmic approaches to compute market equilib-
ria were discovered. Efficient algorithms based on convex programming techniques can compute
equilibria in a large variety of domains [14, 27, 30]. More importantly, several approaches were pro-
posed that avoid the use of heavy algorithmic machinery and follow combinatorial strategies [19,
22, 23, 31, 35, 41] or even work as a tâtonnement process in unknown market environments [5, 13,
16]. Designing such combinatorial algorithms is useful also beyond the study of markets, since the
underlying ideas can be applied in other areas. Variants of these algorithms were shown to solve
scheduling [29] and cloud computing problems [18] or can be used for fair allocation of indivisible
items [17].
Fisher markets are a fundamental model to study competitive allocation of goods among ratio-

nal agents. In a Fisher market, there is a set B of buyers and a setG of divisible goods. Each buyer
i ∈ B has a budgetmi > 0 of money and a utility function ui that maps any bundle of goods to a
non-negative utility value. Each good j ∈ G is assumed to come in unit supply and to be sold by
a separate seller. A competitive or market equilibrium is an allocation vector of goods and a vec-
tor of prices, such that (1) every buyer spends his budget to buy an optimal bundle of goods, and
(2) supply equals demand. Fisher markets have been studied intensively in algorithmic game the-
ory. For many strictly increasing and concave utility functions, market equilibria can be described
by convex programs [24, 37]. There are a variety of algorithms for computingmarket equilibria [19,
20, 30, 42]. For linear markets, there are even algorithms that run in strongly polynomial time [35,
41]. Moreover, simple tâtonnement [13, 16] or proportional response dynamics [8, 43] converge to
equilibrium (quickly).
A common assumption in all this work is that utility functions are non-satiated, that is, the

utility of every buyer strictly increases with the amount of good allocated to it, and the utility of
every seller strictly increases with the money earned by it. Consequently, when buyers and sellers
are price-taking agents, it is in their best interest to spend their entire budget and bring all supply
to the market, respectively. In this article, we study new variants of linear Fisher markets with
satiated utility functions recently proposed in [15].
First, we consider markets in which each seller has an earning limit, which gives him an in-

centive to be thrifty in equilibrium, i.e., to possibly reduce the supply of his good in the market
to meet his earning limit under equilibrium prices. This is a natural property in many domains,
e.g., when sellers have revenue targets. Many properties of such markets are not well understood.
Interestingly, thrifty equilibria in Fisher markets with earning limits also relate closely to fair al-

locations of indivisible items. There has been a surge of interest in allocating indivisible items to
maximize Nash social welfare. Very recent work [1, 17, 26] has provided the first constant-factor
approximation algorithms for this important problem. The algorithms first compute and then clev-
erly round a thrifty equilibrium of a Fisher market with earning limits. The tools and techniques
for computing market equilibria are a key component in this approach.
In this article, we consider algorithmic and structural properties of markets with earning limits

and spending-constraint utilities. Spending-constraint utilities are a natural generalization of lin-
ear utilities with many additional applications [20, 39]. We show structural properties of thrifty
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equilibria and provide new and improved polynomial-time algorithms for computation. Moreover,
we show how these algorithms can be used to approximate Nash social welfare in markets where
each item j is provided in sj copies (where sj is a given integer). As a result, we obtain the first
polynomial-time approximation algorithms for multi-unit markets.
The second generalization of the Fisher market model that we consider has buyers with linear

utilities and utility limits. That is, there is a happiness cap ci > 0 for each buyer i , and her utility
function is ui (xi ) = min{ci ,

∑
j ∈G ui jxi j }, where xi = (xi j )j ∈G is any bundle of goods assigned to

buyer i . Such utility functions with happiness caps are also known as budget-additive utility func-
tions. They are a simple class of submodular and concave functions and a natural generalization
of the standard and well-understood case of linear utilities. These utility functions arise naturally
in cases where agents have an intrinsic upper bound on their utility. For example, if the goods
are food and the utility of a food item for a particular buyer is its calorie content, then calories
above a certain threshold do not increase the utility of the buyer. In addition, there are a variety
of further applications in adword auctions and revenue maximization problems [2, 4, 9, 11]. Re-
cently, market models where agents have linear utilities with utility limits attracted a significant
amount of research interest, e.g., for the allocation of indivisible goods in offline [2, 4, 11] and
online [9, 32] scenarios, for truthful mechanism design [10], and for the study of Walrasian equi-
librium with quasi-linear utilities [21, 25, 36]. As simple variants of submodular functions, they
capture many of the inherent difficulties of more general domains. Given this amount of interest,
it is perhaps surprising that they are not well understood within the classic Fisher and exchange
markets.
If buyers have utility limits, then it is natural to assume that they are modest and thrifty, i.e.,

do not ask for bundles whose utility exceeds their utility cap and still spend money in the most
economical way. We show that the thrifty and modest equilibria form a lattice and design two
procedures, using which we can turn any thrifty and modest equilibrium into one with smallest
prices (minimum revenue) and one with largest prices (maximum revenue), respectively. We also
give a number of hardness results for related computational questions. In particular, we prove that
it isNP-hard to compute a (not necessarily thrifty and modest) market equilibrium that maximizes
social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with
separate satiation points for each buyer and each good.

1.1 Contribution and Outline

After formal discussion of the market model, we discuss some preliminaries in Section 1.3, in-
cluding a formal condition for the existence of a thrifty equilibrium. In Section 2, we study the
structure of thrifty equilibria in markets with earning limits and thrifty and modest equilibria in
markets with utility limits. In particular, we show that the set of equilibrium price vectors always
forms a lattice. Moreover, in non-degenerate markets (for a formal definition see Section 1.3) the
spending of buyers is unique accross equilibria.
In Section 3, we focus on markets with earning limits and spending-constraint utilities and

outline a novel algorithm to compute a thrifty equilibrium in time O (n3� log(� + nU )), where
n is the total number of agents, � is the maximum number of segments in the description of
the utility functions that is incident to any buyer or any good, and U is the largest integer in
the representation of utilities, budgets, and earning limits. For linear markets, the running time
simplifies to O (n4 lognU )). Our algorithm uses a scaling technique with decreasing prices and
maintains assignments in which buyers overspend their money. A technical challenge is to
maintain rounded versions of the spending restrictions in the utility functions. The algorithm
runs until the maximum overspending of all buyers becomes tiny and then rounds the outcome to
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an exact equilibrium. Given an arbitrary thrifty equilibrium, we show how to find in polynomial
time a thrifty equilibrium with smallest prices, or one with largest prices (if it exists).
Next, we show in Section 3.3 how to round a thrifty equilibrium in linear markets with earning

limits to an allocation of indivisible goods in a multi-unit market to approximate the Nash social
welfare. In these markets, for each item j there are a number sj of available copies. The direct
application of existing algorithms [1, 17] would require pseudo-polynomial time. Instead, we show
how to adjust the rounding procedure in [17] to run in strongly polynomial time. The resulting
algorithm yields a 2-approximation and runs in time O (n4 log(nU )), which is polynomial in the
input size.
In Section 4, we turn to markets with utility limits. First in Section 4.1, we exploit the lattice

structure of thrifty and modest equilibria and design two procedures, using which we can turn
any thrifty and modest equilibrium into one with smallest prices (minimum revenue) and one
with largest prices (maximum revenue), respectively.
Next, we study two extensions in Section 4.2. When we drop the assumption of thrifty and mod-

est buyers, then we face multiple market equilibria. A natural goal is to compute an allocation that
maximizes utilitarian social welfare. We prove that this problem isNP-hard, even when social wel-
fare is measured by a k-norm of the vector of buyer utilities, for any constant k > 0. Moreover, we
consider a variant of linear utilities with a utility limit for each buyer and each good. They constitute
a special class of separable piecewise-linear concave (SPLC) utilities, where each piecewise-linear
component consists of two segments with the second one being constant. We show that even in
this very special case computing any market equilibrium becomes PPAD-hard.

1.2 Related Work

For Fisher markets we focus on some directly related work about computation of market equilibria.
For markets with linear utilities a number of polynomial-time algorithms have been derived [19,
30, 42], including ones that run in strongly polynomial time [35, 41]. For spending-constraint util-
ities in exchange markets [20] a polynomial-time algorithm was recently obtained [5]. For Fisher
markets with spending-constraint utilities, the algorithm by Vegh [41] runs in strongly polynomial
time.
Linear markets with either earning or utility limits were studied only recently [6, 15]. The equi-

libria solve standard convex programs. The Shmyrev program [37] for earning limits also applies to
spending-constraint utilities. For utility limits, the framework of [40] provides an (arbitrary) equi-
librium in time O (n5 log(nU )). For earning limits, our algorithm runs in time O (n3� log(� + nU ))
for spending-constraint and O (n4 log(nU )) for linear utilities. It computes an approximate solu-
tion that can be rounded to an exact equilibrium. An approximate solution could also be obtained
with classic algorithms for separable convex optimization [28, 33]. These algorithms have slower
running times—in particular, the algorithm of [33] obtains the required precision only in time
O (n3�2 log(�) log(� + nU )).

An interesting open problem are strongly polynomial-time algorithms for arbitrary earning
limits. A non-trivial challenge in adjusting [35] is the precision of intermediate prices. For the
framework of [41] the challenge lies in generalizing the Error-method to markets with earning
limits.
Approximating optimal allocations of indivisible items that maximize Nash social welfare

has been studied recently for markets with additive [15, 17], separable concave [1], and budget-
additive valuations [26]. Here equilibria of markets with earning limits can be rounded to yield
a 2-approximation. We extend this approach to markets with multi-unit items, where each item
j comes in sj copies (and the input includes sj in standard logarithmic coding). In contrast to the
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direct, pseudo-polynomial extensions of previous work, we show how to obtain a 2-approximation
in polynomial time.
Some of the results in this article have appeared previously in extended abstracts in the pro-

ceedings of ESA 2016 [6] and SAGT 2017 [7].

1.3 Preliminaries

In a Fisher market, there is a set B of buyers and a set G of goods. Every buyer i ∈ B has a budget
mi > 0 of money and a utility functionui . We consider two types of utility functions in this article.

Linear Utilities. The utility function ui of buyer i from a bundle xi = (xi j )j ∈G of goods is defined
as ui (xi ) =

∑
j ∈G ui jxi j , where ui j is his utility from one unit of good j and xi j is the amount of

good j assigned to this buyer.

Spending-Constraint Utilities. The utility function ui of buyer i is a spending-constraint function
given by non-empty sets of segments Ki j = {(i, j,k ) | 1 ≤ k ≤ �i j } for each good j ∈ G. Each seg-
ment (i, j,k ) ∈ Ki j comes with a utility value ui jk and a spending limit ci jk > 0. We assume that
the utility function is piecewise linear and concave, i.e., ui jk > ui j,k+1 > 0 for all �i j − 2 ≥ k ≥ 1.
W.l.o.g. we assume that the last segment hasui j�i j = 0 and ci jk = ∞. Note that a linear utility func-
tion can be viewed as a special case of spending-constraint function with only one segment and
an unlimited spending limit.
Buyer i can spend at most an amount of ci jk of money on segment (i, j,k ). We use f =

( fi jk )(i, j,k )∈Ki j to denote the spending of money on segments. f is termed money flow. A segment
is closed if fi jk = ci jk , otherwise open. For notational convenience, we let fi j =

∑
(i, j,k )∈Ki j fi jk .

Given a vector p = (pj )j ∈G of strictly positive prices for goods, a money flow results in an allo-
cation xi j =

∑
k fi jk/pj of good j. The bang-per-buck ratio of segment (i, j,k ) is αi jk = ui jk/pj . To

maximize his utility, buyer i spends his budgetmi on segments in non-increasing order of bang-
per-buck ratio, while respecting the spending limits. A bundle xi = (xi j )j ∈G that results from this
approach is termed a demand bundle and denoted by x∗i . The corresponding money flow on the
segments is termed demand flow f∗i .

Demand bundles and flows might not be unique, but they differ only on the allocated segments
with smallest bang-per-buck ratio. This smallest ratio is termed maximum bang-per-back (MBB)

ratio and denoted by αi . Note that αi is unique given p. All segments with αi jk ≥ αi are termed
MBB segments. The segments with αi jk = αi are termed active segments. We assume w.l.o.g.mi ≤∑

j,k :ui jk>0 ci jk , since no buyer would spend more.

1.3.1 Markets with Earning Limits. We consider a natural condition on seller supplies. Each
good is owned by a different seller, and the seller has a maximum endowment of 1. Seller j comes
with an earning limit dj . He only brings a supply ej ≤ 1 that suffices to reach this earning limit
under the given prices. Intuitively, while each seller has utility min{dj , ejpj }, we also assume that
he has a tiny utility for unsold parts of his good. Hence, he only brings a supply to earn dj . More
formally, the active price of good j is given by paj = min(dj ,pj ). His good is capped if paj = dj and
uncapped otherwise. A thrifty supply is ej = paj /pj , which guarantees ejpj ≤ dj , i.e., the earning
limit holds when market clears.
We consider thrifty equilibria.

Definition 1.1. A pair (x, p) is a thrifty equilibrium if (1) xi is a demand bundle under prices p
for every i ∈ B, and (2)

∑
i xi jpj =

∑
i,k fi jk = p

a
j , for every j ∈ G.

Note that when a set of strictly positive prices is fixed, the money flow f can be used to
uniquely determine the allocation x by xi j = fi j/pj , and vice versa. It turns out that every thrifty
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10:6 X. Bei et al.

equilibrium has strictly positive prices for all goods. By an abuse of notation, we also call (f , p) a
thrifty equilibrium if its corresponding allocation x and p satisfy the above conditions.

1.3.2 Markets with Utility Limits. We consider another variation with limits on the buyer’s
side. We consider linear utility functions for buyers and assume that each buyer has a util-

ity limit. That is, there is a happiness cap ci > 0 for each buyer i , and the utility function is
ui (xi ) = min{ci ,

∑
j ∈G ui jxi j }, where xi = (xi j )j ∈G is any bundle of goods assigned to buyer i . Such

utility functions with happiness caps are also know as budget-additive utility functions.
For a given price vector p and buyer i , the MBB ratio is simplified as αi = maxj ui j/pj , where we

make the assumption that 0/0 = 0. Such utilities strictly generalize linear utilities:When all ci ’s are
large enough, they are equivalent to linear utilities. If buyer i is uncapped in a market equilibrium
(x, p), then it behaves as in the linear case, spends all its budget, and buys only MBB goods (xi j > 0
only ifui j/pj = αi ). Otherwise, if buyer i is capped in (x, p), then it might buy non-MBB goods and
not spend all of its budget. This implies that unlike the case of linear utilities, market equilibrium
prices, and utilities are not unique when buyers have utility limits.
It is easy to see that we can obtain onemarket equilibrium by simply ignoring the happiness caps

and treating the market as a linear one. However, this equilibrium is often undesirable, since it is
not always Pareto-optimal. The main challenges here arise from capped buyers, who may possibly
have multiple choices for the demand bundle. Next let us introduce two convenient restrictions on
the allocation to capped buyers.

• An allocation xi for buyer i is called modest if
∑

j ui jxi j ≤ ci . By definition, for uncapped
buyers every demand bundle is modest. For capped buyers, a modest bundle of goods xi is
such that utility breaks even between the linear part and ci , i.e., ci =

∑
j ui jxi j .

• A demand bundle xi is called thrifty or MBB if it consists of only MBB goods: xi j > 0 only
if ui j/pj = αi . As noted above, for uncapped buyers every demand bundle is thrifty.

Definition 1.2. A pair (x, p) is a thrifty and modest equilibrium if (1) xi is a thrifty and modest
demand bundle under prices p for every buyer i ∈ B, and (2)

∑
i xi jpj = pj for every j ∈ G.

Note that here the equilibrium definition explicitly gives an allocation x instead of the money
flow f . This is because in markets with utility limits, an equilibrium may have some good j with
price zero. In this case, all money flows fi j are zero, but there might be positive allocation xi j > 0
toward some buyer i . In this case, deriving the allocation from money flow via xi j = fi j/pj would
not be well defined.
Thrifty and modest equilibria are desirable, because they capture the behavioral assumption

that each buyer spends the least amount of money to obtain a utility maximizing bundle of goods.
We observe below that these equilibria also have allocations x that are Pareto-optimal.

2 STRUCTURE OF EQUILIBRIA

2.1 Earning Limits

We first look at the structure of thrifty equilibria in spending-constraint Fisher markets with earn-
ing limits. Recall that, by definition, in any thrifty equilibrium uncapped goods are available in full
supply, capped goods in thrifty supply.

Proposition 2.1. Across all thrifty equilibria: (1) The seller incomes are unique, and (2) there is a

unique set of uncapped goods, and their prices are unique.
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These uniqueness properties are a direct consequence of the fact that thrifty equilibria are the
solutions of the following convex program [15]:

Max.
∑
i ∈B

∑
j ∈G

∑
(i, j,k )∈Ki j

fi jk logui jk −
∑
j ∈G

(qj logqj − qj )

s.t.
∑
j ∈G

∑
(i, j,k )∈Ki j

fi jk = mi ∀i ∈ B
∑
i ∈B

∑
(i, j,k )∈Ki j

fi jk = qj ∀j ∈ G

fi jk ≤ ci jk ∀(i, j,k ) ∈ Ki j

qj ≤ dj ∀j ∈ G
fi jk ≥ 0 ∀i ∈ B, j ∈ G, (i, j,k ) ∈ Ki j .

(1)

The incomes of sellers and, consequently, the sets of capped and uncapped goods are unique in
all thrifty equilibria. The money flow, allocation, and prices of capped goods might not be unique.
Buyers always spend all their budget, but this can be impossible when every seller must not

earn more than its limit.1 Then a thrifty equilibrium does not exist. This, however, turns out to be
the only obstruction to nonexistence.
Let B̂ ⊆ B be a set of buyers, and N (B̂) = {j ∈ G | ui j1 > 0, i ∈ B̂} be the set of goods such that

there is at least one buyer in B̂ with positive utility on its first segment for the good. The following
money clearing condition states that buyers can spend their money without violating the earning
limits.

Definition 2.1 (Money Clearing). A market is money clearing if for every subset of buyers B̂ ⊆ B
there is a flow f such that

fi j ≤
k+∑
k=1

ci jk , ∀i ∈ B̂,∀j ∈ N (B̂),k+ = max{k | ui jk > 0}
∑
i ∈B̂

fi j ≤ dj , ∀j ∈ N (B̂) and
∑

j ∈N (B̂ )

fi j ≥ mi , ∀i ∈ B̂.
(MC)

Money clearing is clearly necessary for the existence of a thrifty equilibrium. It is also sufficient,
since, e.g., our algorithm in Section 3 will successfully compute an equilibrium iff money clearing
holds. Alternatively, it can be verified that this is the unique necessary and sufficient feasibility
condition for convex program (1). It is easy to check condition (MC) by a max-flow computation.
We therefore assume that our market instance satisfies it.

Lemma 2.1. A thrifty equilibrium exists iff the market is money clearing.

Let us define some more useful concepts for the analysis. For any pair (f , p) the surplus of buyer
i is given by s (i ) =

∑
j ∈G fi j −mi , and the surplus of good j is s (j ) = paj −

∑
i ∈B fi j . The active-

segment graph G (p) is a bipartite graph (B ∪G,E) that contains edge (i, j ) iff there is some active
segment (i, j,k ). Note that there can be at most one active segment (i, j,k ) for an (i, j ). A market is
called non-degenerate if the active segment graph for any non-zero p is a forest. Non-degeneracy
can always be obtained by a perturbation of the utilities without changing the set of equilibria,
as shown in [22]. This is because the spending of a buyer on non-active MBB segments does not
change with this perturbation, and hence the market on the active segment graph is effectively a
linear market.

1Consider the example of a linear market with one buyer and one good. The utility is u11 > 0, the buyer has a budget
m1 = 2, and the good has an earning limit d1 = 1.
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2.1.1 Lattice Structure—Some Intuition. We start by providing some intuition for the structural
results in the case where all utility functions are linear, i.e., with a single segment in every Ki j .
Consider a thrifty equilibrium (f , p). Call an edge (i, j ) p-MBB if ui j/pj = αi . The active-segment
graph here simplifies to an MBB graph G (p).
We will first argue that when a connected component C of G (p) contains only capped goods

then it is possible to change the prices of goods in C while maintaining an equilibrium. Then,
using this, we argue that it is possible to merge components to arrive at an equilibrium where
each component of the MBB graph contains at least one uncapped good.
Let C be any connected component of the MBB graph. The buyers in C spend all budget on the

goods in C , and no other buyer spends money on the goods in C . Thus,
∑

i ∈C∩B
mi =

∑
j ∈C∩G

paj =
∑

j ∈C∩Gu

pj +
∑

j ∈C∩Gc

dj ,

where Gc and Gu are the sets of capped and uncapped goods, respectively.
First, assume all goods inC are capped. Let r be a positive real and consider the pair (f , p′), where

p ′j = r · pj if j ∈ C ∩Gc and p ′j = pj otherwise. Note that the allocations for any good j ∈ C ∩Gc

are scaled by 1/r . The pair (f , p′) is an equilibrium provided that all edges with positive allocation
are also p′-MBB and p ′j ≥ dj for all j ∈ C ∩Gc . This certainly holds for r > 1 and r − 1 sufficiently
small. If pj > dj for all j ∈ C , then this also holds for r < 1 and 1 − r sufficiently small. Thus, there
is some freedom in choosing the prices in components containing only capped goods even for a
fixed MBB graph. For non-degenerate instances, the money flow is unique (but not the allocation).
Now assume that there is at least one uncapped good inC , and let ju be such an uncapped good.

The price of any other good j in the component is linearly related to the price ju , i.e., pj = γjpju ,
where γj is a rational number whose numerator and denominator is a product of utilities. Thus,

∑
i ∈C∩B

mi =
∑

j ∈C∩G
paj =

∑
j ∈C∩Gu

γjpju +
∑

j ∈C∩Gc

dj ,

and the reference price is uniquely determined. All prices in the component are uniquely deter-
mined. For a non-degenerate instance the money flow and allocation are also uniquely determined.
Suppose in a component C containing only capped goods we increase the prices by a common

factor r > 1. We raise r continuously until a new MBB edge arises. If we can raise r indefinitely,
then no buyer in the component is interested in any good outside the component. Otherwise, a new
MBB edge arises, and then C is united with some other component. At this moment, the money
flow over the new MBB edge is zero. If the newly formed component contains an uncapped good,
then prices in the component are fixed and money flow is exactly as in the moment of joining
the components. Otherwise, we raise all prices in the newly formed component, and so on. If the
market is non-degenerate, then money flow is unique, and money will never flow on the newMBB
edge.
If the component contains only capped goods j with pj > dj , then we can decrease prices con-

tinuously by a common factor r < 1 until a new MBB edge arises. If no MBB edge ever arises, then
no buyer outside the component is interested in any good in the component, which allows to argue
as above.
We have so far described how the prices in a component of the MBB graph of an equilibrium

are determined if at least one good is uncapped and how the prices can be scaled by a common
factor if all goods are capped. We have also discussed how components are merged and that the
new MBB edge arising in a merge will never carry nonzero flow. Components can also be split if
they contain an edge with zero flow.
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Consider an equilibrium (f , p) and assume fi j = 0 for some edge (i, j ) of the MBB graph w.r.t. p.
LetC be the component containing (i, j ), and letC1 andC2 be the components ofC \ {i, j}. Let the
instance be non-degenerate. Hence, the MBB graph is a forest. If we want to retain all MBB edges
withinC1 andC2 and only drop (i, j ), thenwe have to either increase all prices in the subcomponent
containing j or decrease all prices in the subcomponent containing i . Both options are infeasible
if both components contain a good with price strictly below its earning limit. The first option is
feasible if the component containing j contains only goods with prices at least their earning limits.
The latter option is feasible if the component containing i contains only goods with prices strictly
larger than their earning limits. The split does not affect the money flow.
If the above described changes allow to change any equilibrium into any other equilibrium, then

money flow should be unique across all equilibria. Moreover, the set of edges carrying flow should
be the same in all equilibria. The MBB graph for an equilibrium contains these edges, and maybe
some more edges that do not carry flow. Next, we prove that this intuition captures the truth, even
for the general case of spending-constraint utility functions.

2.1.2 Lattice Structure—Formal Proofs. We characterize the set of price vectors of thrifty equi-
libria, which we denote by

P = {p | ∃f s.t. (f , p) is a thrifty equilibrium}.

For money clearing markets, we establish two results: (1) The set of equilibrium price vectors
forms a lattice and (2) the money flow is unique in non-degenerate markets. The proof relies on
the following structural properties. Given p and p′, we partition the set of goods into sets Sr =
{j | p ′j = r · pj }, for r > 0. For a price vector p, let segment (i, j,k ) be p-MBB if ui jk/pj ≥ αi and
p-active if ui jk/pj = αi . For a set T of goods and an equilibrium (f , p), let

K (T , p) = {(i, j,k ) | segment is p-MBB for some j ∈ T },
Ka (T , p) = {(i, j,k ) | fi jk > 0 for some j ∈ T and some equilibrium (f , p)},

where the sets denote the set of p-MBB segments for goods inT and the ones on which some good
in T is allocated. Note that Ka (T , p) ⊆ K (T , p).

Lemma 2.2. For any two thrifty equilibria E = (f , p) and E ′ = (f ′, p′):

(1) Ka (Sr , p) = Ka (Sr , p
′) for every r > 0, i.e., for each of the two price vectors the union of all

possible equilibrium money flows will use the same set of segments.

(2) Ka (Sr , p) = Ka (Sr , p
′) ⊆ K (Sr , p

′) ⊆ K (Sr , p) for r > 1. Similarly, Ka (Sr , p
′) = Ka (Sr , p) ⊆

K (Sr , p) ⊆ K (Sr , p
′) for r < 1.

(3) If fi jk > 0 for (i, j,k ) ∈ Ka (Sr , p) with r > 1, then (i, j,k ) is p′-MBB. If f ′
i jk
> 0 for (i, j,k ) ∈

Ka (Sr , p
′) with r < 1, then (i, j,k ) is p-MBB.

Proof. For the analysis we also consider

B (T , p) = {i | ∃(i, j,k ) ∈ K (T , p)},
Ba (T , p) = {i | ∃(i, j,k ) ∈ Ka (T , p)},

as the sets of buyers corresponding to K (T , p) and Ka (T , p), where Ba (T , p) ⊆ B (T , p).
We first focus on Sr1 with r1 = maxj p ′j/pj , i.e., the set of goods with largest factor of price in-

crease from p to p′. For any i ∈ B (Sr1 , p′), there is some (i, j,k ) ∈ K (Sr1 , p
′) such that ui jk/p ′j ≥

ui j′k ′/p
′
j′ for all p

′-active (i, j ′,k ′) with j ′ � Sr1 . Sinceui jk/pj = r1ui jk/p
′
j and r1ui j′k ′/p

′
j′ > ui j′k ′/pj′

we conclude K (Sr1 , p
′) ⊆ K (Sr1 , p).
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Next we analyze the total money spent on segments with j ∈ Sr1 by buyers in B (Sr1 , p
′), with

respect to equilibria E and E ′. Since the prices p ′j of goods j ∈ Sr1 decrease by the largest factor, the
spending on these goods in E can only increase. In fact, we have that∑

(i, j,k )∈K (Sr1,p)

fi jk ≥
∑

(i, j,k )∈K (Sr1,p)

f ′i jk , for every buyer i ∈ B. (2)

This implies ∑
j ∈Sr1

paj =
∑

i ∈B (Sr1 ,p)

∑
(i, j,k )∈K (Sr1,p)

fi jk

≥
∑

i ∈B (Sr1 ,p′)

∑
(i, j,k )∈K (Sr1,p

′)

f ′i jk =
∑
j ∈Sr1

p ′j
a . (3)

However, since p ′j > pj for every j ∈ Sr1 , this can only be fulfilled when the inequalities in Equa-
tions (2) and (3) are equalities. In particular, all goods in Sr1 must exactly reach their earning
limit in both E and E ′ (as already observed in Proposition 2.1 part 2). Moreover, in E, no i ∈
B (Sr1 , p) \ B (Sr1 , p′) can ever receive allocation from goods in Sr1 . Hence, Ba (Sr1 , p) = Ba (Sr1 , p

′).
In both E and E ′ each buyer i ∈ Ba (Sr1 , p) spends the same amount of money on Sr1 , which we

denote bymi (Sr1 ). Every buyer spends on segments in non-increasing order ofui jk/pj . This implies
that a segment is p-MBB iff it is p′-MBB. The possible allocations are the solution of a transporta-
tion problem, where each good j ∈ Sr1 receives dj flow, and each buyer i ∈ Ba (Sr1 , p) emitsmi (Sr1 )
flow, routed over the same set of MBB edges in non-increasing order of bang-per-buck ratio. Every
such allocation is a possible spending in both equilibria. This impliesKa (Sr1 , p) = Ka (Sr1 , p

′). Note
that Ka (Sr1 , p

′) ⊂ K (Sr1 , p
′) when there are two p′-active segments (i, j,k ), (i, j ′,k ′) ∈ K (Sr1 , p

′)
with fi jk = 0 and fi j′k ′ > 0.
In this sense, the spending and the way goods are allocated in p remains a feasible assignment

on p′-MBB segments. As such, we can drop the goods from S1 from consideration. Then, we can
apply the analysis in the same way for r2 = maxj�Sr1 p

′
j/pj and Sr2 . Iterative application shows the

properties for all Sr with r > 1; that is,Ka (Sr , p) = Ka (Sr , p
′) andKa (Sr , p) ⊆ K (Sr , p

′) ⊆ K (Sr , p).
Reversing the role of E = (f , p) and E ′ = (f ′, p′), we obtain the same claims for sets Sr with
r < 1. That is, Ka (Sr , p

′) = Ka (Sr , p), Ka (Sr , p) ⊆ K (Sr , p) ⊆ K (Sr , p
′). Finally, since all segments

Ka (Sr , p) = Ka (Sr , p
′) and all buyer sets Ba (Sr , p) = Ba (Sr , p

′), for every r � 1, this must also hold
for r = 1. This proves parts 1 and 2. Part 3 is a consequence of part 2—since Ka (Sr , p) = Ka (Sr , p

′),
every p-MBB segment with fi jk > 0 is p′-MBB and vice versa. This proves part 3 and concludes
the proof. �

For r = 1 and the goods S1, part 1 of the lemma impliesKa (S1, p) = Ka (S1, p
′). Inspecting part 2 of

the lemma, the reader might be tempted to believe thatK (S1, p) = K (S1, p
′) as well. This, however,

is not necessarily the case.

Example 2.1. Consider a linear market with two buyers and two goods. Buyer 1 has u11 = 15,
u12 = 1; buyer 2 has u21 = 0, u22 = 1. The budgets are m1 =m2 = 1, and the earning limits d1 =
1, d2 = ∞. Prices p = (15, 1) and p′ = (14, 1) correspond to thrifty equilibria. The flow in both
equilibria is given by f = f ′with f11 = f22 = 1 and f12 = f21 = 0. Note that S1 = {2}. NowK (S1, p) =
{(1, 2), (2, 2)} and K (S1, p

′) = {(2, 2)}. Hence K (S1, p) � K (S1, p
′), although we have Ka (S1, p) =

Ka (S1, p
′) = {(2, 2)}.

For the main result of this section, we consider the coordinate-wise comparison of price vectors,
i.e., p ≥ p′ iff pj ≥ p ′j ,∀j ∈ G. Moreover, for price vectors p and p′ we consider the supremum p

and the infimum p, i.e., p j = max(pj ,p ′j ) and p j
= min(pj ,p ′j ).
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Theorem 2.1. The pair (P, ≥) is a lattice.

Proof. Consider any two thrifty equilibria E = (f , p) and E ′ = (f ′, p′). We show that supremum
p and infimum p are price vectors of thrifty equilibria. This property implies the lattice structure.

We first consider the pair (f , p). Due to Proposition 2.1 part 2, this state is feasible with respect
to earning limits and has thrifty supplies. It remains to show that the allocation is MBB. Compared
to p, p has higher prices for the goods in Sr with r > 1. Hence the allocations to the goods in Sr
with r ≤ 1 are still MBB. Consider any good j ∈ Sr with r > 1. If fi jk > 0, then (i, j,k ) is p′-MBB by
part 3 of Lemma 2.2. Thus, ui jk/p j = ui jk/p

′
j = α ′j ≥ ui j′k ′/p

′
j′ for all p

′-active segments (i, j ′,k ′).

Since p ′j′ = p j′ for � ∈ Sr with r > 1 and p ′j′ ≤ pj = p j for j
′ ∈ Sr with r ≤ 1, we observe (i, j,k ) is

p-MBB. We conclude that (f , p) is a thrifty equilibrium.
Let us now consider the pair (f , p) with spending f defined as

f
i jk
=

{
fi jk if j ∈ Sr with r > 1
f ′
i jk

if j ∈ Sr with r ≤ 1 .

Again, the new state (f , p) is feasible with respect to earning limits and has thrifty supplies. It
remains to show that the allocation is MBB.
Consider the goods in Sr with r > 1 and a buyer i ∈ Ba (Sr , p). For prices p′, we know by part 3

of Lemma 2.2 that for buyer i every segment (i, j,k ) with fi jk > 0 is p′-MBB. Now, to reach p,

we keep prices of Sr with r ≤ 1 as in p′ and decrease the prices of Sr with r > 1 to p. As such,
i does not obtain new MBB segments for goods in Sr with r ≤ 1. For the remaining goods in Sr
with r ≥ 1, however, the allocation for i is MBB, since prices and spending for these goods are as
in equilibrium E.
Similarly, consider the goods in Sr with r < 1 and a buyer i ∈ Ba (Sr , p′). For prices p, we know

by part 3 of Lemma 2.2 that for buyer i every segment (i, j,k ) with f ′
i jk
> 0 is p-MBB. Now, to

reach p, we keep prices of Sr with r ≥ 1 as in p and decrease the prices of Sr with r < 1 to p′. As
such, i does not obtain new MBB segments for goods in Sr with r ≥ 1. For the remaining goods in
Sr with r < 1, however, the allocation for i is MBB, since rices and spending for these goods are as
in equilibrium E ′.
Finally, consider the goods in S1 and a buyer i ∈ Ba (Sr , p′) = Ba (Sr , p). Hence, since for j ∈ S1

we have pj = p ′j , a segment (i, j,k ) is p-MBB iff it is p′-MBB. Repeating the above arguments for
r > 1 and r < 1, we observe that for buyer i no newMBB segments evolve in Sr with r � 1. Hence,
the spending f

i j
is MBB for i .

We conclude that (f , p) is a thrifty equilibrium. �

Corollary 2.1. There exists a thrifty equilibrium with coordinate-wise lowest prices. Among all

thrifty equilibria, it yields the largest supply in the market and the maximum utility for every buyer.

Theorem 2.2. In a non-degenerate market, all thrifty equilibria have the same money flow.

We first observe the following fact about transportation problems on forests.

Lemma 2.3. The solution for a transportation problem on a forest is unique.

Proof. Let e = (x ,y) be any edge of the forest. Removal of e splits the tree containing e into two
sets X and Y with x ∈ X and y ∈ Y . The flow across e in the direction from x to y is

∑
u ∈X b (u) =

−∑v ∈Y b (y). Note that
∑
w ∈X∪Y b (w ) = 0.

Alternatively, we may consider any edge (x ,y) incident to a leaf x in the forest. Then the flow
across the edge (x ,y) is equal to b (x ). We add b (x ) to b (y), remove x , and iterate. �
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Proof of Theorem 2.2. Consider the equilibrium E = (f , p) with smallest prices. Suppose there
is another equilibrium E ′ = (f ′, p′)with prices p′ ≥ p. By Lemma 2.3, there are uniquemoney flows
in f and f ′ in E and E ′, respectively. Every good j ∈ S1 with pj = p ′j has inflow paj in both equilibria.
Every good with p ′j > pj has inflow dj in both equilibria due to Proposition 2.1 part 2. Every MBB
segment (i, j,k ) with fi jk > 0 remains MBB under p′ due to Lemma 2.2 part 3. Thus, f remains a
feasible flow for E ′. Since by Lemma 2.3 money flows are unique, we have f = f ′. �

The convex program implies that there is a unique income for each seller. This is consistent with
our observation that a good can have different prices in two equilibria only when income equals
its earning limit.
While existence of an equilibriumwith smallest prices is guaranteed, wemight ormight not have

an equilibrium with coordinate-wise largest prices (e.g., when all goods are capped in equilibrium,
prices can be raised indefinitely).
Consider a linear market with two buyers and two goods. Let u11 = u22 = 1, u21 = 1/2 and u12 =

0. Let m1 =m2 = 1 and d2 = 1. Then x11 = x22 = 1, x21 = 0, p1 = p2 = 1 is a thrifty equilibrium
with largest buyer utility. All thrifty equilibria have the same allocation, all have price p1 = 1, and
p2 ∈ [1, 2]. Hence, in this market (p1,p2) = (1, 2) yield largest prices and smallest buyer utility in
any thrifty equilibrium.
Now consider a linear market with a single buyer and a single good. Let u11 = 1, m1 = 1 and

d1 = 1. Then x11 = 1, p1 = 1 is a thrifty equilibrium with largest buyer utility. There are infinitely
many other equilibria x11 = 1, p1 ≥ 1, and there is no equilibrium with largest prices.

2.2 Utility Limits

Consider the following Eisenberg-Gale-type program (4), which allows us to find a modest and
Pareto-optimal allocation,

Max.
∑
i ∈B

mi log
∑
j ∈G

ui jxi j

s.t.
∑
j ∈G

ui jxi j ≤ ci i ∈ B
∑
i ∈B

xi j ≤ 1 j ∈ G

xi j ≥ 0 i ∈ B, j ∈ G .

(4)

By standard arguments, we consider the dual for Equation (4) using dual variables γi and pj for
the first two constraints, respectively, and the KKT conditions read:

(1) pj/ui j ≥ mi/ui − γi
(2) xi j > 0 ⇒ pj/ui j =mi/ui − γi
(3) pj ≥ 0 and pj > 0 ⇒ ∑

i ∈B xi j = 1
(4) γi ≥ 0 and γi > 0 ⇒ ui = ci .

Observe that the Lagrange multiplier γi indicates if the cap ci represents a tight constraint in
the optimum solution. The dual variables pj can be interpreted as prices. Note that conditions 1
and 2 imply that xi j > 0 if and only if j ∈ argminj′ pj′/ui j′ = argmaxj′ ui j′/pj′ , i.e., all agents pur-
chase goods with maximum bang-per-buck. Hence, similarly as for linear markets [38], the KKT
conditions imply that an optimal solution to the EG program (4) and corresponding dual prices
constitute a market equilibrium, in which every agent buys goods that have maximum bang-per-
buck. The KKT conditions postulate this also for agents whose utility reaches the cap. Thus, the
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optimal solution to this program is a thrifty and modest equilibrium. Furthermore, we obtain the
following favorable analytical properties.

Proposition 2.2. The optimal solutions to Equation (4) are exactly the thrifty and modest equilib-

ria. The utility vector is unique across all such equilibria and each such equilibrium is Pareto-optimal.

In particular, there is a unique set of capped buyers. Non-capped buyers spend all their money. Capped

buyers do not overspend.

Proof. We observe first that there is an interior feasible solution to Equation (4). Simply set
xi j = ϵ > 0 for all i and j, where ϵ is small enough such all constraints in Equation (4) are satisfied
with inequality. The existence of an interior feasible solution guarantees that the KKT conditions
are necessary and sufficient for an optimal solution to Equation (4).
Let x and x′ be two optimal solutions to Equation (4) and assume that uh (x) � uh (x′) for some

buyer h. Consider the allocation x′′ = (x + x′)/2. It is clearly feasible. Also,

∑
i ∈B

mi logui (x
′′) > �

�
∑
i ∈B

mi logui (x) +
∑
i ∈B

mi logui (x
′)�� /2,

a contradiction to the optimality of the allocation. The inequality follows from the concavity of
the log-function. We have now shown that the utilities of the buyers are unique among all opti-
mal solutions of Equation (4). Thus, every optimal solution to Equation (4) is thrifty, modest, and
Pareto-optimal.
Conversely, let (x, p) be a thrifty and modest equilibrium. We show that x is an optimal solution

to Equation (4). x is feasible, since it is modest and does not overallocate any good. Since xi is a
thrifty demand bundle for buyer i , we have ui j/pj = αi = max� ui�/p� whenever xi j > 0. Thus

mi ≥
∑
j

pjxi j =
∑
j

ui j

αi
xi j =

ui (x)

αi
,

and hencemi/ui (x) ≥ 1/αi . Let γi =mi/ui − 1/αi . Then γi ≥ 0. We show that the KKT conditions
hold. For any j, we have pj/ui j ≥ 1/αi =mi/ui − γi . If xi j > 0, then pj/ui j = 1/αi =mi/ui − γi .
Prices are non-negative by definition and pj > 0 implies that good j is completely allocated by
Walras’s law. Finally, assume γi > 0. Thenmi/ui (x) > 1/αi and hence

mi >
ui (x)

αi
=

∑
j ui jxi j

αi
=
∑
j

pjxi j ,

where the first equality follows from the fact that the allocation is modest. Let δ =mi/
∑

j pjxi j .
Then buyer i could afford the bundle δxi . Since xi is a demand bundle for buyer i , we must have
ci ≤

∑
j ui jxi j . Since the allocation is modest, we have equality. �

While utilities are unique, allocation and prices of thrifty and modest equilibria might not be
unique. Consider a market with two identical buyers and two goods, whereu11 = u12 = u21 = u22 =
1, c1 = c2 = 1, andm1 =m2 = 5. The unique equilibrium utility of both buyers isu1 = u2 = 1, which
can be obtained for anyp1 = p2 = p, wherep ∈ [0, 5] and allocation x satisfying x11 + x12 = 1; x21 +
x22 = 1; x11 + x21 = 1; x12 + x22 = 1.

2.2.1 Lattice Structure. Our proofs roughly proceed along the lines of Section 2.1, however,
with several notable differences. We characterize the set of price vectors of thrifty and modest
equilibria, for which we again use the notation

P = {p | ∃x s.t. (x, p) is a thrifty and modest equilibrium }.
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For markets with utility limits, we establish three results, which in part mirror the results for
earning limits above: (1) For utility limits, the market decomposes into the market for the goods
G0 that have price zero in every equilibrium and the market for the remaining goods. (2) The set
of equilibrium price vectors forms a lattice. (3) The allocation of the goods in G \G0 is unique in
all nondegenerate markets.

Theorem 2.3. Let G0 be the goods that have price zero in every equilibrium and let B0 be the set

of buyers that have positive utility for some good in G0. Then

P(B,G ) = P(B\B0,G\G0 ) × P(B0,G0 ) .

Proof. Let (x, p) be an equilibrium for the market with buyers B \ B0 and goods G \G0 and
(x′, 0) be an equilibrium for the market with buyers B0 and goods G0. Then ((x, x′), (p, 0)) is an
equilibrium for the market with buyers B and goods G. We only have to show that all allocations
are along MBB edges. This is true for the goods in G0 as the price of these goods is zero. This is
also true for the goods in G \G0 as the buyers in B \ B0 have utility zero for the goods in G0.
Conversely, let (x, (p, 0)) be an equilibrium for the market with buyers B and goodsG. We need

to show that no good in G \G0 is allocated to a buyer in B0. Assume otherwise, say, xi j > 0 for
i ∈ B0 and j ∈ G \G0. Let (x′, p′) be an equilibrium for a price vector in which the good of price
j is positive. In the equilibrium ((x + x′)/2, (p + p′)/2), j is partially allocated to i , j has a positive
price, and the goods in G0 have price zero. This contradicts the fact that i has nonzero utility for
some good in G0. �

For the other results, we again show a structural lemma. Given p and p′, we here rely on a
partition of the set of goods into three sets: S= = {j | pj = p ′j }, S< = {j | pj < p ′j } and S> = {j | pj >
p ′j }. For a price vector p, call (i, j ) p-MBB if ui j/pj = αi . For a set T of goods and an equilibrium
(x, p), we again a notation similar as in the proof of Lemma 2.2. More concretely, we use

B (T , p) = {i | (i, j ) is p-MBB for some j ∈ T },
Ba (T , x) = {i | xi j > 0 for some j ∈ T },
Ba (T , p) = {i | xi j > 0 for some j ∈ T and some equilibrium (x, p)},

to denote the set of buyers who are connected toT through an p-MBB edge, who are allocated some
good in T , and who are some good in T in some equilibrium (x, p). Clearly Ba (T , x) ⊆ Ba (T , p) ⊆
B (T , p).

Lemma 2.4. Given any two thrifty and modest equilibria E = (x, p) and E ′ = (x′, p′), we have

(1) Ba (S=, p) = Ba (S=, p
′), Ba (S<, p) = Ba (S<, p

′), and Ba (S>, p) = Ba (S>p
′), i.e., the goods are

allocated to the same set of buyers in both equilibria.

(2) Ba (S=, p),Ba (S<, p), and Ba (S>, p) as well as Ba (S=, p
′),Ba (S<, p

′), and Ba (S>, p
′) are mu-

tually disjoint.

(3) Ba (S<, x) = Ba (S<, x
′) = Ba (S<, p

′) = Ba (S<, p) = B (S<, p
′) ⊆ B (S<, p) and Ba (S>, x) =

Ba (S>, x
′) = Ba (S>, p

′) = Ba (S>, p) = B (S>, p) ⊆ B (S>, p
′)

(4) All buyers in Ba (S<, p) and Ba (S>, p) are capped buyers in both equilibria.

(5) If xi j > 0 for i ∈ Ba (S<, p), then (i, j ) is p′-MBB. If x ′i j > 0 for i ∈ Ba (S>, p′), then (i, j ) is
p-MBB.

Proof. We first focus on S< , the set of goods whose prices strictly increase from p to p′. For
any i ∈ Γ(S<, p′), there is some j ∈ S< such thatui j/p ′j ≥ ui�/p

′
�
for all � � S< . Sinceui j/pj > ui j/p

′
j

and ui�/p ′� ≥ ui j/p� we conclude
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(a) No edge (i, j ) is p-MBB for i ∈ B (S<, p′) and j � S< , and
(b) B (S<, p

′) ⊆ Ba (S<, x). Indeed, for every buyer i ∈ B (S<, p′) all incident p-MBB edges con-
nect it to a good in S< by part (a) and every buyer has at least one incident edge with positive
allocation.

Next we analyze the total money spent on goods in set S< by buyers in B (S<, p
′), with respect

to equilibria E and E ′. Due to fact (a), buyers in B (S<, p
′) buy only goods in the set S< in E. Thus,∑

i ∈B (S<,p′)
ma

i =
∑

i ∈B (S<,p′)

∑
j ∈S<

xi jpj ,

wherema
i is the money spent by buyer i in E. Letma

i
′ be the money spent by buyer i in E ′. Consider

any buyer i ∈ B (S<, p′). If i is uncapped in E, then clearlyma
i
′ ≤ mi =m

a
i . If i is capped in E, then

he spends
∑

j ∈S< xi jpj and obtains utility ci . In E ′, the cost of this bundle is
∑

j ∈S< xi jp
′
j and hence

i spends at most this amount. Hence, the total increase of spending of buyers in B (S<, p
′) from p

to p′ will be no more than∑
i ∈B (S<,p′)

(ma
i
′ −ma

i ) ≤
∑

i∈B (S<,p′)
i is capped in E

(ma
i
′ −ma

i )

≤
∑

i∈B (S<,p′)
i is capped in E

∑
j ∈S<

(xi jp
′
j − xi jpj ).

Further, due to the definition of B (S<, p′) and the fact that (x′, p′) is a market equilibrium, we have∑
j ∈S<

p ′j ≤
∑

i ∈B (S<,p′)
ma

i
′.

Combining these inequalities, we obtain∑
j ∈S<

p ′j ≤
∑

i ∈B (S<,p′)
ma

i
′ (5)

=
∑

i ∈B (S<,p′)
ma

i +
∑

i∈B (S<,p′)
i is uncapped in E

(ma
i
′ −ma

i ) +
∑

i∈B (S<,p′)
i is capped in E

(ma
i
′ −ma

i )

≤
∑

i ∈B (S<,p′)

∑
j ∈S<

xi jpj +
∑

i∈B (S<,p′)
i is capped in E

∑
j ∈S<

(xi jp
′
j − xi jpj ) (6)

=
∑
j ∈S<

�����
�

∑
i∈B (S<,p′)

i is capped in E

xi j

�����
�
p ′j +

∑
j ∈S<

�����
�

∑
i∈B (S<,p′)

i is uncapped in E

xi j

�����
�
(
p ′j + (pj − p ′j )

)

=
∑
j ∈S<

∑
i ∈B (S<,p′)

xi jp
′
j −

�����
�

∑
i∈B (S<,p′)

i is uncapped in E

xi j

�����
�
(p ′j − pj )

≤
∑
j ∈S<

p ′j . (7)

We must have equality throughout. Equality (5) implies that the buyers in B (S<, p
′) spend all

their money on goods in S< in equilibrium E ′. Thus any good outside S< allocated to a buyer in
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B (S<, p
′) would have to have price zero in p′. Since it is impossible that a buyer has MBB edges to

a good of price zero and a good of positive price, it follows that goods outside S< are completely
allocated to buyers outside B (S<, p′). Hence Ba (S<, p′) = B (S<, p

′) and B (S<, p
′) is disjoint from

Ba (S=, p
′) ∪ Ba (S>, p′). Equality (6) implies that buyers in B (S<, p

′) that are uncapped in E are
also uncapped in E ′ and those that are capped in E spend

∑
j ∈S< xi jp

′
j in E ′ and hence can afford a

bundle of utility ci ; thus, they are also capped in E ′. Equality (7) implies∑
i ∈B (S<,p′)

xi j = 1 and
∑

i∈B (S<,p′)
i is uncapped in E

xi j = 0 (8)

for all j ∈ S< , i.e., in equilibrium E the goods in S< are completely allocated to capped buyers in
B (S<, p

′). Thus, Ba (S<, p) ⊆ B (S<, p
′), and all buyers in Ba (S<, p) are capped in E, and, by the

above, also in E ′. Combining the inclusions among Ba (S<, p), B (S<, p), Ba (S<, p′), and B (S<, p
′),

we obtain Ba (S<, p) = Ba (S<, p
′) = B (S<, p

′) ⊆ B (S<, p). The latter inclusion may be proper as
Example 2.3 shows.
Since the buyers in Ba (S<, p) are capped in E and they achieve their cap by the allocation of

goods in S< , these buyers are not assigned any goods from S= ∪ S> . Thus Ba (S<, p) is disjoint
from Ba (S=, p) ∪ Ba (S>, p).
We next exploit thatma

i
′ =
∑

j ∈S< xi jp
′
j for i ∈ B (S<, p′) and that these buyers are capped in E ′.

Let α ′i be the MBB-ratio for i in E ′. Then α ′i = ci/m
a
i
′ ≥ ui j/p

′
j for all j and hence (note thatm

a
i
′ > 0

and therefore 0 < α ′i < ∞),

ci = α ′im
a
i
′
= α ′i

∑
j ∈S<

xi jp
′
j ≤ α ′i

∑
j ∈S<

xi jui j/α
′
i = ci .

The inequality is thus an equality, and we conclude that xi j > 0 implies that (i, j ) is p′-MBB for
i ∈ Γ(S<, p′).

Reversing the role of (x, p) and (x′, p′), we obtain the same claims for set S> . That is, Ba (S>, p) =
Ba (S>, p

′), Ba (S>, p) has no overlap with Ba (S=, p) ∪ Ba (S<, p), B1 (S>, p
′) has no overlap with

Ba (S=, p
′) ∪ Ba (S>, p′), all buyers in Ba (S>, p) are capped buyers in both equilibria, and x ′i j > 0

implies that (i, j ) is p-MBB for i ∈ B (S>, p).
By the above, the sets Ba (S<, p), Ba (S=, p),Ba (S>, p) as well as the sets B1 (S<, p

′),
Ba (S=, p

′),Ba (S>, p
′) are disjoint and hence are partitions of the set of buyers. Since the first and

last sets in both partitions are the same, the middle set is also the same.
Clearly, Ba (S<, x) ⊆ Ba (S<, p), Ba (S>, x) ⊆ B1 (S>, p), and Ba (S=, x) ⊆ Ba , (S=, p). Since the sets

on the right are disjoint and the union of the sets on the left is equal to the set of buyers, we must
have equality. The same argument holds true for the primed vectors.
This concludes the proof. �

The lattice structure applies again with respect to the coordinate-wise comparison, i.e., p ≥ p′

iff pj ≥ p ′j for all j ∈ G.

Theorem 2.4. The pair (P, ≥) is a lattice.

Proof. Consider any two thrifty andmodest equilibria (x, p) and (x′, p′). We again consider the
supremum p and the infimum p for the price vectors, i.e., p j = max(pj ,p ′j ) and p j

= min(pj ,p ′j ). We

show that p and p are price vectors of thrifty and modest equilibria.

We first show that (x, p) is a thrifty and modest equilibrium. We only need to show that all
allocations are MBB. Compared to p, p has higher prices for the goods in S< . Hence, the allocations
to the goods in S= ∪ S> are still MBB. Consider any good j ∈ S< . If xi j > 0, then (i, j ) is p′-MBB
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by part 4 of Lemma 2.4. Thus, ui j/p j = ui j/p
′
j = α ′j ≥ ui�/p

′
�
for all �. Since p ′

�
= p� for � ∈ S< and

p ′
�
≤ p� = p� for � ∈ S= ∪ S> , we conclude that (i, j ) is p-MBB.
We next show that (x, p) is a thrifty and modest equilibrium, where x is defined as

x i j =

{
xi j if j ∈ S<
x ′i j if j ∈ S= ∪ S> .

Goods are allocated as in one of the equilibria and hence no good is overallocated and goods with
positive price are completely allocated. We only need to show that the allocation is MBB. Consider
any edge (i, j ) with x i j > 0. We need to show (*) ui j/p

j
≥ ui�/p

�
for all �.

Assume first that j ∈ S< and hence i ∈ Ba (S<, p) = Ba (S<, p
′), where the equality is by part 1

of Lemma 2.4. This means we have x i j = xi j > 0 and there exists some j ′ ∈ S< such that x ′i j′ > 0.
Since xi j > 0 we have ui j/pj ≥ ui�/p� for all �. This establishes (*) for � ∈ S< ∪ S=. For � ∈ S> , we
have ui j/p

j
= ui j/pj ≥ maxk ∈S< {uik/pk } ≥ maxk ∈S< {uik/p ′k } = ui j′/p

′
j′ ≥ ui�/p

′
�
= ui�/p

�
.

Assume next that j ∈ S> and hence i ∈ Ba (S>, p′) = Ba (S>, p
′). We use the same argument as

above.We havep
j
= p ′j , x i j = x ′i j > 0, and there exists some j ′ ∈ S> such thatxi j′ > 0. Since x ′i j > 0,

we have ui j/p ′j ≥ ui�/p
′
�
for all �. This establishes (*) for � ∈ S> ∪ S=. For � ∈ S< , we have ui j/p

j
=

ui j/p
′
j = maxk ∈S> {uik/p ′k } ≥ maxk ∈S> uik/pk = ui j′/pj′ ≥ ui�/p� = ui�/p

�
.

Finally, for j ∈ S= and hence i ∈ Ba (S=, p′) = Ba (S=, p). Then p
j
= pj = p

′
j ,x i j = x ′i j > 0, and

there exists some j ′ ∈ S= such that xi j′ > 0. Since x ′i j > 0 we have ui j/p
′
j ≥ ui�/p

′
�
for all �.

This establishes (*) for � ∈ S> ∪ S=. For � ∈ S< , we have ui j/p
j
= ui j/p

′
j = maxk ∈S= {uik/p ′k } =

maxk ∈S= uik/pk = ui j′/pj′ ≥ ui�/p� = ui�/p
�
.

We conclude that (x, p) is a thrifty and modest equilibrium. �

Corollary 2.2. There exists a thrifty and modest equilibrium with coordinate-wise highest (re-

spectively, lowest) prices. It yields the maximum (respectively, minimum) revenue for the seller among

all thrifty and modest equilibria.

Example 2.2. Consider the following market with two buyers and two goods. Let u11 = u12 =
u22 = 1 andu21 = 0. Letm1 =m2 = 1 and c1 = 1. Then x11 = x22 = 1, x12 = 0,p1 = p2 = 1 is a thrifty
and modest equilibrium with maximum revenue. A thrifty and modest equilibrium with minimum
revenue has the same allocation and p1 = 0 and p2 = 1.

Example 2.3. Consider the following market with two buyers and two goods. Let u11 = u21 =
1,u22 = 2 andu12 = 0. Letm1 =m2 = 1 and c1 = c2 = 1. Then x11 = 1, x22 = 1/2, x21 = 0, p′ = (1, 0)
is a thrifty and modest equilibrium with maximum revenue. A thrifty and modest equilibrium
with minimum revenue has the same allocation and p = (0, 0). Then S< = {1}, Γ(S<, p′) = {1}, and
Γ(S<, p) = {1, 2}.

To show our uniqueness result, we again need Lemma 2.3 on unique solutions for a transporta-
tion problem in a forest.

Theorem 2.5. LetG0 be the goods that have prize zero in all equilibria and assume that the instance

is non-degenerate. The allocation of the goods inG \G0 is unique.

Proof. Let B0 be the buyers that have positive utility for some good inG0. By Theorem 2.3, the
goods in G0 are allocated to the buyers in B0 and the goods in G \G0 are allocated to the buyers
in B \ B0. We may therefore assume that G0 is empty. We use induction on the number of goods.

Due to Theorem 2.4, there is an equilibrium vector of maximum prices. We here denote it by p.
For each equilibrium price vector q � p, we consider the set S = {j | qj < pj }. We denote the set of
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these sets by

S = {S | S � ∅ and there is an equilibrium price vector q with qj < pj iff j ∈ S }.

Assume first that S is empty. Then either the market is empty, i.e., no goods and no buyers, or
all prices and all budgets are fixed. Thus the money flow is unique by Lemma 2.3 and hence the
allocation is fixed.
Assume next that S is nonempty. Let S be a minimal element (under set inclusion) of S. Then

S ⊆ S ′ or S ∩ S ′ = ∅ for all S ′ ∈ S. Assume otherwise, so there is S ′ in S such that ∅ � S ∩ S ′ and
S ∩ S ′ is a proper subset of S . Let q and q′ be price vectors defining S and S ′. Observe thatmax(q, q′)
is an equilibrium price vector; it defines S ∩ S ′. This represents a contradiction to the minimality
of S .
We apply Lemma 2.4 to p and p′ = q. Then S< = ∅ and S> is the set of goods j with qj < pj . Let

x and x′ be allocations compatible to p and p′, respectively. �

Claim 2.1. There is a real β < 1 such that p ′j/pj = β for all j ∈ S> .

Proof. Assume otherwise and consider the price vector r defined as

r j =

{
pj if j � S>
γp ′j if j ∈ S> ,

where γ > 1 is such that r ≤ p. We show that (x′, r) is a thrifty and modest equilibrium. We only
need to show that all allocations are MBB. Consider any pair (i, j ) with x ′i j > 0. If j � S> , then the
allocation is MBB, since r j = p ′j and r ≥ p′. If j ∈ S> , then (i, j ) is p-MBB by Part 5 of Lemma 2.4.
Thus ui j/pj ≥ ui�/p� for all � and hence ui j/r j ≥ ui j/pj ≥ ui�/p� = ui�/r� for � � S> . For � ∈ S> ,
we have ui j/(γp ′j ) = (1/γ )ui j/p ′j ≥ (1/γ )ui�/p ′� .

Consider now the minimal γ for which γp ′j = pj for some j. Then the price vector r implies that
a proper non-empty subset of S belongs to S, a contradiction. �

Since Ba (S>, x′) = B (S>,p) for every equilibrium (x′, r) by Part 3 of Lemma 2.4, the sum of the
prices of the goods in S> must be equal to the budgets of the buyers in B (S>, p) for every γ . The
prices of the goods in S> and the budgets of the buyers in B (S>, p) scale with γ . For every fixed
γ , the money flow is unique by Lemma 2.3. Moreover, it scales with γ . Thus the allocation of the
goods in S> to the buyers in B (S>, p) is unique for all price vectors r.

We have now shown that the allocation of the goods in S = S> is unique for all price vectors
where only the prices of the goods in S are decreased. Consider now a price vector q′ where the
prices of the goods in S and some other goods are decreased. As above, let q be a price vector where
only the prices of the goods in S are decreased. We may assume q′j ≤ qj for all j ∈ S> , because we
already showed that with respect to q, the prices of the goods in S> can be scaled up. Let x and
x′ be allocations compatible with q and q′. In the proof that P is an upper lattice, we showed that
(x′,max(q, q′)) = (x′, q) is an equilibrium. Since, with respect to q, the allocation of the goods in
S> is unique, x ′i j = xi j for all j ∈ S> . We have now shown that the allocation of the goods in S> is
unique across all equilibria.
We remove the goods in S> and the buyers in B (S>, p) from the market. Note that the allocation

of the goods in S> to the buyers in B (S>, p) satiates the buyers and they need no further allocation.
By induction hypothesis, the allocation in the market (B \ B (S>, p),G \ S> ) is unique. Thus, the
overall allocation is unique.
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3 ALGORITHMS FOR MARKETS WITH EARNING LIMITS

3.1 Scaling Algorithm to Compute a Thrifty Equilibrium

In this section, we propose and discuss a polynomial-time scaling algorithm to compute a thrifty
equilibrium. We begin with defining some useful tools and concepts. The active-segment net-

work N (p) = ({s, t } ∪ B ∪G,E) contains a node for each buyer and each good, along with two
additional nodes s and t . It contains every edge (s, i ) for i ∈ B with capacity mi − cci , where
cci =

∑
(i, j,k ) closed ci jk . Also, it contains every (j, t ) for j ∈ G with capacity paj − ccj , where ccj =∑

(i, j,k ) closed ci jk . It contains edge (i, j ) with infinite capacity iff there is some active segment
(i, j,k ). Finally, the active-residual networkGr (f , p) contains a node for each buyer and each good.
It contains forward edge (i, j ) iff there is some active segment (i, j,k ) with fi jk < ci jk and contains
backward edge (j, i ) iff there is some active segment (i, j,k ) with fi jk > 0. Moreover, Gr (f , p, i ) is
the subgraph of Gr (f , p) induced by the set of all buyers i ′ ∈ Gr (f , p) such that there is an aug-
menting path from i ′ to i .

Our algorithm uses Δ-discrete capacities ĉi jk = �ci jk/Δ� · Δ for all i ∈ B, j ∈ G and (i, j,k ) ∈ Ki j ,
where we iteratively decrease Δ. Initially, the algorithm overestimates the budget of buyer i , where
it assumes the buyer has rΔmoney and every segment has Δ-discrete capacities. Then fi is a (Δ, r )-
discrete demand for buyer i iff it is a demand flow for buyer i under these conditions.
We also adjust the definitions of MBB ratio, active segments, active-segment graph, network,

and residual network to the case of Δ-discrete capacities. We denote these adjusted versions by α̂ ,
Ĝ (p), N̂ (p), Ĝr (f , p), and Ĝr (f , p, j ), respectively.
Finally, we make a number of assumptions to simplify the stated bound on the running time.

We assumew.l.o.g. that |B | = |G | (by adding dummy buyers and/or goods) and definen = |B | + |G |.
Moreover, we letKi =

⋃
j ∈G Ki j andKj =

⋃
i ∈B Ki j and assume w.l.o.g. that � = |Ki | = |Kj | ≥ n for

every buyer i and every good j (by adding dummy segments with 0 utility).
Algorithm 1 computes a thrifty equilibrium in polynomial time.We call a run of the outer while-

loop a Δ-phase. The precision parameter Δ is halved in each phase until it is decreased to exponen-
tially small size. Then a final rounding procedure PostProcessing rounds the solution to an exact
equilibrium. In each Δ-phase, the surplus of all buyers is decreased to at most Δ by decreasing
prices and rerouting flow.
For the analysis, we use the following notion of Δ-feasible solution.

Definition 3.1. Given a value Δ > 0, a pair (f , p) of flow and prices with p ≥ 0 and f ≥ 0 is a
Δ-feasible solution if

• �Δ ≤ s (i ) ≤ (� + 1)Δ,∀i ∈ B.
• ∀j ∈ G: If pj < p0j , then 0 ≤ s (j ) ≤ Δ. If pj = p0j , then −∞ < s (j ) ≤ Δ.
• f is Δ-integral, and fi jk > 0 only if (i, j,k ) is a closed or open MBB segment w.r.t. Δ-

discretized capacities.

For the running time, note that prices are non-increasing. Once a capped good becomes un-
capped, it remains uncapped. We refer to an execution of the repeat loop in Algorithm 1 as an
iteration. After the initialization, there may be goods j for which dj is smaller than the initial value
of Δ and that receive flow from some buyer. As long as their surplus is negative, these goods keep
their initial price. The following observations are useful to prove a bound on the running time. We
also observe that the precision of prices and flow values is always bounded.

Lemma 3.1. Once the surplus of a good is non-negative, it stays non-negative. If the surplus of a

good is negative, then its price is the initial price.
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ALGORITHM 1: Scaling Algorithm for Markets with Earning Limits

Input: Fisher marketM with spending constraint utilities and earning limits
Budgetmi , earning limits dj , and parameters ui jk , ci jk
Output: Thrifty equilibrium (f , p)

1 Δ← U n+1∑
i ∈Bmi ; p0j ← n(� + 1)Δ,∀j ∈ G; p← p0

2 fi ← (Δ, � + 1)-discrete demand for buyer i

3 while Δ > 1/(2�(2nU )4n ) do
4 Δ← Δ/2;

5 for each closed segment (i, j,k ) do fi jk ← �ci jk/Δ� · Δ
6 for each i ∈ B with s (i ) > (� + 1)Δ do

7 Pick any active segment (i, j,k ) with fi jk > 0 and set fi jk ← fi jk − Δ
8 while there is a good j ′ with s (j ′) > Δ do // Δ-phase
9 repeat // iteration

10 (B̂, Ĝ ) ← Set of (buyers, goods) in Ĝr (f , p, j ′)
11 x ← 1; Define pj ← xpj ,∀j ∈ Ĝ // active prices & surpluses change, too

12 Decrease x continuously down from 1 until one of the following events occurs

13 Event 1: s (j ′) = Δ

14 Event 2: s (j ) ≤ 0 for a j ∈ Ĝ
15 P ← path from j to j ′ in Ĝr (f , p, j ′) // Δ-augmentation

16 Update f : fi jk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fi jk + Δ if (i, j ) is a forward arc in P
fi jk − Δ if (i, j ) is a backward arc in P
fi jk otherwise

17 Event 3: A capped good becomes uncapped

18 Event 4: New active segment (i, j,k ) with i � B̂, j ∈ Ĝ, fi jk < ĉi jk
19 until Event 1 or 2 occurs

20 (f , p) ← PostProcessing(f , p)

Proof. The surplus of a good can only decrease if its price decreases or if additional money flow
is pushed into it—in particular, observe that the adjustment of the flow to Δ-discrete capacities only
increases the surplus of each good. If additional money flow is pushed into a good, then its surplus
before the push is at least Δ. Hence, it is non-negative after the push. Price decreases stop once
there is a good with a non-positive surplus, so a non-negative surplus cannot become negative. �

Lemma 3.2. The first run of the outer while-loop in Algorithm 1 takesO (n3�) time, every subsequent

one takes O (n2�) time. At the end of each Δ-phase, the pair (f , p) is a Δ-feasible solution.

Proof. After initialization, all buyers have surplus �Δ ≤ s (i ) ≤ (� + 1)Δ, and all goods have
surplus s (j ) ≤ n(� + 1)Δ. In the beginning of the outer while-loop, we reduce Δ to half and adjust
the flow to Δ-discrete capacities. Due to reduction of Δ, all buyers have surplus 2�Δ ≤ s (i ) ≤ 2(� +
1)Δ, and all goods have surplus s (j ) ≤ 2n(� + 1)Δ. Due to adjustment of the flow to Δ-discrete
capacities, s (i ) decreases by at most �Δ, and s (j ) increases by at most �Δ, for every i ∈ B, j ∈ G. This
results in �Δ ≤ s (i ) ≤ 2(� + 1)Δ and s (j ) ≤ 2n(� + 1)Δ + �Δ. In the following loop, we reduce the
surplus of all buyers to �Δ ≤ s (i ) ≤ (� + 1)Δ, which takes at most n(� + 1) iterations. This implies
that every buyer surplus satisfies the conditions of a Δ-feasible solution. Every buyer surplus stays
unchanged in the Δ-phase. In the subsequent Δ-phase, we reduce the surplus of every good to
at most Δ. All prices are non-increasing; hence, without flow adjustment, all surpluses of goods
are non-increasing. In a flow adjustment along path P , we keep every surplus of intermediate
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ALGORITHM 2: PostProcessing(f , p)

Input: ε-feasible solution (f , p) for ε = 1/(2�(2nU )4n )
Output: Market equilibrium (f ′, p′)

1 Ĝ (p) = (B ∪G,E) ← active-segment graph at p w.r.t. Δ-discrete capacities ĉi jk
2 while ∃ a component C in Ĝ (p) s.t. all goods are capped do

3 x ← 1; Define prices as pj ← xpj ,∀j ∈ C ∩G
4 Decrease x continuously down from 1 until one of the following events occurs

5 Event 1: A capped good becomes uncapped

6 Event 2: A new segment (i, j,k ) becomes active // components merge

7 Recompute active-segment graph Ĝ (p) and let C be the set of its components

8 Let Kc be the set of closed segments in (f , p) w.r.t. Δ-discrete capacities

9 ĉcj ←
∑

(i, j,k )∈Kc ĉi jk for every j ∈ G
10 ĉci ←

∑
(i, j,k )∈Kc ĉi jk for every i ∈ B

11 for each component C ∈ C do

12 Set prices p as solution of the following system of equations

13 (1) ui jkpj′ = ui j′k ′pj (for active segments from a buyer i to goods j and j ′)
14 (2)

∑
j ∈C∩G (paj − ĉ

c
j ) −
∑
i ∈C∩B (mi − ĉci ) =

∑
u ∈C s (u) (sum of surpluses)

// −n(� + 1)Δ ≤ s (u) ≤ (� + 1)Δ

15 Let Ap = b be the matrix form of the above system

16 Let Ap′ = b′ be the system where b′ is obtained from b after substituting s (u) = 0 and using ccu based

on original ci jk , for all u ∈ B ∪G
17 f ′ ← maximum s-t-flow in network N (p′)
18 return (f ′, p′)

goods the same. We reduce the surplus of good j ′ and increase the surplus of good j by Δ. Since
good j has non-positive surplus, this never increases the surplus beyond Δ. Since good j ′ has
surplus more than Δ, this never makes the surplus of good j ′ negative. Hence, in the first Δ-phase
there can be at most n iterations that terminate with Event 1, and at most 2n2 (� + 1) + n� that
terminate with Event 2. Furthermore, since prices are decreasing, Event 3 happens at most n times
overall. Moreover, since the residual networkGr expands at mostn times by including a new buyer,
Event 4 happens at most n times in each iteration. Overall, the first Δ-phase takes time at most
n(� + 1) + n(n + 2n2 (� + 1) + n�) + n = O (n3�).

Note that at the end of the Δ-phase, we have a Δ-feasible solution. The conditions for the surplus
of all buyers hold, since they were unchanged during the Δ-phase. By Lemma 3.1, we have negative
surplus only for goods whose price has not been touched in the process. By termination of the Δ-
phase, it follows that every good surplus satisfies the conditions of Δ-feasible solution.
Hence, in every subsequent run of the outer while-loop, we start with s (j ) ≤ Δ for all goods.

After adjustment of Δ and the flow to Δ-discrete capacities, we have s (j ) ≤ (� + 2)Δ for every j ∈ G
and �Δ ≤ s (i ) ≤ 2(� + 1)Δ for every i ∈ B. The next for-loop then guarantees s (i ) ≤ (� + 1)Δ for
all buyers. By repeating the arguments above, the following Δ-phase takes time O (n2�). �

In addition to the running time, we also show that the precision of intermediate prices and flow
values is bounded.

Lemma 3.3. If all budgets, earning limits and utility values are integers bounded by U , then all

flow values and prices at the end of each iteration are rational numbers whose denominators are at

most poly (1/Δ,n,U n ).
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Proof. Note that the flow values are always Δ-integral, and hence they are rational numbers
with the desired size. Also, the starting prices are rational numbers of the desired size. At the
end of each iteration, one of the four events occurs. In all cases, we show that the prices remain
polynomially bounded if they are so at the beginning of the iteration. This will complete the proof.
In case of Event 3, a capped good j becomes uncapped, so pj = dj and the ratio of any other price

in the active component and pj can be written as the ratio of products of at most n utility values.
Hence, they are polynomially bounded. The other prices are not touched, so they remain same.
In case of Event 4, a new active segment arises, and therefore we can again write any price

in the active component in terms of a price variable that has not been touched. All prices are
polynomially bounded.
Event 1 can happen only if pa

k
= pk . In that case, pk is Δ-integral and all other prices in the active

component can be expressed in terms of pk using the MBB relation. Hence, all prices are of the
desired size.
In case of Event 2, if s (j ) < 0, then this implies thatpj has not been decreased since the beginning,

so all prices are again fine. For the other case, s (j ) = 0 and that implies pj is Δ-integral. Therefore,
all prices are polynomially bounded. �

Finally, for correctness of the algorithm, it maintains the following condition resulting
from (MC) for active prices.

Lemma 3.4. Let B̂ ⊆ B be a set of buyers and let N (B̂) be the goods having positive utility for some

buyer in B̂. At all times
∑

j ∈N (B̂ ) p
a
j −
∑

i ∈B̂mi ≥ 0.

Proof. Consider the connected components of the bipartite graph (B ∪G,E), where E =
{(i, j ) ∈ B ×G | fi j > 0}. We show the claim for each connected component C separately. If there
is a good j with negative surplus, then pj = p0j . This implies that ph ≥ dh and pa

h
= dh for all goods

h ∈ C ∩G. Hence the claim follows from (MC). If all goods have non-negative surplus, then

∑
j ∈N (B̂ )

paj −
∑
i ∈B̂

mi =
∑

j ∈N (B̂ )

��
�p

a
j −
∑
i ∈B̂

fi j
��
� +
∑
i ∈B̂

��
�
∑

j ∈N (B̂ )

fi j −mi
��
�

≥
∑

j ∈N (B̂ )

�
�p

a
j −
∑
i ∈B

fi j�� +
∑
i ∈B̂

��
�
∑

j ∈N (B̂ )

fi j −mi
��
�

=
∑

u ∈B̂∪N (B̂ )

s (u) ≥ 0. �

Lemma 3.5. Let (f , p) be the flow and price vector computed by the outer while-loop in Algorithm 1.

The pair is Δ-feasible for Δ = 1/(2�(2nU )4n ) and −n(� + 1)Δ ≤ s (j ) ≤ Δ for all j ∈ G.

Proof. The first claim follows from Lemma 3.2. Thus, s (j ) ≤ Δ for every good j. By Lemma 3.4

0 ≤
∑
j ∈G

paj −
∑
i ∈B

mi =
∑

u ∈B∪G
s (u) ≤ n(� + 1)Δ −

∑
u ; s (u )<0

‖s (u)‖,

and hence s (j ) ≥ −n(� + 1)Δ for every good j. �

Note that by Lemma 3.5 we call PostProcessing with a pair (f , p) that is Δ-feasible for Δ =
1/(2�(2nU )4n ). Also −n(� + 1)Δ ≤ s (u) ≤ (� + 1)Δ for every u ∈ B ∪G.

The while-loop in PostProcessing ensures that all components of the active-segment graph Ĝ (p)
contain an uncapped good. For each componentC of Ĝ (p), the algorithm sets up a system of linear
equations in price variables of the form Ap = b, and we show that after perturbing b slightly, we
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get an equilibrium. Since we apply the same procedure on each component separately, we assume
without loss of generality that there is exactly one component C of Ĝ (p).
All goods in C are connected with each other through a set of active MBB edges. Whenever

there are two active segments (i, j,k ) and (i, j ′,k ′) for a buyer i and two goods j, j ′, we have the
following relation between pj and pj′ :

ui jkpj′ = ui j′k ′pj . (9)

It is easy to check that there are |C ∩G | − 1 of theseMBB relations, which are linearly independent,
and there is essentially one free price variable. Additionally, we have a condition forC on the sum
of surpluses: ∑

j ∈C∩G
(paj − ĉcj ) −

∑
i ∈C∩B

(mi − ĉci ) =
∑
u ∈C

s (u). (10)

Since there is at least one uncapped good, the set of active prices paj can be divided into a set for
capped goods and a set for uncapped goods; paj = pj for each uncapped j, and paj = dj for each
capped j. We can rewrite (10) as:∑

j ∈C∩G uncapped

pj =
∑
u ∈C

s (u) −
∑

j ∈C∩G capped

dj +
∑

i ∈C∩B
mi +

∑
j ∈C∩G

ĉcj −
∑

i ∈C∩B
ĉci . (11)

We can write the system of Equations (9) and (11) in matrix form as Ap = b. All entries of A
are integers due to our assumption on the input parameters, and b has exactly one non-zero entry
resulting from Equation (11). Now consider another systemAp′ = b′ for a price vector p′, where b′

is obtained after setting s (u) = 0 and using ccu that sums the original capacities of closed segments.
Next we show that p′ gives an equilibrium. For this, we show that there is a feasible flow in the
active-segment network N (p′) with min-cuts (s,B ∪G ∪ t ) and (s ∪ B ∪G, t ). The proof is based
on an adaption of a similar result in [23].
Note that all entries ofA are integers in [−U ,U ]. For b′ all entries are integers in [−2n�U , 2n�U ].

By Cramer’s rule, the solution of Ap′ = b′ is a vector of rational numbers with common denom-
inator D ≤ (nU )n . That is, all p ′j are of form qj/D, where both qj and D are integers. Let ε =

n(� + 1)Δ + n�Δ. Since | |b| − |b′ | | < ε , we have |pj − p ′j | ≤ εD,∀j. Let ε ′ = εD2, then |Dpj − qj | =
|D (pj − p ′j ) | ≤ εD2 = ε ′.

Lemma 3.6. Every MBB segment with respect to p is also an MBB segment with respect to p′.
Furthermore, the set of capped and uncapped goods with respect to p and p′ are the same.

Proof. Suppose for two segments (i, j,k ) and (i, j ′,k ′) we have ui jkpj′ ≤ ui j′k ′pj , then

ui jkqj′ ≤ ui jkDpj′ ≤ Dui j′k ′pj ≤ Dui j′k ′ (p
′
j + εD) ≤ ui j′k ′qj + ε

′ui j′k ′ < ui j′k ′qj + 1.

Since both ui jkqj′ and ui j′k ′qj are integers, we have ui jkqj′ ≤ ui j′k ′qj . This implies that all bang-
per-buck relations for segments in the market are preserved. In particular, a segment is MBB w.r.t.
p iff it is MBB w.r.t. p′. The capped goods w.r.t. p remain capped w.r.t. p′. Suppose pj ≥ dj , then
qj ≥ Dpj − ε ′ > Ddj − 1. Since qj and dj are integers, we have that qj ≥ Ddj and p ′j ≥ dj . Similarly,
if pj ≤ dj , then qj ≤ Dpj + ε

′ < Ddj + 1. Again, qj ≤ Ddj and p ′j ≤ dj . �

Note that after the rounding, all (active) prices p′ are rational numbers with common denomina-
tor D. We assign to all closed segments the full amount ci jk . For the active segments, consider the
network N (p′), and let c be the capacity of cut (s,B ∪G ∪ t ) in N (p′). Suppose there is a min-cut
in N (p′) with value less than c . Then that value is at most c − 1/D. This same cut in N̂ (p) will have
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ALGORITHM 3: MinPrices for Earning Limits

Input: Market parameters and any thrifty equilibrium (f , p)
Output: Thrifty equilibrium with smallest prices

1 E (f ) ← {(i, j,k ) | fi jk > 0}
2 Gc ← Set of capped goods at (f , p)

3 Solve an LP in qj and λi :

min
∑
i λi

qj ≤ ui jkλi , for segment (i, j,k ) ∈ E (f )
qj = pj , ∀j ∈ G \Gc

qj ≥ dj , ∀j ∈ Gc

λi ,qj ≥ 0 ∀i ∈ B, j ∈ G

4 return (f , q)

value at most c − 1/D + εD |G | + ε |B |. Also the capacity of the cut (s,B ∪G ∪ t ) in N̂ (p) is at least
c − ε |B |. Therefore the total surplus in N̂ (p) is at least

c − ε |B | − (c − 1/D + εD |G | + ε |B |) ≥ 1/D − nεD > ε,

which is a contradiction. Hence (s,B ∪G ∪ t ) is a min-cut in N (p′). Hence, after removing the
money allocated to closed segments from buyer budgets and prices of goods, the remaining money
on the active segments allows an allocation that clears the market. This shows that PostProcessing
works correctly. Hence, we know the algorithm is correct, requires only bounded precision, and
runs in polynomial time.
The following theorem is the main result of this section.

Theorem 3.1. Algorithm 1 computes a thrifty equilibrium for money-clearing markets with earn-

ing limits in O (n3� log (� + nU )) time.

Proof. At the beginning,Δ ≤ U n+1 andΔ is reduced toΔ/2 untilΔ < 1/(2�(2nU )4n ). Therefore,
since � ≥ n, the total number of Δ-phases is O (n log(� + nU )). While the first phase takes time
O (n3�), each subsequent phase takes time O (n2�). Further, PostProcessing takes O (n4 log (nU ))
time [23]. The total running time of Algorithm 1 is O (n3� log (� + nU )). �

3.2 Equilibria with Extremal Prices

In this section, we provide algorithms to refine arbitrary thrifty equilibria to ones with smallest or
largest prices in polynomial time. Given an arbitrary thrifty equilibrium, Algorithm 3 computes a
thrifty equilibrium with smallest prices. Algorithm 4 computes a thrifty equilibrium with largest
prices if it exists. Otherwise, it yields a set S of goods for which prices can be raised indefinitely.

Theorem 3.2. Algorithm 3 computes a thrifty equilibrium with smallest prices.

Proof. By Lemma 2.2 part 3, we know that if fi jk > 0, then (i, j,k ) is an MBB segment in ev-
ery thrifty equilibrium. Let E (f ) = {(i, j,k ) | fi jk > 0}, and let Gc and Gu be the (unique) sets of
capped and uncapped goods in thrifty equilibria, respectively. Note that a vector q of pointwise
smallest prices implies a pointwise largest MBB ratio αi for all buyers i ∈ B. Using λi = 1/αi > 0,
Algorithm 3 optimizes the LP to find the minimal λi with prices q that preserve the MBB segments.
The prices q then determine all active segments, and they determine the flow on all segments that
are non-active and MBB (and, thus, closed). For the active ones, the feasible flows are exactly the
solutions to a straightforward transportation problem. In particular, the original flow f stays an
equilibrium flow, since all edges that carry flow in f stay MBB, the outflow of every buyer i ismi ,
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ALGORITHM 4: MaxPrices for Earning Limits

Input: Market parameters and any thrifty equilibrium (f , p)
Output: Thrifty equilibrium with largest prices

1 Initialize active price paj ← min{dj ,pj } for every good j ∈ G
2 S ← {j | pj > 0 and j is not connected to any uncapped good in G (p)}
3 while S � ∅ do
4 x ← 1

5 Set prices pj ← xpj , ∀j ∈ S
6 Increase x continuously from 1 until a new active segment appears

7 Recompute S

8 return (f , p)

the inflow of every good j is paj . Moreover, f saturates non-active MBB segments under prices q,
which is directly implied by the proof of Lemma 2.2, part 2. �

Theorem 3.3. Algorithm 4 computes a thrifty equilibrium with largest prices if it exists.

Proof. It is easy to check that throughout the algorithm, (f , p) always remains a thrifty equi-
librium. Assume by contradiction that at the end of the algorithm, (f , p) is not an equilibrium with
largest prices. Let E ′ = (f ′, p′) be an equilibrium with largest prices, and define S1 = {j | p ′j > pj }.
By Proposition 2.1 part 2, all goods in S1 are capped goods. Moreover, by Lemma 2.2 part 3 ev-
ery segment with fi jk > 0 for jŁ ∈ S1 is also an MBB segment in E ′. Because prices of goods in S1
strictly decrease from p′ to p, every buyer i with active edges in S1 in the active segment graph
with prices p′ will have active edges only to S1 with prices p. Therefore, set S is nonempty for the
While loop, and the algorithm should not terminate. �

3.3 Nash Social Welfare in Additive Multi-Unit Markets

Using our algorithm to compute a thrifty equilibrium in linear markets with earning limits, we
can approximate the optimal Nash social welfare for additive valuations, indivisible items, and
multiple copies for each item. Here there are n agents and m items. For item j, there are sj ∈ N
copies. The valuation of agent i for an assignment x of goods isvi (x ) =

∑
j vi jxi j , where xi j denotes

the number of copies of item j that agent i receives. The goal is to find an assignment such that
the Nash social welfare (

∏
i vi (x ))

1/n is maximized.
Suppose for each item there is only a single copy. In this case, the algorithm of [17] provides

a 2-approximation [15]. It finds an equilibrium for a linear market, where each agent i is a buyer
with a budget mi = 1, and each item j is a good with earning limit dj = 1. The allocation of the
equilibrium gets rounded to an integral assignment.
The direct adjustment of this approach to handle sj ≥ 1 copies is to represent each copy of item

j by a separate auxiliary item with unit supply (all valued exactly the same way as item j). Then
run the algorithm from [17] using a linear Fisher market with an earning limit of 1 for each copy.
The number of copies corresponds directly to the total earning limit of (all auxiliary items of) the
good.
A similar approach is used in [1] to provide a 2-approximation for separable concave utilities.

This, however, yields a running time polynomial in maxj sj , which is only pseudo-polynomial for
multi-unit markets (due to standard logarithmic coding of sj ’s). We here outline a way to make the
algorithm efficient.

Proposition 3.1. There is a polynomial-time 2-approximation algorithm for maximizing Nash

social welfare in multi-unit markets with additive valuations.
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Proof. First, we replace each item with sj ≤ 2n by sj auxiliary items with supply 1 as in the
direct adjustment. Each of these gets an auxiliary good with earning limit 1 in the market. For
each item with sj > 2n, we introduce an uncapped good in the market. For every auxiliary good,
we assume that every buyer i has utility ui j = vi j . For every uncapped good, we assume every
buyer i has utility ui j = vi jsj . Then we use our algorithm above to compute a thrifty equilibrium
for this market in time O ((nm)4 log((nm) ·maxi, j vi jsj )). Let (x, p) be this equilibrium.
The subsequent rounding of the equilibrium allocation follows ideas laid out in [17]. Consider

the spending graph, i.e., the subgraph of the MBB graph where buyers spend their money. Be-
cause of non-degeneracy of the MBB graph [17, 35], the spending graph is a forest. To handle the
uncapped goods, we first present an inefficient approach and then observe how to implement it
implicitly in polynomial time.
Given an uncapped good j, let us expand the spending graph in the following way: Introduce s j

many copies, eachwith pricep ′j = pj/sj . The valuation of buyer i for each copy isvi j . Since good j is
uncapped, we know pj ≤

∑
imi = n. Moreover, since sj > 2n, this implies p ′j < 1/2. Let fi j = xi jpj

be the money that agent i spends on good j. The parent agent i0 in the spending graph becomes di-
rect parent of �fi0, j/p ′j � many copies. If fi0, j/p

′
j is not an integer, then the parent paysp

′
j to � fi0, j/p ′j �

many copies, and the rest to one additional copy. The first child i1 of good j is assigned to contribute
the missing money for this additional copy (until it is fully paid for) and becomes its child. Then, if
i1 still has remaining money, then it contributes this money to purchase further copies, for which
it becomes the parent. Also, it remains parent of any other goods j ′ � j for which it is a parent in
the spending graph. Naturally, if i0 exactly pays an integer number of copies, then i1 becomes the
root of a new tree component and purchases additional copies of good j in the same way.

More formally, i1 becomes parent of

max
(
0,
⌈(
fi1, j −

(
p ′j · �fi0, j/p ′j � − fi0, j

))
/p ′j

⌉)
further copies of good j. We continue this expansion process, in which child agent ik of good j
becomes parent of

max ��0,
⎡⎢⎢⎢⎢⎢
�
�fik , j −

�
�p
′
j ·

⎡⎢⎢⎢⎢⎢
k−1∑
�=0

fi�, j/p
′
j

⎤⎥⎥⎥⎥⎥ −
k−1∑
�=0

fi�, j
�
�
�
� /p

′
j

⎤⎥⎥⎥⎥⎥
�
� . (12)

many copies of good j. Since prices and utilities are both scaled by sj , it is easy to verify that this
represents an equilibrium assignment for the market where we introduce sj auxiliary goods for
good j, each with earning limit 1.
Now, since p ′j < 1/2, the rounding procedure in [17] applied to this expanded spending graph

will assign all copies of item j to the parent agent of the corresponding good and remove them
from the graph. Thus, the rounding procedure simply removes good j from the spending graph
and assigns the number of copies given by Equation (12) to parent buyer i0 and children i� , for
� = 1, 2, . . . . Obviously, this can be done directly for each uncapped good j in O (n) time without
explicit expansion of the spending graph. Consequently, our adjusted algorithm achieves a running
time of O (n4 lognU )—our algorithm to compute an equilibrium takes O (n4 lognU ) time and the
rounding procedure takes O (n4) time. �

4 ALGORITHMS FOR MARKETS WITH UTILITY LIMITS

4.1 Equilibria with Extremal Prices

As mentioned above, in markets with utility limits, the framework in [40] provides an (ar-
bitrary) equilibrium in time O (n5 log(nU )). In this section, we show how to transform in
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ALGORITHM 5: MinPrices for Utility Limits

Input: Market parameters and thrifty and modest equilibrium (x, p)
Output: Thrifty and modest equilibrium with smallest prices

1 Initialize active budgetma
i ← min{mi ,minj cipj/ui j } for every buyer i ∈ B

2 S ← {j | pj > 0 and j does not have incident equality edges to any uncapped buyer}
3 B′ ← Set of buyers who have incident equality edges to S

4 while S � ∅ do
5 γ ← 1

6 Define prices and active budgets as follows:

7 pj ← γ · pj , ∀j ∈ S ;ma
i ← γ ·ma

i , ∀i ∈ B
′

8 Decrease γ continuously down from 1 until one of the following events occurs:

9 Event 1: γ becomes zero

10 Event 2: A new equality edge appears

11 Recompute S and B′

12 return (x, p) // x remains same as in the input

polynomial time any thrifty and modest equilibrium into one with minimum and maximum rev-
enue using the postprocessing procedures Algorithm 5 and Algorithm 6, respectively.

Theorem 4.1. Algorithm 5 computes a thrifty and modest equilibrium with smallest prices.

Proof. It is easy to check that throughout the algorithm, (x, p) always remains a thrifty and
modest equilibrium. Assume by contradiction that at the end of the algorithm, (x, p) is not an
equilibrium with smallest prices. Let (x′, p′) be an equilibrium with smallest prices, and define
S1 = {j | pj > p ′j }. By Lemma 2.4 property (3), all buyers in Γ(S1, p) are capped buyers. Because
prices of goods in set S1 decrease from p to p′, every buyer i incident to S1 in the equality graph
with prices p will only have equality edges to S1 with prices p′. Therefore, we have i ∈ Γ(S1, p′) =
Γ(S1, p) (the equality is again by Lemma 2.4). This implies that Γ(S1, p) is also the set of buyers
who have incident equality edges to S1 with prices p. Hence, set S is nonempty for the while-loop,
and the algorithm should not terminate. �

Theorem 4.2. Algorithm 6 computes a thrifty and modest equilibrium with largest prices.

Proof. Algorithm 6 takes a thrifty and modest equilibrium (x, p) and outputs an equilibrium
with largest prices. We first process the zero priced goods. LetG0 be the set of goods whose prices
are zero at p, B0 be the set of buyers who derive positive utility from a good inG0, and E0 be the set
of tuples (i, j ) in (B0 ×G0) such that buyer i derives positive utility from good j. We next construct
a bipartite graph ((B0,G0),E0) formed by the set of nodes B0 and G0 and edges in E0.

We do the following for each connected component C of the bipartite graph. Let BC and GC

denote the set of buyers and goods in C , respectively. Note that all buyers in BC are capped. We
solve the linear program LP1 to determine whether it is possible to achieve utility limits for all
buyers in BC without consuming all of GC . If the answer is yes, i.e., opt1 is positive, then we
claim that goods of GC are priced zero in all equilibria. For a contradiction, suppose there is an
equilibrium (x̃, p̃) where prices of goods in GC are positive. At p̃, let ma

i be the active budget of
buyer i in BC . Note that active budget of a buyer is the least amount of budget needed to achieve
its utility limit, and the total prices are equal to total active budget. Let x′ be an allocation where
each buyer in BC achieves its utility limit and goods of GC are not fully consumed. If we use x′

at prices p̃, then the total money spent by each buyer i is at leastma
i , which implies that the total
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Fig. 1. Linear program LP2 for Algorithm 6.

ALGORITHM 6: MaxPrices for Utility Limits

Input: Market parameters and thrifty and modest equilibrium (x, p)
Output: Thrifty and modest equilibrium with largest prices

1 /* First, process zero priced goods.*/

2 G0 ← {j ∈ G | pj = 0}
3 B0 ← {i ∈ B | ui j > 0, j ∈ G0}
4 E0 ← {(i, j ) ∈ (B0 ×G0) | ui j > 0}
5 foreach connected component C of bipartite graph ((B0,G0),E0) do
6 BC ← Set of buyers in C

7 GC ← Set of goods in C

8 Let opt1 be the optimal value of the following LP in variables yi j s:

max |GC | −
∑
i ∈BC , j ∈GC

yi j∑
j ∈GC

ui jyi j = ci ∀i ∈ BC∑
i ∈BC yi j ≤ 1 ∀j ∈ GC

yi j ≥ 0 ∀i ∈ B, j ∈ G

9 if opt1 = 0 then
10 EC ← {(i, j ) ∈ (BC ×GC ) | xi j > 0}
11 (pj )j ∈GC

← Optimal solution of LP2 in Figure 1

12 E ← {(i, j ) ∈ (B \ B0 ×G \G0) | xi j > 0}
13 (C1, . . . ,Ck ) ← connected components of (B \ B0,G \G0,E) where all buyers are capped

14 C ← C1 ∪ · · · ∪Ck
15 BC ← Set of buyers in C

16 GC ← Set of goods in C

17 EC ← {(i, j ) ∈ (BC ×GC ) | xi j > 0}
18 (pj )j ∈GC

← Optimal solution of LP2 in Figure 1

19 return (x, p) // x remains same as in the input

incoming money to goods in GC at x′ is at least the total prices of GC . However, the goods of GC

are not fully consumed, which is a contradiction.
If opt1 is zero, then we find the maximum possible prices of goods in GC using another linear

program LP2, given in Figure 1, while maintaining x to be on MBB edges. For that, we first find
the set of edges (i, j ) ∈ (BC ×GC ) with positive allocation. The variables in LP2 are λi ’s, pj ’s, and
fi j ’s, where λi denote the minimum budget buyer i needs for a unit utility at prices p assuming
that the edges in EC remain MBB at p. This is captured in the first two constraints. The fi j denote
the money spent by buyer i on good j. The money balance is captured in the third and fourth
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constraints. The third and fifth constraints together capture that each buyer i in BC achieves its
utility limit. We claim that the output of LP2 gives the largest possible prices for goods in GC .

Let p′ be the prices obtained from the solution of LP2. Suppose there is an equilibrium (x̃, p̃)
where goods in GC give more revenue than the revenue obtained from them at p′. Note that the
total active budget of buyers in BC with respect to prices p̃ is same as total prices of goods in GC

at p̃. Further, observe that p′ are the maximum prices given the constraint that x remains MBB
for goods in GC . Hence, there is a tuple (i, j ) such that xi j > 0 and (i, j ) is not an MBB edge with
respect to prices p̃. Each buyer in BC achieves its utility limit at both x and x̃. These together imply
that the total budget spent by buyers in BC at x with respect to prices p̃ is strictly more than the
total prices at p̃, which is a contradiction. Thus, p′ is the vector of largest prices that goods in GC

can achieve in any equilibrium.
Finally, we process positive priced goods. For that, let E denote the set of tuples (i, j ) in the

remaining set of buyers and goods such that there is a positive flow from buyer i to good j at x.
Now consider the bipartite graph between buyers B\B0 and goods G\G0 with edges in E. Recall
that Lemma 2.4 shows that if there is an uncapped buyer in a connected componentC of bipartite
graph ((B \ B0,G \G0),E), then the prices of goods inC are unique in all equilibria. Using this, we
only need to process the components where all buyers are capped. LetC1, . . . ,Ck be the connected
components where all buyers are capped. LetC be the union of all these components, and BC and
GC be the set of buyers and goods in C , respectively. Further, let EC be the restriction of E on BC
andGC . We now solve LP2 for the goods inC to find the maximum prices such that the allocation
x remains on the MBB goods. Using a similar argument as in the last paragraph above, we can
conclude that this gives the largest possible prices for goods in GC . �

4.2 Extensions

All thrifty andmodest equilibria have a Pareto-optimal allocation. Note, however, that the standard
definition of market equilibrium requires that buyers obtain a demand bundle with maximum
utility and market clears. Whenever a capped buyer achieves the utility cap, he or she buys a
demand bundle, even if he or she does so in a non-thrifty way by spending his or her money on
non-MBB goods. If we allow non-thrifty spending, then we obtain market equilibria outside the set
of thrifty and modest equilibria, for which utilities are not uniquely determined. In fact, we show
that market equilibria with maximum social welfare might not be thrifty and modest equilibria,
and computing such optimal equilibria becomes NP-hard. As a corollary, we note that the proof
can also be used to show NP-hardness for optimizing any constant norm of utility values.

Theorem 4.3. It is NP-hard to compute a market equilibrium that maximizes social welfare.

Proof. We reduce from 3-Dimensional Matching. Consider an instance I composed of three
disjoint sets A, B, C of elements and a set T ⊆ A × B ×C of triples. Let n = |A| = |B | = |C | be the
number of elements in each set andm = |T | the number of triples. W.l.o.g. assumem ≥ n. Now we
construct a Fisher market based on I as follows. For each element i ∈ A ∪ B ∪C we introduce an
element agent i with budget 1. For each triple j ∈ T we introduce a good j and an auxiliary agent i j
with budget 1. All these agents have linear utility functions. In addition, there is a single decision
agent id with a budget-additive utility function and a budget of 4m2 (m − n).
For the utility values, for each agent i ∈ A ∪ B ∪C we assume ui j = 1 if triple j contains i and

0 otherwise. For auxiliary agent i j the utility is ui j j = 1/m3 and 0 for all other goods. Finally, the
decision agent id has utility uid j = 1/m3 for every good j and a cap of cid = (m − n)/(m(m2 + 1)).
Our claim is that a market equilibrium with social welfare ofW = 3n · (1/4) + n · (1/4m3) + (m −
n)/m3 exists if and only if the instance I has a solution.
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First, suppose I has a solution S ⊆ T . Then we set the prices to be pj = 4 for every j ∈ S and
pj =m

2 + 1 for every j � S . As for the allocation, each agent i spends its entire budget of 1 on the
good j ∈ S that includes him. Each auxiliary agent spends its budget on the corresponding good.
Finally, the decision agent id spends a budget of m2 on each of the m − n goods j � S . Observe
that all goods are allocated, and (since w.l.o.g. we can assume m > 2) every agent with linear
utility function spends its entire budget on an MBB good. The decision agent has optimal utility
(m − n) · (1/m3) ·m2/(m2 + 1) = cid . As such, we obtain a market equilibrium. Straightforward
inspection reveals that the social welfare in this state is indeedW .
However, assume that a market equilibrium achieves a social welfare of at leastW . Note that

for each good j, the auxiliary agent can at most obtain a utility of 1/m3 by getting all of good j.
Similarly, the decision agent can obtain at most m goods and get a utility of cid for all of them.
Thus, by giving all goods to auxiliary and decision agents, together they can contribute at most
1/m2 to the social welfare.
We first observe that in every market equilibrium the decision agent obtains a utility of cid .

Consider any good j and let us broadly overestimate the price in equilibrium by assuming that
the auxiliary agent and all three element agents spend a total budget of 4 on j. This is clearly an
upper bound on the money that is spent by the element and auxiliary agents on good j. To derive
an upper bound, assume this happens on every good j. Even in this case, the decision agent can
contribute a budget of 4m2 to any set ofm − n goods. Since in a market equilibrium, the goods must
be shared in proportion to the money spent, the decision agent would thereby be able to obtain a
share of 4m2/(4m2 + 4) =m2/(m2 + 1) from each good it contributes to. In total this yields a utility
of (m − n) · (m2/(m2 + 1)) · (1/m3) = cid . Hence, in every market equilibrium the decision agent
obtains at least a total share of (m − n) ·m2/(m2 + 1) of all the goods. Thus, the total remaining
supply of goods that can be allocated to the remaining agents is at most n + (m − n)/(m2 + 1).
Let us now discuss how to distribute this remaining supply optimally among the agents. For

every good j, any equilibrium allocation must be proportional to the incoming money. We remove
the fraction obtained by the decision agent, denote the remaining supply by sj , and note sj ≥ 0
and
∑

j sj ≤ n + (m − n)/(m2 + 1). The auxiliary agent always spends its budget of 1 on j. Let yj be
the money spent by element agents on good j, so 3 ≥ yj ≥ 0 and

∑
j yj = 3n. The welfare obtained

from good j by auxiliary and element agents in any equilibrium is

sj

(
yj

yj + 1
+

1

yj + 1
· 1

4m3

)
.

Hence, the social welfare obtained by element and auxiliary agents in any market equilibrium is
upper bounded by the optimum solution to the following optimization problem:

Max.
∑
j ∈[m]

sj
yj + 1/(4m3)

yj + 1

s.t.
∑
j ∈[m]

sj = n +
m−n
m2+1∑

j ∈[m]

yj = 3n

yj ≤ 3 ∀j ∈ [m]
sj ≤ 1 ∀j ∈ [m].

(13)

The objective function is linear in the sj and concave in the yj , the constraints are concave, and
the equality constraints are affine and their gradients are linearly independent. The feasible so-
lution yj = 3/m and sj = (n + (m − n)/(m2 + 1))/m satisfies the inequality constraints with strict
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inequality. Hence, the KKT-conditions characterize the unique optimal solution. We use dual vari-
ables α and β for the equality constraints and λj and μ j for the inequality constraints. The optimal
solution must satisfy

−
yj + 1/(4m3)

yj + 1
+ α + μ j = 0

−sj
1 − 1/(4m3)

(yj + 1)2
+ β + λj = 0

λj (yj − 3) = 0 and λj ≥ 0 for all j

μ j (sj − 1) = 0 and μ j ≥ 0 for all j.

Thus, α ≤ (yj + 1/(4m3))/(yj + 1) for all j. Note that α < (yj + 1/(4m3)) (yj + 1) implies μ j > 0
and sj = 1. Also βj ≤ sj (1 − 1/(4m3))/(yj + 1)2 for all j. Similarly, βj < sj (1 − 1/(4m3))/(yj + 1)2

implies λj > 0 and yj = 3. We number the y’s such that y1 ≥ y2 ≥ · · · ≥ ym . Let � be such that
y1 ≥ · · · ≥ y� > y�+1 = · · · = ym . Then sj = 1 for 1 ≤ j ≤ � and hence � ≤ n. Let k ≤ � be such that
y1 = · · · = yk > yk+1. Then yj = 3 for 1 ≤ j ≤ k . If k < �, then yk+2 > 0, since

∑
j yj = 3n, and we

increase the objective by increasing yk+1. Thus k = �. If � < n, then s�+2 > 0 and we increase the
objective by increasing s�+1 and y�+1. Thus � = n, and the unique optimum is y1 = · · · = yn = 3,
yn+1 = · · · = ym = 0, s1 = · · · = sn = 1.

This proves that in the optimum there are n goods to which the decision player does not con-
tribute (sj = 1) and for which there are exactly three element players that can contribute all their
budget to this good (yj = 3). Thus, the upper bound on the social welfare is attained only when the
decision player contributes to exactlym − n goods such that the remaining n goods correspond to
a partition of the 3n agents into n disjoint triples. By straightforward inspection, we see that the
upper bound on the social welfare amounts to exactlyW . A market equilibrium of social welfare
W can exist only if there is a solution to the underlying instance I . This concludes the proof. �

Corollary 4.1. It is NP-hard to compute a market equilibrium (x, p) that maximizes
∑

i (ui (x))
ρ

for every constant ρ > 0.

Proof. For ρ > 1, we can use exactly the same reduction. The optimum coincides with the
optimum for social welfare, since we still want to maximize the share of goods assigned to the
element agents. For constant 0 < ρ < 1 and sufficiently large m, the common factor 1/(4m3) is
strong enough to keep the incentive of maximizing the share of the element agents. �

There are several ways of introducing satiation points into the utility function. Instead of a global
cap, let us assume there is a cap ci j for the utility buyer i can obtain from good j. A good-based

budget-additive utility of buyer i is then ui (xi ) =
∑

j min(ci j ,ui jxi j ). This variant turns out to be
an elementary special case of separable piecewise-linear concave (SPLC) utilities, in which every
piece consists of a linear segment followed by a constant segment. We show that even finding a
single market equilibrium here becomes PPAD-hard. The proof adjusts a construction put forward
in [12].

Theorem 4.4. It is PPAD-hard to compute a market equilibrium in Fisher markets with good-based

budget-additive utilities.

Proof. We adapt the construction of Chen and Teng [12] to prove the theorem. They show
PPAD-completeness of computing an approximate equilibrium in Fisher markets under SPLC
utilities where each PLC function has at most two segments. Here the second segment can
have positive rate of utility, i.e., non-zero slope, hence PPAD-hardness for Fisher markets under
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good-based budget-additive utilities where the second segment has zero slope, i.e., no utility,
requires adjustment in their construction.
Chen and Teng [12] reduce the PPAD-hard problem of computing an approximate Nash equi-

librium in a two-player game to the problem of computing an approximate equilibrium in Fisher
markets under SPLC utilities. Their main idea is to construct a family of price-regulating markets
Mn for each n ≥ 1, which has n buyers and 2n goods. InMn , each buyer has budget of three units
and each good has supply of one unit, and every approximate equilibrium price vector p satisfies
the following price-regulation property:

1

2
≤ p2k−1

p2k
≤ 2 and p2k−1 + p2k ≈ 3 for every 1 ≤ k ≤ n. (14)

Next for a given two-player game, additional buyers are inserted in the price-regulating market
and game parameters are embedded into their budget and utility functions. These new buyers are
given very small budget so that the price-regulation property is still satisfied.
First, we modify the family of price-regulating markets Mn for each n ≥ 1 so that each PLC

function is either linear or linear with a threshold. In the construction in [12], each buyer k derives
non-zero utility only from goods 2k − 1 and 2k . Its utility function for good 2k − 1 is linear with
slope 2 (utility per unit amount), and for good 2k it is linear with slope 4 until unit amount and
then linear with slope 1. Since the slope of the second segment is 1, it is not a good-based budget-
additive utility function. Simply decreasing the slope of the second segment from 1 to 0 does not
work. We get only one inequality:

1

2
≤ p2k−1

p2k
.

To construct a correct reduction, we use two buyers, say, (k, 1) and (k, 2), instead of one buyer,
k . We set the supply of each good to two units instead of one. Both buyers (k, 1) and (k, 2) have
budget of three units each, and both derive non-zero utility only from goods 2k − 1 and 2k . We
set the utility function of buyer (k, 1) as follows: For good 2k − 1, it is linear with slope 2, and for
good 2k , it is linear with slope 4 to the unit amount and then linear with zero slope. Similarly, the
utility function of buyer (k, 2) is set as follows: For good 2k , it is linear with slope 2, and for good
2k − 1, it is linear with slope 4 to the unit amount and then linear with zero slope. We claim that
this enforces the price-regulation property (14) on every equilibrium price vector p.
Supposep2k−1/p2k > 2 and then buyer (k, 2) demands only good 2k . This results inmore demand

of good 2k and less demand of good 2k − 1 and hence does not give an equilibrium. Similarly, we
get contradiction for the case p2k−1/p2k < 1/2. When 1

2 ≤
p2k−1
p2k
≤ 2, then buyer (k, 1) demands one

unit of good 2k − 1 and one unit of good 2k and the same for buyer 2k . This yields an equilibrium.
Next, for the additional buyers who embed the game parameters, we simply change the slope

of the second segment from positive to zero for each utility function. We claim that this works,
because these buyers do not buy any good on the second segment in the original construction in
[12]. Hence, it has no effect on equilibrium when the slope of the second segment is decreased.
This concludes the proof. �

5 CONCLUSION

In this article, we analyze Fisher markets with linear utilities and either earning limits or util-
ity limits. We concentrate on the structure, computation, and complexity of thrifty equilibria for
earning limits and thrifty and modest equilibria for utility limits. In both market models, these
equilibria can be described as optimal solutions to a convex program. They have a number of de-
sirable properties, e.g., unique seller incomes (with earning limits) or buyer utilities (with utility
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limits) as well as lattice structure of price vectors. Moreover, in both market models we provide
algorithms to compute a thrifty or thrifty and modest equilibrium with smallest or largest prices.
For markets with earning limits, we prove our results even in the much more general domain

with spending-constraint utilities. For these markets, we also present a new and improved scaling
algorithm to compute a thrifty equilibrium. Moreover, we apply our results to approximating the
Nash social welfare with indivisible items in multi-unit markets. For markets with utility limits,
we show that closely related variants of the problem suffer from computational hardness results.
There are a number of intriguing open problems for market models with satiated utilities. Re-

cent work [15] shows the existence of equilibria with utility limits even for more general CES
functions via an Eisenberg-Gale convex program similar to Equation (4). It would be interesting to
see whether we can compute these equilibria faster than by applying standard algorithms to solve
the convex program. In addition, for markets with CES functions and earning limits or for mar-
kets with spending-constraint utilities and utility limits there is nothing known about existence,
structure, or computation.
Equilibria in linear markets with both earning and utility limits are known to have intriguing

non-convex structure [26]. Moreover, they can be rounded to a constant-factor approximation of
Nash social welfare in markets with indivisible goods and budget-additive utilities. It would be
interesting to see whether Fisher markets with earning or utility limits can yield good approxima-
tion algorithms for this problem even beyond (rather direct generalizations of) linear utilities, for
which this has been a successful approach over the past several years [1, 15, 17, 26].
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