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Abstract

We consider the problem of fairly allocating a set of indivisible goods among n agents.
Various fairness notions have been proposed within the rapidly growing field of fair division,
but the Nash social welfare (NSW) serves as a focal point. In part, this follows from the
‘unreasonable’ fairness guarantees provided, in the sense that a max NSW allocation meets
multiple other fairness metrics simultaneously, all while satisfying a standard economic
concept of efficiency, Pareto optimality. However, existing approximation algorithms fail
to satisfy all of the remarkable fairness guarantees offered by a max NSW allocation, instead
targeting only the specific NSW objective. We address this issue by presenting a 2 max
NSW, Prop-1, 1/(2n) MMS, and Pareto optimal allocation in strongly polynomial time.
Our techniques are based on a market interpretation of a fractional max NSW allocation.
We present novel definitions of fairness concepts in terms of market prices, and design a
new scheme to round a market equilibrium into an integral allocation in a way that provides
most of the fairness properties of an integral max NSW allocation.

1. Introduction

We study the age old problem of fair allocation of goods among agents with additive valu-
ations. The formal study of fair division of goods dates back to the cake cutting problem
introduced by Steinhaus (1948). In the simplest version, two agents must agree on a way to
split a heterogeneous cake. The well known cut and choose protocol achieves two standard
notions of fairness: envy-freeness where every agent weakly prefers their allocation over any
other agents’ allocation, and proportionality where every agent receives at least a 1/n share
of the goods.

Another fairness criterion, max Nash social welfare (NSW), i.e., geometric mean of
the agents’ valuations, also yields envy-free and proportional allocations. NSW strikes a
balance between the perfectly efficient utilitarian objective, maximizing the sum of agents’
valuations, and the undoubtedly fair egalitarian objective, maximizing the minimum valued
bundle. Further, an allocation which maximizes NSW (max NSW) corresponds to a certain
equilibrium of a linear Fisher market which defines a fractional allocation and a set of
prices. This equilibrium, known as a competitive equilibrium of equal incomes (CEEI),
yields an allocation that is not only envy-free and proportional (Varian, 1974), but also
Pareto optimal (PO), a standard notion of economic efficiency. Then, fractional max NSW
allocations are both fair and efficient.

When goods are indivisible, no algorithm can ensure either envy-freeness or proportion-
ality, e.g., consider allocating a single good between two agents. This motivates the need
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for alternate concepts of fairness. One choice is to provide additive approximations. In
an envy-free up to one good (EF-1) allocation each agent weakly prefers her bundle after
removing some good from another agent’s bundle. Similarly, an allocation is proportional
up to one good (Prop-1), if each agent values her bundle at least a 1/n share of the goods
after adding some good not allocated to her. A maximin share (MMS) offers an intriguing
alternative relaxation to proportionality. The idea is a natural generalization of the cut and
choose protocol from the cake cutting problem. Suppose we allow one agent to choose a
partition of the goods into n bundles (one for each agent), with the caveat that the other
agents get to choose a bundle before her. In the worst case, she receives her least preferred
bundle. Clearly, the agent must select a partition that maximizes the value of her least
preferred bundle. We call the value of this bundle the agent’s maximin share (MMS). In an
α MMS allocation, α ∈ [0, 1], each agent receives a bundle she values at least α MMS.

NSW also serves as a major focal point in fair division of indivisible goods. Caragiannis
et al. (2016) present a compelling argument in favor of the ‘unreasonable’ fairness of max
NSW allocations. Analogous to the case of divisible goods, an integral max NSW allocation
is EF-1 (and therefore Prop-1, Conitzer, Freeman, and Shah, 2017), Ω(n−1/2) MMS, and
PO.

1.1 Our Contribution

As a testament to its inherent fairness, NSW has been rediscovered in multiple contexts
and employed in wide variety of applications to ensure fair outcomes. Much of its ‘unrea-
sonable’ fairness stems from the fact a max NSW allocation also meets multiple, sometimes
conflicting, fairness notions simultaneously, all while still satisfying the standard economic
notion of efficiency, Pareto optimality.

However, finding an integral max NSW allocation is APX-hard (Lee, 2017). Moreover,
existing approximations only target the NSW objective, i.e., α max NSW, for α > 1, falling
short of the array of fairness properties found in a true max NSW allocation. Thus, current
literature leaves a clear gap between all of the strong fairness guarantees offered by a max
NSW allocation and its approximations. This begs the question: Does an approximation
exist that more closely resembles all the remarkable properties of a true max NSW allo-
cation? In this paper, we definitively answer yes. Specifically, we provide an algorithm
which yields a 2 max NSW, Prop-1, 1/(2n) MMS, and PO allocation. We also note that
none of the previous algorithms achieves these bounds, and we provide counterexamples in
Section 5.

Our techniques rely on a market interpretation of fractional max NSW allocations. First,
we present novel bounds on any agent’s Prop and MMS guarantees in terms of market prices.
Then, we design a new scheme to round a market equilibrium into an integral allocation in
a way that provides most fairness properties of an integral max NSW allocation. We note
that a preliminary version of this paper appeared in the proceedings of IJCAI 2019 (Garg
& McGlaughlin, 2019).

1.2 Related Work

Within the rapidly growing literature on fair division of indivisible goods, various authors
proposed a myriad of fairness metrics. We focus on some of the most common notions
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of a fair allocation: EF-1, Prop-1, NSW, and MMS. We refer the reader to Amanatidis,
Birmpas, and Markakis (2018) for a more thorough survey of the current landscape of fair
division and the relationship between various fairness concepts.

EF-1 and Prop-1. Budish (2011) first introduced EF-1, although the concept was implied
by the earlier work of Lipton, Markakis, Mossel, and Saberi (2004) which offered a local
search algorithm to find such an allocation. More recently, Conitzer et al. (2017) introduced
Prop-1 in the context of fair division of public goods, i.e., where all agents receive the same
allocation. We note that this setting generalizes the private goods case we consider. The
authors also demonstrate that a round robin procedure achieves a Prop-1 allocation in
polynomial time. However, they leave the problem of finding a Prop-1 and PO allocation
in polynomial time as an open question.

The recent work of Barman and Krishnamurthy (2019) addresses another issue concern-
ing the relationship between integral max NSW allocations and Fisher market equilibria.
It is well known that a CEEI, i.e., a Fisher market equilibrium where all agents have the
same budget, results in a max NSW, envy-free, and proportional allocation. However, in
general, the CEEI allocation is fractional not integral. Barman and Krishnamurthy (2019)
show that in any problem instance, there exists a ‘nearby’ approximate CEEI with integral
allocation where the agents’ budgets are ‘perturbed’ by no more than the maximum market
price. Further, they use this result to design a strongly polynomial time algorithm which
yields a Prop-1 and PO allocation.

NSW. Cole and Gkatzelis (2015) give the first polynomial time constant factor (2.89)
approximation to the NSW objective by rounding a fractional allocation into an integral
one. Cole et al. (2017) refine the analysis of the algorithm, showing it yields a 2 max
NSW allocation. More recently, Barman, Krishnamurthy, and Vaish (2018) design a purely
combinatorial algorithm that yields a 1.45 max NSW, PO, and a (1 + ε) EF-1 allocation
for any ε > 0. We note that both works heavily inspired notable subsequent papers (Anari,
Mai, Gharan, and Vazirani, 2018; Garg, Hoefer, and Mehlhorn, 2018; Chaudhury et al.,
2018) which extend these techniques beyond the case of additive valuations.

Caragiannis, Gravin, and Huang (2019) propose a new interesting approach to find a
constant factor approximation to max NSW. The authors primarily consider EF-X alloca-
tions, a stronger form of EF-1 wherein each agent prefers her bundle after removing any
good from another agent’s bundle. Starting with an α max NSW allocation, they show how
to obtain an EF-X allocation after removing a ‘small’ number of goods from the problem
instance. Here, a ‘small’ number of goods means that α max NSW is reduced by no more
than half the original instance, i.e., in the reduced instance the allocation is 2α max NSW.
Further, the local search algorithm of Lipton et al. (2004) provides a means to ‘add’ the
removed goods back to the instance to generate a 2α max NSW and EF-1 allocation in
polynomial time, the first result of it’s kind.

We note that max NSW has also been studied from the perspective of social choice;
see Darmann and Schauer (2015), or Baumeister et al. (2017).

MMS. Budish (2011) defined maximin share which gives an intuitive local measure of fair-
ness of an allocation, i.e., a specific objective for each agent. Bouveret and Lemâıtre (2014)
showed that an MMS allocation exists in certain special settings. Procaccia and Wang (2014)
and Kurokawa, Procaccia, and Wang (2016) obtained the surprising result that MMS al-
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Algorithm max NSW Prop-1 MMS (1 + ε) EF-1 PO

Our work 2 X O(1/n) X X
(Cole et al., 2017) 2 X O(1/n) X X

(Barman, Krishnamurthy et al., 2018) 1.45 X O(1/n) X X
(Barman & Krishnamurthy, 2019) X X X X X
(Caragiannis et al., 2019) 2.9 X O(1/n)1 X X

Table 1: A comparison of fairness guarantees provided.

locations might not exist, and showed the existence of a 2/3 MMS allocation. Amanatidis,
Markakis, Nikzad, and Saberi (2017) obtained a PTAS which finds a (2/3− ε) MMS alloca-
tion. Later, Barman and Krishnamurthy (2017) and Garg, McGlaughlin, and Taki (2019)
obtained simple algorithms to find a 2/3 MMS allocation. More recently, Ghodsi, Haji-
aghayi, Seddighin, Seddighin, and Yami (2018) gave a PTAS to find a (3/4 − ε) MMS
allocation, and Garg and Taki (2019) obtained an algorithm to find a state of the art 3/4
MMS allocation. We note that a few works consider generalizations of the MMS concept,
e.g., (Barman, Biswas, Krishnamurthy, and Narahari, 2018; and Farhadi et al., 2019).

We note that none of the above algorithms yields a constant factor approximation to max
NSW, Prop-1, 1/(2n) MMS, and PO allocation simultaneously in polynomial time. Table
1 summarizes the capabilities of existing algorithms, and compares them to our result.

2. Preliminaries

We consider the fair allocation of a set M = {1, . . . ,m} of m indivisible goods among a set
N = {1, . . . , n} of n agents. We assume that m > n, otherwise we can find an exact max
NSW allocation in polynomial time using a maximum weight matching (Nguyen & Rothe,
2014). A fractional allocation x = (xi)i∈N is an assignment of goods to agents. Agent
i’s bundle is xi = (xij)j∈M where xij ∈ [0, 1] is the fraction of good j allocated to i. An
allocation is integral, corresponding to the case of indivisible goods, if xij ∈ {0, 1}, ∀i, j.
We use the notation A = (Ai)i∈N to denote integral allocations to avoid confusion between
fractional and integral allocations. That is, Ai = {j ∈ M : xij = 1}. Let X = {x :∑

i∈N xij ≤ 1, ∀j ∈ M} be the set of feasible fractional allocations, and A be the set of
feasible integral allocations.

Let vij denote agent i’s valuation of good j, and for a bundle xi, i’s valuation is vi(xi) =∑
j∈M vijxij . When x is an integral allocation, we overload the definition of vi as follows.

For any subset of goods S ⊆M , define vi(S) =
∑

j∈S vij .

NSW of an allocation is defined as

NSW (x) =
( n∏
i=1

vi(xi)
)1/n

.

A max NSW allocation x∗ maximizes NSW over all feasible allocations, i.e., x∗ ∈
arg maxx∈X NSW (x). An allocation x is an α max NSW allocation if αNSW (x) ≥
NSW (x∗) for some α ≥ 1.

1. Segal-Halevi and Suksompong (2018) show that any EF-1 allocation is also 1/n MMS.
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MMS of agent i ∈ N is defined as

MMSi = max
A∈A

min
Ak∈A

vi(Ak).

A maximin share allocation A satisfies vi(Ai) ≥MMSi, ∀i ∈ N . For any α ∈ (0, 1), an
α MMS allocation gives each agent a bundle with value vi(Ai) ≥ αMMSi.

EF-1 Envy-free (EF) requires that each agent weakly prefers her bundle over any other,
i.e., vi(Ai) ≥ vi(Ak), ∀k ∈ N . A EF-1 allocation is envy-free after removing some item from
another agent’s bundle. That is,

∀i, k ∈ N, ∃j ∈ Ak, vi(Ai) ≥ vi(Ak \ j).

An α-EF1 allocation, a relaxation of EF-1 for α > 1, is defined as

∀i, k ∈ N, ∃j ∈ Ak, αvi(Ai) ≥ vi(Ak \ j).

Prop-1 Proportionality (Prop) requires that each agent receives a bundle they value at
least as much as an equal share of the goods, i.e., vi(Ai) ≥ 1

nvi(M), ∀i. A Prop-1 allocation
is proportional after adding some good not allocated to the agent. That is,

∀i ∈ N, ∃j ∈M \Ai, vi(Ai) + vij ≥ vi(M)/n.

PO An allocation x′ Pareto dominates another allocation x if vi(x
′
i) ≥ vi(xi), ∀i ∈ N ,

and vk(x
′
k) > vk(xk) for some agent k, i.e., if at least one agent’s utility improves without

sacrificing the utility of any other agent. An allocation x is PO if no allocation x′ dominates
x.

3. Linear Fisher Markets

Our algorithm relies on rounding a fractional allocation x obtained from a market equilib-
rium. We note that this approach was used by Cole and Gkatzelis (2015) to obtain the first
constant factor max NSW approximation. In this section, we summarize the relationship
between the fractional NSW, the Eisenberg-Gale (EG) program, and linear Fisher mar-
kets. Although the agents in our problem do not spend any money, the fictitious market
interpretation provides useful information to aid in rounding the fractional allocation.

Consider maximizing the NSW over fractional allocations, which is equivalent to max-
imizing the sum of logarithms of the agent valuations. This turns out to be a special case
of well known Eisenberg-Gale program (Eisenberg & Gale, 1959) where ei = 1, ∀i.

max
x∈X

n∑
i=1

ei log vi(xi) s.t.
n∑
i=1

xij ≤ 1, and xij ≥ 0, ∀i, j. (EG)

3.1 A Market Interpretation

The central concept in the design of our algorithm plays off an interpretation of solutions to
(EG) as the equilibrium of a linear Fisher market. A Fisher market is the tuple 〈N,M, V, e〉,
whereN is a set of n agents, M is a set ofm goods, V = (vi)i∈N defines the agents valuations,
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and e = (ei)i∈N gives the agents’ budgets. In this setting, each agent seeks to spend their
budget on fractions of goods. The utility of agent i for receiving xij amount of each good
j is

∑
j∈M vijxij . A fractional allocation x and a price vector p = (pj)j∈M correspond to

primal and dual variables of (EG) respectively.

Definition 1. The pair (x̄, p̄) is an equilibrium if: (i) all goods are fully allocated
∑n

i=1 x̄ij =
1, ∀j ∈ M , (ii) all agents spend their budget

∑
j∈M x̄ij p̄j = ei, ∀i ∈ N , and (iii) all

agents only purchase maximum bang per buck (MBB) goods, i.e., if x̄ij > 0, then j ∈
arg maxk∈M vik/p̄k.

For any vector of prices p̄, we define the set of MBB goods for agent i as

MBBi = arg max
k∈M

vik/p̄k. (1)

Spending Graph. Our algorithm exploits some structural properties of equilibria. Namely,
an equilibrium (x̄, p̄) admits a representation as a forest. First, we define a bipartite graph
using the vertices N ∪M , with the set of agents N on one side and the set of goods M
on the other. Using the fractional allocation x̄, we create the spending graph Q(x̄, p̄) by
adding a weighted edge (i, j) between agent i and good j with weight x̄ij p̄j , if x̄ij > 0. Due
to equilibrium condition (iii), j ∈MBBi for each edge (i, j) of the spending graph.

Lemma 1. (Duan, Garg, & Mehlhorn, 2016) It is always possible to rearrange the agents’
spending to ensure the spending graph is a forest.

Theorem 2. (Mas-Colell, Whinston, & Green, 1995) Every Fisher market equilibrium is
Pareto optimal.

3.2 Spending Restricted Equilibrium

Equilibria of linear Fisher markets define fractional allocations x̄. Naturally, one hopes to
devise a way to round x̄ into an integral allocation A that, at least approximately, preserves
its strong fairness guarantees. However, Cole and Gkatzelis (2015) demonstrated that no
rounding procedure yields a meaningful approximation to the fractional max NSW, and
they gave a clever modification. Specifically, they relax the constraint that all goods need
to be fully allocated, and instead require that the total spending on any good does not
exceed 1, the budget of an agent. That is, for all goods j ∈ M , the total spending on
good j is

∑n
i=1 x̄ij p̄j = min(1, p̄j). The modified constraint slightly changes the equilibrium

conditions.

Definition 2. The pair (x̄, p̄) is a spending restricted (SR) equilibrium if: (i’) the total
spending on each good j is

∑n
i=1 x̄ij p̄j = min(1, p̄j), and conditions (ii) and (iii) of Definition

1 hold.

The condition (i’) of Definition 2 is the defining characteristic of an SR equilibrium, and
the only difference between SR and Fisher equilibria. Notably, in an SR equilibrium all
agents still purchase only MBB goods, and we can rearrange agents’ spending so that the
resulting spending graph is a forest. Further, Cole and Gkatzelis (2015) provide a strongly
polynomial time algorithm to compute an SR equilibrium. Note that we always compute
SR equilibria using agents’ budgets ei = 1, ∀i ∈ N .
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4. Approximation Algorithm

We present an algorithm that takes as input an SR equilibrium (x̄, p̄), and outputs an
integral allocation A = (Ai)i∈N that is 2 max NSW, 1/(2n) MMS, Prop-1, and PO.

We start with the important observation that the NSW, MMS, and Prop-1 of an agent
are scale invariant, i.e., for any agent i and any c ∈ R+, scaling i’s valuations as vij ←
cvij , ∀j ∈ M , doesn’t change the problem. Define i’s MBB ratio αi := maxj∈M vij/p̄j . It
is useful to rescale agents’ valuations, vij ← vij/αi. Notice that this implies vij = p̄j , ∀j ∈
MBBi, and vij < p̄j otherwise.

Definition 3. For any price vector p̄, we say that an agent’s valuations are scaled to prices
if: vij = p̄j for all j ∈MBBi, and vij < p̄j otherwise.

4.1 Basic Bounds

Before discussing specifics of the rounding scheme, we establish upper bounds on the various
fairness metrics. These results rely on a few properties of SR equilibria which provide some
insight on how to approach rounding the fractional allocation x̄. To avoid repetition, let
(x̄, p̄) be an SR equilibrium and assume agents’ valuations are scaled to prices.

Lemma 3. (Cole & Gkatzelis, 2015) Let x∗ be an integral max NSW allocation. Then,∏n
i=1 vi(x

∗
i ) ≤

∏
p̄j>1 p̄j .

Next, we provide upper bounds on any agents’ proportionality, Propi = vi(M)/n, and
MMSi guarantees in an SR equilibrium. Let H = { j ∈ M : p̄j > 1} be the set of high
priced goods, and L = M \H be the set of low priced goods. Since the budget of each agent
is 1, the total spending on all goods in an equilibrium is n. Also, the spending on any good
is capped at 1, so that the total spending on high valued goods H is |H|. Then, clearly
|H| ≤ n, due to SR equilibrium conditions, see Definition 2. Moreover, we can assume that
|H| < n, otherwise that would imply m = n, meaning we can compute an exact max NSW
allocation in polynomial time, see Section 2.

Lemma 4. For agent i ∈ N , Propi(M) = vi(M)/n ≤ max(1,maxj∈M vij).

Proof. Following the above discussion and the fact that agents’ valuations are scaled to
prices ∑

j∈L
vij ≤

∑
j∈L

p̄j = n− |H|, ∀i ∈ N. (2)

Fix an agent i and let v∗i = maxj∈M vij , then since agents’ valuations are scaled to prices
vi(M) =

∑
j∈L vij +

∑
j∈H vij ≤ n− |H|+ v∗i |H|. By considering the two cases: v∗i > 1 or

v∗i ≤ 1, the result follows easily.

Lemma 5. For any agent i ∈ N , MMSi ≤ 1.

Proof. Let MMSni (M) be agent i’s MMS given the goods M and n agents, i.e., i must
partition the goods of M into n bundles in a way that maximizes the minimum valued
bundle. We first show that for any agent i, if we remove any other agent l and any good j,
then MMSn−1

i (M \ j) ≥MMSni (M).
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Let B = (Bi)i∈N be the bundles i selects when calculating her MMSni (M), i.e., vi(Bk) ≥
MMSni (M), ∀Bk ∈ B. Wlog, assume Bn contains j. Suppose we redistribute the goods of
Bn \ j arbitrarily to the other bundles of B to create a partition of M \ j into n− 1 bundles
B′ = (B′1, . . . , B

′
n−1). Then, vi(B

′
k) ≥ vi(Bk) ≥MMSni (M), ∀k ≤ n− 1.

Clearly, the above argument generalizes to the case of removing k agents and k goods,
i.e., MMSn−ki (M \ {j1, . . . , jk}) ≥ MMSni (M), for any k < n and {jl}kl=1 ⊆ M . Ap-

plying this to the set of high valued goods H yields MMSni (M) ≤ MMS
n−|H|
i (M \H) =

MMS
n−|H|
i (L). Further, MMS

n−|H|
i (L) ≤ vi(L)/(n−|H|). Then, using (2), MMSni (M) ≤

vi(L)
n−|H| ≤

1
n−|H|

∑
j∈L p̄j ≤ 1.

4.2 Rounding Algorithm

We explain the steps of our algorithm below and provide a formal description in Algorithm
1, which we refer to as ALG. Let (x̄, p̄) be an SR equilibrium. We assume agents’ valuations
are scaled to prices p̄, and that the spending graph is a forest T , by Lemma 1. In a tree
t ∈ T , let Mt and kt be the set of goods and the number of agents respectively. We note
that the initial steps are similar to the ones in Cole and Gkatzelis (2015).

In Step 0, for each tree t ∈ T , we pick an arbitrary agent to serve as the root, which we
refer to as the root agent. Notice that this gives the levels of each tree a particular structure.
All vertices at depth 1 are goods that the root agent spends on in the fractional allocation
x̄, vertices at depth 2 correspond to agents purchasing some fraction of the goods at depth
1, and so on. Since the tree t is part of the spending graph, all goods j ∈Mt connected to
agent i are in fact MBBi.

Observe that, if good j ∈Mt is a leaf node with parent agent i, then i is the only agent
buying j in x̄. Hence, we assign every leaf good to its parent agent in Step 1.

Step 2 assigns all goods j ∈Mt such that p̄j < 1/2 to their parent agent i. For any child
agent k of good j, we make k the root agent of the new tree formed by cutting the edge
between k and j in the spending graph, i.e., k becomes the root of the subtree containing
all goods and agents below her. Notice that, since agents spend their entire budget of 1 and
p̄j < 1/2, the newly created root agent k loses no more than half her budget in this step.

In Step 3, for any j ∈ Mt with two or more child agents, we cut the edges of all child
agents except the one spending the most on j, i.e., the agent i with the largest x̄ij . Similar
to Step 2, any other child agent k of j becomes the root agent of a new tree. Also, notice
that the root agent k of the newly formed tree loses no more than half of her budget in
this step since the total spending on any good is capped at 1. Steps 2 and 3 endow the
remaining trees with a specific structure. Each tree t ∈ T contains kt agents and exactly
kt − 1 unassigned goods from Mt. Further, each unassigned good has exactly one parent
agent and one child agent. In addition, all unassigned goods are worth a least p̄j ≥ 1/2 to
both the parent and child agents. We offer a recursive rounding scheme to meet all stated
fairness notions in Step 4.

In the recursion, we select the agent receiving the highest value allocation before the
assignment of any remaining goods in the tree, i.e., i ∈ arg maxk∈t vk(Ak) (ties are broken
arbitrarily). We test if adding either the agent’s parent good or any of its child goods
satisfies her Prop-1 guarantee. Formally, let Ni = {j ∈ Mt : j is parent or child of i} be
the neighbors of i in the tree. Then, we check if vi(Ai) + maxj∈Ni vij ≥ 1. If this condition
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Algorithm 1: Rounding Algorithm

Input : SR equilibrium (x̄, p̄)
Output: A 2 max NSW, Prop-1, 1

2n MMS, and PO allocation

1 Initialize: Ai = ∅ for all i ∈ N .
2 Step 0: Select a root agent in each tree.
3 Step 1: Assign all leaf goods to their parent agents.
4 Step 2: Assign agents all child goods j s.t. p̄j < 1/2.
5 Step 3: For all goods j s.t. p̄j ≥ 1/2, cut edges between j and all child agents

except the one spending the most on j, i.e., the largest x̄ij .
6 Step 4: For tree t with kt ≥ 2 agents, let Ni be the neighbors of agent i in the tree

t (parent and child goods). Sort and relabel agents in decreasing order of current
total value, i.e., vi(Ai). Let i∗ = min{i ∈ t : vi(Ai) + maxj∈Ni vij ≥ 1}, and remove
i∗ from the tree.

7 Step 5: Assign all remaining goods in the tree.

is satisfied, then we remove i from the tree. Otherwise, we test the same condition for the
second highest spending agent in the tree, and so on until we find an agent that values her
current allocation enough so that she can meet the Prop-1 guarantee without receiving any
item from the matching tree (refer to Lemma 8).

At the start of Step 4, there are matchings that assign kt − 1 agents a good in the
matching tree. Removing one agent ensures that a perfect matching between remaining
agents and goods exists. In Step 5, we allocate all unassigned goods.

Theorem 6. ALG returns a 2 max NSW, Prop-1, 1/(2n) MMS, PO allocation in strongly
polynomial time.

4.3 Proof of Theorem 6

Observe that each step of ALG runs in strongly polynomial time, and therefore so does
ALG. In the following lemmas we verify that all fairness concepts are satisfied. Let A =
(A1, . . . , An) be the final integral allocation output by ALG.

Lemma 7. A is Pareto optimal.

Proof. We define a modified Fisher market instance (N,M, V, e′) using the same set of
agents, goods and agent valuations, but with different budgets. For each agent i, we set
their new budget as e′i =

∑
j∈Ai

p̄j . By Theorem 2, it is enough to check the allocation
A and prices p̄ satisfy the equilibrium conditions (Definition 1). Obviously, all goods are
allocated, and each agent spends their entire budget by construction. Observe that agent
i’s allocation is a subset of goods she spent on in the SR equilibrium, i.e., i purchases only
MBB goods. It follows that A and prices p̄ are market equilibrium for the Fisher market
instance (N,M, V, e′).

The following observations play a key role in the remaining analysis. First, in the frac-
tional allocation each agent receives a bundle they value at 1. This follows from equilibrium

233



Garg & McGlaughlin

condition (ii) and the fact that valuations are scaled to prices, i.e., vi(x̄i) =
∑

j∈M p̄j x̄ij =
ei = 1. Second, after completing Steps 0-3, all remaining trees t have exactly kt agents and
kt − 1 unassigned goods. We call these matching trees. Further, every unassigned good in
a matching tree has one parent agent and one child agent. Finally, in each matching tree
t ∈ T , there exists at most one good j /∈Mt such that some agent i was spending on j in x̄,
i.e., x̄ij > 0. To see this, notice that we only cut edges of the spending graph in Steps 2 and
3. If the edge between i and j is cut in either step, then i was a child of j. After cutting
the edge, i becomes the root of a new tree. Since edges between root agents and their child
goods are never cut, then only the root agent can lose one edge from the original spending
graph.

The following lemma lower bounds the value of the bundle any agent receives in a
matching tree. This lemma is crucial to proving the various fairness properties of ALG.

Lemma 8. In each matching tree t, the agent i removed in Step 4 of ALG receives a bundle
such that vi(Ai) ≥ 1/(2kt).

Proof. Let A′ = (A′1, . . . , A
′
n) be the agents’ allocations at the beginning of Step 4. Also,

let Ni be the neighbors of agent i in the matching tree (parent and child goods). Recall
agent i is removed from the tree if vi(A

′
i) + maxj∈Ni vij ≥ 1.

First, we show that we can always find an agent satisfying this condition. Observe that,
at the beginning of Step 4, any leaf agent i retains all edges in the original spending graph.
Also, she values her fractional allocation vi(x̄i) = 1, and she has exactly one parent good,
say j, in the matching tree. Then, vi(A

′
i) = vi(x̄i) − x̄ijvij . Since good j is not integrally

assigned to i, x̄ij < 1. It follows that vi(A
′
i) + vij = vi(x̄i) + (1− x̄ij)vij > vi(x̄i) = 1.

We show that i∗ removed from the tree in Step 4 receives a bundle such that vi∗(Ai∗) ≥
1/(2kt). Observe that there is at most one good j /∈ Mt that the root agent was spending
on in x̄, and she spent no more than x̄ijpj ≤ 1/2. Therefore, the total spending of agents in
the tree on the goods of Mt, together with the goods already assigned is at least kt − 1/2,
since all agents spend their entire budget in the equilibrium. Also, the agents spend no more
than kt− 1 on the unassigned goods in the matching tree, since (x̄, p̄) is an SR equilibrium.
This implies that some agent must receive at least 1/(2kt) before Step 4. Recall that we
check the agents in decreasing order of the value of their bundle at the beginning of Step
4. If the first agent is removed, then clearly she receives a bundle worth at least 1/(2kt).

Suppose that the agent receiving the most at the beginning of Step 4, say i, does not
satisfy the condition. Then, vi(A

′
i) + vij =

∑
k∈A′i

p̄k + p̄j < 1, ∀j ∈ Ni, since valuations
are scaled to prices. Therefore, if i and any good j ∈ Ni are removed from the tree, then
the remaining kt − 1 agents spend at least kt − 1/2 − (

∑
k∈A′i

p̄k + p̄j) ≥ kt − 3/2 on the

goods of Mt \ j, and no more than kt − 2 is spent on the other kt − 2 unassigned goods of
Mt \ j. Therefore, some agent must receive a bundle worth at least 1/[2(kt − 1)]. Noting
that all leaf agents satisfy vi(A

′
i) + maxj∈Ni vij ≥ 1, we can iterate this argument to ensure

the agent removed in Step 4 receives a bundle worth at least 1/(2kt).

Lemma 9. ALG returns a 1/(2n) MMS allocation.

Proof. By Lemma 5, MMSi ≤ 1 for all agents. Observe that if agent i was never part of
a matching tree, then she receives a bundle worth at least 1/2. In a matching tree, every
agent, except the one removed in Step 4, receives one of the unassigned goods they value
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vij = p̄j ≥ 1/2. Lemma 8 shows that i∗ removed from the tree receives bundle worth at
least 1/(2kt). Obviously, the size of any tree kt ≤ n. It follows that all agents receive at
least 1/(2n)MMSi.

Lemma 10. ALG returns a Prop-1 allocation.

Proof. Recall that Propi ≤ max(1,maxj∈M vij), by Lemma 4. Therefore, for any i, if
maxj∈M vij > 1, then the Prop-1 condition is trivially satisfied. For this reason, assume
that maxj∈M vij ≤ 1, ∀i ∈ N .

The agent i∗ removed from a matching tree t during Step 4 clearly satisfies Prop-1.
Suppose agent i receives good j in a matching tree, i.e., vij = p̄j ≥ 1/2. We consider two
cases. If i has two or more child goods, then at least one child good, say k, is not in her
integral allocation Ai, and vik = p̄k ≥ 1/2. Therefore, vi(Ai) + vik ≥ vij + vik ≥ 1. If i has
at most one child good (or is in a tree of size kt = 1), then there is at most one good k in her
fractional allocation that is not in her integral allocation, i.e., vi(Ai) + vik ≥ vi(x̄i) = 1.

The next part is an adaptation of the analysis given in Cole et al. (2017). Notice
that all but one agent in each matching tree receives a good with value p̄j ≥ 1/2. The
remaining agent, say r, was removed from the tree in Step 4, and she receives at least
vr = vr(Ar) ≥ 1/(2kt), by Lemma 8.

Lemma 11. In any matching tree t with kt ≥ 2 agents, let r ∈ N be the agent removed in
Step 4 of ALG and let vr = vr(Ar) be the value of the bundle she receives. The minimum
product of agents’ valuations is achieved when at least k1 = b(kt − 2vr)/(1 + 2vr)c agents
receive a bundle worth at least 1.

Proof. Let A be an allocation with minimum product of the agents’ valuations, and let
A′ = (A′i)i∈N be the agents’ bundles (partial allocations) before Step 4 which eventually
lead to A. Recall that the agent r removed from the tree satisfies vr(A

′
r) + vrj ≥ 1 for some

j ∈ Nr, and we check this condition in decreasing order of vi(A
′
i). Therefore, for any i such

that vi(A
′
i) > vr(A

′
r), we have that her final allocation Ai satisfies vi(Ai) < 1, since her

final allocation Ai = A′i + vij for some good j ∈ Ni. Also, for any agent i receiving a final
bundle worth vi(Ai) ≥ 1, the total spending on the goods of Ai is no more than 1 + vr, i.e.,∑

j∈Ai
p̄j ≤ 1 + vr, since i receives only one additional good.

The proof follows by contradiction. Let qj ≤ 1 denote the total spending on good
j ∈ Mt, and let M ′t be goods allocated to the k1 agents receiving at least 1 and agent r.
Then ∑

j∈Mt\M ′t

qj = kt − 1/2− [k1(1 + vr) + vr]

=
1

2
(kt − k1) +

1

2
kt − (

1

2
+ vr)(k1 + 1).

Suppose, for contradiction, k1+1 ≤ b(kt−2vr)/(1+2vr)c. Then the remaining kt−k1−1
agents have value at least (kt − k1)/2. Further, at least two of these agents receive a
bundle worth vi(Ai) > 1/2, otherwise the remaining agent receives a bundle worth at least
(kt− k1)/2− (kt− k1− 2)/2 = 1, contradicting the definition of k1. However, if two agents,
say 1 and 2, receive bundles they value v1, v2 ∈ (1/2, 1), then clearly giving agent 1 a bundle
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worth 1/2 and agent 2 a bundle worth v1 +v2−1/2 produces a lower product of the agents’
valuations, a contradiction.

Lemma 12. (Cole et al., 2017) For any tree t with kt agents∏
i∈t

vi(Ai) ≥
1

2kt

∏
j∈Mt:p̄j>1

p̄j . (3)

Proof. This follows from Lemma 11 and the argument of Lemma 26 in Cole et al. (2017).
We include a proof in the Appendix for the sake completeness.

Lemma 13. ALG returns a 2 max NSW allocation.

Proof. Using the upper bound on the optimal integral NSW from Lemma 3, we want to
show that

2(

n∏
i=1

vi(Ai))
1/n ≥ (

∏
p̄j>1

p̄j)
1/n.

From Lemma 12, it follows that( ∏
i∈N

vi(Ai)
)1/n

=
(∏
t∈T

∏
i∈t

vi(Ai)
)1/n ≥ 1

2

( ∏
p̄j>1

p̄j
)1/n

,

since
∑

t∈T kt = n.

Proof. (Theorem 6) The approximation guarantees follow immediately from Lemmas 7, 9,
10, and 13.

5. Examples

In this section we provide explicit examples to demonstrate that existing approximation
algorithms fail to satisfy either: Prop-1, or a constant factor max NSW and MMS allocation.

Example 1. We show that the algorithm of Barman and Krishnamurthy (2019), which
gives a Prop-1 and PO allocation, does not yield a α max NSW or β MMS allocation for
any α, β > 0. The algorithm relies on rounding a Fisher market equilibrium. Consider
n identical agents, i.e., vi(·) = vj(·), ∀i, j ∈ N . We let v denote their common valuation
function. There are n goods where v(1) = n − 1 + 1/n, and v(j) = 1/n, ∀j ≥ 2. Clearly,
the max NSW is positive. Also, MMSi = 1/n for each agent i, since |M | = n.

Consider the fractional allocation x, where x1 = (1/[n(n − 1 + 1/n)], 1, . . . , 1), and
xi = (1/[n − 1 + 1/n], 0, · · · , 0), ∀i ≥ 2. In words, agents 2 through n spend their budget
on good 1 and receive nothing else, while agent 1 receives a smaller portion of good 1 and
all goods 2 through n. Define the prices pj = v(j), i.e., price of every good is equal to the
agents’ valuation. If all agents have a budget of 1, then it is easily verified that equilibrium
conditions (Definition 1) hold. Therefore, (x, p) defines an equilibrium. However, regardless
of rounding procedure, n− 2 agents receive nothing in the integral allocation.

Example 2. We show that the algorithm of Barman, Krishnamurthy et al. (2018) may
not give a Prop-1 allocation. Recall, their algorithm yields an (1 + ε) EF-1 allocation, i.e.,
(1 + ε)vi(Ai) ≥ vi(Aj \ g) for some g ∈ Aj . Fix ε > 0, and let k = d2/εe.
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Figure 1: Spending graph for example 3.
Figure 2: Spending graph for NSW ap-
proximation lower bound.

Consider an instance with two identical agents and |M | = k+4 goods, where v(j) = 1/k
for all j ∈ {1, . . . , k + 3}, and v(k + 4) = 1. Let the allocation be A1 = {1, . . . , k + 3}, and
A2 = {k + 4}. Then (1 + ε)v(A2) ≥ 1 + 2/k = (k + 3− 1)/k = v(A1 \ j), ∀j ∈ A1, so that
the allocation is (1 + ε) EF-1. However, v(M) = 2 + 3/k. Then, Prop2 = 1 + 3/(2k) >
1 + 1/k = v2(A2) +vij , ∀j ∈ A1. We note that if ε is chosen small enough based on instance
size, then the Barman, Krishnamurthy et al. (2018) algorithm yields an EF-1, hence Prop-1
allocation. However, the runtime may not be polynomial.

Example 3. We show that the algorithm of Cole and Gkatzelis (2015) may fail to yield
a Prop-1 allocation. Figure 1 shows the spending graph of an SR equilibrium. Agents are
shown as circles, and goods as squares. Directed arrows show the spending of each agent.
All agents, except b, share the same valuations, shown below of each good. Agent b values
all goods, except 7, the same as other agents. However, b values good 7 at vb7 = 0.5 as
shown in parenthesis. Their algorithm starts by selecting a root agent for each tree. If
agent a is picked, then goods 1, 2, and 3 are assigned to a, cutting the edge between b and
good 3, and making b the root of the tree shown in the dashed box.

First all leaf goods are assigned to their parent agent’s, creating a partial allocation A′.
Then the algorithm computes a maximum weight matching to assign the remaining goods
in the dashed box. Weights in the matching are set as log(vi(A

′
i) + vij) between i and j s.t.

x̄ij > 0. It is easily verified that all matchings have maximum weight, therefore b may not
be assigned to any additional goods. In this case, b’s final allocation is good 4 with value
vb(A

′
b) = 0.4. We compute Propb = 11/12 > vb(Ab) + vbj , ∀j ∈M .

6. Tightness of Max NSW Approximation

In this section, we show that the 2 max NSW approximation is tight for our algorithm. We
note that the following example is similar to the one found in Cole et al. (2017).

We describe a sequence of problem instances based on a parameter z ∈ N. There are
n = z + 1 agents and m = 2z goods. Agent i ∈ {1, . . . , z} values good i at 1/2, good z + i
at 1/2 + 1/z, and all other goods at 0. Agent n = z + 1 values goods 1 through z at 1, and
all other goods at 0. Figure 2 shows the SR equilibrium, where agents are shown as circles,
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goods as squares, and the directed edges show the spending of each agent. Note that goods
1 to z have price 1/2, while goods z + 1 through 2z have price 1/2 + 1/z.

Suppose ALG selects agent n as the root of the tree. Observe that all goods 1 through
z are assigned to her. Each agent i ∈ {1, . . . , z} receives good z + i, leading to the product
of valuations (1/2 + 1/z)z. However, consider an allocation in which agent n receives only
one good i ∈ {1, . . . , z}, agent i receives good z + i, and all other agents i′ ∈ {1, . . . , z}
get both goods i′ and z + i′. In this allocation, the product of valuations is at least 1/2.
Therefore, the ratio of NSW between these allocations converges to 2 as z →∞.

7. Relating Prop-1 to Other Fairness Criteria

The large and ever growing number of fairness notions has spurred interest in understanding
the relationships between these concepts, e.g., Amanatidis et al. (2018) and Caragiannis
et al. (2016). To the best of our knowledge, the only work of this type concerning Prop-1 is
that EF-1 implies Prop-1 (Conitzer et al., 2017). In this section, we provide a few additional
results regarding Prop-1, and consider a few ways to strengthen this fairness metric.

Proposition 14. An α-MMS allocation is not necessarily Prop-1.

Proof. For clarity, we show a special case when α = 0.9. The basic concept is straightforward
to generalize to arbitrary α ∈ (0, 1), but requires additional details. Let α = 0.9, and set
δ = 0.05. The instance contains n ≥ 2 identical agents, i.e., vi(·) = vk(·), ∀i, k ∈ N .
Let v(·) denote their common valuation function. There are m = n/δ goods, each with
value v(j) = δ. Clearly, creating n bundles with 1/δ = 20 goods each gives an MMS
allocation with MMSi = 1 = Propi, ∀i ∈ N . Consider the allocation where agent 1
receives 18 = 1/δ − 2 goods, and the remaining goods are split among the other agents
such that each agent receives at least 20 = 1/δ goods. Agent 1 values her bundle at
v(A1) = 18δ = 0.9 = α MMS. However, adding any good not allocated to her only gives
v(A1) + v1j = 19δ = 0.95 < Propi. Observe that the above example easily generalizes for
any α of the form α = 1− 10−k, for any k ∈ N, by setting δ = 10−k/2.

Proposition 15. Prop-1 does not imply α MMS for any α > 0.

Proof. Consider an instance with n identical agents and n goods, each with value v(j) =
1, ∀j ∈ M . Clearly, Propi = 1 for all agents, and MMSi = 1 since n = m. Consider the
allocation which assigns: agent 1 two goods, agents 2 through n − 1 one good each, and
agent n no goods. It is easy verified that the allocation is Prop-1. However, it is not α
MMS allocation for any α > 0, since agent n receives a bundle worth 0.

Notice that the above allocation is neither EF-1, nor does it satisfy α max NSW for any
α > 0. Despite this, it is PO since the agents have identical valuations. This illustrates
that even a Prop-1 and PO allocation fails to meet other common fairness metrics.

7.1 Strengthening Prop-1

The example of Proposition 15 highlights the potential for unfair Prop-1 allocations. We
note that, other fairness notions might lead to unfair outcomes as well. For example, it is
straightforward to construct EF-1 allocations that are only fair in the sense that they are
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uniformly disliked by all agents.2 Strengthening a fairness metric provides one possible way
to address such issues. For instance, Caragiannis et al. (2016) proposed a stronger version
of EF-1, called EF-X, in which each agent weakly prefers her bundle after removing any
good from another agent’s bundle. Next, we examine the possibility of stronger versions of
Prop-1.

α Prop-X. Let A = (Ai)
n
i be an integral allocation. We define a Proportional up to least

valued good (Prop-X) as

vi(Ai) + min
j∈M\Ai

vij ≥ vi(M)/n.

In words, adding any good not allocated to the agent gives the agent at least her Propi
value. For any α ∈ (0, 1], define an α Prop-X allocation as

vi(Ai) + min
j∈M\Ai

vij ≥ αvi(M)/n.

Note that the most crucial difference between α Prop-X and Prop-1 is the use of
minj∈M\Ai

vij as opposed to some good in the definition of Prop-1. This simple change
has significant consequences.

Proposition 16. An α Prop-X allocation might not exist for any α ∈ (0, 1].

Proof. Fix α ∈ (0, 1]. Consider an instance with three identical agents and three goods: a
diamond (d), and two stones (s); with values: v(d) = C = 9/α, and v(s) = 1, respectively.
Suppose each agent receives one good. Observe that the allocation is EF-1, and therefore
Prop-1. Now consider an agent receiving a stone. Her Propi = (C + 2)/3 > 3/α, so that
α Propi > 3. Thus, the allocation is not α Prop-X since vi(s) + minj∈M\s vij = 2. Further,
it is easily verified through similar computations that no allocation of these goods yields an
α Prop-X allocation.

Notice that the primary issue with the α Prop-X definition lies in the requirement that
adding any good not allocated to the agent gives at least α Propi, since α ∈ (0, 1]. In light
of Proposition 16, we consider a different way to strengthen the Prop-1 guarantee.

GProp-1. Let A = (Ai)
n
i be an integral allocation. For any subset of agents S ⊆ N , define

A(S) = ∪i∈SAi, i.e., the goods allocated to the agents of S. We define a group Prop-1
(GProp-1) allocation as

∀S ⊆ N, vi(Ai) + max
j∈A(S)\Ai

vij ≥ vi(A(S))/|S|, ∀i ∈ S.

In words, for any subset of agents a GProp-1 allocation satisfies the Prop-1 property if the
instance consisted of only those agents and the goods allocated to them.

By definition, a GProp-1 allocation satisfies Prop-1. As a first result, we show that
GProp-1 is a stronger notion than Prop-1.

Proposition 17. Prop-1 does not imply GProp-1.

2. Consider n identical agents and n goods. Suppose agent i only likes good i, but the allocation assigns
this good to agent j 6= i. It is straightforward to verify that this allocation is in fact EF-X.
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Proof. We use modified version of the example in Proposition 15. Consider an instance with
n > 2 identical agents and n goods, each with value v(j) = 1, ∀j ∈M . Note that, Propi = 1
for all agents. Consider the allocation which assigns all goods to one agent, say i = 1. Then,
the allocation is Prop-1. Indeed, for any agent i ∈ [2, . . . , n], we have v(Ai) + vij = 1 =
Propi, ∀j ∈ A1. However, the allocation is not GProp-1. For example, consider the subset
S = 1∪2. For this subset, A(S) = M . We compute Propi = v(A(S))/|S| = n/2 for i = 1, 2.
However, for agent 2 we have v(A2) + vij = 1, ∀j ∈ A1.

Next, we consider the existence and computation of a GProp-1 allocation.

Proposition 18. An EF-1 allocation is also GProp-1. Thus, GProp-1 allocations always
exist, and can be found in polynomial time.

Proof. We note that the following proof is similar to that of EF-1 implies Prop-1 found
in Conitzer et al. (2017).

Let A be an EF-1 allocation. Choose a subset S ⊆ N , and pick an agent i ∈ S. By
definition of EF-1

vi(Ai) ≥ vi(Ak)−max
j∈Ak

vij , ∀k ∈ S.

Let vi∗ = maxj∈A(S)\Ai
vij . Summing over all k ∈ S yields

|S|vi(Ai) ≥ vi(A(S))−
∑
j∈S\i

max
k∈Aj

vij ≥ vi(A(S))− |S|vi∗ .

Therefore, the allocation is GProp-1.
Since an EF-1 allocation can be found in polynomial time, e.g., using the algorithm

of Lipton et al. (2004), we have that a GProp-1 allocation can be found in polynomial
time.

We note that the allocation described in the example of Proposition 15 satisfies GProp-
1. Therefore, a GProp-1 allocation is not necessarily α MMS for any α ∈ (0, 1), or α max
NSW for any α > 0, nor is it EF-1. In addition, since every Prop-1 allocation is GProp-1,
Proposition 14 shows α MMS does not imply GProp-1 for any α ∈ (0, 1).

Finally, we show that our algorithm fails to give a GProp-1 allocation.

Example 4. Figure 3 shows the spending graph of an SR equilibrium. As before, we show
agents as circles and items as squares. The agents have identical valuations, shown below
each good. Directed edges show the spending of each agent. Note that agent 3 on the right
purchases 1/(m − 3) identical goods with value 1/(m − 3) each. Setting prices equal to
valuations gives an SR equilibrium where each agent spends her budget of 1. Further, since
all prices are less 1, this is also a Fisher market equilibrium. Therefore, the example also
applies to the algorithm of Barman and Krishnamurthy (2019) as well.

Note that Propi = 1. Clearly, the allocation is Prop-1 regardless of the assignment of
good 2. However, observe that agent 3, assigned many items with low value, blocks the
possibility of rounding the fractional allocation into a GProp-1 allocation. For example,
consider assigning good 2 to agent 1. Taking the subset of agents as S = 2 ∪ 3, gives
A(S) = {3, . . . ,m}. Thus, the allocation fails to meet the GProp-1 condition, since all
items of agent 3 have relatively small value for sufficiently large m.
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Figure 3: Spending graph for the counter example to GProp-1.

8. Discussion

We used a market based approach to approximate max NSW allocations. First, we gave
novel bounds on any agent’s Prop and MMS guarantees in terms of market prices. Then,
we designed a new scheme to round an SR equilibrium into a 2 max NSW, Prop-1, 1/(2n)
MMS, and PO allocation. Thus, our algorithm makes progress towards an approximate
max NSW allocation which more closely resembles all of the remarkable fairness properties
of a true max NSW allocation.

The most significant difference between our approximation and a true max NSW al-
location is the fact that the latter is EF-1. We note that computing an EF-1 and PO
allocation in polynomial time remains a difficult open problem in fair division of indivisible
goods, even though it is straightforward to find an allocation satisfying either condition
independently3. The major challenge lies in verifying Pareto optimality. Indeed, how does
one confirm that no other allocation increases the total value received by one agent without
harming another? Most existing work relies on the celebrated First Welfare Theorem, Theo-
rem 2, which states that fractional market equilibria are efficient. While rounding a market
equilibrium preserves PO, e.g. Lemma 7, Barman, Krishnamurthy et al. (2018) show that
there exists SR equilibria where no rounding procedure yields an EF-1 allocation. Thus, the
classical approximation algorithm approach of solving a convex relaxation of the problem,
e.g. an SR equilibrium, followed by a rounding step seems insufficient for obtaining an EF-1
and PO allocation.

The recent work of Caragiannis et al. (2019) obtains a constant factor approximation
to max NSW and EF-1 allocation by relaxing the efficiency requirement. As mentioned in
Section 1.2, the authors propose an algorithm which starts with an α max NSW allocation,
removes a ‘small’ subset of goods from the problem, and then gives an EF-X and 2α max
NSW allocation in the reduced instance. As discussed in Caragiannis et al. (2019), one
can ‘add’ the removed goods back using the local search algorithm of Lipton et al. (2004)
to yield a 2α max NSW and EF-1 allocation. Unfortunately, this technique degrades the
allocation’s max NSW approximation, and loses Pareto optimality. It is not clear how to
add the removed items back in a way that preserves PO.

Aside from EF-1 and PO guarantees, another avenue to pursue is obtaining an allocation
which gives a constant factor approximation to both max NSW and MMS. Observe that
α max NSW serves as a global objective, i.e., places requirements on all agents’ valuations
of their bundles, while α MMS provides local guarantees, i.e., an agent specific objective.
Intuitively, this gives conflicting optimization objectives, though we lack an explicit example

3. In the case of additive valuations, simply assigning goods to the agent with the highest valuation yields
a PO allocation.
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to illustrate the difficulty of the problem. While a true max NSW allocation is only Ω(n−1/2),
we still find this an interesting and challenging problem. In addition, we note that to the best
of our knowledge, no constant factor MMS approximation algorithm is PO. Thus, obtaining
a constant factor max NSW, α MMS, and PO allocation together seems extremely difficult.

Finally, we address the issue of finding a GProp-1 and PO allocation. As shown in
Example 4 in Section 7, there exist instances for which no rounding algorithm (of either an
SR or Fisher market equilibrium) yields a GProp-1 allocation. While GProp-1 is a weaker
notion than EF-1, e.g., Proposition 14, it seems nearly as difficult to obtain in conjunction
with PO.
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Appendix: Proof of Lemma 12

We note that the following proof is Lemma 26 found in Cole et al. (2017). We include it
here for the reader’s convenience.

Proof. Let k1 be the number of agents such that vi(Ai) ≥ 1. Suppose i is one of these
agents, and let j be the good she is assigned from the matching tree. Observe that vi(Ai) ≥
max(1, p̄j). Therefore, the product of these agents valuations is at least

∏
j∈Mt:p̄j>1 p̄j , so it

is enough to show that product of the remaining k2 = kt − k1 agents’ valuations is at least
2−kt .

Clearly, the product of valuations for agents receiving vi(Ai) ∈ [1/2, 1), is minimized
when at most one of these agents receives a bundle worth more than 1/2. Let vα be the
value of that agent’s bundle. Since the total spending on goods in the tree t is at least
kt − 1/2, then

vα ≥ kt − 1/2−
(
k1(1 + vr) + vr + (kt − k1 − 2)/2

)
.

Let k̂1 = kt−2vr
1+2vr

, and δ = k̂1− k1 = kt−2vr
1+2vr

−bkt−2vr
1+2vr

c, be the rounding error. It follows that
vα ≥ (1 + δ)/2, and, therefore∏

i∈t
vi(Ai) ≥

vαvr
2kt−k1−2

∏
j∈Mt:p̄j>1

p̄j ≥
vr

2kt−k̂1−1

1 + δ

2δ

∏
j∈Mt:p̄j>1

p̄j ≥
vr

2kt−k̂1−1

∏
j∈Mt:p̄j>1

p̄j ,

where the final inequality uses the fact that 1 + δ ≥ 2δ, for δ ∈ [0, 1]. Thus, it is enough to
show that

vr

2kt−k̂1−1
≥ 1

2kt
, or vr2

kt+1
1+2vr ≥ 1.

Since vr ∈ [1/(2kt), 1/2], by Lemma 8, then

vr2
kt+1
1+2vr ≥ 1

2kt
2

kt+1
1+2vr ≥ 1

2kt
2

k1+1
2 ≥ 1, for k ≥ 7.
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Next, observe that vr2
kt+1
1+2vr is minimized at the same points as log vr + kt+1

1+2vr
. Taking the

derivative with respect to vr gives(
log vr +

kt + 1

1 + 2vr

)′
=

1

vr ln 2
− 2(kt + 1)

(1 + 2vr)2
. (4)

For k ≤ 4, (4) is positive for all vr. Thus, vr2
kt+1
1+2vr is minimized at vr = 1/(2kt), where

it takes the value 1
2kt

2
kt(kt+1)

kt+1 = 2kt
2kt
≥ 1. For the cases of kt = 5, 6, one can substitute

the value of kt into (4), and verify that vr2
kt+1
1+2vr is minimized at vr = 1/10 and vr = 1/12

respectively. Further, vr2
kt+1
1+2vr ≥ 1 in both cases.
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