
15An Evaluation of One-Class Feature Selection
and Classification for Zero-Day Android
Malware Detection

Yang Wang and Jun Zheng

Abstract

Security has become a serious problem for Android sys-
tem as the number of Android malware increases rapidly.
A great amount of effort has been devoted to protect
Android devices against the threats of malware. Majority
of the existing work use two-class classification methods
which suffer the overfitting problem due to the lack of
malicious samples. This will result in poor performance
of detecting zero-day malware attacks. In this paper, we
evaluated the performance of various one-class feature
selection and classification methods for zero-day Android
malware detection. Unlike two-class methods, one-class
methods only use benign samples to build the detection
model which overcomes the overfitting problem. Our re-
sults demonstrate the capability of the one-class methods
over the two-class methods in detecting zero-day Android
malware attacks.

Keywords

One-class classification · One-class feature selection ·
Android malware · Malware detection · Performance
evaluation

This paper is part of Yang Wang’s dissertation which has not been
published in other conference or journal.

Y. Wang
Ultramain Systems, Inc., Albuquerque, NM, USA

J. Zheng (�)
Department of Computer Science and Engineering, New Mexico
Institute of Mining and Technology, Socorro, NM, USA
e-mail: jun.zheng@nmt.edu

15.1 Introduction

Android is the most popular operating system for mobile
devices, which has a share of around 87.0% of the
global smartphone market in 2019 (https://www.idc.com/
promo/smartphone-market-share/os). The official Android
application (app) market, Google Play, hosted 2.8 million
apps in Sept. 2019. On the other side, Android is also
the primary target of mobile malware. According to the
Threat Intelligence Report of Nokia, smartphones infected
with Android malware nearly doubled in 2016 (https://
securityledger.com/2017/03/android-malware-doubled-
in-2016-adding-to-mobile-malware-problem/). A great
amount of effort has been devoted to protect Android
devices against the threats of malware [1–4]. Most of those
work require known Android malware for applying two-
class classification methods. However, collecting a set of
representative samples covering various malicious behaviors
is very hard if not impossible. Another problem of using
two-class classification is the issue of class imbalance
[5]. The classification performance may deteriorate due
to the significant differences of class prior probabilities.
Generally, there are far more benign samples than malicious
samples in the training set which causes the overfitting of
trained models. These problems will result in poor detection
performance, especially for zero-day Android malware.

One-class classification (OCC), sometimes referred as
anomaly or novelty detection, learns and builds the classifi-
cation model from samples of a single class, i.e. the target
class [6]. A new sample will be classified by the trained
model as target class or unknown (outlier) class. For Android
malware detection, the classification model is learned only
with benign samples, which overcomes the problems of col-
lecting representative malicious samples and class imbalance

© Springer Nature Switzerland AG 2020
S. Latifi (ed.), 17th International Conference on Information Technology–New Generations
(ITNG 2020), Advances in Intelligent Systems and Computing 1134,
https://doi.org/10.1007/978-3-030-43020-7_15

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43020-7_15&domain=pdf
mailto:jun.zheng@nmt.edu
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://securityledger.com/2017/03/android-malware-doubled-in-2016-adding-to-mobile-malware-problem/
https://securityledger.com/2017/03/android-malware-doubled-in-2016-adding-to-mobile-malware-problem/
https://securityledger.com/2017/03/android-malware-doubled-in-2016-adding-to-mobile-malware-problem/
https://doi.org/10.1007/978-3-030-43020-7_15

106 Y. Wang and J. Zheng

of using the two-class classification method. On the other
hand, feature selection, which is applied before classification
to remove redundant or misleading information and reduce
computational complexity, is not easy for one-class classi-
fication problem. Many methods used for two-class/multi-
class feature selection are not viable for one-class feature
selection since they need samples from multiple classes. In
this paper, we performed an evaluation of various one-class
feature selection and classification methods for identifying
zero-day Android malware. We demonstrated that one-class
methods achieve better performance than two-class methods
in detecting unknown Android malware.

15.2 One-Class Feature Selection
and Classification for Zero-Day
Android Malware Detection

15.2.1 Overview

Figure 15.1 shows the workflow of using one-class feature
selection and classification for zero-day Android malware
detection. In the training stage, the training dataset is pre-
pared with samples from the target class, i.e. benign apps.
Through feature extraction, each sample is transformed to a
vector formed by various features such as requested permis-
sions, API calls etc. To reduce the computational complexity,
a one-class feature selection algorithm is applied to remove
those irrelevant and redundant features. Finally, a one-class
classificationmodel is built with the selected features. During
the predication stage, a new sample is transformed to a vector
of selected features. Then the trained OCC model is used to
classify the sample as benign or malicious.

15.2.2 One-Class Feature Selection

Feature selection techniques choose a subset of original
features to reduce the dimension of the input. One of the

goals to perform feature selection is to remove redundant,
irrelevant or trivial information in the original set of features.
By removing some irrelevant features, the classification per-
formance may be improved. It is also usually used as a very
important pre-processing step for high dimensional data to
reduce the computational complexity.

There are two types of feature selection methods: wrapper
and filter. Wrapper methods are useful for feature selection
of supervised learning algorithms which have labels of all
classes while filter methods can be applied to any type of
dataset regardless of learning methods nor data labels. In ad-
dition, filter methods are generally faster than wrapper ones.
Thus, filter methods are appropriate for one-class feature
selection. In the following, we introduce three filter based
one-class feature selection algorithms.

15.2.2.1 Intra-Class Distance (ICD)
ICD is defined as the mean Lp distance of all samples to
the centroid of the class, as shown in Eq. (15.1) [7] where
n is the number of samples, fs is the selected feature set, xi
is the feature vector of ith sample, and μ is the centroid of
the class. Lower intra-class distance indicates that samples in
the class are more similar to each other. When used for one-
class feature selection, the reduction of intra-class distance
due to the removal of a feature is used as the measure of its
importance. Larger reduction from removing a feature will
give this feature a higher ranking to be selected.

ICD (fs) = 1

n

n∑

i=1

‖xi − μ‖p (15.1)

In this paper, we use the Manhattan distance (L1 norm) to
calculate ICD instead of the Euclidean Distance (L2 norm)
used in [7] to achieve a lower computational complexity in
feature selection.

15.2.2.2 Pearson Correlation Coefficient (PCC)
PCC is used in statistics to measure the linear correlation
between two variables [8]. The formula to calculate the

Fig. 15.1 Zero-day Andorid malware detection using one-class feature selection and classification

15 An Evaluation of One-Class Feature Selection and Classification for Zero-Day Android Malware Detection 107

correlation of two features fi and fj is shown in Eq. (15.2),
where cov(fi, fj) is the covariance of features fi and fj, σ i and
σ j are the standard deviations of fi and fj, respectively. The
range of PCC value is between −1 and + 1, which indicates
the linear correlation from total negative to total positive. A
zero value indicates no linear correlation.

ρi,j = cov
(
fi, fj

)

σiσj

(15.2)

When used for one-class feature selection [7], the PCC
value of a feature fi is calculated as the sum of the absolute
values of its pearson correlations to other features as shown
in Eq. (15.3). A lower PCC value of a feature will give it a
higher chance to be selected.

PCC (fi) =
m∑

j=1,j �=i

∣∣ρi,j

∣∣ (15.3)

15.2.2.3 Laplacian Score (LS)
LS is based on the observation that data points from the same
class are close to each other [9]. Therefore, features can be
evaluated according to their power of locality preserving. LS
based one-class feature selection algorithm first constructs a
nearest neighbor graph with each sample as a node. An edge,
Si,j defined in Eq. (15.4), where t is a constant, will be added
between two nodes, xi and xj, if they are close enough, i.e. at
least one of them is among k nearest neighbors of the other
one. Otherwise, Si,j = 0. The constructed weight matrix S
models the local structure of the data space.

Si,j = e−‖xi−xj‖2

t (15.4)

The LS score for the ith feature fi is calculated using Eq.
(15.5) where D and L are the corresponding degree matrix
and Laplacian matrix of S. Features with larger LS values are
more significant.

LS (fi) = f̃
T

i Lf̃ i

f̃
T

i Df̃ i

f̃ i = f i − fT
i D1
1T D1

1

(15.5)

15.2.3 One-Class Classification

Unlike two-class classification, OCC only uses samples from
the target class for training, which poses challenges for build-
ing the classification model. For Android malware detection,
we define the benign apps as target class samples and the
malware as outliers. The OCC classifier is modeled as a
function f (x) that accepts an input sample x and yields a
quantitative value which could be a distance, probability or

other metrics. Then a decision function h(x) defined in Eq.
(15.6) is used to determine the input sample as target class
(h(x) = 0) or outlier (h(x) = 1) based on a threshold θ .
The threshold is affected by the choice of a parameter called
outlier ratio, R. Outlier ratio is used to reduce the effect of
outfitting. A larger outlier ratio value may accept more target
class samples as well as outliers, while a smaller one may
reject more samples from both classes.

h (x) =
{

0 if f (x) ≤ θ

1 if f (x) > θ
(15.6)

In this paper, we tested the following OCC methods for
Android malware detection.

15.2.3.1 Gauss Distribution
Gauss Distribution is a classifier that models the target class
samples as Gaussian distribution [10]. The m-dimensional
Gauss probability distribution is shown in Eq. (15.7).

pN (x; μ, Σ) = 1

(2π)m/2|Σ |1/2 e− 1
2 (x−μ)T Σ−1(x−μ) (15.7)

where μ is the mean vector, Σ is the covariance matrix, and
m is the number of features.

The Mahalanobis distance calculated using Eq. (15.8), is
then used tomeasure the distance from a sample x to themod-
eled distribution. Based on the outlier ratio (R), a threshold θ

is determined as the (n × R)th largest Mahalanobis distance
in the training set. The new sample will then be classified as
target class or outlier based on Eq. (15.6).

f (x) = (x − μ)T Σ−1 (x − μ) (15.8)

15.2.3.2 K-Means
K-Means is an unsupervised clustering algorithm [10]. The
data is grouped into k clusters while the average distance to a
cluster centroid ci is minimized. The centroid of each cluster
is found in an iterative way which is arbitrary initialized in
the beginning of the algorithm. In each iteration, a training
sample is assigned to a cluster whose centroid is the closest
to the sample. Once all samples are assigned to clusters, the
centroid of each cluster will be recomputed as the mean of
all the samples in the cluster. The procedure will be repeated
until the clusters are stable. When K-Means is used for one-
class classification, the target class is characterized by Eq.
(15.9) and the output is calculated with Eq. (15.6).

f (x) = min
i

(x − ci)
2 (15.9)

15.2.3.3 Principle Component Analysis (PCA)
PCA [11] projects the target data to a new linear subspace,
which is defined by k eigenvectors of the data covariance

108 Y. Wang and J. Zheng

matrix, i.e. given a m × m data covariance matrix Σ , we
only use k eigenvectors with largest eigenvalues and define
this sub-matrix as W. Reconstruction error is computed to
determine if a testing sample fits into the target subspace.

f (x) = ∥∥x − xproj

∥∥2
(15.10)

where the projection is computed as

xproj = W
(
WTW

)−1
Wx (15.11)

15.2.3.4 k-Nearest Neighbor Data Description
(KNNDD)

KNNDD is based on Nearest Neighbor Data Description
(NNDD) method, in which a sample is tested by compar-
ing its local density with its nearest neighbor local density.
KNNDD replaces the nearest neighbor with the kth nearest
neighbors. The acceptance function of KNNDD is shown in
Eq. (15.12). A sample x will be classified as the target class
if the fraction of the distance between x and its kth nearest
neighbor NNtr

k (x)to the distance between the kth nearest
neighbor and its kth nearest neighbor is less than or equal
to a threshold θ .

f (x) =
∥∥x − NNtr

k (x)
∥∥

∥∥NNtr
k (x) − NNtr

k

(
NNtr

k (x)
)∥∥ (15.12)

15.2.3.5 ν-SVM
Support vector machine (SVM) is a popular classification
method for machine learning. However, original SVM can
only be used for supervised learning problem, i.e. multiple-
class problem. ν-SVM was proposed in [12] for one-class
problem, which looks for a boundary that accepts the target
class samples and rejects outliers. Ideally, outliers will be
located outside that boundary. However, the boundary may
have overfitting problem. In practice, the boundary could be
shrinked so that some target class samples will be located
outside the boundary. ν-SVMmaps the data into another fea-
ture space of higher dimension, then calculates a hyperplane
that separates the mapped target samples from the origin
with maximal margin. The hyperplane is then used as the
boundary to accept target class samples while reject outliers.
The quadratic problem to be solved is defined as below,
where � is the feature map function which maps a sample
to another hyperspace, the fraction of training errors and
regularization ||w|| are controlled by ν; ξ is for penalization.

min
w∈F,ξ∈xl ,ρ∈x

1
2‖w‖2 + 1

vn

∑
i

ξi − ρ

subject to
(w · Φ (xi)) ≥ ρ − ξi, ξi ≥ 0

(15.13)

After solving the problem with w and ρ, the decision
function is define as

f (x) = sgn ((w · 	(x)) − ρ) (15.14)

15.2.3.6 Minimax Probability Machine (MPM)
One-class MPM was proposed in [13] for novelty detection.
This method uses mean and covariance matrix of the distri-
bution to minimize the worst case probability of data points
falling outside of the convex set. The problem of one-class
MPM is defined in Eq. (15.15) to find a half-spaceQ that Pr{x
∈Q} = α, where a ∈ Rn\{0}, b ∈ R, probability at least α, α
∈(0, 1), for every distribution having mean μ and covariance
matrix Σ , μ and Σ are bounded in a set X.

inf
x∼(μ,Σ)

Pr
{
aT x ≥ b

} ≥ α, ∀ (μ, Σ) ∈ X (15.15)

Once the optimal decision region is determined, the deci-
sion function is defined as:

f (x) = aT φ (x) =
n∑

i=1

γiK (xi , x) (15.16)

where ϕ is a mapping function, K(x1, x2) is the kernel func-
tion, γ is a parameter determined during training. Equation
(15.6) is used for classification with threshold given by b.

15.3 Performance Evaluation

To evaluate the performance of various one-class feature
selection and classification methods tested for malware de-
tection, we used the Drebin dataset [14] which includes 5560
malware samples and 123,453 benign samples. We chose
5467 features of six main categories from the dataset in-
cluding Restricted API Call, Suspicious API Call, Hardware
Component, Requested Permission, Used Permission and
Intent.

For the purpose of performance evaluation, the Drebin
dataset was divided into tenfolds of training set and testing
set. Each fold of testing set includes all 5560 malware sam-
ples of the Drebin dataset. To prepare a balanced testing set,
each fold of testing set also includes randomly picked 5560
benign apps without overlapping with other folds. The rest
of the benign apps were randomly divided and assigned into
tenfolds as the training sets.

The performance matrics used for evaluation are sensitiv-
ity, specificity, and balanced accuracy which are calculated
as follows:

Sensitivity = T P

T P + FN
(15.17)

Specif icity = T N

T N + FP
(15.18)

15 An Evaluation of One-Class Feature Selection and Classification for Zero-Day Android Malware Detection 109

Balanced Accuracy = Sensitivity + Specif icity

2
(15.19)

where TP, TN, FP, FN are true positives, true negatives, false
positives and false negatives, respectively.

15.3.1 Performance Comparison of Feature
SelectionMethods

We first tested the classification performance of the three
feature selection methods. Figures 15.2 and 15.3 show the
results of using Gauss Distribution and ν-SVM as the classi-
fiers, respectively. The outlier ratio, R, was set as 0.2. The re-
sults showed that ICD and LS have comparable classification

Fig. 15.2 Classification results of using different one-class feature
selection methods (Gauss Distribution)

Fig. 15.3 Classification results of using different one-class feature
selection methods (ν-SVM)

performance while PCC has a significant worse performance
than the other two methods. The performance of ICD and LS
is stabilized when the number of features reaches 150, where
the performance is comparable to the performance of using
all features.

We also compared the mean and standard deviation of
computation time used by each feature selection method
and the results are shown in Table 15.1. The experiment
was performed on a server with an Intel Xeon CPU X5660,
2.8 GHz, four cores and 16GBmemory. Obviously, ICD uses
significantly lower computation time compared with other
two methods.

Since ICD and LS achieve comparable performance, we
also investigated the difference between the features selected
by these two methods. Figure 15.4 shows the percentage of
features selected by ICD and LS that are different. For the
cases that the number of features is <200 or more than 400,
the percentage of difference is around or <5%. The largest
difference is <20% when the number of selected features is
300. The results showed that the sets of features selected
by ICD and LS are similar to each other. Considering the
similarity of selected features, the comparable classification
performance and the computational complexity, ICD is the
best one among the three tested methods for selecting fea-
tures for Android malware detection.

Table 15.1 Computation time used by each feature selection method
in seconds

Method Computation time

ICD 0.094 (0.007)

PCC 1165.904 (25.719)

LS 13.572 (0.371)

Fig. 15.4 Difference between the features selected by ICD and LS

110 Y. Wang and J. Zheng

15.3.2 Results of Classification

By using ICD as the feature selection method, we tested the
performance of the six selected one-class classifiers under
different outlier ratios. The classifiers were implemented
with the Matlab toolbox Dd_tools [15] and Python Scikit-
learn [16]. The number of selected feature was fixed as 200.
The classification results are shown in Table 15.2. In each
cell of the table, we show the mean and standard deviation
of sensitivity, specificity and accuracy from top to bottom. It
can be seen that Gauss consistently has the best performance
in terms of the classification accuracy. Although MPM has
very high sensitivity but the low specificity makes it not a
good choice.

15.3.3 One-Class Classification vs. Two-Class
Classification

Two-class classification methods are typically more popular
than OCCmethods since they can achieve better performance
when a large amount of representative samples are avail-
able for training. However, lack of representative samples
may lead to serious overfitting problem when using two-
class classification methods. Therefore, we compared the
performance of one-class classification with that of two-
class classification for Androidmalware detection. TwoOCC
methods,Gauss and ν-SVM, and two popular two-class clas-
sification methods, SVM and Classification And Regression
Tree (CART), were used for comparison. The outlier ratio for
the OCC methods was set to 0.2. In the experiment, we only
used the largest nine malware families from Drebin dataset

Table 15.3 Ranking of malware families by distance to other fami-
lies

Family name Distance No. of samples

FakeDoc 432.74 132

Plankton 350.74 625

DroidKungFu 330.82 667

Iconosys 310.59 152

GinMaster 306.17 339

BaseBridge 303.74 330

Kmin 300.79 147

FakeInstaller 298.75 925

Opfake 296.07 613

and each of them has more than 100 samples. These nine
families were sorted in descending order by each family’s
distance to all other families according to Eq. (15.20), where
di is the distance for the ith family, ni, nj are the numbers of
samples in the ith and jth families respectively, xri and xrj are
the rith sample from the ith family and the rjth sample from
the jth family respectively. A larger di means that the behavior
of the ith family ismore different from those of other families.
The distances and sizes of the families are listed in Table 15.3.

di =
9∑

j=1,j �=i

⎛

⎝ 1

ni × nj

ni∑

ri=1

nj∑

rj =1

∣∣xri
− xrj

∣∣

⎞

⎠ (15.20)

We divided the benign apps equally into tenfolds. In each
fold, half of the benign apps were used for training of OCC
methods. The two-class classifiers were trained using this
half of benign apps with the bottom-five malware families in

Table 15.2 Classification results

Performance metric 0.10 0.15 0.20 0.25

Gauss Sensitivity 0.694 (±0.015) 0.787 (±0.015) 0.833 (±0.017) 0.878 (±0.003)

Specificity 0.891 (±0.006) 0.843 (±0.005) 0.794 (±0.005) 0.746 (±0.004)

Balanced accuracy 0.793 (±0.006) 0.815 (±0.007) 0.814 (±0.009) 0.812 (±0.003)
K-mean Sensitivity 0.538 (±0.014) 0.663 (±0.011) 0.738 (±0.013) 0.802 (±0.015)

Specificity 0.903 (±0.003) 0.853 (±0.004) 0.803 (±0.006) 0.751 (±0.006)

Balanced accuracy 0.721 (±0.007) 0.758 (±0.005) 0.771 (±0.007) 0.776 (±0.007)

KNN Sensitivity 0.634 (±0.020) 0.730 (±0.022) 0.801 (±0.023) 0.844 (±0.011)

Specificity 0.903 (±0.003) 0.863 (±0.006) 0.812 (±0.004) 0.773 (±0.010)

Balanced accuracy 0.769 (±0.010) 0.796 (±0.011) 0.806 (±0.012) 0.808 (±0.007)

PCA Sensitivity 0.666 (±0.019) 0.746 (±0.016) 0.821 (±0.018) 0.870 (±0.010)

Specificity 0.895 (±0.003) 0.844 (±0.004) 0.793 (±0.004) 0.743 (±0.005)

Balanced accuracy 0.781 (±0.009) 0.795 (±0.007) 0.807 (±0.009) 0.806 (±0.007)

ν-SVM Sensitivity 0.575 (±0.009) 0.711 (±0.008) 0.790 (±0.005) 0.853 (±0.004)

Specificity 0.903 (±0.003) 0.852 (±0.004) 0.803 (±0.005) 0.753 (±0.007)

Balanced accuracy 0.739 (±0.005) 0.782 (±0.004) 0.796 (±0.004) 0.803 (±0.005)

MPM Sensitivity 0.980 (±0.004) 0.981 (±0.005) 0.981 (±0.004) 0.983 (±0.004)

Specificity 0.423 (±0.006) 0.418 (±0.007) 0.414 (±0.007) 0.408 (±0.006)

Balanced accuracy 0.701 (±0.004) 0.699 (±0.004) 0.698 (±0.004) 0.696 (±0.004)

15 An Evaluation of One-Class Feature Selection and Classification for Zero-Day Android Malware Detection 111

Fig. 15.5 Performance comparison of one-class classification and two-
class classification

Table 15.3. The other half of the benign apps and the top-four
malware families were combined as the testing set. Feature
selection was performed for all methods and the number
of selected features was 200. ICD was used for the OCC
methods and χ2 test was used for the two-class classification
methods.

Figure 15.5 shows the detection performance in terms of
sensitivity, specificity and balanced accuracy, respectively.
The reported number is the averaging of tenfolds. It can be
seen that OCC methods achieve significantly better sensitiv-
ity and balanced accuracy than two-class classification meth-
ods. We checked two-class classifiers and found that they
have excellent performance on training set: SVM and CART
achieve 97.4% and 99.9% in terms of sensitivity, 97.9% and
99.9% in terms of average balance accuracy, respectively.
The results indicate that the detection models trained using
two-class classification methods suffer serious overfitting
problem when lack of representative samples of malware
families for training while OCC methods are capable of
detecting zero-day malware attacks.

15.4 Conclusion

In this paper, we investigated the use of one-class feature
selection and classification for zero-day Android malware
detection. By using these approaches, we do not need to
utilize malicious samples for training which makes it suit-
able for the task. Different one-class feature selection and
classification methods were tested and compared. The results
showed that ICD is the best method for feature selection
in terms of classification performance and computational
complexity and Gauss is the best method for classification
in terms of the balanced accuracy. We also demonstrated

the capability of OCC methods over two-class classification
methods in detecting zero-day malware attacks.

Acknowledgements The work of Jun Zheng was supported in part by
the National Science Foundation under EPSCoR Cooperative Agree-
ment OIA-1757207.

References

1. Liu, X., Liu, J.: A two-layered permission-based android malware
detection. In: 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, pp. 142–148. IEEE (2014)

2. Aager, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level
features for robust malware detection in android. In: International
Conference on Security and Privacy in Communication Systems,
pp. 86–103. Springer, Basel (2013)

3. Wang, Y., Watson, B., Zheng, J., Mukkamala, S.: ARP-miner: min-
ing risk patterns of android malware. In: InternationalWorkshop on
Multi-disciplinary Trends in Artificial Intelligence, pp. 363–375.
Springer, Basel (2015)

4. Sahs, J., Khan, L.: A machine learning approach for andorid
malware detection. In: 2012 European Intelligence and Security
Informatics Conference, pp. 141–147. IEEE (2012)

5. Guo, X., Yin, Y., Dong, C., Yang, G., Zhou, G.: On the class
imbalance problem. In: ICNC ’08: Proceedings of the 2008 Fourth
International Conference on Natural Computation, pp. 192–201.
IEEE (2008)

6. Tax, D.: One class classification. PhD thesis, Delft University of
Technology (2001)

7. Lorena, L., Carvalho, A., Lorena, A.: Filter feature selection for
one-class classification. J. Intell. Robot. Syst. 80, 227–243 (2015)

8. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation
coefficient. In: Noise Reduction in Speech Processing, pp. 1–4.
Springer, Berlin (2009)

9. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection.
In: NIPS’05: Proceedings of the 18th International Conference on
Neural Information Processing Systems, pp. 507–514. MIT Press,
Cambridge (2005)

10. Bishop, C.: Neural Networks for Pattern Recognition. Oxford
University Press, New York (1995)

11. Tax, D., Müller, K.: Feature extraction for one-class classification.
In: Artificial Neural Networks and Neural Information Processing
— ICANN/ICONIP 2003. ICANN 2003, ICONIP 2003, vol. 2003,
pp. 342–349. Springer, Berlin (2003)

12. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt,
J.: Support vector method for novelty detection. In: NIPS’99:
Proceedings of the 12th International Conference on Neural Infor-
mation Processing Systems, pp. 582–588. MIT Press, Cambridge
(1999)

13. Ghaoui, L., Jordan, M., Lanckriet, G.: Robust novelty detection
with single-class MPM. In: Advances in Neural Information Pro-
cessing Systems, pp. 929–936. NIPS Foundation (2003)

14. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.:
Drebin: effective and explainable detection of android malware
in your pocket. In: NDSS’14: Network and Distributed System
Security Symposium. NDSS (2014)

15. Tax, D.: Dd_tools - the data description toolbox for Matlab (2015)
16. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn:

machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830
(2011)

	15 An Evaluation of One-Class Feature Selection and Classification for Zero-Day Android Malware Detection
	15.1 Introduction
	15.2 One-Class Feature Selection and Classification for Zero-Day Android Malware Detection
	15.2.1 Overview
	15.2.2 One-Class Feature Selection
	15.2.2.1 Intra-Class Distance (ICD)
	15.2.2.2 Pearson Correlation Coefficient (PCC)
	15.2.2.3 Laplacian Score (LS)

	15.2.3 One-Class Classification
	15.2.3.1 Gauss Distribution
	15.2.3.2 K-Means
	15.2.3.3 Principle Component Analysis (PCA)
	15.2.3.4 k-Nearest Neighbor Data Description (KNNDD)
	15.2.3.5 -SVM
	15.2.3.6 Minimax Probability Machine (MPM)

	15.3 Performance Evaluation
	15.3.1 Performance Comparison of Feature Selection Methods
	15.3.2 Results of Classification
	15.3.3 One-Class Classification vs. Two-Class Classification

	15.4 Conclusion
	References

