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A b s t r a c t

We st u d y t h e pr o bl e m of a p pr o xi m ati n g m a xi m u m N a s h
s o ci al w elf ar e ( N S W ) w h e n all o c ati n g m i n di vi si bl e
it e m s a m o n g n a s y m m etri c a g e nt s wit h s u b m o d ul a r v al-
u ati o n s. T h e N S W i s a w ell- e st a bli s h e d n oti o n of f ai r-
n e s s a n d e ffi ci e n c y, d e fi n e d a s t h e w ei g ht e d g e o m et ri c
m e a n of a g e nt s’ v al u ati o n s. F or s p e ci al c a s e s of t h e
pr o bl e m wit h s y m m etri c a g e nt s a n d a d diti v e(-li k e) v al-
u ati o n f u n cti o n s, a p pr o xi m ati o n al g orit h m s h a v e b e e n
d e si g n e d u si n g a p pr o a c h e s c u st o mi z e d f or t h e s e s p e ci fi c
s etti n g s, a n d t h e y f ail t o e xt e n d t o m or e g e n e r al s et-
ti n g s. H e n c e, n o a p pr o xi m ati o n al g orit h m wit h f a ct o r
i n d e p e n d e nt of m i s k n o w n eit h er f or a s y m m et ri c a g e nt s
wit h a d diti v e v al u ati o n s or f or s y m m etri c a g e nt s b e y o n d
a d diti v e(-li k e) v al u ati o n s.

I n t hi s p a p er, w e e xt e n d o ur u n d er st a n di n g of t h e
N S W pr o bl e m t o f ar m or e g e n er al s etti n g s. O u r m ai n
c o ntri b uti o n i s t w o a p pr o xi m ati o n al g orit h m s f o r a s y m-
m etri c a g e nt s wit h a d diti v e a n d s u b m o d ul ar v al u ati o n s
r e s p e cti v el y. B ot h al g orit h m s ar e si m pl e t o u n d e r st a n d
a n d i n v ol v e n o n-tri vi al m o di fi c ati o n s of a g r e e d y r e-
p e at e d m at c hi n g s a p pr o a c h. All o c ati o n s of hi g h v al u e d
it e m s ar e d o n e s e p ar at el y b y u n- m at c hi n g c ert ai n it e m s
a n d r e- m at c hi n g t h e m, b y pr o c e s s e s t h at ar e di ff e r e nt
i n b ot h al g orit h m s. We s h o w t h at t h e s e a p p r o a c h e s
a c hi e v e a p pr o xi m ati o n f a ct or s of O (n ) a n d O (n l o g n )
f or a d diti v e a n d s u b m o d ul ar c a s e r e s p e cti v el y, w hi c h i s
i n d e p e n d e nt of t h e n u m b er of it e m s. F or a d diti v e v al-
u ati o n s, o ur al g orit h m o ut p ut s a n all o c ati o n t h at al s o
a c hi e v e s t h e f air n e s s pr o p ert y of e n v y-fr e e u p t o o n e
it e m (E F 1 ).

F urt h er m or e, w e s h o w t h at t h e N S W pr o bl e m u n-
d er s u b m o d ul ar v al u ati o n s i s stri ctl y h ar d er t h a n all
c urr e ntl y k n o w n s etti n g s wit h a n e

e − 1 f a ct or of t h e h a r d-
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n e s s of a p p r o xi m ati o n, e v e n f o r c o n st a ntl y m a n y a g e nt s.
F o r t hi s c a s e, w e p r o vi d e a di ff e r e nt a p p r o xi m ati o n al-
g o rit h m t h at a c hi e v e s a f a ct o r of e

e − 1 , h e n c e r e s ol vi n g
it c o m pl et el y.

1 I n t r o d u c ti o n

We st u d y t h e p r o bl e m of a p p r o xi m ati n g t h e m a xi m u m
N a s h s o ci al w elf a r e ( N S W ) w h e n all o c ati n g a s et G
of m i n di vi si bl e it e m s a m o n g a s et A of n a g e nt s
wit h n o n- n e g ati v e m o n ot o n e s u b m o d ul a r v al u ati o n s v i :
2 G → R + , a n d u n e q u al o r a s y m m et ri c e ntitl e m e nt s
c all e d a g e nt w ei g ht s . L et Π n (G ) d e n ot e t h e s et of all
all o c ati o n s, i. e., { (x 1 , . . . , x n ) | ∪i x i = G ; x i ∩ x j =
∅ , ∀ i = j } . T h e N S W p r o bl e m i s t o fi n d a n all o c ati o n
m a xi mi zi n g t h e f oll o wi n g w ei g ht e d g e o m et ri c m e a n of
v al u ati o n s,

a r g m a x
( x 1 ,...,x n ) ∈ Π n ( G ) i ∈ A

v i (x i )
η i

1 /
i ∈ A

η i

,

w h e r e η i i s t h e w ei g ht of a g e nt i. We c all t hi s t h e
As y m m et ri c S u b m o d ul a r N S W p r o bl e m .1 W h e n a g e nt s
a r e s y m m et ri c, η i = 1 , ∀ i ∈ A .

F ai r a n d e ffi ci e nt all o c ati o n of r e s o u r c e s i s a c e n-
t r al p r o bl e m i n e c o n o mi c t h e o r y.  T h e N S W o b-
j e cti v e p r o vi d e s a n i nt e r e sti n g t r a d e- o ff b et w e e n t h e
t w o e xt r e m al o bj e cti v e s of s o ci al w elf a r e (i. e., s u m
of v al u ati o n s) a n d m a x- mi n f ai r n e s s, a n d i n c o ntr a st
t o b ot h it i s i n v a ri a nt t o i n di vi d u al s c ali n g of e a c h
a g e nt’ s v al u ati o n s ( s e e [ M o u 0 3 ] f o r a d diti o n al c h ar a c-
t e ri sti c s). It w a s i n d e p e n d e ntl y di s c o v e r e d b y t hr e e
di ff e r e nt c o m m u niti e s a s a s ol uti o n of t h e b ar g ai ni n g
p r o bl e m i n cl a s si c g a m e t h e o r y [ N a s 5 0 ], a w ell- st u di e d
n oti o n of p r o p o rti o n al f ai r n e s s i n n et w o r ki n g [ K el 9 7 ],

1 I n t h e r e s t of t hi s p a p e r, w e r ef e r t o v a ri o u s s p e ci al c a s e s of
t h e p r o bl e m a s t h e α µ N S W p r o bl e m, w h e r e α i s t h e n a t u r e

of a g e nt s, s y m m e t ri c o r a s y m m e t ri c, a n d µ i s t h e t y p e of a g e nt

v al u a ti o n f u n c ti o n s. We s ki p o n e o r b o t h q u ali fi e r s w h e n t h e y a r e
cl e a r f r o m t h e c o nt e x t.
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a n d c oi n ci d e s wit h t h e c el e br at e d n oti o n of c o m p et-
iti v e e q uili bri u m wit h e q u al i n c o m e s ( C E EI) i n e c o-
n o mi c s [ V ar 7 4 ]. W hil e N a s h [N a s 5 0 ] o nl y c o n si d e r e d
t h e s y m m etri c c a s e, [ H S 7 2 , K al 7 7 ] pr o p o s e d t h e a s y m-
m etri c c a s e, w hi c h h a s al s o b e e n e xt e n si v el y st u di e d,
a n d u s e d i n m a n y di ff er e nt a p pli c ati o n s, e. g., b a r-
g ai ni n g t h e or y [ L V 0 7 , C M 1 0 , T h o 8 6 ], w at e r all o c a-
ti o n [ H d L G Y 1 4 , D H Y Z 1 6 , D H Y 1 7 , D W L + 1 8 ], cli m at e
a gr e e m e nt s [ Y vI W Z 1 7 ], a n d m a n y m or e.

T h e N S W pr o bl e m i s k n o w n t o b e n ot ori o u sl y h a r d,
e. g., N P - h ar d e v e n f or t w o a g e nt s wit h i d e nti c al a d di-
ti v e v al u ati o n s, a n d A P X - h ar d i n g e n er al.2 E ff o rt s w e r e
t h e n di v ert e d t o d e v el o p e ffi ci e nt a p pr o xi m ati o n al g o-
rit h m s. A s eri e s of r e m ar k a bl e w or k s [ C G 1 5 , C D G + 1 7 ,
A G S S 1 7 , A M G V 1 8 , B K V 1 8 , G H M 1 9 , C C G + 1 8 ] p r o-
vi d e g o o d a p pr o xi m ati o n g u ar a nt e e s f or t h e s p e ci al s u b-
cl a s s e s of t hi s pr o bl e m w h er e a g e nt s ar e s y m m et ri c a n d
h a v e a d diti v e(-li k e) v al u ati o n f u n cti o n s 3 vi a utili zi n g i n-
g e ni o u s di ff er e nt a p pr o a c h e s. All t h e s e a p pr o a c h e s e x-
pl oit t h e s y m m etr y of a g e nt s a n d t h e c h ar a ct e ri sti c s of
a d diti v e-li k e v al u ati o n f u n cti o n s, 4 w hi c h m a k e s t h e m
h ar d t o e xt e n d t o t h e a s y m m etri c c a s e a n d m o r e g e n e r al
v al u ati o n f u n cti o n s. A s a c o n s e q u e n c e, n o a p p r o xi m a-
ti o n al g orit h m wit h a f a ct or i n d e p e n d e nt of t h e n u m b e r
of it e m s m [N N R R 1 4 ] i s k n o w n eit h er f or a s y m m et ri c
a g e nt s wit h a d diti v e v al u ati o n s or f or s y m m et ri c a g e nt s
b e y o n d a d diti v e(-li k e) v al u ati o n s. T h e s e q u e sti o n s a r e
al s o r ai s e d i n [ C D G + 1 7 , B K V 1 8 ].

T h e N S W o bj e cti v e al s o s er v e s a s a m aj o r f o c al
p oi nt i n f air di vi si o n. F or t h e c a s e of s y m m etri c a g e nt s
wit h a d diti v e v al u ati o n s, C ar a gi a n ni s et al. [ C K M + 1 6 ]
pr e s e nt a c o m p elli n g ar g u m e nt i n f a v or of t h e ‘ u n r e a s o n-
a bl e’ f air n e s s of m a xi m u m N S W b y s h o wi n g t h at s u c h
a n all o c ati o n h a s o ut st a n di n g pr o p erti e s, n a m el y, it i s
E F 1 ( a p o p ul ar f air n e s s pr o p ert y of e n v y-fr e e n e s s u p t o
o n e it e m) a s w ell a s P ar et o o pti m al ( P O ), a st a n d a r d
n oti o n of e c o n o mi c e ffi ci e n c y. E v e n t h o u g h c o m p uti n g
a m a xi m u m N S W all o c ati o n i s h ar d, it s a p pr o xi m ati o n
r e c o v er s m o st of t h e f air n e s s a n d e ffi ci e n c y g u a r a nt e e s;
s e e e. g., [ B K V 1 8 , C C G + 1 8 , G M 1 9 ].

I n t hi s p a p er, w e e xt e n d o ur u n d er st a n di n g of t h e
N S W pr o bl e m t o f ar m or e g e n er al s etti n g s. O u r m ai n
c o ntri b uti o n i s t w o a p pr o xi m ati o n al g orit h m s, S M at c h
a n d R e p R e M at c h f or a s y m m etri c a g e nt s wit h a d diti v e
a n d s u b m o d ul ar v al u ati o n s r e s p e cti v el y.  B ot h al g o-

2 O b s e r v e t h a t t h e p a rtiti o n p r o bl e m r e d u c e s t o t h e N S W

p r o bl e m wi t h t w o i d e nti c al a g e nt s.
3 Sli g ht g e n e r ali z a ti o n s of a d di ti v e v al u a ti o n s a r e s t u di e d:

b u d g e t- a d di ti v e [ G H M 1 9 ], s e p a r a bl e pi e c e wi s e li n e a r c o n c a v e

( S P L C ) [ A M G V 1 8 ], a n d t h ei r c o m bi n a ti o n [C C G + 1 8 ].
4 F o r i n s t a n c e, t h e n o ti o n of a m a xi m u m b a n g- p e r- b u c k ( M B B )

i t e m i s c ri ti c all y u s e d i n m o s t of t h e s e a p p r o a c h e s. T h e r e i s n o

s u c h e q ui v al e nt n o ti o n f o r t h e s u b m o d ul a r c a s e.

rit h m s a r e si m pl e t o u n d e r st a n d a n d i n v ol v e n o n-tri vi al
m o di fi c ati o n s of a g r e e d y r e p e at e d m at c hi n g s a p pr o a c h.
All o c ati o n s of hi g h v al u e d it e m s a r e d o n e s e p ar at el y
b y u n- m at c hi n g c e rt ai n it e m s a n d r e- m at c hi n g t h e m,
b y p r o c e s s e s t h at a r e di ff er e nt i n b ot h al g o rit h m s. We
s h o w t h at t h e s e a p p r o a c h e s a c hi e v e a p p r o xi m ati o n f a c-
t o r s of O (n ) a n d O (n l o g n ) f o r a d diti v e a n d s u b m o d ul ar
c a s e r e s p e cti v el y, w hi c h i s i n d e p e n d e nt of t h e n u m b er of
it e m s. F o r a d diti v e v al u ati o n s, o u r al g o rit h m o ut p ut s
a n all o c ati o n t h at i s al s o E F 1 .

1. 1  M o d el We f o r m all y d e fi n e t h e v al u ati o n f u n c-
ti o n s w e c o n si d e r i n t hi s p a p e r, a n d t h ei r r el ati o n s t o
ot h e r p o p ul a r f u n cti o n s. F o r c o n v e ni e n c e, w e al s o u s e
v i (j ) i n st e a d of v i ({ j } ) t o d e n ot e t h e v al u ati o n of a g e nt
i f o r it e m j .

1. A d diti v e: Gi v e n v al u ati o n v i (j ) of e a c h a g e nt i
f o r e v e r y it e m j , t h e v al u ati o n f o r a s et of it e m s
i s t h e s u m of t h e i n di vi d u al v al u ati o n s. T h at i s,
∀ S ⊆ G , vi (S ) = j ∈ S v i (j ).

2. M o n ot o n e S u b m o d ul a r: L et v i (S 1 | S2 ) d e n ot e t h e
m a r gi n al utilit y of a g e nt i f o r a s et S 1 of it e m s o v er
s et S 2 , w h e r e S 1 , S 2 ⊆ G a n d S 1 ∩ S 2 = ∅ . T h e n, t h e
v al u ati o n f u n cti o n of e v e r y a g e nt i s a m o n ot o ni c all y
n o n d e c r e a si n g f u n cti o n v i : 2

G → R + t h at s ati s fi e s
t h e s u b m o d ul a rit y c o n st r ai nt t h at f o r all i ∈ A , h ∈
G , S 1 , S 2 ⊆ G ,

v i (h | S1 ∪ S 2 ) ≤ v i (h | S1 ).

Ot h e r p o p ul a r v al u ati o n f u n cti o n s a r e b u d g et a d diti v e
(B A ), s e p a r a bl e pi e c e- wi s e li n e a r a n d c o n c a v e ( S P L C ),
O X S , G r o s s s u b stit ut e s (G S ), X O S a n d S u b a d diti v e.
T h e s e f u n cti o n cl a s s e s a r e r el at e d a s f oll o w s.

A d diti v e S P L C O X S G S S u b m o d ul ar X O S ,

A d diti v e B A S u b m o d ul ar ⊆ X O S ⊆ S u b a d diti v e .

1. 2  R e s ul t s T a bl e 1. 2 s u m m a ri z e s a p pr o xi m ati o n
g u a r a nt e e s of t h e al g o rit h m s R e p R e M at c h a n d S M at c h
u n d e r p o p ul a r v al u ati o n f u n cti o n s [ N T R V 0 7 ], f or m all y
d e fi n e d i n S e cti o n 1. 1 . All c u r r e nt b e st k n o w n r e s ult s
a r e al s o st at e d h e r e f o r r ef e r e n c e.

T o c o m pl e m e nt t h e s e r e s ult s, w e al s o pr o vi d e a
1 .5 8 1 9 -f a ct o r h a r d n e s s of a p p r o xi m ati o n r e s ult f or t h e
s u b m o d ul a r N S W p r o bl e m i n S e cti o n 4 . T hi s h ar d n e s s
e v e n a p pli e s t o t h e c a s e w h e n t h e n u m b e r of a g e nt s i s
c o n st a nt. T hi s s h o w s t h at t h e g e n e r al p r o bl e m i s stri ctl y
h a r d e r t h a n t h e s etti n g s st u di e d s o f a r, f o r w hi c h 1 .4 5
f a ct o r a p p r o xi m ati o n al g o rit h m s a r e k n o w n.
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V al u a ti o n s
S y m m e t ri c A g e n t s A s y m m e t ri c A g e n t s

H a r d n e s s Al g o ri t h m H a r d n e s s Al g o ri t h m
A d diti v e 1 .0 6 9 [G H M 1 9 ] 1 .4 5 [B K V 1 8 ] 1 .0 6 9 [G H M 1 9 ] O (n ) [ S ]

B u d g et- a d diti v e —" — 1 .4 5 [C C G + 1 8 ] —" — —" —
S P L C —" — —" — —" — O (n l o g n ) [ R ]
O X S

—" — O (n l o g n ) [ R ] —" — —" —
Gr o s s s u b stit ut e s
S u b m o d ul ar 1 .5 8 1 9 [ T h m 4. 1 ] —" — 1 .5 8 1 9 [ T h m 4. 1 ] —" —
X O S

—" — O (m ) [N R 1 4 ] —" — O (m ) [N R 1 4 ]
S u b a d diti v e

T a bl e 1: S u m m ar y of r e s ult s. E v er y e ntr y h a s t h e b e st k n o w n a p p r o xi m ati o n g u a r a nt e e f o r t h e s etti n g f oll o w e d b y
t h e r ef er e n c e, fr o m t hi s p a p er or ot h er wi s e, t h at e st a bli s h e s it. H e r e, [S ] a n d [R ] r e s p e cti v el y r ef e r t o Al g orit h m s
S M at c h a n d R e p R e M at c h .

F or t h e s p e ci al c a s e of t h e s u b m o d ul ar N S W p r o b-
l e m w h er e t h e n u m b er of a g e nt s i s c o n st a nt, w e d e s cri b e
a n ot h er al g orit h m wit h a m at c hi n g 1 .5 8 1 9 a p p r o xi m a-
ti o n f a ct o r i n S e cti o n 5 , h e n c e r e s ol vi n g t hi s c a s e c o m-
pl et el y. Fi n all y i n t h e s a m e s e cti o n, w e s h o w t h at f o r
t h e s y m m etri c a d diti v e N S W pr o bl e m, t h e all o c ati o n of
it e m s r et ur n e d b y S M at c h al s o s ati s fi e s E F 1 .

1. 3  T e c h ni q u e s T h e m ai n i d e a u s e d i n Al g o rit h m s
S M at c h a n d R e p R e M at c h i s s h o w n i n L e m m a 3. 1 i n
S e cti o n 3 , w hi c h w e r e st at e i n i nf or m al t er m s h e r e.

L e m m a (I nf or m al) . F o r k = O (n ) a n d f o r e v e r y a g e nt
i, aft e r r e m o vi n g a s et S i of k it e m s t h at mi ni mi z e s i’ s
v al u ati o n f o r t h e r e m ai ni n g it e m s, r e p e at e dl y m at c hi n g
t h e r e m ai ni n g it e m s G \ (∪ i S i ) t o l o c all y m a xi mi z e t h e
N S W o bj e cti v e gi v e s e v e r y a g e nt a n all o c ati o n of v al u e
at l e a st a 1 / n f r a cti o n of h e r v al u ati o n f o r t h e r e m ai ni n g
s et of it e m s, i. e, v i (G \ (∪ i S i ))/ n .

W h e n t h e v al u ati o n f u n cti o n s ar e a d diti v e, t h e n
s u c h a s et of k it e m s c a n b e e ffi ci e ntl y f o u n d. S M at c h
t h e n f oll o w s b y c o m bi ni n g t h e s e r e s ult s.

It i s k n o w n fr o m [S F 1 1 ] t h at fi n di n g a s et of mi n-
i m u m v al u ati o n a m o n g s et s of s o m e mi ni m u m si z e f o r
m o n ot o n e s u b m o d ul ar v al u ati o n f u n cti o n s i s i n a p p r o x-
i m a bl e wit hi n m / l n m f a ct or, w h er e m i s t h e n u m b e r
of it e m s. D u e t o t hi s, t h e a b o v e l e m m a b y it s elf i s i n-
s u ffi ci e nt f or t h e s u b m o d ul ar N S W pr o bl e m. We p r o v e
L e m m a 3. 3 i n S e cti o n 3 , t h at i m pli e s t hi s st at e m e nt.

L e m m a (I nf or m al) . W h e n w e c o m p ut e m at c hi n g s b e-
t w e e n a g e nt s a n d it e m s t o l o c all y m a xi mi z e t h e w ei g ht e d
g e o m et ri c m e a n of a g e nt v al u ati o n s f r o m t h ei r m at c h e d
it e m s, t h e n t h e s et of it e m s all o c at e d i n t h e fi r st l o g n + 1
m at c hi n g s if r e- m at c h e d h a v e a m at c hi n g w h e r e e v e r y
a g e nt g et s a n it e m of v al u e at l e a st e q u al t o t h e hi g h e st
v al u e d it e m f r o m h e r N S W o pti mi zi n g all o c ati o n.

R e p R e M at c h c o m bi n e s t h e t w o r e s ult s i n a r e-
p e at e d m at c hi n g, u n- m at c hi n g a n d t h e n r e- m at c hi n g al-
g o rit h m, b y a p pl yi n g L e m m a 3. 1 t o t h e s et of it e m s t h at
r e m ai n u n all o c at e d aft e r a p h a s e of l o g n + 1 m at c hi n g s.

A n o b s e r v ati o n u s e d w hil e d e si g ni n g b ot h al g o-
rit h m s i s t h at m a xi mi zi n g t h e l o g a rit h m of t h e N S W
f u n cti o n i n st e a d of t h e N S W o bj e cti v e d o e s n ot c h a n g e
t h e o pti m al all o c ati o n( s). D oi n g s o all o w s u s t o m a xi-
mi z e t h e ( w ei g ht e d) s u m of t h e l o g a rit h m s of i n di vi d u al
a g e nt v al u ati o n s, i n st e a d of t h e ( w ei g ht e d) pr o d u ct of
v al u ati o n s. H e n c e, t h e e d g e w ei g ht s d e fi n e d i n t h e v ari-
o u s g r a p h s f o r c o m p uti n g t h e m at c hi n g s i n b ot h S M at c h
a n d R e p R e M at c h a r e l o g a rit h m s of a g e nt v al u ati o n s f or
s o m e all o c ati o n s.

S u b m o d ul a r N S W wi t h c o n s t a n t n u m b e r of
a g e n t s. T hi s i s a di ff e r e nt a p p r o a c h t h at u s e s t e c h-
ni q u e s of m a xi mi zi n g s u b m o d ul a r f u n cti o n s o v er m a-
t r oi d s d e v el o p e d i n [ C V Z 1 0 ], a n d a r e d u cti o n of f air
di vi si o n p r o bl e m s t o t h e p r o bl e m of m a xi mi zi n g a s u b-
m o d ul a r f u n cti o n o v e r m at r oi d s f r o m [ V o n 0 8 ]. At a
hi g h l e v el, w e fi r st m a xi mi z e t h e c o nti n u o u s r el a x ati o n s
of a g e nt v al u ati o n f u n cti o n s, t h e n r o u n d t h e m u si n g a
r a n d o mi z e d al g o rit h m t o o bt ai n a n i nt e g r al all o c ati o n
of it e m s. T h e t w o k e y r e s ult s u s e d i n d e si g ni n g t h e al-
g o rit h m a r e T h e o r e m s 5. 2 a n d 5. 3 .

H a r d n e s s of a p p r o xi m a ti o n. T h e s u b m o d ul ar
A L L O C A TI O N p r o bl e m i s t o m a xi mi z e t h e s u m of v al-
u ati o n s of a g e nt s o v e r i nt e g r al all o c ati o n s of it e m s.
[K L M M 0 8 ] d e s c ri b e a r e d u cti o n of M A X -3 -C O L O RI N G ,
w hi c h i s N P - H a r d t o a p p r o xi m at e wit hi n a c o n st a nt f a c-
t o r, t o A L L O C A TI O N . We p r o v e t h at t hi s r e d u cti o n al s o
e st a bli s h e s t h e s a m e h a r d n e s s f o r t h e s u b m o d ul ar N S W
p r o bl e m.

1. 4  F u r t h e r R el a t e d W o r k A n e xt e n si v e w or k h a s
b e e n d o n e o n s p e ci al c a s e s of t h e N S W p r o bl e m. F or
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t h e s y m m etri c a d diti v e N S W pr o bl e m, s e v er al c o n st a nt-
f a ct or a p pr o xi m ati o n al g orit h m s h a v e b e e n o bt ai n e d.
T h e fir st s u c h al g orit h m u s e d a n a p pr o a c h b a s e d o n
a v ari a nt of Fi s h er m ar k et s [ C G 1 5 ], t o a c hi e v e a n a p-
pr o xi m ati o n f a ct or of 2 .8 8 9 . L at er, t h e a n al y si s of t hi s
al g orit h m w a s i m pr o v e d t o 2 [C D G + 1 7 ]. A n ot h e r a p-
pr o a c h b a s e d o n t h e t h e or y of r e al st a bl e p ol y n o mi-
al s g a v e a n e -f a ct or g u ar a nt e e [A G S S 1 7 ].  R e c e ntl y,
[B K V 1 8 ] o bt ai n e d t h e c urr e nt b e st a p pr o xi m ati o n f a c-
t or of 1 .4 5 u si n g a n a p pr o a c h b a s e d o n li mit e d e n v y.
T h e s e a p pr o a c h e s h a v e al s o b e e n e xt e n d e d t o p r o vi d e
c o n st a nt-f a ct or a p pr o xi m ati o n al g orit h m s f or sli g ht g e n-
er ali z ati o n s of a d diti v e v al u ati o n s, n a m el y t h e b u d g et-
a d diti v e [ G H M 1 9 ], S P L C [A M G V 1 8 ], a n d a c o m m o n
g e n er ali z ati o n of t h e s e t w o v al u ati o n s [ C C G + 1 8 ].

All t h e s e a p pr o a c h e s e x pl oit t h e s y m m etr y of a g e nt s
a n d t h e c h ar a ct eri sti c s of a d diti v e-li k e v al u ati o n f u n c-
ti o n s. F or i n st a n c e, t h e n oti o n of a m a xi m u m b a n g- p e r-
b u c k ( M B B) it e m i s criti c all y u s e d i n m o st a p p r o a c h e s.
T h er e i s n o s u c h e q ui v al e nt n oti o n f or t h e s u b m o d ul a r
c a s e. T hi s m a k e s t h e m h ar d t o e xt e n d t o t h e a s y m m et-
ri c c a s e a n d t o m or e g e n er al v al u ati o n f u n cti o n s.

F air a n d e ffi ci e nt di vi si o n of it e m s t o a s y m m et ri c
a g e nt s wit h s u b m o d ul ar v al u ati o n s i s a n i m p o rt a nt
pr o bl e m, al s o r ai s e d i n [ C D G + 1 7 ]. H o w e v er, t h e o nl y
k n o w n r e s ult f or t hi s g e n er al pr o bl e m i s a n Ω( m )-f a ct o r
al g orit h m [ N R 1 4 ], w h er e m i s t h e n u m b er of it e m s.

T w o ot h er p o p ul ar w elf ar e o bj e cti v e s ar e t h e s o ci al
w elf ar e w h er e it e m s ar e all o c at e d t o m a xi mi z e t h e s u m
of v al u ati o n s of all a g e nt s a n d t h e m a x- mi n o bj e cti v e
w h er e it e m s ar e all o c at e d t o m a xi mi z e t h e mi ni m u m
v al u ati o n. T h e l att er o bj e cti v e i s al s o t er m e d a s t h e
S a nt a Cl a u s pr o bl e m [ B S 0 6 ].

T h e s o ci al w elf ar e pr o bl e m u n d er s u b m o d ul a r v al-
u ati o n s h a s b e e n c o m pl et el y r e s ol v e d wit h a e

e − 1 =
1 .5 8 1 9 -f a ct or al g orit h m [V o n 0 8 ] a n d a m at c hi n g h a r d-
n e s s r e s ult [ K L M M 0 8 ]. N ot e t h at t h e a d diti v e c a s e f o r
t hi s pr o bl e m h a s a tri vi al li n e ar ti m e al g orit h m, h e n c e it
i s p er h a p s u n s ur pri si n g t h at a c o n st a nt f a ct or al g o rit h m
w o ul d e xi st f or t h e s u b m o d ul ar c a s e.

F or t h e S a nt a Cl a u s pr o bl e m, e xt e n si v e w o r k h a s
b e e n d o n e o n t h e r e stri ct e d a d diti v e v al u ati o n s c a s e
w h er e t h e v al u e of a n it e m j i s eit h er v j or 0 f o r e v e r y
a g e nt, r e s ulti n g i n c o n st a nt f a ct or al g orit h m s f o r t h e
s a m e [ A K S 1 5 , D R Z 1 8 ]. H o w e v er, f or t h e u n r e st ri ct e d
a d diti v e v al u ati o n s t h e b e st a p pr o xi m ati o n f a ct o r i s
O (
√
n l o g3 n ) [A S 1 0 ]. F or t h e s u b m o d ul ar S a nt a Cl a u s

pr o bl e m, w e h a v e a n O (n ) f a ct or al g orit h m [K P 0 7 ]. O n
t h e ot h er h a n d, a h ar d n e s s f a ct or of 2 i s t h e b e st k n o w n
l o w er b o u n d f or b ot h s etti n g s [B D 0 5 ].

O r g a ni z a ti o n of t h e p a p e r: I n S e cti o n 2 , w e d e s c ri b e

t h e al g o rit h m S M at c h a n d a n al y si s f o r t h e a d diti v e N S W
p r o bl e m. I n S e cti o n 3 , t h e c o r r e s p o n di n g di s c u s si o n
a b o ut t h e s u b m o d ul a r N S W p r o bl e m i s p r e s e nt e d. N e xt,
S e cti o n 4 c o nt ai n s t h e h a r d n e s s p r o of f o r t h e s u b m o d u-
l a r s etti n g. Fi n all y, S e cti o n 5 p r e s e nt s t h e r e s ult s f or t h e
s p e ci al c a s e s of s u b m o d ul a r N S W wit h c o n st a nt n u m b er
of a g e nt s a n d s y m m et ri c a d diti v e N S W .

2  A d di ti v e V al u a ti o n s

I n t hi s s e cti o n, w e p r e s e nt S M at c h , d e s c ri b e d i n Al g o-
rit h m 1 , f o r t h e a s y m m et ri c a d diti v e N S W p r o bl e m, a n d
p r o v e t h e f oll o wi n g a p p r o xi m ati o n r e s ult.

T h e o r e m 2. 1. Gi v e n a n i n st a n c e of t h e a s y m m et ri c
a d diti v e N S W p r o bl e m, al g o rit h m S M at c h r et u r n s a n
all o c ati o n x wit h N S W v al u e at l e a st 1 / 2 n ti m e s t h e
o pti m al o bj e cti v e v al u e. T h at i s, N S W (x ) ≥ 1

2 n O P T .

S M at c h i s a si n gl e p a s s al g o rit h m t h at all o c at e s u p
t o o n e it e m t o e v e r y a g e nt p e r it e r ati o n s u c h t h at t h e
N S W o bj e cti v e i s l o c all y m a xi mi z e d. A n i s s u e wit h a
n ai v e si n gl e p a s s, l o c all y o pti mi zi n g g r e e d y a p pr o a c h
i s t h at t h e i niti al it e r ati o n s w o r k o n hi g hl y li mit e d
i nf o r m ati o n. A s s h o w n i n E x a m pl e 2 .1 , s u c h al g orit h m s
c a n r e s ult i n o ut c o m e s wit h v e r y l o w N S W e v e n f or
s y m m et ri c a g e nt s wit h a d diti v e v al u ati o n f u n cti o n s.

E x a m pl e 2. 1. C o n si d e r 2 a g e nt s A, B wit h w ei g ht s 1
e a c h, a n d m + 1 it e m s. T h e v al u ati o n s of A a n d B f o r
t h e fi r st it e m a r e M + a n d M r e s p e cti v el y. A g e nt A
al s o v al u e s e a c h of t h e r e m ai ni n g it e m s at 1 , w hil e B
o nl y v al u e s t h e l a st of t h e s e at 1 , a n d h a s 0 v al u ati o n
f o r t h e r e m ai ni n g (m − 1) it e m s. A n all o c ati o n t h at
o pti mi z e s t h e N S W of t h e a g e nt s will all o c at e t h e fi r st
it e m t o B , a n d all o c at e all t h e r e m ai ni n g it e m s t o A .
T h e o pti m al N S W o bj e cti v e i s (M m ) 1 / 2 . A r e p e at e d
m at c hi n g al g o rit h m, i n t h e fi r st it e r ati o n, will all o c at e
t h e fi r st it e m t o A , a n d t h e l a st t o B . N o m at c hi n g c a n
n o w gi v e n o n z e r o v al u ati o n t o B . T h e m a xi m u m N S W
o bj e cti v e t h at c a n b e g e n e r at e d i s ((M + + m − 1) 1) 1 / 2 <√
M + m . T h u s, u si n g a p p r o p ri at e v al u e of M , t h e r ati o
of O P T t o N S W will d e p e n d o n m .

I n t hi s e x a m pl e, alt h o u g h a g e nt A c a n b e all o c at e d
a n it e m of hi g h v al u ati o n l at e r, t h e al g o rit h m d o e s n ot
k n o w t hi s i niti all y. Al g o rit h m 1 r e s ol v e s t hi s i s s u e b y
p r e- c o m p uti n g a n a p p r o xi m at e v al u e t h at t h e a g e nt s
will r e c ei v e i n l at e r it e r ati o n s, a n d u s e s t hi s i nf or m ati o n
i n t h e e d g e w ei g ht d e fi niti o n s w h e n all o c ati n g t h e fir st
it e m s. We n o w di s c u s s t h e d et ail s of S M at c h .

2. 1  Al g o ri t h m S M at c h w o r k s i n a si n gl e p a s s. F or
e v e r y a g e nt, t h e al g o rit h m fi r st c o m p ut e s t h e v al u e
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of m − 2 n l e a st v al u e d it e m s a n d st or e s t hi s i n u i .
S M at c h t h e n d e fi n e s a w ei g ht e d c o m pl et e bi p a rtit e
gr a p h Γ( A , G , W ) si mil arl y a s i n t h e s u b m o d ul a r c a s e,
b ut h er e t h e e d g e w ei g ht s ar e d e fi n e d a s w (i, j ) =
η i l o g v i (j ) +

u i
n , a n d all o c at e s o n e it e m t o e a c h a g e nt

al o n g t h e e d g e s of a m a xi m u m w ei g ht m at c hi n g of Γ .
It t h e n st art s all o c ati n g it e m s vi a r e p e at e d m at c hi n g s.
U ntil all it e m s ar e all o c at e d, S M at c h it er ati v el y d e fi n e s
gr a p h s Γ( A , G r e m , W ) wit h G r e m d e n oti n g t h e s et of
u n all o c at e d it e m s a n d e d g e w ei g ht s d e fi n e d a s w (i, j ) =
η i l o g (v i + v i (j )), w h er e v i i s t h e v al u ati o n of a g e nt i f o r
it e m s t h at ar e all o c at e d t o h er. S M at c h t h e n all o c at e s
at m o st o n e it e m t o e a c h a g e nt a c c or di n g t o a m a xi m u m
w ei g ht m at c hi n g of Γ .

2. 2  N o t a ti o n I n t h e f oll o wi n g di s c u s si o n, w e u s e
x i = { h

1
i , . . . , h

τ i
i } t o d e n ot e t h e s et of it e m s r e c ei v e d

b y a g e nt i i n S M at c h . We u s e x ∗i = { g
1
i , . . . , g

τ ∗i
i } , τ i

a n d τ ∗i t o d e n ot e t h e s et of it e m s i n i’ s o pti m al b u n dl e,
a n d t h e n u m b er of it e m s i n x i a n d x

∗
i r e s p e cti v el y. T h e n

f or e v er y i, all it e m s i n x i a n d G ar e r a n k e d a c c o r di n g t o
t h e d e cr e a si n g utiliti e s a s p er v i . G i, [a :b ] d e n ot e t h e it e m s
r a n k e d fr o m a t o b a c c or di n g t o a g e nt i i n G , a n d x i, 1: t i s
t h e t ot al all o c ati o n t o a g e nt i fr o m t h e fir st t m at c hi n g
it er ati o n s. We al s o u s e G i, k t o d e n ot e t h e k

t h r a n k e d
it e m of a g e nt i fr o m t h e e ntir e s et of it e m s. F o r all i, w e
d e fi n e u i a s t h e mi ni m u m v al u e f or t h e r e m ai ni n g s et
of it e m s u p o n r e m o vi n g at m o st 2 n it e m s fr o m G , i. e.,
u i = mi n S ⊆ G ,| S | ≤2 n v i (G \ S ) = G i, [ 2n + 1 , m].

5

2. 3  A n al y si s T o e st a bli s h t h e g u ar a nt e e of T h e o r e m
2. 1 , w e fir st pr o v e a c o u pl e of l e m m a s.

L e m m a 2. 1. v i (h
t
i ) ≥ v i (G i, t n ).

P r o of. Si n c e e v er y it er ati o n of S M at c h all o c at e s at m o st
n it e m s, at t h e st art of it er ati o n t at m o st (t − 1) n it e m s
ar e all o c at e d. T h u s at l e a st n it e m s fr o m G r a n k e d
b et w e e n 1 t o t n b y a g e nt i ar e still u n all o c at e d. I n t h e
tt h it er ati o n t h e a g e nt will t h u s g et a n it e m wit h v al u e
at l e a st t h e v al u e of G i, t n a n d t h e l e m m a f oll o w s.

L e m m a 2. 2. v i (h
2
i , . . . , h

τ i
i ) ≥

u i
n .

P r o of. U si n g L e m m a 2 .1 a n d si n c e v i (G i, t n ) ≥
v i (G i, t n + k ), ∀ k ∈ [n − 1]

v i (h
t
i ) ≥

1

n
v i (G i, [t n : (t + 1 ) n − 1] ) .

5 A s t h e v al u a ti o n f u n c ti o n s a r e m o n o t o n e, t h e mi ni m u m v al u e

will b e o b t ai n e d b y r e m o vi n g e x a c tl y 2 n i t e m s.  T h e l e s s t h a n

a c c o u nt s f o r t h e c a s e w h e n t h e n u m b e r of i t e m s i n G i s f e w e r t h a n
2 n .

T h u s,

v i (h
2
i , . . . , h

τ i
i ) =

τ i

t = 2

v i (h
t
i ) ≥

1

n

τ i

t = 2

(v i (G i, [t n : (t + 1 ) n − 1] )

A s at m o st n it e m s a r e all o c at e d i n e v e r y it e r ati o n, a g e nt
i r e c ei v e s it e m s f o r at l e a st m

n it e r ati o n s.
6 T hi s i m pli e s

t h at (τ i + 1) n ≥ m a n d h e n c e,

v i (h
2
i , . . . , h

τ i
i ) ≥

1

n
v i (G i, [ 2n :m − 1] )

≥
1

n
v i (G i, [ 2n + 1: m ]) =

1

n
u i .

T h e s e c o n d i n e q u alit y f oll o w s a s v i (G i, 2 n ) ≥ v i (G i, m ).

We n o w p r o v e o u r m ai n t h e o r e m.

P r o of of T h e o r e m 2 .1 .

N S W (x ) =
n

i = 1

v i h
1
i , . . . , h

τ i
i

η i
1
n

i = 1
η i

=

n

i = 1

v i (h
1
i ) + v i (h

2
i . . . , h

τ i
i )

η i
1
n

i = 1
η i

≥

n

i = 1

v i (h
1
i ) +

u i
n

η i
1
n

i = 1
η i ,

w h e r e t h e l a st i n e q u alit y f oll o w s f r o m L e m m a 2. 2 .
D u ri n g t h e all o c ati o n of t h e fi r st it e m h 1i , it e m s g

1
i of

all a g e nt s a r e a v ail a bl e. T h u s, all o c ati n g e a c h a g e nt h er
o w n g 1i i s a f e a si bl e fi r st m at c hi n g a n d w e g et

N S W (x ) ≥
n

i = 1

v i (g
1
i ) +

u i
n

η i
1
n

i = 1
η i .

N o w, u i = mi n S ∈ G ,| S | ≤2 n v i (G \ S ). S u p p o s e w e d e fi n e,
S ∗i = a r g mi n | S | ≤2 n, S ⊆ x ∗i v i (x

∗
i \ S ), t h e n v i (x

∗
i \ S

∗
i ) ≤

u i . T o s e e t hi s, l et S i = a r g mi n S ∈ G ,| S | ≤2 n v i (G \ S ).
N o w, u i = v i (G \ S i ) ≥ v i (x

∗
i \ S i ) ≥ v i (x

∗
i \ S

∗
i ). T h u s,

N S W (x ) ≥

n

i = 1

1

2 n
v i (S

∗
i ) +

1

n
v i (x

∗
i \ S

∗
i )

η i
1
n

i = 1
η i

≥
1

2 n

n

i = 1

(v i (x
∗
i )
η i )

1
n

i = 1
η i

=
1

2 n
O P T .

6 H e r e w e a s s u m e t h a t t h e a g e nt s h a v e n o n- z e r o v al u a ti o n f o r

e v e r y i t e m. If i t d o e s n o t, t h e o t h e r c a s e i s al s o s t r ai g htf o r w a r d
a n d t h e l e m m a c o nti n u e s t o h ol d.
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Al g o ri t h m 1: S M at c h f or t h e A s y m m etri c A d diti v e N S W p r o bl e m

I n p u t : A s et A of n a g e nt s wit h w ei g ht s η i , ∀ i ∈ A , a s et G of m i n di vi si bl e it e m s, a n d a d diti v e
v al u ati o n s v i : 2

G → R + , w h er e v i (S ) i s t h e v al u ati o n of a g e nt i ∈ A f o r a s et of it e m s S ⊆ G .
O u t p u t: A n all o c ati o n t h at a p pr o xi m at el y o pti mi z e s t h e N S W .

1 x i ← ∅ , ui ← v i (G i, [ 2n + 1: m ]) ∀ i ∈ [n ] / / G i, [a :b ] d e f i n e d i n S e c t i o n 2 . 2
2 D e fi n e w ei g ht e d c o m pl et e bi p artit e gr a p h Γ( A , G , W ) wit h w ei g ht s

W = { w (i, j ) | w (i, j ) = η i l o g v i (j ) +
u i
n , ∀ i ∈ A , j ∈ G }

3 C o m p ut e a m a xi m u m w ei g ht m at c hi n g M f o r Γ
4 x i ← x i ∪ { j | (i, j ) ∈ M } , ∀ i ∈ A / / a l l o c a t e i t e m s a c c o r d i n g t o M
5 G r e m ← G \ { j | (i, j ) ∈ M } / / u p d a t e s e t o f u n a l l o c a t e d i t e m s

6 w hil e G r e m = ∅ d o
7 D e fi n e w ei g ht e d c o m pl et e bi p artit e gr a p h Γ( A , G r e m , W ) wit h w ei g ht s

W = { w (i, j ) | w (i, j ) = η i l o g (v i (j ) + v i (x i )), i ∈ A , j ∈ G
r e m }

8 C o m p ut e a m a xi m u m w ei g ht m at c hi n g M f o r Γ
9 x i ← x i ∪ { j | (i, j ) ∈ M } , ∀ i ∈ A / / a l l o c a t e i t e m s a c c o r d i n g t o M
1 0 G r e m ← G r e m \ { j | (i, j ) ∈ M } / / r e m o v e a l l o c a t e d i t e m s

1 1 e n d
1 2 R et ur n x

R e m a r k 2. 1. W h e n S M at c h i s a p pli e d t o t h e i n st a n c e
of E x a m pl e 2. 1 , it r e s ult s i n a b ett e r all o c ati o n t h a n
t h at of a n ai v e r e p e at e d m at c hi n g a p p r o a c h. St a g e 1
of S M at c h c o m p ut e s u i a s m − 2 n a n d 0 f o r A a n d
B r e s p e cti v el y.  W h e n t hi s v al u e i s i n cl u d e d i n t h e
e d g e w ei g ht of t h e fi r st bi p a rtit e g r a p h Γ , t h e r e s ulti n g
m at c hi n g gi v e s B t h e fi r st it e m, a n d A s o m e ot h e r it e m.
S u b s e q u e ntl y A g et s all r e m ai ni n g it e m s, r e s ulti n g i n a n
all o c ati o n h a vi n g o pti m al N S W .

3  S u b m o d ul a r V al u a ti o n s

I n t hi s s e cti o n w e pr e s e nt t h e al g orit h m R e p R e M at c h ,
gi v e n i n Al g orit h m 2 , f or a p pr o xi m ati n g t h e N S W
o bj e cti v e u n d er s u b m o d ul ar v al u ati o n s. We will p r o v e
t h e f oll o wi n g r el ati o n b et w e e n t h e N S W of t h e all o c ati o n
x r et ur n e d b y R e p R e M at c h a n d t h e o pti m al w ei g ht e d
g e o m etri c m e a n O P T .

T h e o r e m 3. 1. Gi v e n a n i n st a n c e of t h e a s y m m et-
ri c s u b m o d ul a r N S W p r o bl e m, al g o rit h m R e p R e M at c h
r et u r n s a n all o c ati o n x wit h N S W v al u e at l e a st
1 / ( 2n (l o g n + 2)) ti m e s t h e o pti m al o bj e cti v e v al u e, i. e.,

N S W (x ) ≥
1

2 n (l o g n + 2 )
O P T .

3. 1  Al g o ri t h m R e p R e M at c h t a k e s a s i n p ut a n i n-
st a n c e of t h e N S W pr o bl e m, d e n ot e d b y (A , G , V ), w h e r e
A i s t h e s et of a g e nt s, G i s t h e s et of it e m s, a n d
V = { v 1 , v2 . . . , vn } i s t h e s et of a g e nt s’ m o n ot o n e s u b-
m o d ul ar v al u ati o n f u n cti o n s, a n d g e n er at e s a n all o c a-

ti o n v e ct o r x . E a c h a g e nt i ∈ A i s a s s o ci at e d wit h a
p o siti v e w ei g ht η i .

R e p R e M at c h r u n s i n t h r e e p h a s e s. I n t h e fir st
p h a s e, i n e v e r y it e r ati o n, w e d e fi n e a w ei g ht e d c o m pl et e
bi p a rtit e g r a p h Γ( A , G r e m , W ) a s f oll o w s. G r e m i s t h e
s et of it e m s t h at a r e still u n all o c at e d ( G r e m = G
i niti all y). T h e w ei g ht of e d g e (i, j ), i ∈ A , j ∈ G r e m ,
d e n ot e d b y w (i, j ) ∈ W , i s d e fi n e d a s t h e l o g arit h m
of t h e v al u ati o n of t h e a g e nt f o r t h e si n gl et o n s et
h a vi n g t hi s it e m, s c al e d b y t h e a g e nt’ s w ei g ht. T h at i s,
w (i, j ) = η i l o g (v i (j )). We t h e n c o m p ut e a m a xi m u m
w ei g ht m at c hi n g i n t hi s g r a p h, a n d all o c at e t o a g e nt s
t h e it e m s t h e y w e r e m at c h e d t o (if a n y). T hi s pr o c e s s
i s r e p e at e d f o r l o g n + 1 it e r ati o n s.  We p erf or m a
si mil a r r e p e at e d m at c hi n g p r o c e s s i n t h e s e c o n d p h a s e,
wit h di ff e r e nt e d g e w ei g ht d e fi niti o n s f o r t h e gr a p h s Γ .
We st a rt t hi s p h a s e b y a s si g ni n g e m pt y b u n dl e s t o all
a g e nt s. H e r e, t h e w ei g ht of a n e d g e b et w e e n a g e nt i
a n d it e m j i s d e fi n e d a s t h e l o g a rit h m of t h e v al u ati o n
of a g e nt i f o r t h e s et of it e m s c u r r e ntl y all o c at e d t o
h e r i n P h a s e 2 of R e p R e M at c h , s c al e d b y h er w ei g ht.
T h at i s, if w e d e n ot e t h e it e m s all o c at e d i n t it er ati o n s
of P h a s e 2 a s x 2i, t , i n (t + 1)

s t it e r ati o n, w (i, j ) =

η i l o g (v i (x
2
i, t ∪ { j } )).

I n t h e fi n al p h a s e, w e r e- m at c h t h e it e m s all o c at e d
i n P h a s e 1 . We r el e a s e t h e s e it e m s f r o m t h eir a g e nt s,
a n d d e fi n e G r e m a s u ni o n of t h e s e it e m s. We d e fi n e Γ
b y l etti n g t h e e d g e w ei g ht s r e fl e ct t h e t ot al v al u ati o n
of t h e a g e nt u p o n r e c ei vi n g t h e c o r r e s p o n di n g it e m, i. e.
w (i, j ) = η i l o g (v i (x

2
i ∪ { j } )), w h e r e x

2
i i s t h e fi n al s et

of it e m s all o c at e d t o i i n P h a s e 2 . We c o m p ut e o n e
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m a xi m u m w ei g ht m at c hi n g f or Γ s o d e fi n e d, a n d all o c at e
all it e m s al o n g t h e m at c h e d e d g e s. All r e m ai ni n g it e m s
ar e t h e n ar bitr aril y all o c at e d. T h e fi n al all o c ati o n s t o
all a g e nt s, d e n ot e d a s x = { x i } i ∈ A , i s t h e o ut p ut of
R e p R e M at c h .

3. 2  N o t a ti o n T h er e ar e t hr e e p h a s e s i n
R e p R e M at c h .  We d e n ot e t h e s et of it e m s r e c ei v e d
b y a g e nt i i n P h a s e p ∈ { 1 , 2 , 3 } b y x pi , a n d it s si z e |x

p
i |

b y τ pi . Si mil arl y, x i a n d τ i r e s p e cti v el y d e n ot e t h e fi n al
s et of it e m s r e c ei v e d b y a g e nt i a n d t h e si z e of t hi s s et.
N ot e t h at P h a s e 3 r el e a s e s a n d r e- all o c at e s s el e ct e d
it e m s of P h a s e 1 , t h u s τ i i s n ot e q u al t o τ

1
i + τ

2
i + τ

3
i .

T h e it e m s all o c at e d t o t h e a g e nt s i n P h a s e 2 a r e

d e n ot e d b y x 2i = { h
1
i , h

2
i . . . , h

τ 2i
i } . We al s o r ef e r t o t h e

c o m pl et e s et of it e m s r e c ei v e d i n it er ati o n s 1 t o t of
P h a s e p b y x pi, t , f or a n y p ∈ { 1 , 2 , 3 } .

F or t h e a n al y si s, t h e m ar gi n al utilit y of a n a g e nt
i f or a n it e m j o v er a s et of it e m s S i s d e n ot e d b y
v i (j | S) = v i ({ j } ∪ S ) − v i (S ). Si mil arl y, w e d e n ot e
b y v i (S 1 | S2 ) t h e m ar gi n al utilit y of s et S 1 of it e m s
o v er s et S 2 w h er e S 1 , S 2 ⊆ G a n d S 1 ∩ S 2 = ∅ . We u s e
x ∗ = { x ∗i | i ∈ A } t o d e n ot e t h e o pti m al all o c ati o n
of all it e m s t h at m a xi mi z e s t h e N S W , a n d τ ∗i f o r |x

∗
i |.

F or e v er y a g e nt i, it e m s i n x ∗i ar e r a n k e d s o t h at g
j
i i s

t h e it e m t h at gi v e s i t h e hi g h e st m ar gi n al utilit y o v e r
all hi g h er r a n k e d it e m s. T h at i s, f or j = 1 , g 1i i s t h e
it e m t h at gi v e s i t h e hi g h e st m ar gi n al utilit y o v e r ∅ , a n d
f or all 2 ≤ j ≤ τ ∗i , g

j
i = ar g m a x g ∈ x ∗

i
\ { g 1

i
,..., g j − 1

i
} v i (g |

{ g 1i , . . . , g
j − 1
i } ).7

We l et x̄ ∗i b e t h e s et of it e m s fr o m x
∗
i t h at a r e

n ot all o c at e d (t o a n y a g e nt) at t h e e n d of P h a s e 1 ,
a n d d e n ot e b y v̄ ∗i = v i ( x̄

∗
i ) a n d τ̄

∗
i = |x̄

∗
i | r e s p e c-

ti v el y t h e t ot al v al u ati o n a n d n u m b er of t h e s e it e m s.
F or r e a d a bilit y, t o s p e cif y t h e v al u ati o n f or a s et of
it e m s S 1 = { s

1
1 , . . . s

k 1
1 } , i n st e a d of v i ({ s

1
1 , . . . , s

k 1
1 } ),

w e al s o u s e v i (s
1
1 , . . . , s

k 1
1 ). Si mil arl y, w hil e d e fi ni n g t h e

m ar gi n al utilit y of a s et S 2 = { s
1
2 , . . . , s

k 2
2 } o v e r S 1 i n-

st e a d of writi n g v i ({ s
1
2 , . . . , s

k 2
2 } | { s

1
1 , . . . , s

k 1
1 } ), w e al s o

u s e v i (s
1
2 , . . . , s

k 2
2 | s

1
1 , . . . , s

k 1
1 ).

3. 3  A n al y si s We will pr o v e T h e or e m 3. 1 u si n g a
s eri e s of s u p p orti n g l e m m a s. We fir st pr o v e t h at i n
P h a s e 2 , t h e mi ni m u m m ar gi n al utilit y of a n it e m
all o c at e d t o a n a g e nt o v er h er c urr e nt all o c ati o n f r o m

7 Si n c e t h e v al u a ti o n s a r e m o n o t o n e s u b m o d ul a r, t hi s e n s u r e s

t h a t v i ( g
j
i | {g

1
i , . . . , g

j − 1
i } ) ≥ v i ( g

k
i | {g

1
i , . . . , g

k − 1
i } ) f o r all

k ≥ j. T hi s i m pli e s t h a t i n a n y s u b s e t of i t e m s i n t h e o p ti m al

b u n dl e, t h e hi g h e s t r a n k e d i t e m’ s m a r gi n al c o nt ri b u ti o n i s a t l e a s t

1 / ti m e s t h a t of t hi s s e t, w h e n t h e m a r gi n al c o nt ri b u ti o n i s
c o u nt e d i n t hi s w a y.

p r e vi o u s it e r ati o n s of P h a s e 2 i s n ot t o o s m all. T hi s i s
t h e m ai n r e s ult t h at all o w s u s t o b o u n d t h e mi ni m u m
v al u ati o n of t h e s et of it e m s all o c at e d i n P h a s e 2 .

I n t h e tt h it e r ati o n of P h a s e 2 , R e p R e M at c h fi n d s a
m a xi m u m w ei g ht m at c hi n g. H e r e t h e al g o rit h m tri e s t o
a s si g n t o e a c h a g e nt a n it e m t h at gi v e s h e r t h e m a xi m u m
m a r gi n al utilit y o v er h e r c u r r e ntl y all o c at e d s et of it e m s.
H o w e v e r, e v e r y a g e nt i s c o m p eti n g wit h n − 1 ot h er
a g e nt s t o g et t hi s it e m. S o, i n st e a d of r e c ei vi n g t h e b e st
it e m, s h e mi g ht l o s e a f e w hi g h r a n k e d it e m s t o ot h er
a g e nt s. C o n si d e r t h e i nt e r s e cti o n of t h e s et of it e m s
t h at a g e nt i l o s e s t o ot h e r a g e nt s i n t h e tt h it er ati o n
wit h t h e s et of it e m s l eft f r o m h e r o pti m al b u n dl e at
t h e b e gi n ni n g of tt h it e r ati o n. We will r ef e r t o t hi s s et
of it e m s b y S ti . L et t h e n u m b e r of it e m s i n S

t
i b e k

t
i .

F o r t h e a n al y si s of R e p R e M at c h , w e al s o i ntr o d u c e
t h e n oti o n of att ai n a bl e it e m s f o r e v e r y it e r ati o n. S ti
i s t h e s et of a n a g e nt’ s p r ef e r r e d it e m s t h at s h e l o st t o
ot h e r a g e nt s. T h e it e m s t h at a r e n o w l eft a r e r ef err e d
a s t h e s et of att ai n a bl e it e m s of t h e a g e nt. N ot e t h at
i n a n y m at c hi n g, e v e r y a g e nt g et s a n it e m e q ui v al e nt t o
h e r b e st att ai n a bl e it e m, t h at i s, a n it e m f o r w hi c h h er
m a r gi n al v al u ati o n ( o v e r h e r c u r r e nt all o c ati o n) i s at
l e a st e q u al t o t h at f r o m h e r hi g h e st m a r gi n all y v al u e d
att ai n a bl e it e m.

F o r all i, w e d e n ot e t h e i nt e r s e cti o n of t h e s et of
att ai n a bl e it e m s i n t h e tt h it e r ati o n a n d a g e nt i’ s o pti m al
b u n dl e x ∗i b y x̄

∗
i, t , a n d l et u

∗
i = v i ( x̄

∗
i, 1 ) = v i ( x̄

∗
i \ S

1
i ) b e

t h e t ot al v al u ati o n of att ai n a bl e it e m s at fi r st it er ati o n
of P h a s e 2 . I n t h e f oll o wi n g l e m m a, w e pr o v e a l o w er
b o u n d o n t h e m a r gi n al v al u ati o n of t h e s et of att ai n a bl e
it e m s o v e r t h e s et of it e m s t h at t h e al g orit h m h a s
al r e a d y all o c at e d t o t h e a g e nt.

L e m m a 3. 1. F o r a n y j ∈ [τ 2i − 1] ,

v i ( x̄
∗
i, j + 1 |h

1
i , . . . , h

j
i ) ≥ u

∗
i − k

2
i v i (h

1
i )−

j

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i ) − v i (h

1
i , h

2
i . . . , h

j
i ).

P r o of. We p r o v e t hi s l e m m a u si n g i n d u cti o n o n t h e
n u m b e r of it e r ati o n s t. C o n si d e r t h e b a s e c a s e w h e n
t = 2 . A g e nt i h a s alr e a d y b e e n all o c at e d h 1i . S h e n o w
h a s at m o st τ̄ ∗i − k

1
i it e m s l eft f r o m x̄

∗
i t h at ar e n ot y et

all o c at e d. I n t h e n e xt it e r ati o n t h e a g e nt l o s e s k 2i it e m s
t o ot h e r a g e nt s a n d r e c ei v e s h 2i . E a c h of t h e r e m ai ni n g
τ̄ ∗i − k

1
i it e m s h a v e m a r gi n al utilit y at m o st v i (h

1
i ) o v er ∅ .

T h u s, t h e m a r gi n al utilit y of t h e s e it e m s o v er h 1i i s al s o
at m o st v i (h

1
i ). We b o u n d t h e t ot al m a r gi n al v al u ati o n

of x̄ ∗i, 2 o v e r { h
1
i } , b y c o n si d e ri n g t w o c a s e s.

C a s e 1: h 1i /∈ x̄
∗
i, 1 : B y m o n ot o ni cit y of v i , v i ( x̄

∗
i, 2 |

h 1i ) ≥ v i ( x̄
∗
i, 2 ) − v i (h

1
i ) = v i ( x̄

∗
i, 1 \ S

2
i ) − v i (h

1
i ).
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Al g o ri t h m 2: R e p R e M at c h f or t h e A s y m m et ri c S u b m o d ul a r N S W p r o bl e m

I n p u t : S et A of n a g e nt s wit h w ei g ht s η i , ∀ i ∈ A , s et G of m i n di vi si bl e it e m s, a n d v al u ati o n s
v i : 2

G → R + , w h er e v i (S ) i s t h e v al u ati o n of a g e nt i ∈ A f o r a s et of it e m s S ⊆ G .
O u t p u t: A n all o c ati o n t h at a p pr o xi m at el y o pti mi z e s t h e N S W o bj e cti v e

P h a s e 1 :

1 x 1i ← ∅ , ∀ i ∈ A / / x 1i ’ s s t o r e t h e s e t o f i t e m s a l l o c a t e d i n P h a s e 1
2 G r e m ← G / / s e t o f u n a l l o c a t e d i t e m s b e f o r e e v e r y i t e r a t i o n
3 t ← 0 / / i t e r a t i o n c o u n t e r
4 w hil e G r e m = ∅ a n d t ≤ l o g n + 1 d o
5 D e fi n e w ei g ht e d c o m pl et e bi p artit e gr a p h Γ( A , G r e m , W ) wit h w ei g ht s

W = { w (i, j ) | w (i, j ) = η i l o g (v i (j )), ∀ i ∈ A , j ∈ G
r e m }

6 C o m p ut e a m a xi m u m w ei g ht m at c hi n g M f o r Γ
7 x 1i ← x

1
i ∪ { j } , ∀ (i, j ) ∈ M / / a l l o c a t e i t e m s t o a g e n t s a c c o r d i n g t o M

8 G r e m ← G r e m \ { j | (i, j ) ∈ M } ; t ← t + 1 / / r e m o v e a l l o c a t e d i t e m s

9 e n d

P h a s e 2 :

1 0 F or all i, x 2i ← ∅ / / x 2i ’ s a r e t h e s e t s o f i t e m s a l l o c a t e d i n P h a s e 2
1 1 w hil e G r e m = ∅ d o
1 2 D e fi n e w ei g ht e d c o m pl et e bi p artit e gr a p h Γ( A , G r e m , W ) wit h w ei g ht s

W = { w (i, j ) | w (i, j ) = η i l o g (v i (x
2
i, t ∪ { j } )), ∀ i ∈ A , j ∈ G

r e m }

1 3 C o m p ut e a m a xi m u m w ei g ht m at c hi n g M f o r Γ
1 4 x 2i ← x

2
i ∪ { j } , ∀ (i, j ) ∈ M / / a l l o c a t e i t e m s t o a g e n t s a c c o r d i n g t o M

1 5 G r e m ← G r e m \ { j | (i, j ) ∈ M } / / r e m o v e a l l o c a t e d i t e m s

1 6 e n d

P h a s e 3 :

1 7 G r e m ← i x
1
i / / r e l e a s e i t e m s a l l o c a t e d i n P h a s e 1

1 8 D e fi n e w ei g ht e d c o m pl et e bi p artit e gr a p h Γ( A , G r e m , W ) wit h
W = { w (i, j ) | w (i, j ) = η i l o g (v i (x

2
i ∪ { j } )), ∀ i ∈ A , j ∈ G

r e m }
1 9 C o m p ut e a m a xi m u m w ei g ht m at c hi n g M f o r Γ
2 0 x 2i ← x

2
i ∪ { j } , ∀ (i, j ) ∈ M / / a l l o c a t e i t e m s t o a g e n t s a c c o r d i n g t o M

2 1 Ar bitr aril y all o c at e r e st of t h e it e m s t o a g e nt s, l et x = { x i } i ∈ A d e n ot e t h e fi n al all o c ati o n
2 2 r e t u r n x

C a s e 2: h 1i ∈ x̄
∗
i, 1 : H er e, v i ( x̄

∗
i, 2 | h

1
i ) = v i ( x̄

∗
i, 2 ∪ { h

1
i } ) −

v i (h
1
i ) = v i ( x̄

∗
i, 1 \ S

2
i ) − v i (h

1
i ).

I n b ot h c a s e s, s u b m o d ul arit y of v al u ati o n s a n d t h e f a ct
t h at f or all j ∈ S 2i , vi (j ) ≤ v i (h

1
i ) i m pli e s,

v i ( x̄
∗
i, 2 | h

1
i ) ≥ v i ( x̄

∗
i, 1 ) − v i (S

2
i ) − v i (h

1
i )

≥ u ∗i − k
2
i v i (h

1
i ) − v i (h

1
i ),

pr o vi n g t h e b a s e c a s e. N o w a s s u m e t h e l e m m a i s t r u e
f or all t ≤ r it er ati o n s, f or s o m e r , i. e.,

v i ( x̄
∗
i, r | h

1
i , . . . , h

r − 1
i ) ≥ u ∗i − k

2
i v i (h

1
i )

−

r − 1

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

r − 1
i ).

C o n si d e r t h e (r + 1) s t it e r ati o n. A g ai n, w e a n al y z e t w o
c a s e s.

C a s e 1: h ri /∈ x̄
∗
i, r :

v i ( x̄
∗
i, r + 1 | h

1
i , . . . , h

r
i )

= v i ( x̄
∗
i, r \ S

r + 1
i | h 1i , . . . , h

r
i )

≥ v i ( x̄
∗
i, r | h

1
i , . . . , h

r
i ) − v i (S

r + 1
i | h 1i , . . . , h

r
i )

( B y s u b m o d ul a rit y of v i )

≥ v i ( x̄
∗
i, r | h

1
i , . . . , h

r
i ) − v i (S

r + 1
i | h 1i , . . . , h

r − 1
i )

≥ v i ( x̄
∗
i, r | h

1
i , . . . , h

r − 1
i ) − v i (h

r
i | h

1
i , . . . , h

r − 1
i )

− v i (S
r + 1
i | h 1i , . . . , h

r − 1
i ).

( B y m o n ot o ni cit y of v i )
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T h e s u b m o d ul arit y of v i gi v e s t h e fir st t w o i n e q u aliti e s,
a n d m o n ot o ni cit y of v i i m pli e s t h e l a st.

C a s e 2: h ri ∈ x̄
∗
i, r :

v i ( x̄
∗
i, r + 1 | h

1
i , . . . , h

r
i )

= v i ( x̄
∗
i, r + 1 ∪ { h

r
i } | h

1
i , . . . , h

r − 1
i )−

v i (h
r
i | h

1
i , . . . , h

r − 1
i )

= v i ( x̄
∗
i, r \ S

r + 1
i | h 1i , . . . , h

r − 1
i ) − v i (h

r
i | h

1
i , . . . , h

r − 1
i )

≥ v i ( x̄
∗
i, r | h

1
i , . . . , h

r − 1
i )−

v i (h
r
i | h

1
i , . . . , h

r − 1
i ) − v i (S

r + 1
i | h 1i , . . . , h

r − 1
i ).

H er e t h e s e c o n d e x pr e s si o n f oll o w s a s x̄ ∗i, r = x̄
∗
i, r + 1 ∪

{ h ri } ∪ S
r + 1
i , a n d t h e l a st f oll o w s fr o m t h e d e fi niti o n of

s u b m o d ul arit y of t h e v al u ati o n s.

I n b ot h c a s e s, fr o m t h e i n d u cti o n h y p ot h e si s w e g et,

v i ( x̄
∗
i, r + 1 | h

1
i , . . . , h

r
i ) ≥ u

∗
i − k

2
i v i (h

1
i )−

r − 1

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i ) − v i (h

1
i , h

2
i . . . , h

r − 1
i )−

v i (h
r
i | h

1
i , . . . , h

r − 1
i ) − v i (S

r + 1
i | h 1i , . . . , h

r − 1
i ).

Fi n all y, si n c e R e p R e M at c h a s si g n s t h e it e m wit h hi g h e st
m ar gi n al utilit y fr o m t h e s et of att ai n a bl e it e m s, a n d
e a c h it e m i n S r + 1i i s att ai n a bl e at r t h it er ati o n,

v i ( x̄
∗
i, r + 1 | h

1
i , . . . , h

r
i )

≥ u ∗i − k
2
i v i (h

1
i ) −

r − 1

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

r − 1
i ) − v i (h

r
i | h

1
i , . . . , h

r − 1
i )

− k r + 1i v i (h
r
i | h

1
i , . . . , h

r − 1
i )

= u ∗i − k
2
i v i (h

1
i ) −

r

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

r
i ).

T h e a b o v e l e m m a dir e ctl y all o w s u s t o gi v e a l o w e r
b o u n d o n t h e m ar gi n al v al u ati o n of it e m r e c ei v e d b y
t h e a g e nt i n (j + 1) t h it er ati o n o v er t h e it e m s r e c ei v e d
i n pr e vi o u s it er ati o n s. We st at e a n d pr o v e t hi s i n t h e
f oll o wi n g c or oll ar y.

C o r oll a r y 3. 1. F o r a n y j ∈ [τ 2i − 1] ,

v i (h
j + 1
i | h 1i , . . . , h

j
i )

≥
1

τ̄ ∗i −
j + 1
t = 1 k

t
i

u ∗i − k
2
i v i (h

1
i )

−

j

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

j
i ) .

P r o of. I n a n y s etti n g wit h a s et of it e m s S = { s 1 , . . . sk } ,
a n d a m o n ot o n e s u b m o d ul a r v al u ati o n v o n t hi s s et,
if v (S ) = u , t h e n t h e r e e xi st s a n it e m s ∈ S s u c h
t h at v (s ) ≥ u / k. T h u s, wit h S = x̄ ∗i, j + 1 , k = τ̄

∗
i −

j + 1
t = 1 k

t
i , f o r t h e s u b m o d ul a r v al u ati o n f u n cti o n v i (· |

{ h 1i , . . . , h
j
i } ), w e c a n s a y t h at at it e r ati o n j + 1 , h

j + 1
i

will h a v e a m a r gi n al v al u ati o n at l e a st,

1

τ̄ ∗i −
j + 1
t = 1 k

t
i

v i ( x̄
∗
i, j + 1 |h

1
i , . . . , h

j
i ).

T o g et h e r wit h L e m m a 3. 1 , t hi s p r o v e s t h e c or oll ar y.
N ot e t h at at a n y it e r ati o n t, if t h e r e c ei v e d it e m h ti i s
f r o m x̄ ∗i, t , t h e n t h e d e n o mi n at o r r e d u c e s f u rt h er b y 1 ,
a n d t h e b o u n d still h ol d s.

I n t h e f oll o wi n g l e m m a, w e gi v e a l o w e r b o u n d o n
t h e t ot al v al u ati o n of t h e it e m s r e c ei v e d b y t h e a g e nt i n
P h a s e 2 .

L e m m a 3. 2. v i (h
1
i , . . . , h

τ 2i
i ) ≥

u ∗i
n .

P r o of. R e c all t h at u ∗i i s t h e v al u ati o n of t h e it e m s fr o m
x̄ ∗i aft e r s h e l o s e s it e m s i n S

1
i t o ot h e r a g e nt s i n t h e

fi r st it e r ati o n of P h a s e 2 a n d τ̄ ∗i i s t h e n u m b er of it e m s
i n x̄ ∗i . Fr o m C o r oll a r y 3. 1 , t ot al v al u ati o n of t h e it e m s
o bt ai n e d b y a g e nt i i n P h a s e 2 i s b o u n d e d a s f oll o w s.

v i (h
1
i , . . . h

τ 2i
i ) = v i (h

1
i , . . . , h

τ 2i − 1
i ) +

v i (h
τ 2i
i | h

1
i , . . . , h

τ 2i − 1
i )

⇒ v i (h
1
i , . . . h

τ 2i
i ) ≥ v i (h

1
i , . . . , h

τ 2i − 1
i )

+
1

τ̄ i
∗ −

τ 2
i
− 1

t = 0 k
t + 1
i

u ∗i − k
2
i v i (h

1
i )

−

τ 2i − 1

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

τ 2i − 1
i ) .

B y d e fi niti o n, τ 2i i s t h e l a st it e r ati o n of P h a s e 2 i n
w hi c h a g e nt i g et s m at c h e d t o s o m e it e m. Aft er t hi s
it e r ati o n, at m o st n it e m s f r o m h e r o pti m al b u n dl e
r e m ai n u n all o c at e d, el s e s h e w o ul d h a v e r e c ei v e d o n e
m o r e it e m i n t h e (τ 2i + 1)

s t it e r ati o n. T hi s m e a n s t h e

o pti m al n u m b e r of it e m s τ̄ ∗i −
τ 2i − 1
t = 0 k

t + 1
i ≤ n , h e n c e t h e

d e n o mi n at o r of t h e s e c o n d t e r m i n t h e a b o v e e q u ati o n i s
at m o st n . A g ai n, w e n ot e h er e t h at if at a n y it er ati o n
t, t h e it e m a s si g n e d t o a g e nt i w a s f r o m x̄ ∗i, t , t h e n t h e
d e n o mi n at o r will b e f urt h e r r e d u c e d b y 1 f or all s u c h
it e r ati o n s, a n d t h e i n e q u alit y still r e m ai n s t r u e w h e n k ti
i s r e pl a c e d b y k ti + 1 . C o m bi n e d wit h t h e f a ct t h at a n
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a g e nt c a n l o s e at m o st n − 1 it e m s i n e v er y it e r ati o n, w e
g et k ti ≤ n − 1 , i m pl yi n g,

v i (h
1
i , . . . h

τ 2i
i ) ≥ v i (h

1
i , . . . , h

τ 2i − 1
i )

+
1

n
u ∗i − k

2
i v i (h

1
i )

−

τ 2i − 1

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

τ 2i − 1
i )

≥ v i (h
1
i , . . . , h

τ 2i − 1
i )

+
1

n
(u ∗i − (n − 1) v i (h

1
i )

−

τ 2i − 1

t = 2

(n − 1) v i (h
t
i | h

1
i , . . . h

t − 1
i )

− v i (h
1
i , h

2
i . . . , h

τ 2i − 1
i ))

= v i (h
1
i , . . . , h

τ 2i − 1
i )

+
1

n
(u ∗i − (n − 1) v i (h

1
i , h

2
i . . . , h

τ 2i − 1
i )

− v i (h
1
i , h

2
i . . . , h

τ 2i − 1
i ))

=
u ∗i
n
.

R e m a r k 3. 1. I n L e m m a 3 .1 a n d it s s u b s e q u e nt
C o r oll a r y 3. 1 a n d L e m m a 3. 2 , if u ∗i − k

2
i v i (h

1
i ) −

j
t = 2 k

t + 1
i v i (h

t
i | h

1
i , . . . , h

t − 1
i ) − v i (h

1
i , . . . , h

j
i ) b e c o m e s

n e g ati v e f o r a n y j ∈ [τ 2i − 1] , t h e n w e h a v e

u ∗i ≤ k
2
i v i (h

1
i ) +

j

t = 2

k t + 1i v i (h
t
i | h

1
i , . . . , h

t − 1
i )

+ v i (h
1
i , . . . , h

j
i )

≤ (n − 1) v i (h
1
i ) +

j

t = 2

(n − 1) v i (h
t
i | h

1
i , . . . , h

t − 1
i )

+ v i (h
1
i , . . . , h

j
i )

= n · v i (h 1 , . . . , h
j
i )

≤ n · v i (h 1 , . . . , h
τ 2i − 1
i ),

w hi c h i m pli e s t h at L e m m a 3 .2 h ol d s.

We n o w b o u n d t h e mi ni m u m v al u ati o n t h at c a n b e
o bt ai n e d b y e v er y a g e nt i n P h a s e 3 . R e c all t h at g i1 i s
t h e it e m t h at gi v e s t h e hi g h e st m ar gi n al utilit y o v e r t h e
e m pt y s et t o a g e nt i. B ef or e pr o c e e di n g, w e d e fi n e

G 1i : = { g ∈ G | v i (g | ∅) ≥ v i (g
1
i | ∅)} .

L e m m a 3. 3. C o n si d e r t h e c o m pl et e bi p a rtit e g r a p h
w h e r e t h e s et of a g e nt s A , a n d t h e s et of it e m s all o c at e d
i n t h e fi r st P h a s e of R e p R e M at c h a r e t h e p a rt s, a n d
e d g e w ei g ht s a r e t h e w ei g ht e d l o g a rit h m of t h e a g e nt’ s
v al u ati o n f o r t h e b u n dl e of it e m s c o nt ai ni n g t h e it e m
a dj a c e nt t o t h e e d g e a n d it e m s all o c at e d i n P h a s e 2 .
T h at i s, c o n si d e r Γ( A , G = i x

1
i , W = { w (i, j ) =

η i l o g (v i ({ j } ∪ x
2
i ))} ). I n t hi s g r a p h, t h e r e e xi st s a

m at c hi n g w h e r e e a c h a g e nt i g et s m at c h e d t o a n it e m
f r o m t h ei r hi g h e st v al u e d s et of it e m s G 1i .

P r o of. A m o n g all f e a si bl e m at c hi n g s b et w e e n t h e s et of
a g e nt s a n d t h e s et of it e m s r el e a s e d aft e r t it er ati o n s
of P h a s e 1 , c o n si d e r t h e s et of m at c hi n g s M w h er e all
t h e a g e nt s w h o s e e nti r e G 1i i s i n t hi s s et of it e m s ar e
m at c h e d t o s o m e it e m f r o m t h ei r G 1i s. A r bitr aril y pi c k
a m at c hi n g f r o m a s u b s et of t hi s s et of m at c hi n g s w h er e
m a xi m u m n u m b e r of a g e nt s a r e m at c h e d t o s o m e it e m
f r o m t h ei r G 1i . D e n ot e t hi s m at c hi n g b y M

t . N ot e t h at
a s f o r e v e r y s et of a g e nt s S w e h a v e | i ∈ S G

1
i | ≥ | S|,

i n M t , t h e s et of a g e nt s n ot m at c h e d t o a n it e m fr o m
t h ei r G 1i e a c h h a v e at l e a st o n e it e m f r o m t hi s s et still
u n all o c at e d aft e r t it e r ati o n s.

L et A t d e n ot e t h e s et of a g e nt s t h at a r e n ot m at c h e d
t o a n y it e m f r o m t h ei r G 1i i n M

t . We p r o v e b y i n d u cti o n
o n t t h at | At | ≤ n / 2

t .

F o r t h e b a s e c a s e of t h e i n d u cti o n, w h e n t = 1 , w e
c o u nt t h e n u m b e r of a g e nt s w h o di d n ot r e c ei v e a n y it e m
f r o m t h ei r o w n G 1i i n t h e m a xi m u m w ei g ht m at c hi n g of
t h e al g o rit h m. We k n o w t h at b ef o r e t h e fi r st it er ati o n,
e v e r y it e m i s u n all o c at e d. A n a g e nt will n ot r e c ei v e
a n y it e m f r o m G 1i o nl y if all it e m s f r o m t hi s s et ar e
all o c at e d t o ot h e r a g e nt s i n t h e m at c hi n g. H e n c e, if α
a g e nt s di d n ot r e c ei v e a n y it e m f r o m t h ei r G 1i , all it e m s
f r o m at l e a st α n u m b e r of G 1i s et s g ot m at c h e d t o s o m e
a g e nt( s) i n t h e fi r st m at c hi n g. If α < n / 2 , t h e n m or e
t h a n n / 2 a g e nt s t h e m s el v e s r e c ei v e d s o m e it e m fr o m
t h ei r G 1i . If α ≥ n / 2 , t h e n at l e a st α it e m s, e a c h fr o m
a di ff e r e nt G 1i w e r e all o c at e d. I n eit h e r c a s e, r el e a si n g
t h e all o c ati o n of t h e fi r st m at c hi n g r el e a s e s at l e a st n / 2
it e m s, e a c h b el o n gi n g i n a di sti n ct a g e nt’ s G 1i . H e n c e, i n
M 1 at l e a st n / 2 a g e nt s r e c ei v e a n it e m f r o m t h eir G 1i ,
a n d | A1 | ≤ n / 2 .

F o r t h e i n d u cti v e st e p, w e a s s u m e t h e cl ai m i s tr u e
f o r t h e fi r st t it e r ati o n s. T h at i s, f o r e v e r y k ≤ t, i n
M k , at m o st n / 2 k a g e nt s d o n ot r e c ei v e a n it e m fr o m
t h ei r G 1i ’ s.

B ef o r e t h e (t + 1) s t it e r ati o n b e gi n s, w e k n o w t h at
f o r e v e r y a g e nt i n A t , at l e a st o n e it e m fr o m t h eir
G 1i i s still u n all o c at e d. A g ai n b y t h e r e a s o ni n g of t h e
b a s e c a s e, at l e a st h alf of t h e a g e nt s i n A t will h a v e
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s o m e it e m fr o m t h eir G 1i all o c at e d i n t h e (t + 1)
s t

m at c hi n g ( p o s si bl y t o s o m e ot h er a g e nt). H e n c e, i n
M ( t + 1 ) , | A( t + 1 ) | ≤ | At |/ 2 . B y t h e i n d u cti v e h y p ot h e si s,

| A( t + 1 ) | ≤ n / 2
( t + 1 ) .

P r o of of T h e o r e m 3. 1 . Fr o m L e m m a 3. 2 ,

v i (h
1
i , . . . , h

τ 2i
i ) ≥

u ∗i
n
.

B y L e m m a 3. 3 , gi vi n g e a c h a g e nt h er o w n g 1i o r
s o m e it e m, d e n ot e d b y s a y h 1 ∗i , t h at gi v e s h er a m a r gi n al
utilit y o v er ∅ at l e a st a s m u c h a s v i (g

1
i ) i s a f e a si bl e

m at c hi n g b ef or e P h a s e 3 b e gi n s. T h er ef or e, w e g et,
( 3. 1)

N S W (x ) ≥
n

i = 1

(v i (h
1 ∗
i , h

2
i , . . . , h

τ 2i
i ))

η i

1 / (
n

i = 1
η i )

.

Si n c e t h e v al u ati o n f u n cti o n s ar e m o n ot o ni c,

v i (h
1 ∗
i , h

2
i , . . . , h

τ 2i
i ) ≥ v i (h

1 ∗
i ) ≥ v i (g

1
i ).

P h a s e 1 of t h e al g orit h m r u n s f or l o g n + 1 it e r ati o n s
a n d e a c h it er ati o n all o c at e s n it e m s. T h u s |x ∗i \ x̄

∗
i | ≤

n (l o g n + 1) a n d | S1i | ≤ n i m pl yi n g, |(x
∗
i \ x̄

∗
i ) ∪ S

1
i | ≤

n (l o g n + 2) . T h u s,

v i (g
1
i ) ≥

1

n (l o g n + 2)
v i ((x

∗
i \ x̄

∗
i ) ∪ S

1
i ).

Al s o,

v i (h
1 ∗
i , h

1
i , . . . , h

τ 2i
i ) ≥ v i (h

1
i , . . . , h

τ 2i
i )

≥
u ∗i
n
=
1

n
v i ( x̄

∗
i \ S

1
i ).

T h u s,

v i (h
1 ∗
i , h

1
i , . . . , h

τ 2i
i )

≥
1

2

1

n (l o g n + 2)
v i ((x

∗
i \ x̄

∗
i ) ∪ S

1
i ) +

1

n
v i ( x̄

∗
i \ S

1
i )

≥
1

2

1

n (l o g n + 2)
v i (((x

∗
i \ x̄

∗
i ) ∪ S

1
i ) ∪ ( x̄

∗
i \ S

1
i ))

=
1

2

1

n (l o g n + 2)
v i (x

∗
i ).

T h e s e c o n d i n e q u alit y f oll o w s fr o m t h e s u b m o d ul a rit y
of v al u ati o n s. T h e l a st b o u n d, t o g et h er wit h ( 3. 1 ) gi v e s,

N S W (x ) ≥
n

i = 1

1

2

1

n (l o g n + 2)
v i (x

∗
i )

η i
1 /

n

i = 1
η i

≥
1

2

1

n (l o g n + 2)
O P T .

4  H a r d n e s s of A p p r o xi m a ti o n

We c o m pl e m e nt o ur r e s ult s f o r t h e s u b m o d ul ar c a s e
wit h a e

( e − 1 ) -f a ct o r h a r d n e s s of a p p r o xi m ati o n. F or-

m all y, w e p r o v e t h e f oll o wi n g t h e o r e m.

T h e o r e m 4. 1. U nl e s s P = N P , t h e r e i s n o p ol y n o mi al
ti m e e

( e − 1 ) -f a ct o r a p p r o xi m ati o n al g o rit h m f o r t h e s u b-

m o d ul a r N S W p r o bl e m, e v e n w h e n a g e nt s a r e s y m m et ri c
a n d h a v e i d e nti c al v al u ati o n s.

P r o of. We s h o w t hi s u si n g t h e h a r d n e s s of a p pr o xi-
m ati o n r e s ult of t h e A L L O C A TI O N p r o bl e m pr o v e d i n
[K L M M 0 8 ]. We fi r st s u m m a ri z e t h e r el e v a nt p art s of
[K L M M 0 8 ]. T h e A L L O C A TI O N p r o bl e m i s t o fi n d a n
all o c ati o n of a s et of i n di vi si bl e it e m s a m o n g a s et
of a g e nt s wit h m o n ot o n e s u b m o d ul a r utiliti e s f or t h e
it e m s, s u c h t h at t h e s u m of t h e utiliti e s of all a g e nt s
i s m a xi mi z e d.  N ot e t h at if t h e v al u ati o n f u n cti o n s
w e r e a d diti v e, t h e p r o bl e m i s t ri vi al, a n d a n o pti m al
all o c ati o n gi v e s e v e r y it e m t o t h e a g e nt w h o v al u e s it
t h e m o st. T o o bt ai n a h a r d n e s s of a p p r o xi m ati o n r e-
s ult f o r t h e s u b m o d ul a r c a s e, t h e M A X -3 -C O L O RI N G
p r o bl e m i s r e d u c e d t o t h e A L L O C A TI O N pr o bl e m.
M A X -3 -C O L O RI N G , t h e p r o bl e m of d et e r mi ni n g w h at
f r a cti o n of e d g e s of a g r a p h c a n b e p r o p erl y c ol-
o r e d w h e n 3 c ol o r s a r e u s e d t o c ol o r s all v erti c e s
of t h e g r a p h, i s k n o w n t o b e N P - H a r d t o a p pr o x-
i m at e wit hi n s o m e c o n st a nt f a ct o r c .  T h e r e d u c-
ti o n f r o m M A X -3 -C O L O RI N G g e n e r at e s a n i n st a n c e of
A L L O C A TI O N wit h s y m m et ri c a g e nt s h a vi n g i d e nti c al
s u b m o d ul a r v al u ati o n f u n cti o n s f o r t h e it e m s. T h e r e-
d u cti o n i s s u c h t h at f o r i n st a n c e s of M A X -3 -C O L O RI N G
wit h o pti m al v al u e 1 , t h e c o rr e s p o n di n g A L L O C A TI O N
i n st a n c e h a s a n o pti m al v al u e of n V , w h e r e n i s t h e
n u m b e r of a g e nt s i n t h e i n st a n c e, a n d V i s a f u n cti o n
of t h e i n p ut p a r a m et e r s of M A X -3 -C O L O RI N G . I n t hi s
c a s e, e v e r y a g e nt r e c ei v e s a s et of it e m s of utilit y V .
F o r i n st a n c e s of M A X -3 -C O L O RI N G wit h o pti m al v al u e
at m o st c , it i s s h o w n t h at t h e o pti m al s u m of utiliti e s
of t h e r e s ulti n g A L L O C A TI O N i n st a n c e c a n n ot b e hi g h er
t h a n ( 1 − 1 / e) n V .

F o r p r o vi n g h a r d n e s s of t h e s u b m o d ul a r N S W pr o b-
l e m, w e n ot e t h at t h e i n p ut of t h e A L L O C A TI O N a n d
N S W p r o bl e m s a r e t h e s a m e. S o l et u s c o n si d er t h e i n-
st a n c e g e n e r at e d b y t h e r e d u cti o n a s t h at of a n N S W
m a xi mi zi n g p r o bl e m. Fr o m t h e r e s ult s of [ K L M M 0 8 ],
w e c a n p r o v e t h e f oll o wi n g cl ai m s.

• If t h e o pti m al v al u e of M A X -3 -C O L O RI N G i s 1 , t h e n
t h e N S W of t h e r e d u c e d i n st a n c e i s V . A s e v er y
a g e nt r e c ei v e s a s et of it e m s of v al u e V , t h e N S W
i s al s o V .
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• If t h e o pti m al v al u e of M A X -3 -C O L O RI N G i s at
m o st c , t h e n t h e N S W i s at m o st ( 1 − 1 / e) V .
A p pl yi n g t h e A M- G M i n e q u alit y e st a bli s h e s t h at
t h e N S W i s at m o st 1 / n ti m e s t h e s u m of utiliti e s,
w hi c h i s pr o v e n t o b e at m o st ( 1 − 1 / e) n V .

A s M A X -3 -C O L O RI N G c a n n ot b e a p pr o xi m at e d wit hi n
a f a ct or c , t h u s N S W of a pr o bl e m wit h s u b m o d ul a r
utiliti e s c a n n ot b e a p pr o xi m at e d wit hi n a f a ct o r e

( e − 1 ) .

A s t h e A L L O C A TI O N pr o bl e m n o w c o n si d e r e d a s
a n N S W pr o bl e m h a d s y m m etri c a g e nt s a n d i d e nti c al
s u b m o d ul ar v al u ati o n f u n cti o n s, t h e N S W pr o bl e m al s o
s ati s fi e s t h e s e pr o p erti e s.

5  S p e ci al C a s e s

5. 1  S u b m o d ul a r N S W wi t h C o n s t a n t N u m b e r of
A g e n t s I n t hi s s e cti o n, w e d e s cri b e a c o n st a nt f a ct o r
al g orit h m f or a s p e ci al c a s e of t h e s u b m o d ul a r N S W
pr o bl e m. S p e ci fi c all y, w e pr o v e t h e f oll o wi n g t h e o r e m.

T h e o r e m 5. 1. F o r a n y c o n st a nt > 0 a n d a c o n st a nt
n u m b e r of a g e nt s n ≥ 2 , t h e r e i s a ( 1 − 1 / e − )-
f a ct o r a p p r o xi m ati o n al g o rit h m f o r t h e N S W p r o bl e m
wit h m o n ot o n e s u b m o d ul a r v al u ati o n s, i n t h e v al u e
o r a cl e m o d el.  A d diti o n all y, t hi s i s t h e b e st p o s si bl e
f a ct o r i n d e p e n d e nt of n , a n d a n y f a ct o r b ett e r t h a n
( 1 − ( 1 − 1 / n ) n + ) w o ul d r e q ui r e e x p o n e nti all y m a n y
q u e ri e s, u nl e s s P = N P .

T h e k e y r e s ult s t h at e st a bli s h t hi s r e s ult a r e f r o m
t h e t h e or y of s u b m o d ul ar f u n cti o n m a xi mi z ati o n d e-
v el o p e d i n [ C V Z 1 0 ]. T h e br o a d a p pr o a c h f o r a p pr o x-
i m at el y m a xi mi zi n g a di s cr et e m o n ot o n e s u b m o d ul a r
f u n cti o n i s t o o pti mi z e a p o p ul ar c o nti n u o u s r el a x ati o n
of t h e s a m e, c all e d t h e m ultili n e ar e xt e n si o n, a n d r o u n d
t h e s ol uti o n u si n g a r a n d o mi z e d r o u n di n g s c h e m e. We
will u s e a n al g orit h m t h at a p pr o xi m at el y m a xi mi z e s
m ulti pl e di s cr et e s u b m o d ul ar f u n cti o n s, d e s c ri b e d i n
[C V Z 1 0 ], a s t h e m ai n s u br o uti n e of o ur al g o rit h m f o r
t h e s u b m o d ul ar N S W pr o bl e m, h e n c e fir st w e gi v e a n
o v er vi e w of it, st arti n g wit h a d e fi niti o n of t h e m ultili n-
e ar e xt e n si o n.

D e fi ni ti o n 5. 1 ( M ultili n e ar E xt e n si o n of a s u b m o d ul a r
f u n cti o n). : Gi v e n a di s c r et e s u b m o d ul a r f u n cti o n f :
2 m → R + , it s m ultili n e a r e xt e n si o n F : [ 0, 1]

m → R + ,
at a p oi nt y ∈ [ 0, 1] m , i s d e fi n e d a s t h e e x p e ct e d v al u e of
f (z ) at a p oi nt z ∈ { 0 , 1 } m o bt ai n e d b y r o u n di n g y s u c h
t h at e a c h c o o r di n at e y i i s r o u n d e d t o 1 wit h p r o b a bilit y
y i , a n d t o 0 ot h e r wi s e. T h at i s,

F (y ) = E [f (z )] =
X ⊆ [m ]

f (X )
i ∈ X

y i
i /∈ X

( 1 − y i ).

T h e f oll o wi n g t h e o r e m p r o v e s t h at t h e m ultili n e ar
e xt e n si o n s of m ulti pl e di s c r et e s u b m o d ul a r f u n cti o n s
d e fi n e d o v e r a m at r oi d p ol yt o p e c a n b e si m ult a n e o u sl y
a p p r o xi m at e d t o o pti m al v al u e s wit hi n c o n st a nt f a ct or s.

T h e o r e m 5. 2. [C V Z 1 0 ] C o n si d e r m o n ot o n e s u b m o d-
ul a r f u n cti o n s f 1 , . . . , fn : 2

N → R + , t h ei r m ultili n-
e a r e xt e n si o n s F i : [ 0, 1]

N → R + a n d a m at r oi d p ol y-
t o p e P ⊆ [ 0, 1] N . T h e r e i s a p ol y n o mi al ti m e al g o rit h m
w hi c h, gi v e n V 1 , ..., Vn ∈ R + , eit h e r fi n d s a p oi nt x ∈ P
s u c h t h at F i (x ) ≥ ( 1 − 1 / e )V i f o r e a c h i, o r r et u r n s a c e r-
ti fi c at e t h at t h e r e i s n o p oi nt x ∈ P s u c h t h at F i (x ) ≥ V i
f o r all i.

Gi v e n a di s c r et e m o n ot o n e s u b m o d ul a r f u n cti o n f
d e fi n e d o v e r a m at r oi d, a r o u n di n g s c h e m e c all e d t h e
s w a p r o u n di n g al g o rit h m c a n b e a p pli e d t o r o u n d a
s ol uti o n of it s m ultili n e a r e xt e n si o n t o a f e a si bl e p oi nt
i n t h e d o m ai n of f , w hi c h i s a n i n d e p e n d e nt s et of
t h e m at r oi d. At a hi g h l e v el, i n t h e r o u n di n g s c h e m e,
it i s fir st s h o w n t h at e v e r y s ol uti o n of t h e m ultili n e ar
e xt e n si o n c a n b e e x p r e s s e d a s a c o n v e x c o m bi n ati o n of
i n d e p e n d e nt s et s s u c h t h at f o r a n y t w o s et s S 0 a n d S 1
i n t h e c o n v e x c o m bi n ati o n, t h e r e i s at l e a st o n e el e m e nt
i n e a c h s et t h at i s n ot p r e s e nt i n t h e ot h er, t h at i s
∃ e 0 ∈ S 0 \ S 1 a n d ∃ e 1 ∈ S 1 \ S 0 . T h e r o u n di n g m et h o d
t h e n it e r ati v el y m e r g e s t w o a r bit r a ril y c h o s e n s et s S 0
a n d S 1 i nt o o n e n e w s et a s f oll o w s. U ntil b ot h s et s
a r e n ot t h e s a m e, o n e s et S i i s r a n d o ml y c h o s e n wit h
p r o b a bilit y p r o p o rti o n al t o t h e c o e ffi ci e nt of it s ori gi n al
v e r si o n i n t h e c o n v e x c o m bi n ati o n β i , t h at i s S i i s c h o s e n
wit h p r o b a bilit y β i / (β 0 + β 1 ), a n d alt e r e d b y r e m o vi n g
e i f r o m it a n d a d di n g e 1 − i . T h e c o e ffi ci e nt of t h e n e w
s et o bt ai n e d b y t hi s m e r g e p r o c e s s i s t h e s u m of t h o s e
of t h e s et s m e r g e d, i. e, β 0 + β 1 .

T h e f oll o wi n g l o w e r t ail b o u n d p r o v e s t h at wit h
hi g h p r o b a bilit y, t h e l o s s i n t h e f u n cti o n v al u e b y s w a p
r o u n di n g i s n ot t o o m u c h.

T h e o r e m 5. 3. [C V Z 1 0 ] L et f : { 0 , 1 } n → R + b e a
m o n ot o n e s u b m o d ul a r f u n cti o n wit h m a r gi n al v al u e s i n
[ 0, 1] , a n d F : [ 0, 1] n → R + it s m ultili n e a r e xt e n si o n.
L et (x 1 , ..., xn ) ∈ P (M ) b e a p oi nt i n a m at r oi d p ol yt o p e
a n d (X 1 , ..., Xn ) ∈ { 0 , 1 }

n a r a n d o m s ol uti o n o bt ai n e d
f r o m it b y r a n d o mi z e d s w a p r o u n di n g.  L et µ 0 =
F (x 1 , ..., xn ) a n d δ > 0 . T h e n

P r [f (X 1 , ..., Xn ) ≤ ( 1 − δ )µ 0 ] ≤ e
− µ 0 δ

2 / 8 .

I n s h o rt, f o r a m at r oi d M (X, I ), gi v e n m o n ot o n e
s u b m o d ul a r f u n cti o n s f i : { 0 , 1 }

m → R + , i ∈ [n ] o v er
t h e m at r oi d p ol yt o p e, a n d v al u e s v i , i ∈ [n ], t h er e i s
a n e ffi ci e nt al g o rit h m t h at d et e r mi n e s if t h er e i s a n
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i n d e p e n d e nt s et S ∈ I s u c h t h at f i (S ) ≥ ( 1 − 1 / e )v i
f or e v er y i.

T o u s e t hi s al g orit h m t o s ol v e t h e s u b m o d ul a r
N S W pr o bl e m, w e d e fi n e a m atr oi d M (X, I ) a s f oll o w s.
T hi s c o n str u cti o n w a s fir st d e s cri b e d i n [ L L N 0 6 ], a n d
al s o u s e d f or a p pr o xi m ati n g t h e s u b m o d ul ar w elf a r e i n
[V o n 0 8 ]. Fr o m t h e s et s of a g e nt s A a n d it e m s G , w e
d e fi n e t h e gr o u n d s et X = A × G . T h e i n d e p e n d e nt
s et s ar e all f e a si bl e i nt e gr al all o c ati o n s I = { S ⊆ X |
∀ j : |S ∩ { A × { j } }| ≤ 1 } . T h e v al u ati o n f u n cti o n s of
e v er y a g e nt u i : { 0 , 1 }

m → R + tr a n sl at e n at u r all y t o
s u b m o d ul ar f u n cti o n s o v er t hi s m atr oi d f i : I → R + ,
wit h f i (S ) = u i (G i ), w h er e G i = { j ∈ G | (i, j ) ∈ S } .
Wit h t hi s c o n str u cti o n, f or a n y s et of v al u e s V i , i ∈
[n ], c h e c ki n g if t h er e i s a n i nt e gr al all o c ati o n of it e m s
t h at gi v e s v al u ati o n s at l e a st ( a p pr o xi m at el y) V i t o
e a c h a g e nt i i s e q ui v al e nt t o c h e c ki n g if t h e r e i s a n
i n d e p e n d e nt s et i n t hi s m atr oi d t h at h a s v al u e V i f o r
e v er y a g e nt i.

T h e al g orit h m f or a p pr o xi m ati n g t h e N S W i s n o w
str ai g htf or w ar d, a n d gi v e n i n Al g orit h m 3 . E s s e nti all y,
w e g u e s s t h e o pti m al N S W v al u e O P T , a n d t h e utilit y
of e v er y a g e nt i n t h e o pti m al all o c ati o n V i , a n d c h e c k
if t h er e i s a n all o c ati o n X t h at gi v e s e v er y a g e nt i a
b u n dl e of v al u e at l e a st ( a p pr o xi m at el y) V i . A s e v e r y
a g e nt c a n r e c ei v e at m o st M a x utilit y, M a x i s a t ri vi al
u p p er b o u n d f or t h e m a xi m u m v al u e of N S W , h e n c e w e
p erf or m a bi n ar y s e ar c h f or t h e o pti m al v al u e i n t h e
r a n g e ( 0, M a x]. S e ar c hi n g f or s et s V i b y e n u m e r ati n g
o nl y t h o s e s et s wit h v al u e s t h at ar e p o w er s of ( 1 + δ ) f o r
s o m e c o n st a nt δ > 0 will r e d u c e t h e ti m e c o m pl e xit y
of t h e al g orit h m t o O (p ol y (l o g ( M a x )/ δ )) i n st e a d of
O (p ol y (M a x )), b y c h a n gi n g t h e a p pr o xi m ati o n f a ct o r
t o ( 1 − 1 / e )( 1 − δ ) ≤ ( 1 − 1 / e − ) f or s o m e > 0 .

T h e h ar d n e s s cl ai m i n T h e or e m 5. 1 f oll o w s f r o m
t h e pr o of of T h e or e m 4. 1 . It w a s s h o w n t h at i n t h e
c a s e w h er e t h e o pti m al v al u e of t h e M A X -3 -C O L O RI N G
i n st a n c e w a s 1 , e v er y a g e nt i n t h e r e d u c e d N S W i n st a n c e
r e c ei v e d a b u n dl e of it e m s of v al u e V , el s e t h e t ot al N S W
c o ul d n ot b e m or e t h a n ( 1 − ( 1 − 1 / n ) n )V .

5. 2  S y m m e t ri c A d di ti v e N S W We n o w pr o v e t h at
S M at c h gi v e s a n all o c ati o n t h at al s o s ati s fi e s t h e E F 1
pr o p ert y, m a ki n g it n ot o nl y a p pr o xi m at el y e ffi ci e nt b ut
al s o a f air all o c ati o n. E F 1 i s f or m all y d e fi n e d a s f oll o w s.

D e fi ni ti o n 5. 2 ([B u d 1 1 ]). E n v y- Fr e e u p t o o n e it e m
( E F 1 ): A n all o c ati o n x of m i n di vi si bl e it e m s a m o n g n
a g e nt s s ati s fi e s t h e e n v y-f r e e u p t o o n e it e m p r o p e rt y, if
f o r a n y p ai r of a g e nt s i, î, eit h e r v i (x i ) ≥ v i (x î ), o r t h e r e
e xi st s s o m e it e m g ∈ x î s u c h t h at v i (x i ) ≥ v i (x î \ { g } ).

T h at i s, if a n a g e nt i v al u e s a n ot h er a g e nt î’ s all o c a-

ti o n m o r e t h a n h e r o w n, w hi c h i s t e r m e d c o m m o nl y b y
s a yi n g a g e nt i e n vi e s a g e nt î, t h e n t h e r e m u st b e s o m e
it e m i n î’ s all o c ati o n u p o n w h o s e r e m o v al t hi s e n v y i s
eli mi n at e d.

T h e o r e m 5. 4. T h e o ut p ut of S M at c h s ati s fi e s t h e E F 1
f ai r n e s s p r o p e rt y.

P r o of. F o r e v e r y a g e nt i a n d j ≥ 1 , t h e it e m g ij all o c at e d

t o i i n t h e j t h it e r ati o n of S M at c h i s v al u e d m or e b y i
t h a n all it e m s g ik , k > j all o c at e d t o a n y ot h er a g e nt
i i n t h e f ut u r e it e r ati o n s, a s ot h e r wi s e i w o ul d h a v e
b e e n m at c h e d t o t h e ot h e r hi g h e r v al u e d it e m i n t h e j t h

m at c hi n g. H e n c e,
j

t = 1
v i (g

i
t ) ≥

j

t = 2
v i (g

i
t ). T h at i s, aft er

r e m o vi n g t h e fi r st it e m g i1 f r o m a n y a g e nt’ s b u n dl e, t h e
s u m of v al u ati o n s of t h e r e m ai ni n g it e m s f o r a g e nt i i s
n ot hi g h e r t h a n h e r c u r r e nt t ot al v al u ati o n. T h u s, aft er
r e m o vi n g t h e it e m all o c at e d t o a n y a g e nt i n t h e fir st
m at c hi n g, a g e nt i d o e s n ot e n v y t h e r e m ai ni n g b u n dl e,
m a ki n g t h e all o c ati o n E F 1 .

A c k n o wl e d g m e n t s. We t h a n k C h a n d r a C h e k uri a n d
K e nt Q u a n r u d f o r p oi nti n g u s t o r el e v a nt lit er at ur e i n
s u b m o d ul a r f u n cti o n m a xi mi z ati o n t h e o r y, a n d h a vi n g
s e v e r al f r uitf ul di s c u s si o n s a b o ut t h e s a m e.
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Al g o ri t h m 3: A p pr o xi m at e t h e S u b m o d ul a r N S W wit h c o n st a nt n u m b e r of a g e nt s

I n p u t : A s et A of n a g e nt s wit h w ei g ht s η i , ∀ i ∈ A , a s et G of m i n di vi si bl e it e m s, a n d m o n ot o n e
s u b m o d ul ar v al u ati o n s u i : 2

G → R + .
O u t p u t: A n all o c ati o n t h at a p pr o xi m at e s t h e N S W .

1 F or a n y v al u e M a x > 0 t h at i s a p o w er of ( 1 + δ ), s c al e all v al u ati o n f u n cti o n s s u c h t h at u i (G ) = M a x
f or all i. / / M a x i s a n u p p e r b o u n d o n N S W o b j e c t i v e

2 O P T = M a x / / O P T i s t h e o p t i m a l N S W o b j e c t i v e
3 d e fi n e β > 0 , δ > 0 a s s m all p o siti v e c o n st a nt s
4 w hil e O P T ≤ M a x d o
5 fl a g = 0

6 f o r a n y s et i n V = { [V 1 , V2 , . . . , Vn ] | i V i = O P T, ∀ i : V i = ( 1 + δ )
k i f o r s o m e k i } d o

7 if t h e r e i s a n all o c ati o n x of G s u c h t h at u i (x i ) ≥ ( 1 − 1 / e )V i f o r all i t h e n
8 x ∗ = x , f l a g = 1 / / f l a g = 1 i f c u r r e n t O P T v a l u e i s f e a s i b l e
9 e n d

1 0 e n d
1 1 if fl a g = 1 t h e n
1 2 O P T = O P T + ( M a x + β − O P T )/ 2 / / s e a r c h i f a h i g h e r v a l u e i s a l s o f e a s i b l e .

A d d i n g β e n s u r e s O P T > M a x f i n a l l y , a n d a l g o r i t h m c o n v e r g e s

1 3 el s e
1 4 M a x = O P T , O P T = O P T / 2 / / s e a r c h f o r a l o w e r f e a s i b l e v a l u e
1 5 e n d
1 6 O P T = n e ar e st p o w er of ( 1 + δ ) gr e at e r t h a n O P T
1 7 M a x = n e ar e st p o w er of ( 1 + δ ) gr e at e r t h a n M a x

1 8 e n d
1 9 r e t u r n x ∗
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