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Abstract

Smart grids are facing many challenges including cyber-
attacks which can cause devastating damages to the grids.
Existing machine learning based approaches for detecting
cyber-attacks in smart grids are mainly based on super-
vised learning, which needs representative instances from
various attack types to obtain good detection models. In
this paper, we investigated semi-supervised outlier detec-
tion algorithms for this problem which only use instances
of normal events for model training. Data collected by
phasor measurement units (PMUs) was used for training
the detection model. The semi-supervised outlier detec-
tion algorithms were augmented with deep feature extrac-
tion for enhanced detection performance. Our results show
that semi-supervised outlier detection algorithms can per-
form better than popular supervised algorithms. Deep fea-
ture extraction can significantly improve the performance
of semi-supervised algorithms for detecting cyber-attacks
in smart grids.
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67.1 Introduction

Smart grids are electrical grids which manage energy using
measurements from smart technologies. Phasormeasurement
unit (PMU) is one of such technologies, which is respon-
sible for measuring information on power system dynamics
including frequency, voltage, phases and phase angles. PMUs
in smart grids are synchronized with each other via GPS
clocks to produce coordinated measurements. The data from
PMUs is gathered by the Phasor-Data Concentrator (PDC) to
be spread to other components of the power system [1]. The
PMU measurements have been widely used in smart grid ap-
plications such as wide-area monitoring, protection and con-
trol (WAMPAC) [2, 3] and dynamic state estimation [4]. On
the other hand, the transmission of PMU measurements and
other control information through communication networks
exposes a new cyber-attack surface that could be exploited
by potential adversaries to produce devastating damages to
smart grids [5, 6]. The 2015 Ukraine Balckout demonstrated
how cyber-attacks can directly cause the service outrages of
a power grid [7]. Thus, there is a great demand of enhancing
the security of smart grids against cyber-attacks.

Machine learning (ML) based approaches have shown
to be a promising solution for detecting cyber-attacks in
smart grids [8–12]. Majority of the researches focused on
using supervised learning to build detection models which
requires instances from both normal and attack events to train
the detection models. However, it may be hard if not im-
possible to collect representative instances of various attack
types which could result in poor detection models. Semi-
supervised learning algorithms solve this problem by only
employing instances of normal events to train the detection
models. In this paper, we performed a thorough investigation
of using various semi-supervised outlier detection algorithms
for detecting cyber-attacks in smart grids. We also explored
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to enhance the detection performance of the semi-supervised
algorithms with deep feature extraction.

67.2 RelatedWork

The real-time information of power system dynamics pro-
vided by PMUs has been used by a number of machine
learning-based approaches for cyber-attack detection. In [8],
Hink et al. explored a number of supervised learners for
power system disturbance and cyber attack discrimination.
In [10], supervised learning algorithms like perceptron, k-
Nearest Neighbor (k-NN), support vector machines (SVMs)
and sparse logistic regression (SLR) were applied to predict
false data injection attacks. Ensemble learning and feature-
level fusion were also investigated. The results showed that
machine learning algorithms perform better than algorithms
based on state vector estimation in attack detection. Wang et
al. [12] proposed an ensemble of random forests combined by
AdaBoost for detecting power grid disturbances and cyber-
attacks. Feature construction engineering was performed to
create new features that help the detection.

There were only few researches on using semi-supervised
learning algorithms for attack detection in power systems.
Maglaras and Jiang [13] proposed an intrusion detection
module for the SCADA (Supervisory Control and Data Ac-
quisition) system based on one-class SVM (OCSVM). The
network traces collected from the SCADA system were used
to detect malicious attacks. In [14], they further combined
OCSVM with K-means recursive clustering for real-time
intrusion detection in SCADA systems.

Unlike aforementioned work, in this paper, we explored
various semi-supervised learning algorithms for cyber-attack
detection in smart grids. Instead of using network traces
collected from the cyber domain, the PMU data was used in
our study which provides information bridging the cyber and
physical domains [12].

67.3 Power System Framework
and Cyber-Attacks

The dataset used in our study was generated from a power
framework shown in Fig. 67.1 [8]. The framework contains
smart electronic devices, supervisory control systems, and
network monitoring devices. Two power generators, G1 and
G2, provide the power in this system. There are four In-
telligent Electronic Devices (IEDs), R1 through R4, which
can be toggled to switch four breakers, BR1 through BR4,
on or off respectively. Two transmission lines, L1 and L2,
connect BR1 to BR2 and BR3 to BR4, respectively. For the
IEDs, a distance protection scheme is used in which breakers
can be automatically toggled on wherever a fault occurred.

Fig. 67.1 Power system framework [8]

Table 67.1 Summary of operational scenarios

Scenario no. Description Event type

1–6 Short-circuit fault Natural

13, 14 Line maintenance Natural

7–12 Data injection Attack

15–20 Remote tripping command injection Attack

21–30, 35–40 Relay setting change Attack

41 Normal readings No event

Because they don’t contain any internal validation to identify
any differences between the faults, breakers will be toggled
on no matter the fault is a natural anomaly or an attack. The
IEDs can also be manually toggled by operators performing
maintenance to the power system and/or system components.

The dataset was generated from multiple operational sce-
narios related to no event, natural events and cyber-attack
events which are summarized in Table 67.1. Since the goal of
our study is to detect cyber-attacks, both no event and natural
events described in the follows are treated as normal events:
(1) Short-circuit fault: a single line-to-ground fault occurred
and can specifically be found by reading the percentage range
in data; (2) Line maintenance: operators toggle one or more
IEDs to perform maintenance on certain parts of the power
system and its components; (3) No event: normal readings.

In addition to the normal events, there are three types of at-
tack events generated by the framework: (1) Remote tripping
command injection attack: attackers can send commands that
toggle IEDs to switch breakers when they can penetrate to
the system; (2) Relay setting change attack: attackers change
settings, such as disabling primary functions of the settings
causing the IEDs not toggle the breakers whenever a valid
fault or command occurs; (3)Data injection attack: attackers
change the PMU measurements such as voltage, current and
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Table 67.2 Description of features measured by a PMU

Features Description

PA1:VH-PA3:VH Phase A—Phase C voltage phase angle

PM1:V-PM3:V Phase A—Phase C voltage magnitude

PA4:IH-PA6:IH Phase A—Phase C current phase angle

PM4:I-PM6:I Phase A—Phase C current magnitude

PA7:VH-PA9:VH Pos.—Neg.—Zero voltage phase angle

PM7:V-PM9:V Pos.—Neg.—Zero voltage magnitude

PA10:VH-PA12:VH Pos.—Neg.—Zero current phase angle

PM10:V-PM12:V Pos.—Neg.—Zero current magnitude

F Frequency for relays

DF Frequency delta (dF/dt) for relays

PA:Z Appearance impedance for relays

PA:ZH Appearance impedance angle for relays

S Status flag for relays

sequence components to mimic a valid fault causing the
breakers to be switched off.

The power system framework contains four PMUs in-
tegrated with relays. Each PMU measures 29 features as
described in Table 67.2 which results in a total of 116 features
for the four PMUs. Additional features from the log infor-
mation of the control room in the dataset are not considered
in our study as we concentrate on using PMU data to detect
cyber-attacks.

67.4 Detecting Cyber-Attacks in Smart
Grids

67.4.1 Overview

Figure 67.2 shows the workflow of detecting cyber-attacks
in smart grids using semi-supervised outlier detection and
deep feature extraction. The training dataset for building the
detection model is prepared with instances of normal events.
The dimensionality of feature space is then reduced through
deep feature extraction with autoencoder. Finally, a detection
model is trained using a semi-supervised outlier detection
algorithm with the extracted features. During the detection
stage, an unknown instance is transformed to a vector of
extracted features first. Then the trained detection model is
applied to classify the instance as normal event or attack
event.

67.4.2 Deep Feature Extraction

Reducing the dimensionality of feature space is important for
better computational efficiency and improved performance
of learning algorithms [15]. Deep feature extraction has

Fig. 67.2 Workflow of detecting cyber-attacks in smart grids with
semi-supervised outlier detection and deep feature extraction

Fig. 67.3 Structure of an autoencoder

shown to be a promisingmethod for nonlinear dimensionality
reduction [16].

The structure of an autoencoder for deep feature extraction
is shown in Fig. 67.3 which is a multi-layer neural network
consisting of an encoder, a code layer and a decoder. The
encoder maps input data into the code layer which is then re-
constructed by the decoder as closely as input. After training,
the decoder is removed while the encoder and the code layer
are retained. Since the number of nodes in the code layer is
less than that of the input layer, the output of the code layer
is a reduced representation of the input which will be used as
the extracted features for outlier detection algorithms.

67.4.3 Semi-Supervised Outlier Detection
Algorithms

We considered seven popular semi-supervised outlier detec-
tion algorithms in this study which can be categorized as liner
models, proximity-based methods, and ensembles [17].

1. Linear models
• OCSVM: SVM is a popular supervised machine learn-

ing method for classification. OCSVM was proposed
in [18] as an extension of SVM, which is trained only
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using instances of the normal class. The algorithm
maps training data into a feature space using a kernel
function. The mapped vectors are separated from the
origin with maximum margin. The separating bound-
ary will then be used to detect a new instance as normal
observation or outlier.

2. Proximity-based methods
• Histogram-Based Outlier Score (HBOS) is an outlier

detector known for its fast computation speed [19].
HBOS works by first generating an univariate his-
togram for each feature and then normalizing the his-
tograms to have the maximum height of the bins to be
one. Finally, the HBOS of an instance x is calculated
using Eq. (67.1):

HBOS(x) =
N∑

i=1

log

(
1

histi(x)

)
(67.1)

where N is the number of features and histi(x) is the density
estimation of the ith feature of instance x.

• Local Outlier Factor (LOF) is a well-known outlier de-
tector proposed in [20]. The LOF score of an instance x is
measured as the degree of the instance isolating from its k
nearest neighbors, which is calculated as follows:

LOF(x) =
∑

o∈Nk(x)
LRD(o)

LRD(x)

k
(67.2)

where Nk(x) is the set of k nearest neighbors for the instance
x, and LRD(•) is the local reachability density which is the
inverse of the average distance of an instance from its k
nearest neighbors.

• Clustering-Based Local Outlier Factor (CBLOF): Un-
like LOF uses density estimation of nearest neighbors
for outlier detection, CBLOF works by using density
estimation of clusters [21]. The input data is clustered
using a clustering algorithm such as k-Means first. Then
the clusters are classified as small and large clusters.
The anomaly score for an instance belonging to a large
cluster is calculated based on the size of the cluster and
the distance between the instance to the cluster center.
If the instance belongs to a small cluster, the distance
from the instance to the center of the closest large cluster
is used.

• k-Nearest-NeighborOutlier Detection (KNNOD) was pro-
posed in [22] which uses the distance of an instance to
its kth nearest neighbor as the anomaly score. The larger

the distance, the more likely an instance to be anomaly. A
highly efficient partition-based algorithm was developed
in [22] to find the outliers. The anomaly score can also
be calculated using the average distance or the median
distance to k nearest neighbors [23].

3. Ensemble
• Feature Bagging ensembles multiple base outlier

detection algorithms for outlier detection [24]. Each
base outlier detection algorithm is trained using
randomly sampled subset of features from the original
feature set. The outlier scores produced by the base
outlier detection algorithms are then combined to
generate the anomaly score for an instance. In [24],
LOFwas used as the base outlier detection algorithm as
it was shown a good performance in network intrusion
detection.

• Isolation Forest (iForest) is an anomaly detection ap-
proach proposed by Liu et al. [25]. iForest is an en-
semble of isolation trees (iTrees) which are random
binary trees constructed by randomly selected data
subsets, features and split values. An iTree has two
types of nodes: external nodes with no children and
internal nodes with two children. The anomaly score
of an instance x is defined as the path length h(x)
which is the distance between the root node and the
external node correspond to the instance in the iTree.
The shorter the path length, the more likely an instance
to be an anomaly as less partitions needed to isolate
the instance from others. As iForst is an ensemble of
iTrees, an instance will be highly likely to be anomaly
if majority of the iTrees produce short path lengths
for it.

67.5 Performance Evaluation and Results

The power system attack datasets are grouped as three
groups: binary, three-class and multi-class [8]. The binary
group adopted in our study is formed by the normal
operations and attack events, which consists of 15 datasets
covering the 37 scenarios of Table 67.1. The data was
normalized using min-max normalization. We used python
and PyOD [26], a toolkit for outlier detection, in our
experiments. For all experiments, the contamination ratio, a
parameter determining the decision boundary of the detection
model, is set to 0.05. The metric used for performance
evaluation is F1 score which is defined as the harmonic
mean of precision and recall:

F1 = 2 × Precision × Recall

Precision + Recall
(67.3)
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Precision = T P

T P + FP
(67.4)

Recall = T P

T P + FN
(67.5)

where TP, FP and FN are true positives, false positives
and false negatives, respectively. We treated attack events as
positives and normal operations are negatives in our study.
The performance of an algorithm is reported as the averaging
of the results obtained from the 15 datasets.

To evaluate the performance of different semi-supervised
outlier detection algorithms, we randomly selected 50% of
normal instances in a dataset for training the detection model.
Other instances of the dataset including normal and attack
events were then used for testing. The process was repeated
ten times for each dataset. Figure 67.4 shows the performance
of the seven semi-supervised outlier detection algorithms
using all features. It can be observed that OCSVM achieves
the best performance among all algorithms. CBLOF and
iForest have comparable performance to OCSVM. These
three algorithms achieve significantly better performance
than other four algorithms. The results also show that the
semi-supervised algorithms obtain better recall than preci-
sion. This means that semi-supervised algorithms perform
well on finding attack events but result in higher number of
FPs.

We then compared the performance of the best three
semi-supervised algorithms with supervised algorithms. Two
supervised algorithms popular for detecting cyber-attacks in
smart grids, SVM and k-NN [8, 10], were considered in
our study for comparison. We randomly selected 50% of
normal instances in a dataset for training the semi-supervised
algorithms. The selected normal instances and the same num-
ber of randomly selected attack instances were used to train
the supervised algorithms. The testing was done using the
remaining normal and attack instances. This process repeated
ten times for each of the 15 datasets. Figure 67.5 shows the
performance of the algorithms. It can seen that the three semi-
supervised algorithms achieve comparable performance. The
semi-supervised algorithms perform significantly better than
the two supervised algorithms in terms of recall demon-
strating that the semi-supervised algorithms can find more
attack events than the supervised algorithms. On the other
hand, the two supervised algorithms achieve better precision
compared with the semi-supervised algorithms due to the
high FP rates of the semi-supervised algorithms. Overall
the semi-supervised algorithms have significantly better per-
formance than the supervised algorithms in terms of F1

score.

(a) Precision

(b) Recall

(c) F1

Fig. 67.4 Performance of semi-supervised outlier detection algorithms
with all features

Finally, we investigated how deep feature extraction can
enhance the performance of the best three semi-supervised
algorithms. The popular liner feature extractionmethod, prin-
ciple component analysis (PCA), was used for comparison.
The extracted number of features was set to 30 for both
PCA and autoencoder. The autoencoder has an input layer
of 116 nodes corresponding to the number of features from
the PMUmeasurements. The hidden layer of the encoder and
the code layer have 60 and 30 nodes, respectively. The results
shown in Fig. 67.6 demonstrate that deep feature extraction
can significantly improve the performance of all three semi-
supervised algorithms in terms of the three metrics. On
the other hand, PCA as a linear method works not well.
Especially the features extracted by PCA result in lower
recall.
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(a) Precision

(b) Recall

(c) F1

Fig. 67.5 Performance comparison of semi-supervised algorithms
with supervised algorithms

67.6 Conclusion

Cyber-attacks are one of the major challenges faced by smart
grids. In this paper, we explored the use of semi-supervised
outlier detection algorithms augmented by deep feature ex-
traction for detecting cyber-attacks in smart grids using the
data collected from PMUs. Our results show that semi-
supervised algorithms can achieve better detection perfor-

(a) Precision

(b) Recall

(c) F1

Fig. 67.6 Performance comparison of semi-supervised outlier detec-
tion algorithms with and without feature extraction

mance than popular supervised algorithms. Nonlinear dimen-
sionality reduction methods like deep feature extraction are
better choices than liner ones like PCA for enhancing the per-
formance of semi-supervised algorithms for detecting cyber-
attacks in smart grids. In future, advanced semi-supervised
learning algorithms such as deep anomaly detection [27] will
be studied for better detection performance.
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