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Abstract

Recent developments in gradient-based attention
modeling have seen attention maps emerge as a powerful
tool for interpreting convolutional neural networks. Despite
good localization for an individual class of interest, these
techniques produce attention maps with substantially
overlapping responses among different classes, leading to
the problem of visual confusion and the need for discrimi-
native attention. In this paper, we address this problem by
means of a new framework that makes class-discriminative
attention a principled part of the learning process. Our key
innovations include new learning objectives for attention
separability and cross-layer consistency, which result in
improved attention discriminability and reduced visual
confusion. Extensive experiments on image classification
benchmarks show the effectiveness of our approach in terms
of improved classification accuracy, including CIFAR-100
(+3.33%), Caltech-256 (+1.64%), ILSVRC2012 (+0.92%),
CUB-200-2011 (+4.8%) and PASCAL VOC2012 (+5.73%).

1. Introduction

Visual recognition has seen tremendous progress in the
last few years, driven by recent advances in convolutional
neural networks (CNNs) [13, 17]. Understanding their
predictions can help interpret models and provide cues to
design improved algorithms.

Recently, class-specific attention has emerged as a
powerful tool for interpreting CNNs [5, 31, 45]. The big-
picture intuition that drives these techniques is to answer
the following question- where is the target object in the
image? Some recent extensions [20] make attention end-to-
end trainable, producing attention maps with better local-
izability. While these methods consider the localization
problem, this is insufficient for image classification, where
the model needs to be able to tell various object classes
apart. Specifically, existing methods produce attention
maps corresponding to an individual class of interest that
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Figure 1. The baseline CNN attends to similar regions, i.e. the
central areas, when it comes to the relevant pixels for classes
“treadmill,” “basketball hoop,” and “tripod.” The CNN with our
proposed framework is able to tell the three classes apart and has
high confidence to classify the input as “basketball hoop.”

may not be discriminative across classes. Our intuition,
shown in Figure 1, is that such separable attention maps can
lead to improved classification performance. Furthermore,
we contend that false classifications stem from patterns
across classes which confuse the model, and that elimi-
nating these confusions can lead to better model discrim-
inability. To illustrate this, consider Figure 2 (a), where
we use the VGG-19 model [33] to perform classification
on the ILSVRC2012 [30] dataset, we collect failure cases
and generate the attention maps via Grad-CAM [31] and
we show the top-5 predictions. Figure 2 (a) depicts that,
while the attention maps of the last feature layer are reason-
ably well localized, there are large overlapping regions
between the attention of the ground-truth class (marked by
red bounding boxes) and the false positives, demonstrating
the problem, and the need for discriminative attention.

To overcome the above attention-map limitations, we
need to address two key questions: (a) can we reduce
visual confusion, i.e., make class-specific attention maps
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Figure 2. Grad-CAM [31] attention maps of the VGG-19 [33] top-
5 predictions. Predictions with red-bounding boxes correspond
to the ground-truth class. (a) Ground-truth class attention maps
from the last layer (Conv5) have a large overlap with false posi-
tives (top-1 predictions). (b) Inner-layer attention maps (Conv4)
are more separable than their last-layer counterparts.

separable and discriminative across different classes?, and
(b) can we incorporate attention discriminability in the
learning process in an end-to-end fashion? We answer
these questions in a principled manner, proposing the first
framework that makes attention maps class discrimina-
tive. Furthermore, we propose a new attention mechanism
to guide model training towards attention discriminability,
which provides end-to-end supervisory signals by explicitly
enforcing attention maps of various classes to be separable.

Attention separability and localizability are key aspects
of our proposed learning framework for image classifica-
tion. Non-separable attention maps from the last layer, as
shown in Figure 2 (a), prompted us to look “further inside”
the CNN and Figure 2 (b) shows attention maps from an
intermediate layer. This illustration shows that these inner-
layer attention maps are more separable than those from the
last layer. However, the inner-layer attention maps are not
as well-localized as the last layer. So, another question we
ask is- can we get the separability of the inner-layer atten-
tion and the localization of the last-layer attention at the
same time? Solving this problem would result in a “best-of-
both-worlds” attention map that is separable and localized,
which is our goal. To this end, our framework also includes
an explicit mechanism that enforces the ground-truth class
attention to be cross-layer consistent.

We conduct extensive experiments on five compet-
itive benchmarks (CIFAR-100 [19], Caltech-256 [12],
ILSVRC2012 [30], CUB-200-2011 [36] and PASCAL
VOC 2012 [10]), showing performance improvements of
3.33%, 1.64%, 0.92%, 4.8%, and 5.73%, respectively.

In summary, we make the following contributions:

e We propose channel-weighted attention .A.;, which
has better localizability and avoids higher-order
derivatives computation, compared to existing
approaches for attention-driven learning.

e We propose attention separation loss Lag, the
first learning objective to enforce the model to
produce class-discriminative attention maps, resulting
in improved attention separability.

e We propose attention consistency loss L ¢, the first
learning objective to enforce attention consistency
across different layers, resulting in improved localiza-
tion with “inner-layer” attention maps.

e We propose “Improving Classification with Attention
Separation and Consistency” (ICASC), the first frame-
work that integrates class-discriminative attention and
cross-layer attention consistency in the conventional
learning process. ICASC is flexible to be used with
available attention mechanisms, i.e. Grad-CAM [31]
and A, providing the learning objectives for training
CNN with discriminative and consistent attention,
which results in improved classification performance.

2. Related work

Visualizing CNNs. Much recent effort has been
expended in visualizing internal representations of CNNs
to interpret the model better. Erhan et al. [9] synthesized
images to maximally activate a network unit. Mahendran et
al. [24] and Dosovitskiy et al. [8] analyzed the visual coding
to invert latent representations, performing image recon-
struction by feature inversion with an up-convolutional
neural network. In [32, 34, 41], the gradient of the predic-
tion was computed w.r.t. the specific CNN unit to high-
light important pixels. These approaches are compared in
[25, 31]. The visualizations are fine-grained but not class-
specific, where visualizations for different classes are nearly
identical [31].

Our framework is inspired by recent works [5, 31, 45]
addressing class-specific attention. CAM [45] generated
class activation maps highlighting task-relevant regions
by replacing fully-connected layers with convolution and
global average pooling. Grad-CAM [31] solved CAM’s
inflexibility where without changing the model architec-
ture and retraining the parameters, class-wise attention
maps were generated by means of gradients of the final
prediction w.r.t. pixels in feature maps. However, we
observe that directly averaging gradients in Grad-CAM [31]
results in the improper measurement of channel impor-
tance, producing substantial attention inconsistency among
various feature layers. Grad-CAM++ [5] proposed to intro-
duce higher-order derivatives to capture pixel importance,
while its high computational cost in calculating the second-
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Figure 3. The framework of Improving Classification with Atten-
tion Separation and Consistency (ICASC).

and third-order derivatives makes it impractical to be used
during training.

Attention-guided network training. Several recent
methods [14, 17, 38, 40] have attempted to incorporate
attention mechanisms to improve the performance of CNNs
in image classification. Wang et al. [38] proposed Residual
Attention Network, modifying ResNet [13] by adding the
hourglass network [26] to the skip-connection, generating
attention masks to refine feature maps. Hu et al. [14]
introduced a Squeeze-and-Excitation (SE) module which
used globally average-pooled features to compute channel-
wise attention. CBAM [27, 40] modified the SE module
to exploit both spatial and channel-wise attention. Jetley
et al. [17] estimated attentions by considering the feature
maps at various layers in the CNN, producing a 2D matrix
of scores for each map. The ensemble of output scores was
then used for class prediction. While these methods use
attention for downstream classification, they do not explic-
itly use class-specific attention as part of model training for
image classification.

Our work, to the best of our knowledge, is the first to use
class-specific attention to produce supervisory signals for
end-to-end model training with attention separability and
cross-layer consistency. Furthermore, our proposed method
can be considered as an add-on module to existing image
classification architectures without needing any architec-
tural change, unlike other methods [14, 17, 38, 40]. While
class-specific attention has been used in the past for weakly-
supervised object localization and semantic segmentation
tasks [0, 20, 39, 43], we model attention differently. The
goal of these methods is singular - to make the attention well
localize the ground-truth class, while our goal is two-fold -
good attention localizability as well as discriminability. To
this end, we devise novel objective functions to guide model
training towards discriminative attention across different
classes, leading to improved classification performance as
we show in the experiments section.

Figure 4. The Grad-CAM [3 1] attentions of different VGG-19 [33]
feature layers for the ’tench’ class. In both rows, the target is the
fish while the model attention shifts across the layers.

3. Approach

In Figure 3, we propose “Improving Classification
with Attention Separation and Consistency” (ICASC), the
first end-to-end learning framework to improve model
discriminability for image classification via attention-driven
learning. The main idea is to produce separable attention
across various classes, providing supervisory signals for the
learning process. The motivation comes from our obser-
vations from Figure 2 that the last layer attention maps
computed by the existing methods such as Grad-CAM [31]
are not class-separable, although they are reasonably well
localized. To address this problem, we propose the atten-
tion separation loss L 45, a new attention-driven learning
objective to enforce attention discriminability.

Additionally, we observe from Figure 2 that inner layer
attention at higher resolution has the potential to be sepa-
rable, which suggests we consider both intermediate and
the last layer attention to achieve separability and local-
izability at the same time. To this end, we propose the
attention consistency loss Lac, a new cross-layer atten-
tion consistency learning objective to enforce consistency
among inner and last layer attention maps. Both proposed
learning objectives require that we obtain reasonable atten-
tion maps from the inner layer. However, Grad-CAM [31]
fails to produce intuitively satisfying inner layer attention
maps. To illustrate this, we depict two Grad-CAM [31]
examples in Figure 4, where we see the need for better inner
layer attention. To this end, we propose a new channel-
weighted attention mechanism 4., to generate improved
attention maps (explained in Sec. 3.1). We then discuss how
we use them to produce supervisory signals for enforcing
attention separability and cross-layer consistency.

3.1. Channel-weighted attention A,

Commonly-used techniques to compute gradient-based
attention maps given class labels include CAM [45], Grad-
CAM [31], and Grad-CAM++ [5]. We do not use CAM
because (a) it is inflexible, requiring network architecture
modification and model re-training, and (b) it works only
for the last feature layer.

Compared to CAM [45], Grad-CAM [31] and Grad-
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CAM++ [5] are both flexible in the sense that they only
need to compute the gradient of the class prediction score
w.r.t. the feature maps to measure pixel importance. Specif-
ically, given the class score Y ¢ for the class ¢ and the
feature map F* in the k-th channel, the class-specific
gradient is determined by computing the partial derivative
(0Y©)/(OFF). The attention map is then generated as
A = ReLU(Y, a$F¥), where of indicates the impor-
tance of F* in the k-th channel. In Grad-CAM [31], the
weight af is a global average of the pixel importance in

(0Y©)/(OF%):
.1 oye
=722 o ®
i J 2

where Z is the number of pixels in FF. Grad-CAM++ [5]
further introduces higher-order derivatives to compute «f,
so as to model pixel importance.

Although Grad-CAM [31] and Grad-CAM++ [5] are
more flexible than CAM [45], they have several drawbacks
that hinder their use as is for our purposes of providing
separable and consistent attention guidance for image clas-
sification. First, there are large attention shifts among atten-
tion maps of different feature layers in Grad-CAM [31]
which are caused by negative gradients while computing
channel-wise importance. A key aspect of our proposed
framework ICASC is to exploit the separability we observe
in inner layer attention in addition to good localization from
the last layer attention. While we observe relatively less
attention shift with Grad-CAM++ [5], the high computa-
tional cost of computing higher-order derivatives precludes
its use in ICASC since we use attention maps from multiple
layers to guide model training in every iteration.

To address these issues, we propose channel-weighted
attention Ay, highlighting the pixels where the gradients
are positive. In our exploratory experiments, we observed
that the cross-layer inconsistency of Grad-CAM [31], noted
above, is due to negative gradients from background pixels.
In Grad-CAM [31], all pixels of the gradient map contribute
equally to the channel weight (Eq. 1). Therefore, in cases
where background gradients dominate, the model tends to
attend only to small regions of target objects, ignoring
regions that are important for class discrimination.

We are motivated by prior work [5, 34, 41] that observes
that positive gradients w.r.t. each pixel in the feature map
F* strongly correlate with the importance for a certain
class. A positive gradient at a specific location implies
increasing the pixel intensity in F'* will have a positive
impact on the prediction score, Y°. To this end, driven
by positive gradients, we propose a new channel-weighted
attention mechanism A.,:

1 aye
Ach = EReLU(; Z ZJ: ReLU(aTZ@)F’“) 2)

Input Image
Label: bird

Figure 5. The comparison of attention maps from different VGG-
19 [33] layers. Ours has less attention shift than Grad-CAM [31].
In the marked areas, ours attends to the target objects, i.e. bird,
while Grad-CAM [31] tends to highlight the background pixels.

Our attention does not need to compute higher-order
derivatives as in Grad-CAM++ [5], while also resulting
in well-localized attention maps with relatively less shift
unlike Grad-CAM [3 1], as shown in Figure 5.

3.2. Attention separation loss L 45

We use the notion of attention separability as a princi-
pled part of our learning process and propose a new learning
objective Lag. Essentially, given the attention map of a
ground-truth class A’ and the most confusing class A“°"/,
where AC°"f comes from the non-ground truth class with
the highest classification probability, we enforce the two
attentions to be separable. We reflect this during training by
quantifying overlapping regions between A’ and AC°"f,
and minimizing it. To this end, we propose L 4¢ which is
defined as:
>, (min( AL, A ) - Mask;)

S (AL + A

Ljs=2- 3

where the - operator indicates scalar product, and AiTj and
Aicjo”f represent the (4, 7)*" pixel in attention maps .A” and
ACont respectively. The proposed L 45 is differentiable
which can be used for model training.

Additionally, to reduce noise from background pixels,
we apply a mask to focus on pixels within the target object
region for the L 45 computation. In Eq. 3, Mask indicates
the target object region generated by thresholding the atten-
tion map A7 from the last layer:

1

M kz = )
S T T eap(—w(AT — o))

“)

where we empirically choose values of o and w to be 0.55 x
max (A7) and 100 respectively.

The intuition of Lyg is illustrated in Figure 6. If
the model attends to the same or overlapped regions for
different classes, it results in visual confusion. We penalize
the confusion by explicitly reducing the overlap between the
attention maps of the target and the most confusing class.
Specifically, we minimize L 45, which is differentiable with
values ranging from O to 1.
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Figure 6. The top row demonstrates higher visual confusion than
the bottom row. The two attention maps in the top row have
high responses localized at the bird’s head, while as shown in the
bottom, the ground-truth class attention highlights the bird’s head,
and the confusing class attention addresses the lower body.

The proposed L 45 can be considered an add-on module
for training a model without changing the network archi-
tecture. Besides applying L 45 to the last feature layer, we
can also compute L 4g for any other layers, which makes it
possible for us to analyze model attention at various scales.

While the proposed L 45 helps enforce attention separa-
bility, it is not sufficient for image classification since inner
layer attention maps are not as spatially well-localized as
the last layer. We set out to achieve an attention map to be
well-localized and class-discriminative, and to this end, we
propose a new cross-layer attention consistency objective
L 4¢ that enforces the target attention map from an inner
layer to be similar to that from the last layer.

3.3. Attention consistency loss L 4¢

In higher layers (layers closer to output), the model
attention captures more semantic information, covering
most of the target object [5, 31, 45]. For the intermediate
layers with the smaller receptive fields of the convolution
kernels, the model attends to more fine-grained patterns as
shown in Figures 4 and 5. Compared to higher-layer atten-
tion, lower-layer attention contains more noise, highlighting
background pixels.

To address these issues, we propose the attention consis-
tency loss L 4¢ to correct the model attention so that the
highlighted fine-grained attention is primarily localized in
the target region:

Zij(AE? - Maskij)

2 A ’
where A" indicates attention maps from the inner feature
layers, Mask;; (defined in Eq. 4) represents the target
region, and 6 is set to 0.8 empirically. As can be noted
from Eq. 5, the intuition of L 4¢ is that by exploiting last
layer attention’s good localizability, we can guide the inner
layer attention to be chiefly concentrated within the target
region as well. This guidance L 4 helps maintain cross-
layer attention consistency.

Lac=6-

®)

3.4. Overall framework ICASC

We apply the constraints of attention separability and
cross-layer consistency jointly as supervisory signals to
guide end-to-end model training, as shown in Figure 3.
Firstly, we compute inner-layer attention for the loss L%
with the purpose of enforcing inner-layer attention separa-
bility. For example, with ResNet, we use the last convo-
lutional layer in the penultimate block. We empirically
adopt this to compute L%y in consideration of the low-
level patterns and semantic information addressed by the
inner-layer attention. In Figure 5, this inner-layer attention,
with twice resolution as the last layer, highlights more fine-
grained patterns while still preserving the semantic infor-
mation, thus localizing the target object. We also apply
the L 45 constraint on the attention map from the last layer,
giving us LlXS. Secondly, we apply the cross-layer consis-
tency constraint L 4o between the attention maps from
these two layers. Finally, for the classification loss L¢,
we use cross-entropy and multilabel-soft-margin loss for
single and multi-label image classification respectively. The
overall training objective of ICASC, L, is:

L=1Lc+ L%+ L'+ Lac (6)
ICASC can be used with available attention mecha-
nisms including Grad-CAM [31] and A.. We use
ICASCGrada—canm and ICASC 4, to refer to our frame-

work used with Grad-CAM [31] and A.;, as the attention
mechanisms respectively.

4. Experiments

Our experiments contain two parts, (a) evaluating the
class discrimination of various attention mechanisms, and
(b) demonstrating the effectiveness of the proposed ICASC
by comparing it with the corresponding baseline model
(having the same architecture) without the attention super-
vision. ~ We conduct image classification experiments
on various datasets, consisting of three parts: generic
image classification on CIFAR-100 (D¢y) [19], Caltech-
256 (D¢y) [12] and ILSVRC2012 (Dy) [30], fine-grained
image classification on CUB-200-2011 (D¢y) [36], and
finally, multi-label image classification on PASCAL VOC
2012 (Dp) [10]. For simplicity, we use the shorthand in the
parenthesis after the dataset names above to refer to each
dataset and its associated task, and summarize all experi-
mental parameters used in Table 1. We perform all experi-
ments using PyTorch [28] and NVIDIA Titan X GPUs. We
use the same training parameters as those in the baselines
proposed by the authors of the corresponding papers for fair
comparison.

4.1. Evaluating class discriminability

We first evaluate class-discriminability of our proposed
attention mechanism A.;, by measuring both localizability
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Task Decr Dca Dy Dcu Dp

BNA RN-18 VGG RN-18 RN-50 RN-18
RN-18 RN-101
WD 5¢74 le™3 le 5¢74 le™3
MOM 0.9 0.9 0.9 0.9 0.9
LR le™! le™2 le™! le™3 le™?2
BS 128 16 256 10 16
OPM SGD CCA SGD SGD CCA
#epoch 160 20 90 90 20

Exp. setting [15] (2] [30] [35] [10]

Table 1. Experimental (exp.) settings used in this paper. VGG,
RN-18, RN-50, and RN-101 denote VGG-19 [32], ResNet-
18 [13], ResNet-50, and ResNet-101, respectively. We use the
same parameters as the references in the last row unless other-
wise specified, putting more details in the supplementary mate-
rial. Acronyms: BNA: base network architecture; WD: weight
decay; MOM: momentum; LR: initial learning rate; BS: batch
size; OPM: optimizer; SGD: stochastic gradient descent [3]; CCA:
cyclic cosine annealing [15].

(identifying target objects) and discriminability (separating
different classes). We conduct experiments on the PASCAL
VOC 2012 dataset. Specifically, with a VGG-19 model
trained only with class labels (no pixel-level segmentation
annotations), we generate three types of attention maps
from the last feature layer: Grad-CAM, Grad-CAM++, and
Ach. The attention maps are then used with DeepLab [7]
to generate segmentation maps, which are used to report
both qualitative (Figure 7 and 8) and quantitative results
(Table 2), where we train Deeplab' in the same way
as SEC [18] is trained in [21], using attention maps as
weak localization cues. The focus of our evaluation here
is targeted towards demonstrating class discriminability,
and segmentation is merely used as a proxy task for this
purpose.

Figure 7 shows that 4., (ours) has better localiza-
tion for the two classes, “Bird” and “Person” compared
to Grad-CAM and Grad-CAM++. In “Bird,” both Grad-
CAM and Grad-CAM++ highlight false positive pixels in
the bottom-left area, whereas in “Person,” Grad-CAM++
attends to a much larger region than Grad-CAM and
Acn.  Figure 8 qualitatively demonstrates better class-
discriminative segmentation maps using A.,. In Figure 8
top row, as expected for a single object, all methods,
including A.p, show good performance localizing the
sheep. The second row shows that Grad-CAM covers more
noise pixels of the grassland, while A.;, produces similar
results as Grad-CAM++, both of which are better than
Grad-CAM in identifying multiple instances of the same
class. Finally, for multi-class images in the last row, A.,
demonstrates superior results when compared to both Grad-
CAM and Grad-CAM++. Specifically, A,y is able to tell

Uhttps://github.com/tensorflow/models/tree/master/research/deeplab

Grad-CAM Grad-CAM++

Input (Bird)

Figure 7. Multi-class attention maps (‘bird’ and ‘person’).

Ground Truth Grad-CAM Grad-CAM++ Ours

Input Image

Figure 8. Segmentation masks generated from attention maps by
DeepLab [7] (best view in color, zoom in). From left to right: the
Input Image, Ground Truth, Grad-CAM, Grad-CAM++ and ours.

Attention Mechanism Score

Grad-CAM [31] 56.65
Grad-CAM++ [5] 51.70
Acn, (ours) 57.97

Table 2. Results on Pascal VOC 2012 segmentation validation set.

Method Top-1 A
ResNet-50 81.70 -
+ L7 85.15 3.45
+ L3 + Lac 85.77 4.07

+ L+ LY + Lac 8620 4.50

Table 3. Ablation study on CUB-200-2011 (A=performance
improvement; “Top-1": top-1 accuracy (%)).

the motorcycle, the person, and the car apart in the last row.
We also obtain the quantitative results and report the score
from the Pascal VOC Evaluation server in Table 2, where
A, outperforms both Grad-CAM and Grad-CAM++. The
qualitative and quantitative results show that A,y localizes
and separates target objects better than the baselines, moti-
vating us to use A, in ICASC, which we evaluate next.

4.2.Evaluating L 45 and L 4 for image classification

4.2.1 Ablation study

Table 3 shows an ablation study with the CUB-200-2011
dataset, which provides a challenging testing set given its
fine-grained nature. We use the last convolutional layer in
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Figure 9. The KS-Chart on the CUB-200-2011 testing set. “Ours”
stands for ResNet-50 + Ll's + L'¢s + L ac in Table 3.
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the penultimate block of ResNet-50 for computing L%y and
the last layer attention map for LY. We see that Ly +
L'%s + Lc achieves the best performance. The results
show that the attention maps from the two different layers
are complementary: last-layer attention has more semantic
information, well localizing the target object, and inner
layer attention with higher resolution provides fine-grained
details. Though the inner-layer attention is more likely to
be noisy than the last layer, L 4 provides the constraint to
guide the inner-layer attention to be consistent with that of
the last layer and be concentrated within the target region.

We quantitatively measure the degree of visual confusion
reduction with our proposed learning framework. Specif-
ically, as shown in Figure 9, we compute Kolmogorov-
Smirnov (KS) statistics [1] on the CUB-200-2011 testing
set, measuring the degree of separation between the ground-
truth (Target) class and the most confusing (Confused) class
distributions [23]. We rank non-ground truth classes in
descending order according to their classification proba-
bilities and determine the most confusing class as the one
ranked highest. In Figure 9, for the baseline model, the
largest margin is 0.64 at the classification probability 0.51
whereas our proposed model has a KS margin of 0.74 at the
classification probability 0.55. This demonstrates that our
model is able to recognize 10% more testing samples with
higher confidence when compared to the baseline.

4.2.2 Generic image classification

Tables 4-6 (in all tables, A indicates performance improve-
ment of our method over baseline) show that the models
trained with our proposed supervisory principles outper-
form the corresponding baseline models with a notable
margin. The most noticeable performance improvements
are observed with the CIFAR-100 dataset in Table 4, which
shows that, without changing the network architecture, the

- :
dolphin: 0.28 Wolf:0.20
o

Input Image
Label: leopard

leopard: 0.63 Wolf:0.10

lizard: 0.08 turtle: 0.03 crocodile: 0.02

Figure 10. Qualitative results with CIFAR-100. We show top-5
predictions with classification scores given by ResNet-110 (top
row) and ResNet-110 + ICASC 4 ., (bottom row).

ch

Method Top-1 A
ResNet-110 [16] 7278 -
ResNet-110 with Stochastic Depth [16] 7542 -
ResNet-164 (pre-activation) [16] 75.63 -
ResNet-110 + ICASCGrad—canm 74.02 1.24
ResNet-110 + ICASC 4, 76.11 3.33

Table 4. Image classification results on CIFAR-100.

N:SO N=60
Method Top-1 Top-5 A Top-1 Top-5 A
RN-18 [13] 76.77 92.48 - 80.01 94.12 -
RN-18 + ICASC4,, 78.01 92.87 1.24  81.32 94.57 1.31
VGG-19 [33] 74.52 90.05 - 78.16 92.17 -

VGG-19 +ICASC 4, 75.60 90.85 1.08  79.80 93.25 1.64

Table 5. Results on Caltech-256. “Top-57: top-5 accuracy (%).
“RN-18": ResNet-18. “N”: # of training images per class. We
follow [12] to randomly select 30 or 60 training images per class.

Method Top-1  Top-5 A
ResNet-18 [13] 69.51 88.91 -
ResNet-18 + ICASC 4, 6990 89.71 0.39
ResNet-18 + tenCrop [13] 72.12  90.58

ResNet-18 + tenCrop + ICASC4,,,  73.04 90.65 0.92

Table 6. Results on ILSVRC2012.

top-1 accuracy of ResNet-110 with our proposed supervi-
sion outperforms the baseline model by 3.33%. Our super-
vised ResNet-110 also outperforms the one with stochastic
depth and even the much deeper model with 164 layers. As
can be observed from the qualitative results in Figure 10,
ICASC 4, equips the model with discriminative attention
where the ground-truth class attention is separable from the
confusing class, resulting in improved prediction.

4.2.3 Fine-grained Image Recognition

For fine-grained image recognition, we evaluate our
approach on the CUB-200-2011 dataset [36], which
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Method No Extra Anno. 1-Stage Top-1 A

ResNet-50 [35] 81.7 -

ResNet-101 [35] 825 0.8
MG-CNN [37] b 4 b 4 83.0 1.3
SPDA-CNN [42] X 85.1 3.4
RACNN [11] 853 3.6
PN-CNN [4] b 4 X 854 3.7
RAM [22] X 86.0 4.3
MACNN + 2parts [44] 854 3.7
ResNet-50 + MAMC [35] 86.2 4.5
ResNet-101 + MAMC [35] 86.5 4.8
ResNet-50 + ICASC 4, 862 4.5
ResNet-101 + ICASC 4 86.5 4.8

ch

Table 7. Results on CUB-200-2011. “No Extra Anno.” means
not using extra annotation (bounding box or part) in training. “1-
Stage” means the training is done in one stage.

contains 11788 images (5994/5794 for training/testing) of
200 bird species. We show the results in Table 7. We
observe that training with our learning mechanism boosts
the accuracy of the baseline ResNet-50 and ResNet-101 by
4.8% and 4.0% respectively. Our method achieves the best
overall performance against the state-of-the-art. Further-
more, with ResNet-50, our method outperforms even the
method that uses extra annotations (PN-CNN) by 0.8%.
ICASC4,, has better flexibility compared to the other
methods in Table 7. The existing methods are specifi-
cally designed for fine-grained image recognition where,
according to prior knowledge of the fine-grained species,
the base network architectures (BNA) are modified to
extract features of different objects parts [35, 42, 44]. In
contrast, ICASC 4, needs no prior knowledge and works
for generic image classification without changing the BNA.

4.2.4 Multi-class Image Classification

We conduct multi-class image classification on the
PASCAL VOC 2012 dataset, which contains 20 classes.
Different from the above generic and fine-grained image
classification where each image is associated with one class
label, for each of the 20 classes, the model predicts the prob-
ability of the presence of an instance of that class in the
test image. As our attention is class-specific, we can seam-
lessly adapt our pipeline from single-label to multi-label
classification. Specifically, we apply the one-hot encoding
to corresponding dimensions in the predicted score vector
and compute gradients to generate the attention for multiple
classes. As for the most confusing class, we consistently
determine it as the non-ground truth class with the highest
classification probability.

For evaluation, we report the Average Precision (AP)
from the PASCAL Evaluation Server [ 10]. We also compute
the AUC score via scikit-learn python module [29] as an

Method AUC Score AP (%) JAN
ResNet-18 [13] 0.976 77.44 -
ResNet-18 + ICASC 4, 0.981 83.17 573

Table 8. Results on Pascal VOC 2012.

Pascal VOC 2012 Top-1  Caltech-256 Top-1
ResNet-18 7744  ResNet-18 80.01
+ ICASCqarad—cam 82.12 + ICASCgarad—cam 80.28
+ICASC.4,, 83.17 +ICASCu4,, 81.32
CUB-200-2011 Top-1 ILSVRC2012 Top-1
ResNet-50 81.70  ResNet-18 69.51
+ ICASCGTad_CA]\/[ 85.45 + ICASCGrad_cA]u 69.84
+ICASC.,, 86.20 +ICASCu.4,, 69.90

Table 9. Comparing baseline, ICASCgyrqd—canm and ICASC 4

ch*

additional evaluation metric [2]. Table 8 shows that ResNet-
18 [13] with A, outperforms the baseline by 5.73%.

4.2.5 Comparing attention mechanisms

We compare the image classification performance when
ICASC is trained with Grad-CAM [31] and A.;,. As can
be noted from the results in Table 4 and 9, the higher Top-1
accuracy of ICASC 4, shows that our attention mechanism
provides better supervisory signals for model training than
Grad-CAM [31]. Additionally, even ICASC with Grad-
CAM still outperforms the baseline, further validating our
key contribution of attention-driven learning for reducing
visual confusion. The proposed ICASC is flexible to be
used with any existing attention mechanisms as well, while
resulting in improved classification performance.

5. Conclusions

We propose a new framework, ICASC, which makes
class-discriminative attention a principled part of training a
CNN for image classification. Our proposed attention sepa-
ration loss and attention consistency loss provide supervi-
sory signals during training, resulting in improved model
discriminability and reduced visual confusion. Addition-
ally, our proposed channel-weighted attention has better
class discriminability and cross-layer consistency than
existing methods (e.g. Grad-CAM [31]). ICASC is appli-
cable to any trainable network without changing the archi-
tecture, giving an end-to-end solution to reduce visual
confusion. ICASC achieves performance improvements on
various medium-scale, large-scale, fine-grained, and multi-
class classification tasks. While we select last two feature
layers which contain most semantic information to generate
the attention maps, ICASC is flexible w.r.t. layer choices
for attention generation, and we plan to study the impact of
various layer choices in the future.
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