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A B S T R A C T

Face detection and landmark localization have been extensively investigated and are the prerequisite for
many face related applications, such as face recognition and 3D face reconstruction. Most existing methods
address only one of the two problems. In this paper, we propose a coupled encoder–decoder network to
jointly detect faces and localize facial key points. The encoder and decoder generate response maps for
facial landmark localization. Moreover, we observe that the intermediate feature maps from the encoder and
decoder represent facial regions, which motivates us to build a unified framework for multi-scale cascaded
face detection by coupling the feature maps. Experiments on face detection using two public benchmarks
show improved results compared to the existing methods. They also demonstrate that face detection as a
pre-processing step leads to increased robustness in face recognition. Finally, our experiments show that
the landmark localization accuracy is consistently better than the state-of-the-art on three face-in-the-wild
databases.

© 2018 Published by Elsevier B.V.

1. Introduction

Face detection has been one of most important and still open
problems in Computer Vision and Human–Computer Interaction.
Face landmark localization is a prerequisite for many facial analysis
applications, such as face recognition, face modeling, and expression
transfer. Many effective face detection and landmark localization
algorithms have been proposed to close the gap from realistic situ-
ations [1,2,11,20,29]. However, face-in-the-wild conditions, such as
large pose variation and occlusions, largely degrade the performance
of the methods.

Rooting back to the seminal works, Viola–Jones face detector [33]
and Active Shape Model [16] have achieved wide applications in
their own fields. Many representative works have been proposed to
expand and better interpret the above models, such as Deformable
Part Models (DPM) [6] for face detection and Active Appearance
Models (AAM) [13,17] for landmark localization. However, seldom
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efforts are put on jointly dealing with the two problems. A well
established pipeline is that face landmark localization accepts the
bounding boxes input from face detection. However, such rule is not
necessarily to hold. Zhu and Ramanan [6] presented a pioneering
work to jointly detect faces and facial key points using DPM. The
internal correlation between facial key points and the overall face
location is well captured by the deformable part model. The method
is limited by its hand-crafted feature (HOG) and a predefined tree
structure, which is a hard constraint and lacks flexibility in capturing
the shape variations.

With the strong power of feature representation, convolutional
neural networks (CNN) have shown significant advantages over tradi-
tional methods in many fields, i.e., object detection [4] and semantic
segmentation [23,24]. Among those methods, the Faster-RCNN [4]
demonstrates superior performance across almost all the detection
tasks, i.e., ImageNet, PASCAL and KITTI, where the ROI pooling for
region proposals is a key factor to achieve fast sampling and high accu-
racy. In face detection, the cascaded CNN [19] employs multi-scale
shallow network cascade to fast localize faces. The early rejection of
false alarms on smaller scale speeds up the run-time significantly. The
Faster-RCNN relies firmly on the output of region proposal networks
(RPN), which needs to carefully design the anchors with different
aspect ratios, and to prepare unbiased training data. The cascaded
CNN achieves good efficiency but the shallow structure prevents the
further improvement of effectiveness.
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Sliding window on feature maps is a simple and natural improve-
ment to the RPN, whereas the region classification net (RCN) remains
the same. The ROI pooling fully supports the sliding window opera-
tion on feature maps. To seek discriminative feature maps, we inves-
tigate the well established encoder–decoder framework originated
from semantic segmentation [23]. The encoder–decoder generates a
set of feature maps in different scales. As we observed, the feature
maps not only capture the responses for face landmark localization
but also for facial regions, as shown in Fig. 1. The strong face region
responses are always coupled with the strong responses of the land-
marks. If we consider landmark localization as a sparse segmentation
problem (classifying the landmark regions as foreground), the local-
ization task becomes bounding box independent and the feature
maps could be re-utilized for face detection.

As a consequence, we propose a novel coupled encoder–decoder
network to simultaneously localize landmarks and detect faces.
First, an encoder–decoder network followed by a shallow landmark
regression network is set up end-to-end, where the feature maps
from the intermediate convolutional layers are gathered. Second, ROI
pooling is applied on the gathered feature maps in three scales to
further extract features for the face region classification. Different
from cascaded CNN [19], we apply sliding windows on feature maps
instead of raw images. During training, the encoder–decoder and
landmark regression are updated for one iteration, while the facial
region classification is updated for another iteration. The alternative
training is similar to the Faster-RCNN training of RPN and RCN, which
achieves stable convergence.

Our contributions are summarized as the following.

• A coupled encoder–decoder structure for joint face detection
and landmark localization.

• A carefully designed alternative network training for landmark
localization and multi-scale cascaded facial region classification.

• A demonstration of the proposed method’s advantages in both
the face detection and landmark localization under face-in-the-
wild conditions.

2. Related work

2.1. Face detection

Early works on face detection focus on the hand-crafted features
and the face classifiers, i.e., the Viola–Jones detector utilizes the Haar

Fig. 1. An example of our coupled encoder–decoder framework result, simultane-
ously predicting the face regions (white bounding boxes) and the face fiducial points
(white dots). The false positive responses for landmark localization are effectively sup-
pressed by the coupled face detection task, in which regions marked by the red dash
bounding boxes are classified as non-face.

feature combined with the Adaboost classifier [33], a vanilla DPM
[6] was proposed to defend the model-based methods with top per-
formance and a template based classifier was proposed as well [29].
Different from model-based methods, Shen et al. [50] propose to
detect faces by image retrieval. Li et al. [48] further improve it to a
boosted exemplar-based face detector. As the development of deep
convolutional neural networks (CNN), there are many successful CNN-
based methods with much better performance, i.e., the Cascaded
CNN [19] applies the cascade of multi-resolution shallow networks to
detect faces. Rather than training each cascade stage independently,
in [20], the authors propose a joint training framework to learn the
cascade model. The Convolutional Channel Feature [38] fully utilizes
the rich features from the convolutional layers of different channels.
Farfade et al. [30] proposed the multi-view deep neural network based
framework to detect faces. Several state-of-the-art methods demon-
strate the advantages of deep neural networks. [60] presents a method
of end-to-end integration of a ConvNet and a 3D model for face detec-
tion in the wild. [31] used a CNN to detect facial parts and combine
parts for holistic face detection, Ranjan et al. fuses the DPM with a
deep pyramid structure [34]. [57] takes advantage of CNN futures
and proposes an effective framework for finding small faces, demon-
strating that both large context and scale-variant representations are
crucial. [58] introduces the Single Stage Headless (SSH) face detec-
tor that, unlike two-stage proposal/classification approaches, detects
faces in a single stage.

2.2. Face landmark localization

The model-based methods are back-traced to the Active Shape
Models [16] and Active Appearance Models [13,17]. Tons of improve-
ments have been proposed, such as Constrained Local Model [14,59],
probabilistic matching [15], and DPM [6]. The regression-based
landmark localization [3,5,7,8,10,12,26,54] significantly improve the
performance and run-time. In [54], multiple cascaded regressors are
proposed with the capability to handle global shape variation and
irregular appearance-shape relation. Those regression-based meth-
ods directly regress landmark locations from the features, reducing
the complexity of model update. However, regression-based method
is sensitive to the initial bounding boxes and is feature-specific
where regression embedding firmly relies on the feature represen-
tations. Recently, the CNN-based approaches show more compelling
performance than regression. [1] proposes to use three stages of neu-
ral networks to cooperatively localize facial landmarks. [9] applies
coarse-to-fine auto-encoders for the regression of landmark posi-
tions. In [53], a lightweight and compact CNN architecture is designed
for landmark localization. [55] introduces a Recurrent Attentive
Refinement network for facial landmark regression where landmark
locations are refined progressively. In [2], the multi-task training
strongly suggests joint dealing with multiple jobs while boosting each
task’s performance. [11] proposes the shape basis network to fast
approach the global optimal and point transformer network to refine
the local shape variations. Compared to the efforts which explicitly
import cascade structures, we propose a unified encoder–decoder
model to incorporate both face detection and landmark localization,
which boosts the learning convergence of the feature maps and the
localization accuracy.

2.3. Joint face detection and landmark localization

As the first work that jointly handles face detection, landmark
localization, Zhu and Ramanan [6] proposed a DPM based frame-
work and achieved promising results in face-in-the-wild conditions.
The similar structure is applied by [36] to detect and localize faces
under occlusion. [36] claims to simultaneously achieve the two tasks
as well. However, it is more of a joint framework of using DPM to
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achieve face detection and landmark localization, which lacks con-
sideration of the interactive boosting between the two tasks. The
cascaded face detection and alignment [32] jointly deals with the
two tasks, where it actually regresses the landmark positions after
the face detection. Under the multi-task learning frameworks, sev-
eral CNN-based methods are recently proposed, i.e. [37] applied a
cascaded CNN for multi-task learning, [35] integrated many tasks,
face detection, landmark localization, pose estimation and gender
recognition.

2.4. Encoder–decoder networks

The encoder and decoder networks are well studied in machine
translation [21], where the encoder learns intermediate represen-
tation and the decoder transforms that representation. It is inten-
sively investigated in speech recognition [22] and computer vision
[23,24,52,56]. In [56], the encoder–decoder architecture is applied to
estimate human pose. In [23], authors applied an encoder–decoder
structure on the semantic segmentation. The proposed algorithm
in [23] mitigates the limitations of the previous methods based on
fully convolutional networks by integrating deconvolutional net-
work and pixel-wise prediction, which identifies detailed structures
and handles objects in multiple scales. In this work, we employ the
encoder–decoder network to learn the discriminative features for
describing faces which can be shared by face detection and landmark
localization. The architecture differs from the parallel multi-task
framework [2] in which convolutional layers are shared and the last
fully connected layers are split according to different tasks.

3. Coupled encoder–decoder network

We propose the coupled encoder–decoder network in a unified
framework which consists of three modules: 1) an encoder–decoder
to predict facial response maps; 2) a coupled cascade face detec-
tion network sharing the feature maps with the encoder–decoder;
3) a regression network that outputs the 2D coordinates of facial
landmarks.

3.1. The encoder–decoder for facial response map prediction

Semantically, landmark localization is a sparse segmentation
problem. Segmenting the landmark regions are feasible without the
constraint of the bounding boxes. As the encoder–decoder frame-
work has shown strong evidence in the performance of segmentation
[23], we employ it as the facial response map provider.

The network in Fig. 2 (a) takes an image I ∈ Rw×h×3 as input and
a corresponding label map Z ∈ Rw×h×1 as ground truth. Each pixel
in Z is a discrete label {0, 1, 255} that marks the presence of facial
landmarks, where 0 denotes a non-landmark region, 1 for landmark
and 255 set as ignore label for uncertain areas.

The encoder incorporates a set of convolutional layers, pooling
layers and batch normalization layers [25], which is to encode the
input I into a feature space C:

C = fENC(I; hENC), C ∈ ∈wc×hc×dc (1)

where C denotes the encoded wc × hc × dc feature maps and hENC

denotes encoder parameters. Symmetrically, the decoder module
involves a set of unpooling, convolution and batch normalization to
transform the feature maps C to the 2-channel response maps M in
the same size of the image:

M = fDENC(C; hDENC), M ∈ ∈w×h×2 (2)

where hDENC denotes the decoder parameters. The objective is for-
mulated as a pixel-wise two-class classification problem with cross-
entropy loss:
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where Npx denotes the number of pixels (ignored pixels are
excluded); pm

i = g(fDENC) is the probability of i-th pixel belonging to
the landmark region and ym

i is the ground truth.
The response map M plays a significant role in the whole frame-

work for two reasons. First, it provides the accurate confidence
maps of the foreground (fiducial point regions) and background.
A shallow regression model is able to regress the coordinates in
favor of the spatial information preserved by the encoder–decoder.
Second, M provides the facial region information for the fiducial point
segmentation task, which could be re-utilized for the face detection.

3.2. The coupled feature map cascade for face detection

In [19], authors propose a cascade framework consisting of 12,
24 and 48 nets, which early rejects non-face regions in the lower
scale net (12 nets) and passes the detected proposals to networks in
the larger scale (24 and 48 nets) for aggregation. However, sliding
window on the original image is time-consuming, which may restrict
[19] to adopt deeper networks and higher image resolution. As in
Fig. 2(b), the same scale intermediate feature maps from fENC and
fDENC are concatenated as the feature maps for face detection. The
sliding window is applied to the feature maps instead of original
images, avoiding redundant convolutional computation. ROI pooling
[4] is applied to map each sub-region of feature maps into a feature
vector in the fixed dimension.

The learning objective is formulated as a binary classification as
well as the bounding box coordinates localization.

Ldet = Lcls + cLloc
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where the classification loss Lcls is defined as the cross-entropy loss
over the probability pf

i of the i-th window being a face and ycls
i ∈

{0, 1} denotes the ground truth. The loss of bounding box localization
Lloc is defined as the euclidean distance between the ground truth
bounding box denoted as

(
x∗

1, x∗
2

)
upper-left and bottom-right corner

points and the predicted two points (x1, x2). The regularization factor
c is set up to balance the penalty from the two branches. We apply
0.01 as the typical value in our framework.

3.3. Landmark localization from response maps

As shown in Fig. 3, the model fREG combines the response maps M
and feature maps in the last layer of fENC to predict landmark coor-
dinates. Only the foreground channel of response map M is used for
landmark localization. According to the detected window, ROI pool-
ing is applied on the foreground channel and on the last encoder’s
feature layer, yielding feature vectors fl and fg respectively. We con-
catenate fl and fg for landmark localization, taking advantage of both
local and global information. The concatenated feature is fed to a shal-
low regression network in which the last layer is a fully connected
layer with 2N × 1 neurons, which outputs 2D coordinates of N facial
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Fig. 2. The illustration of coupled encoder and decoder network. (a) illustrates the encoder and decoder layers (fENC and fDENC), which consists of convolution (Conv), max pooling,
up-sample pooling and fully convolutional layers. (b) shows the coupling structure in which we collect the feature maps from fENC and fDENC for procedure (c). (c) shows the coupled
cascade face detection net fCLS , where the sliding window and ROI pooling are applied on the feature maps to generate the feature representations. The proposals, classified as
positive (green bounding boxes) in all three stages, are collected and non-maximum suppressed as face regions.

key points. The landmark localization is formulated as a regression
problem with Euclidean loss:

Lreg =
N∑

i=1

((
sxi − sxi

gt)/w
)2 +

((
syi − syi

gt)/h
)2 (5)

where (sx, sy) is the coordinate of detected facial points and (sxgt, sygt)
is the ground truth. The distance in x and y-axis is normalized by
window width w and height h, respectively.

4. Implementation details

In this section, we describe the architectures and training proce-
dure for the three proposed modules.

4.1. Network architectures

4.1.1. Encoder fENC and decoder fDENC
The encoder is designed based on a modification of the VGG-16

network [18]. There are 13 convolutional layers with 3 × 3 filters
corresponding to the first 13 convolutional layers in VGG-16. The
fully connected layers are replaced by fully convolutional layers,

which preserve spatial information. The fENC contains 5 max-pooling
layers in 2 × 2 size and a constant stride of 2. A 2-bit code strat-
egy introduced by [45] is applied to record the spatial information of
the maximum activation. At the corresponding unpooling layer, such
spatial information is utilized to recover each activation back to its
original location. The fDENC is in a mirrored configuration of the fENC
except replacing max pooling with unpooling layers. The decoder
outputs a 2-channel response map which is fed to a softmax classi-
fier to predict pixel-wise confidence. Batch normalization [25] and
rectified linear unit (ReLU) [44] are applied after each convolutional
layer to reduce internal shift within a mini batch.

4.1.2. Coupled face detection fCLS
Fig. 2 (b) demonstrates that the feature maps from both

encoder and decoder in the same scale are concatenated, which
occurs in three scales: 1) Conv2_2 and Deconv2_2; 2) Conv3_3 and
Deconv3_3; 3) Conv4_3 and Deconv4_3. In 1), face detection begins
with dense scanning over the feature maps. In this sale, scan-
ning by a 5 × 5 window with 1-pixel stride is equivalent to a
40 × 40 window with stride of 8 on the original image, obtaining
�(W − 40)/8� + 1) × (�(H − 40)/8� + 1) candidates. ROI pool-
ing is applied to map each window to a 256-d feature vector (128-d
for Conv4_3 and Deconv4_3 respectively). The feature vector is fed into

fREG

Slice ROI Pooling

512 x 1

D
ropout

N
 x 2

E
uclidean L

oss

fREG
fl

fg

Fig. 3. The architecture of fREG . ROI pooling is applied on the foreground channel and the last encoder’s feature layer, yielding feature vectors fl and fg . fREG utilizes the concatenation
of fl and fg to predict 2D coordinates for N landmarks.
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fully connected layers of 128 neurons followed by a softmax classi-
fier, generating confidence score for the specific window. A threshold
T1 is set to reject non-face areas. NMS is applied on highly overlapped
proposals to reduce the output windows. In the second scale, the ROI
pooling transforms regions preserved in previous stage into a 512-
d feature vector. A threshold T2 is set to filter out non-face regions
further. In the last scale, we continue to examine the preserved win-
dows. The dimension of feature vectors generated by ROI pooling is
512 and fully connected layers have 256 neurons. A threshold T3 is
set to reject false alarms. The three stage box calibration networks
introduced by [19] are removed as the spatial alignment is naturally
incorporated by the feature maps.

4.1.3. Landmark regression fREG
As shown in Fig. 3, the fREG applies fully connected layers of 512

neurons to directly regress the input to the 2D coordinates. The net-
work input is a combination of the response map M and the feature
maps given by fENC. According to detected windows, ROI pooling
transforms each region of interest into a feature vector with dimen-
sion of 512. The dropout layer with 0.5 probability is also applied. In
our task, N number of landmarks is set as 7.

4.2. Training

In our framework, we apply an alternative training procedure
for the coupled structure. First, the model of fENC and fDENC followed
by the fREG are trained end-to-end, in which the gradients could be
back-propagated without any gradient interception. Then, the cou-
pled feature maps are concatenated. ROI pooling is applied on the
feature maps to generate features for the facial region classification
and bounding box localization. In the last, fREG is fined tuned with
cropped sample images according to the windows given by fCLS. The
first step is considered the mainstream, while the second step is
based on the feature maps generated in the first one. By alternatively
optimize each part, the two objectives are optimized simultaneously.

In the first step, the convolutional parameters are initialized by
weights of VGG-16 trained on large datasets for object classification.
The rest parameters are set with Gaussian Distribution. In this step,
the data augmentation is performed, including horizontal flip, cen-
tral rotation (±10◦) and scaling (0.8–1.2), yielding 24 variations for
one image.

The second step involves a cascade of the three stages of fCLS.
We crop patches by sliding window to collect positive and nega-
tive samples to train the first stage. Patches of Intersection-of-Union
(IoU) larger than 0.6 to ground truth are labeled as positive. The
negative samples are regions of IoU less than 0.2. Additionally, we
add more negative samples by collecting around 2000 background
images, from which we randomly sample 100,000 non-face patches.
The detector of the first stage is applied to mine positive and negative
samples for the second stage. The non-face regions with confidence
score given by the detector higher than threshold T1 become nega-
tive samples. Similarly, the detectors of the first and second stages
are both used to mine the training samples for the third stage.

The face detection follows the cascaded structure in [19]. T1 in the
first stage is set to keep 98% recall on the validation set, which rejects
85% false positive windows. Threshold T2 in the second stage is set to
keep 95% recall on the validation set.

Sliding window is applied to feature maps with various sizes for
multi-scale detection, e.g.,a 5 × 5 or 10 × 10 window with 1-pixel
stride on Conv3_3 feature map is equivalent to 40 × 40 or 80 × 80
window on original image with stride of 8.

The last is a fine-tuned step for fREG where training samples are
the cropped images according to the windows given by fCLS. In this
step, fREG shares the feature maps with fENC and fDENC. In the training
stage, given image size of 224 × 224 and batch size of 64, one
iteration of fENC and fDENC takes 0.3 s, and fCLS or fREG takes 1 s.

5. Experiments

5.1. Experimental setup

For landmark localization, the training data consists of images
from training set of LFPW [43] (LFPW-train) and Helen [41] (Helen-
train). The evaluation set contains AFW [6], testing set of LFPW
(LFPW-test) and Helen (Helen-test). We follow the annotation rule in
[40] for 68 facial points to generate 7 landmarks to locate eye corners,
mouth corners and nose tip. The facial images used in our exper-
iments cover large head pose variations, expressions, variations of
background and occlusions.

For face detection, we apply a commonly used wild face dataset,
WIDER FACE [39], for training set. The testing is conducted on two
mostly deployed pubic benchmarks, FDDB [28] and AFW [6]. WIDER
FACE consists of 393,703 labeled face bounding boxes in 32,203
images. FDDB dataset contains the annotations for 5171 faces in a set
of 2845 images and AFW [6] is a 205-image dataset with 468 faces
annotated. Images of the three datasets contain cluttered backgrounds
and large variations in viewpoints and appearance.

5.2. Evaluation of face landmark localization

We first evaluate the coupled encoder–decoder network for face
landmark localization. The localization accuracy is measured by the
pixel distance between detected points and the ground truth. We
follow the evaluation metric in [2] where the pixel distance is
normalized by the inter-ocular distance. As illustrated in Fig. 4, the
performance of our model is compared with four methods including
1) SDM [5]; 2)DLIB [26,27]; 3) TCDCN [2]; 4) CoR [3]; 5) HPM [36].

The bottom row of Fig. 4 illustrates statistical curves of mean
localization errors on three datasets, Helen-test (left column),
AFW(middle column) and LFPW-test(right column). According to the
bottom row of Fig 4, the accuracy of our approach is better than the
other four methods on datasets of Helen-test and LFPW-test. Regard-
ing of AFW, our coupled encoder and decoder model is comparable
to DLIB, but still better than the other three.

The top row of Fig. 4 shows the localization errors for the seven
facial components. According to the two histograms of Helen-test
and AFW, the accuracy of our approach is comparable to DLIB with
respect to left eye’s left corner and right eye’s right corner. In the
LFPW-test set, our approach is comparable to SDM for right eye’s
right corner and DLIB for left eye’s right corner. Regarding the
rest facial components, the localization accuracy of our approach is
higher than the four methods. The localization accuracy of our cou-
pled encoder–decoder network for mouth corners and nose tip is
higher than other methods by a significant margin.

The evaluation conducted on the three benchmarks demon-
strates the superior performance of our coupled encoder–decoder
network than the state-of-the-art methods. It can be interpreted as
the fact that our model captures the more discriminative features
and the segmentation scheme is more effective than the regression-
based methods. With the powerful feature representation, a shallow
regression network in our work is applied to localize face landmarks
precisely.

5.3. Evaluation of face detection

We compare our coupled face detector with the state-of-the-art
approaches on FDDB and AFW benchmarks. For FDDB, we com-
pare our performance directly with the published methods listed in
FDDB platform [28]. Two evaluation protocols are provided by [28],
discontinuous score and continues score. Continuous score heavily
relies on annotations of training set. We do not follow the eclipse
labeling style for the faces, so we only report discontinuous score,
where detected regions of IoU larger than 0.5 to the ground truth are
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Fig. 4. The face landmark localization results on three benchmarks, Helen (left column), AFW (middle column) and LFPW (right column). The top row illustrates the localization
errors for seven facial components, left corner of left eye (le_lc), right corner of left eye (le_rc), left corner of right eye (re_lc), right corner of right eye (re_rc), mouth left corner
(m_lc), mouth right corner (m_rc) and nose tip. The bottom row shows the cumulative curves of relative mean errors, where the horizontal axis is the normalized distance with
respect to the inter-ocular distance and the vertical axis is the proportion of images in the dataset.

regarded as true positives. For AFW, we use the toolbox provided by
[29] to evaluate the detection performance.

The evaluation on FDDB and AFW is illustrated in Fig. 5. In both
datasets, our performances are favorably comparable to the state-
of-art methods. More worth to highlight, solving the same problem
as ours, both Joint Cascade [32], TSM [6] and HPM [36] are pro-
posed to jointly detect faces and localize landmarks. Our approach
achieves higher accuracy than the two methods on FDDB. While
on AFW, our detection accuracy is consistently higher than TSM
by a significant margin. Even without box calibration networks,
our structure demonstrates the better performance than the pre-
vious cascade CNN [19] on FDDB. Two main reasons may lead to
the performance boosting: 1) the features captured by the coupled

encoder–decoder are more discriminative for describing faces; 2) our
approach takes advantage of multi-task training which brings mutual
benefits among different tasks.

Fig. 6 shows that there are several faces miss detected in both
benchmarks. For face detection as a single task, in order to achieve
top performance, the detectors are designed to be able to find face
regions even in small size, low quality and heavy occlusion, as
depicted in Fig. 6. Our approach tries to jointly detect faces and
localize the landmarks, where the encoder–decoder are trained with
faces to be reasonable clear and in prosper size, without covering
such extreme cases. The miss rate indicates our future effort can
be put on exploration of dealing with the facial images in low
quality.

Fig. 5. The evaluation of face detection on datasets of FDDB (left) and AFW (right). On the FDDB dataset we compare our performance with the state-of-the-art methods including
CasecadeCNN [19], Joint Cascade [32], DDFD [30], ACF-multi-scale [46], PEP-Adapt [47], Boosted Exemplar [48], HeadHunter [29],Pico [49], Viola–Jones [33], TSM [6], and HPM
[36]; on the AFW dataset, comparison methods includes HeadHunter [29], DPM [29], SquaresChnFtrs-5 [29], Shen et al. [50], TSM [6], and three commercial applications, Face++,
face.com and Piscasa.
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Fig. 6. The examples of faces in the dataset with low resolution, where face landmark localization is challenging.

5.3.1. Robust pre-processing for face recognition
In the study [51], a Face Recognition(FR) dataset is proposed

where faces are collected with multi-sensor mobile devices in chal-
lenge conditions. The challenges for mobile based FR are variation in
illumination conditions, poor face image quality (due to various fac-
tors including noise and blurriness due to movement of hand-held
device during collection), variations in face pose and camera sen-
sor quality. Those in-the-wild conditions make face area localization
inaccurate, which causes recognition performance degrade. In this
section, we apply the fCLS module as the FR pre-processing. The detec-
tion accuracy up to 98.4% of detecting faces within 1 meters distance
to the sensor demonstrates the robustness of our approach to handle
cases in the mobile condition.

In [51], the multi-sensor (MS) face image database is collected
using a set of cell phone devices including Samsung S4 Zoom, Nokia

1020, Samsung S5 and iPhone 5S. The visible band face database
is collected indoors, outdoors, at standoff distances of 1m, 5 m
and 10 m respectively, and with different pose angles as shown in
Fig. 7.

We conducted the experiments for faces photographed in all the
three distance settings, 3459 frames are sampled under each setting.
In total, we uni-sampled 10377 frames from the videos and pro-
cessed the images using fCLS module. The number of successful and
failure cases are 8860 and 1517, respectively. The success rate is up
to 85.4% and 98.4% for 1 m setting:

(i) the numbers of failure cases are 54, 360, 1103 for distance
settings of 1m, 5 m and 10 m respectively;

(ii) most of the failure cases are people photographed in 10 m
and 5 meters; it is due to missing the faces which are in the

Fig. 7. Face examples of the multi-sensor database, which are collected using various cell phones and photographed in different distances.
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Fig. 8. Failure cases of finding the face area for FR under challenge conditions.

uneven/low illumination (Fig. 8 left) or blur (Fig. 8 right), and
tiny (photographed in long distance);

(iii) the failure cases of close faces (1m) are caused by
sampling the dark frames and camera pointing to wrong
direction where the faces are not or partially shown in the
frames.

The results of applying the fCLS module to detect the faces pho-
tographed by mobile devices demonstrate the robustness of our
approach as to be the pre-processing step for Face Recognition. In FR,
users are most likely to present their faces closed to the sensor and
fCLS finds all the visible faces in the case of short distance.

5.4. Qualitative results

Fig. 9 shows qualitative results of joint face detection and key
points localization, which are performed simultaneously under deep
neural network frameworks. Different from other landmark local-
ization methods, we are able to localize landmarks without a face
bounding box prior and generate the 7-point landmarks. In our work,
we aim to generate the semantic feature maps to boost the per-
formance of face detection and landmark localization. By carefully
defining the landmark positions on top of the feature maps, the
landmarks could have semantic meanings, i.e., the 7-point setup as
denoting the eye centers, nose tip and the mouth corners. If we

Fig. 9. Qualitative results of face detection and landmark localization.
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adopt the 68-point annotation as the other landmarks settings, some
landmarks such as along the profile may be less meaningful.

In our work, the two tasks would boost each other in generating
better features. The encoder–decoder framework is proposed to gen-
erate the feature map, which indicates semantic facial structures as
shown in Fig. 1 the heat maps. This semantic highlight is also observed
in face detection. Thus, setting up a coupled structure for face detec-
tion and landmark localization, the response map constrained from
face detection would be also beneficial for the landmarks.

6. Conclusion

In this paper, we proposed a coupled encoder–decoder neural
network to jointly detect faces and localize landmarks. The encoder–
decoder provides the discriminative feature maps for landmark
localization. Further, we observe that the feature maps is also effec-
tive for the task of face detection, which enables a unified coupled
structure as proposed in our method. The performance on both of the
two tasks are very competitive while sometimes better than some
of the state-of-the-art methods. The training of the overall frame-
work is alternative optimization. Future work will focus on how to
formulate the two tasks as a single optimization problem.
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