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ABSTRACT

In order to guarantee recoverable transaction execution, database
systems permit a transaction’s writes to be observable only at the
end of its execution. As a consequence, there is generally a delay
between the time a transaction performs a write and the time later
transactions are permitted to read it. This delayed write visibility
can significantly impact the performance of serializable database
systems by reducing concurrency among conflicting transactions.
This paper makes the observation that delayed write visibility
stems from the fact that database systems can arbitrarily abort trans-
actions at any point during their execution. Accordingly, we make
the case for database systems which only abort transactions under
a restricted set of conditions, thereby enabling a new recoverabil-
ity mechanism, early write visibility, which safely makes transac-
tions’ writes visible prior to the end of their execution. We design a
new serializable concurrency control protocol, piece-wise visibility
(PWYV), with the explicit goal of enabling early write visibility. We
evaluate PWV against state-of-the-art serializable protocols and a
highly optimized implementation of read committed, and find that
PWYV can outperform serializable protocols by an order of magni-
tude and read committed by 3X on high contention workloads.

1. INTRODUCTION

Over the past decade, concurrency control research has seen a re-
naissance due to the abundance of parallelism in multi-core servers
and datacenters. Modern serializable protocols are explicitly de-
signed to exploit this abundant parallelism [17,19,28-30,32,37,38,
44-46]. While these new protocols propose novel isolation mecha-
nisms that address the incompatibility between conventional con-
currency control protocols and massively parallel environments,
they use ideas for recoverability [12] that are decades old. Indeed,
the last widely-adopted research on recoverability, group commit
[22], was proposed in the 1980s. These conventional recoverability
mechanisms limit concurrency control protocols’ ability to extract
concurrency from a workload.

Recoverability is the property that all of a committed transac-
tion’s writes are made durable, and that none of an aborted transac-
tion’s writes are made durable or observed by committed transac-
tions [12]. In order to guarantee recoverability, most concurrency
control protocols only permit a transaction’s writes to be read when
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it commits or at least finishes executing [16,22]. These protocols
effectively delay making a transaction’s writes visible. This write
visibility delay can adversely impact strong isolation levels such as
serializability. This is because serializable isolation requires that
transactions always read the latest value of any record; any delay in
satisfying a read will delay the corresponding reading transaction.

Recoverability mechanisms employ delayed write visibility be-
cause database systems can arbitrarily abort a transaction prior to
the point that its commit record is made durable; a database system
may abort a transaction due to deadlock handling logic, failures,
optimistic validation errors, or simply because the transaction con-
sumes resources that are in short supply. Database systems’ ability
to arbitrarily abort transactions forces recoverability mechanisms
to make extremely pessimistic assumptions about when a transac-
tion’s writes are safe from being rolled back.

This paper makes the case for curtailing database systems’ abil-
ity to arbitrarily abort transactions. We show that if a database
system only aborts transactions under a restricted set of conditions,
then it can avoid pessimistic recoverability mechanisms based on
delayed write visibility. In particular, if only a subset of a transac-
tion’s statements can cause it to abort, then the transaction is guar-
anteed to commit as soon as every such abortable statement has
finished executing, even while one or more “non-abortable” state-
ments remain to be executed. This enables a new write visibility
discipline, early write visibility, which can safely make transac-
tions’ writes visible prior to the end of their execution, and, as a
consequence, can reduce the duration for which concurrent trans-
actions are disallowed from making progress due to conflicts.

This paper proposes a new deterministic concurrency control
protocol, piece-wise visibility (PWV), explicitly designed to en-
able early write visibility. PWV employs deterministic execution
to avoid arbitrarily aborting transactions. To enable early write vis-
ibility, PWV decomposes transactions into a set of sub-transactions
or pieces, such that each piece consists of one or more transac-
tion statements. PWYV then schedules pieces such that their corre-
sponding transactions execute in a serializable order. PWV makes
a piece’s writes visible as soon as its transaction commits, even if
one or more pieces of the same transaction have not yet executed.

PWYV decomposes transactions by performing a data-flow anal-
ysis on their control-flow graphs [8]. PWV’s decomposition proce-
dure has three important properties. First, it is modular; a transac-
tion is decomposed based only on the data dependencies between
its constituent statements. Second, it places no restrictions on the
number of pieces that can potentially abort, while simultaneously
preventing cascaded aborts. Third, it allows PWV to exploit intra-
transaction parallelism by executing multiple pieces belonging to
the same transaction in parallel. These three properties address lim-



itations that, to the best of our knowledge, are present in every prior
transaction decomposition proposal [36,43,48,52,54,55].

Our experimental evaluation shows that PWV’s ability to pro-
duce aggressive serializable schedules results in significant perfor-
mance gains. Under high contention workloads, PWV can outper-
form state-of-the-art serializable protocols, including transaction
chopping, by over an order of magnitude. Furthermore, we show
that PWV can even outperform a highly optimized implementation
of read committed isolation by more than 3X, while still providing
the stronger guarantee of serializable isolation.

In summary, this paper makes the following contributions:

e We identify write visibility delay as a significant impediment to
the performance of strong isolation levels due to the specifica-
tions for strong isolation. This impediment is fundamental and
cannot be avoided by designing better concurrency control pro-
tocols (Section 2).

We propose a new write visibility discipline, early write visibil-
ity, that addresses the limitations of prior write visibility disci-
plines. We show that early write visibility can enable concur-
rency control protocols that allow a transaction’s writes to be
made visible prior to the end of its execution while still guaran-
teeing serializability and preventing cascaded aborts (Section 3).

We design PWYV, a concurrency control protocol that exploits
early write visibility to obtain greater concurrency than conven-
tional serializable protocols. We prove that if transactions’ read-
and write-sets are known a priori, it is impossible for any se-
rializable concurrency control protocol which avoids cascaded
aborts to extract more concurrency from a workload than an
ideal implementation of PWV. We also discuss practical issues
related to application corner cases (Section 4).

We evaluate a multi-core optimized implementation of PWV
against state-of-the-art pessimistic locking, optimistic concur-
rency control, transaction chopping, and a weak isolation read
committed implementation. (Section 5).

2. BACKGROUND AND MOTIVATION

In order to guarantee serializable and recoverable execution of
transactions, every widely deployed concurrency control protocol
disallows a transaction’s writes from being read until at least the
end of the transaction’s execution. This write visibility delay is in-
trinsic to concurrency control protocols such as two-phase locking
and optimistic concurrency control due to their use of locks and
private writes prior to validation, respectively. Furthermore, the
requirement that database systems guarantee recoverability funda-
mentally limits them from making writes visible early, regardless
of concurrency control protocol.

2.1 Isolation

Variants of two-phase locking [18] and optimistic concurrency
control [31] are among the most widely deployed serializable iso-
lation protocols in modern database systems. In order to correctly
isolate conflicting transactions, both strict two-phase locking (2PL)
and optimistic concurrency control (OCC) restrict interleavings amo-
ng conflicting transactions. In particular, if a transaction 7% reads
T1’s write to x, then practical implementations of both 2PL and
OCC produce schedules in which 7%’s read always follows T7’s
completion. Under 2PL, transactions hold long-duration locks on
records; any locks acquired by a transaction are only released at the
end of its execution [11,23]. This locking discipline constrains the
execution of conflicting reads and writes; if transaction 75 reads
T7’s write to record x, and 77 holds a write lock on x until the time
it completes, 75’s read can only be processed after 1 completes.
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OCC similarly constrains conflicting transactions. Transactions
perform writes in a local buffer, and only copy these writes to the
active database after validation [31]. Thus, a transaction’s writes
are only made visible at the very end of the transaction. Modern
variants of OCC actually produce schedules of committed transac-
tions that are provably equivalent to those produced by 2PL [46].

Both 2PL and OCC produce schedules in which there exists a de-
lay between the time that a transaction writes a record, and the time
that later transactions can read this write. This delay can signifi-
cantly limit opportunities for concurrency under high contention.

2.2 Recoverability

Every transaction processed by a database system must either
commit or abort. If a transaction commits, then all of its writes
must be made persistent. In contrast, if a transaction aborts, its
writes cannot be made persistent. Furthermore, most widely-used
isolation levels — including Read Committed, Snapshot Isolation,
and Serializability — require that an aborted transaction’s writes
must never be observed by a committed transaction [11]. If this
is not the case, the committed transaction exhibits an aborted read
anomaly [6].

In order to prevent aborted reads, concurrency control protocols
must constrain the execution of transactions whose reads and writes
conflict. Consider a transaction 7 that writes record x. If another
transaction, 75, reads 77’s write to x, then 75 must not be allowed
to commit before 77 commits. This discipline prevents 77 from
aborting after 7% (which read 7%’s data) has already committed.
Schedules that satisty this property are called recoverable [12]. Re-
coverable scheduling mechanisms must therefore control when a
transaction’s writes are made visible to other transactions. There
exist two general write visibility disciplines:

o Committed write visibility. The database delays making a trans-
action’s writes visible until the transaction is guaranteed to com-
mit. Strict two-phase locking is one such strategy [12]. A trans-
action holds exclusive locks on a record it writes from the time it
updates the record to the time the transaction commits. Holding
exclusive locks until commit time prevents concurrent transac-
tions from reading uncommitted writes.

e Speculative write visibility. Alternatively, the database system
can allow transactions to read uncommitted writes (dirty reads),
and enforce a commit discipline on transactions that perform
dirty reads [7,12,25,27,41]. In practice, if transaction T writes
arecord and later aborts, then any transaction that read 7"’s write
also aborts.

Each of these write visibility disciplines has advantages over the
other. Speculative write visibility is susceptible to cascaded aborts
[12]. If transaction T makes uncommitted writes visible to other
transactions and later aborts, then any transaction 7" that read T"s
uncommitted writes must abort. In turn, any transaction that read
uncommitted writes by 7" must also abort, and so forth. In general,
if transaction 7" aborts, then the transitive closure of transactions
linked via dirty reads dependencies to 7" must also abort. Cascaded
aborts can severely hurt performance because the database wastes
cycles executing transactions that are later aborted.

Committed write visibility avoids cascaded aborts by disallow-
ing dirty reads; transaction 7 is never allowed to make uncommit-
ted writes visible to other transactions. On the other hand, commit-
ted write visibility can inhibit performance by forcing transactions
to wait for prior transactions’ commit records to be made durable.
This delay can lead to unacceptable performance when transac-
tions’ runtimes are much shorter than the time it takes to make



commit records durable, for instance, in main-memory database
systems which maintain durable state on disk.

As a consequence of these tradeoffs, modern database systems
employ hybrid disciplines that combine committed and specula-
tive write visibility [26, 32, 38,46]. The best known example of
such a hybrid write visibility discipline is group commit [16, 22].
As originally proposed by Gawlick and Kinkade, transactions fol-
low a locking protocol in which they hold locks for the duration of
their execution, and release locks after their execution completes
but before their commit records are made durable. Prior to re-
leasing their locks, transactions write their commit records to an
in-memory sequential log. The in-memory log is asynchronously
flushed to disk in batches. Since a transaction 7" holds its locks
until its commit record is written to the in-memory log; if trans-
action T reads T”s writes, then its commit record will be logged
after 7’s commit record. This logging discipline guarantees re-
coverability; if transaction T’ commits, then all transactions whose
commit records were logged prior to 7”’s also commit, including
those whose transactions whose writes were read by 7”.

Most modern concurrency control protocols either use a form of
committed write visibility or a variant of group commit based on
delayed write visibility. In Section 2.3, we show that even the short
delays in making writes visible in recoverability mechanisms such
as group commit — compared to, for instance, delays with disk I/O
on the critical path — can adversely impact serializable concurrency
control protocols under contended workloads.

2.3 Interaction of write visibility and isolation

Database systems allow users to assign transactions an isolation
level, which abstractly specifies the permissible set of interleavings
among conflicting transactions [6]. Isolation levels allow each indi-
vidual transaction to tradeoff consistency for performance. Strong
isolation levels, such as serializability, permit fewer interleavings
among conflicting transactions, which provides strong consistency
at the expense of concurrency. In contrast, weak isolation levels,
such as read committed, permit more interleavings among conflict-
ing transactions, allowing transactions to observe inconsistent data-
base states in order to improve performance.

One important restriction on interleavings is that serializabil-
ity requires that transactions always observe the latest committed
value of any record that they read. In contrast, read committed
allows transactions to read any previously committed values of a
record (reads can be arbitrarily stale). As a consequence, serializ-
able concurrency control protocols must carefully constrain the ex-
ecution of transactions whose reads and writes conflict, while read
committed protocols can decouple conflicting reads and writes. Con-
sider a scenario where record z is first written by transaction 7p,
and next written by transaction 77 (7o precedes 77). If a later trans-
action 75 reads x, then under serializability, T%’s read must return
the value written by 7. In contrast, read committed allows 7% to
read either of Ty or T4 ’s writes.

As Section 2.2 discussed, recoverability mechanisms based on
group commit only permit transactions’ writes to be observed at the
end of their execution. Serializability’s requirement that transac-
tions observe the latest committed values of records interacts poorly
with the delayed write visibility discipline employed by these re-
coverability mechanisms. In the above example, if T4’s write to
z is followed by additional writes to records y and z, then for re-
coverability purposes, 1% ’s write to x can only be read by 1% after
Th’s additional writes to y and z complete. In contrast, under read
committed, the database can allow 75 to read Tp’s write to x even
as T1’s writes are in progress. In order to guarantee recoverability,
read committed must also delay making 7% ’s write to x visible until

615

400 K T
350 K
300 K-
250 K
200 K
150 K
100 K

50 K

0K ! ! ! ! ! ! ! !
3 4 5 6

Hot write visibility delay

T T T T
Read Committed —4—
Locking

Throughput (txns/sec)

Figure 1: Effect of write visibility delay of hot record updates on
transaction throughput using 40 threads.

the end of its execution. However, this delay has no effect on 75
because 1> is permitted to read earlier transactions’ writes to x.

Serializability’s requirement that transactions observe the latest
committed values of records is part of its specification. Therefore,
every protocol that correctly implements this specification, that is,
every serializable concurrency control protocol, is subject to the re-
duction in concurrency due to delayed write visibility. The fact that
delayed write visibility limits concurrency cannot be circumvented
by designing better protocols or more efficient implementations.

In order to substantiate this argument, we conducted an experi-
ment to measure the interaction between write visibility delay and
isolation levels. The experiment runs a workload consisting of
transactions which perform 10 read-modify-write operations. The
database consists of 1,000,000 records. We designate one record in
the database as “hot”, and force every transaction to update this hot
record. As a consequence, every pair of transactions conflicts. The
9 remaining records updated by a transaction are chosen uniformly
at random from the remaining 999,999 records. We compare the
performance of a multi-core optimized implementation of serial-
izable locking and read committed (Section 5 provides a detailed
discussion of these algorithms and experimental setup).

In order to measure the impact of write visibility delay on each
system, we vary the point at which each transaction updates the hot
record. The earlier a transaction updates the hot record, the higher
the write visibility delay. We measure write visibility delay as the
number of updates that transactions must perform after updating
the hot record. Figure 1 shows the results of the experiment. We
plot the throughput of read committed and serializable locking as a
function of increasing write visibility delay.

Figure 1 shows that locking’s throughput decreases dramatically
as visibility delay increases. The locking algorithm acquires an ex-
clusive lock on a record prior to updating the record, and holds all
acquired locks until the end of its execution. When the hot record
update is performed at the end of each transaction (the left-most
point on the x-axis), the lock on the hot record is only held while the
transaction updates the hot record. In contrast, when the hot record
update is performed at the beginning of each transaction (the right-
most point on the x-axis), the lock on the hot record is acquired at
the beginning of each transaction, and is held while the transaction
updates every record in its write-set. Locking’s throughput drops
by nearly a factor 6 at maximum write visibility delay. In con-
trast, read committed’s throughput drops by a more modest 30%.
Increasing write visibility delay does not have as adverse an im-
pact on read committed as serializability because read committed
allows transactions to read stale values of records. The modest drop
in throughput occurs because read committed acquires write locks
on records at commit time in order to consistently order transac-
tions’ writes [6] (see Section 5). These commit time write locks
are acquired in the same order as serializable locking, but held are
held for a much shorter duration.



3. EARLY WRITE VISIBILITY

We now describe a new recoverability mechanism, early write
visibility, that addresses the limitations of delayed write visibility.
Early write visibility constrains a database system’s ability to ar-
bitrarily abort transactions. Early write visibility can be tailored
to any database system which sufficiently constrains transaction
aborts to a specific set of circumstances, such as explicit abort state-
ments and constraint violations. Examples of such systems include
deadlock-free locking systems [42] and deterministic database sys-
tems [19,44,45]. In this paper, we focus on deterministic database
systems (although the ideas can be generalized to other systems).

3.1 Deterministic execution background

Transaction aborts can broadly be classified into logic- and system-

induced aborts. Logic-induced aborts occur in order to prevent a
transaction from writing state which violates application invariants.
For example, a transaction may include an explicit abort statement
which is conditionally triggered after reading a database record, or
the transaction may be aborted if its updates cause a constraint vio-
lation. System-induced aborts are triggered by the database sys-
tem, and occur independently of transactions’ logic. Examples
of system-induced aborts include aborts due to deadlock handling
logic, failures, and validation errors in optimistic protocols.

Deterministic systems employ scheduling techniques that elimi-
nate the vast majority of system-induced aborts in conventional sys-
tems. A deterministic system processes a transaction in the follow-
ing three steps. First, any calls to non-deterministic functions, such
as a random number generator or system clock, are evaluated in or-
der to be used at execution time. Second, the transaction’s logic, its
input parameters, and all non-deterministic input are logged. Note
that all transactions are logged, regardless of whether they eventu-
ally commit or abort. Third, the transaction is processed after its
existence has been successfully (stably) logged. We next describe
how deterministic systems execute transactions during normal case
and recovery processing.

Normal case processing. Deterministic systems process transac-
tions in an order that is equivalent to the order in which they are
logged (as described above). Serializability is guaranteed by the
fact that the log is totally ordered. A class of deterministic systems,
exemplified by Calvin and Bohm [19,45], use knowledge of trans-
action conflicts to relax the total order into an equivalent partial
order. If transactions 74 and 7% conflict, such that T precedes 15
in the log, then 7% will always be executed before T%. The execu-
tion of non-conflicting transactions is not constrained.

These systems determine transactions’ conflicts using a priori
knowledge of transactions’ read- and write-sets. The read- and
write-sets are determined either via a static analysis of each transac-
tion’s logic, or via speculative execution of a subset of each transac-
tion’s logic (see below). These systems also use a priori knowledge
of read- and write-sets to implement a deadlock avoidance strategy.
For example, Calvin isolates transactions using a modified version
of logical locking [45]. The scheduler acquires transactions’ locks
by sequentially scanning the input log. For every transaction in the
log, the scheduler requests locks on every record in the transac-
tion’s read- and write-sets prior to its execution. A transaction is
only permitted to execute when all of its locks have been acquired.
This lock acquisition protocol avoids deadlocks because the set of
locks required by transactions are known a priori and can be ac-
quired in lexicographic order.

In certain applications, transactions’ read- and write-sets are de-
ducible from their input parameters, such as when all records in-
volved in a transaction are accessed by their primary keys. In other
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applications, read- and write-sets depend on database state (such as
secondary indexes). In the latter case, deterministic systems deter-
mine transactions’ read- and write-sets using speculative execution.
Speculative execution occurs as part of non-deterministic input pro-
cessing prior to logging transactions (as described in the first step
of transaction processing above). The obtained read- and write-sets
are then logged along with transactions’ other input parameters. At
execution time, deterministic systems check that the speculatively
obtained read- and write-sets are correct. This is done by adding
a logical condition as early as possible in the transaction code to
validate the speculatively generated read- and write-sets. If this
condition fails, a deterministic logical abort results.

Recovery processing. Deterministic systems execute transactions
only when they are guaranteed to be stable on the log [33]. There-
fore, each in-progress transaction during a failure is guaranteed to
be in the log. Furthermore, all transactions are logged, regardless
of whether they eventually commit or abort. At recovery time,
a deterministic system can play the log forward from the time of
the last checkpoint. As mentioned previously, the only information
contained in a log record is the transaction’s logic, its input param-
eters, and any non-deterministic input. The log is played back in
a serial-equivalent fashion using the same mechanism used during
normal case processing; there is no difference between recovery
and normal case processing. Since the non-deterministic inputs to
a transaction are also logged, each transaction is guaranteed to de-
terministically write the same record values and arrive at the same
commit decision during recovery.

3.2 A new write visibility discipline

We make the observation that the reduced scope of aborts in de-
terministic systems can be exploited to obtain a far more aggressive
write visibility discipline than those used by conventional systems.
Since deterministic systems only abort transactions due to logic-
and speculation-induced aborts, a transaction is guaranteed to com-
mit once all the operations that can cause logic- and speculation-
induced aborts have finished executing. Importantly, this “commit
point” can occur before the transaction has finished executing in its
entirety. In other words, a transaction can have several operations
pending after its commit point.

Early write visibility prescribes two write visibility rules; each
applicable to writes that precede or follow a transaction’s commit
point:

e Writes preceding the commit point. Such writes can only be
made visible once every other operation that precedes the trans-
action’s commit point has finished executing. Delaying the vis-
ibility of these writes until a transaction’s commit point ensures
that they are never read by another transaction only to be later
rolled back.

Writes following the commit point. Such writes can be made
visible immediately after their completion. A write that follows
a transaction’s commit point is guaranteed to never rollback be-
cause a transaction can never abort beyond its commit point.

The two rules above ensure that a transaction’s writes are only
made visible if it commits. Early write visibility therefore guaran-
tees that a transaction never reads dirty data, which eliminates the
possibility of a transaction reading a write that is later rolled back.

4. PIECE-WISE VISIBILITY

Although early write visibility makes a transaction’s writes vis-
ible as soon as it is guaranteed to commit, conventional concur-
rency control protocols such as 2PL and OCC cannot simply re-



place their recoverability mechanisms with early write visibility.
These protocols cannot use early write visibility as a “black box”
for two reasons. First, delayed write visibility is intrinsic to both
2PL and OCC due to their respective use of locks and validation
(Section 2.1). Second, existing concurrency control protocols use
arbitrary transaction aborts pervasively; dynamic locking aborts
transactions due to deadlocks, and OCC aborts transactions on val-
idation failures. These arbitrary aborts preclude early write vis-
ibility, which requires that transactions are only aborted under a
limited set of conditions (Section 3). While existing deterministic
concurrency control protocols do not arbitrarily abort transactions
(Section 3.1), they cannot exploit early write visibility because they
schedule each transaction’s logic as a single atomic unit [19,44,45].

This section presents piece-wise visibility, or PWV, a new de-
terministic serializable concurrency control protocol that schedules
work at the granularity of subsets of transactions’ individual reads
and writes. This fine-grained scheduling allows PWV to fully ex-
ploit early write visibility. PWV decomposes the totally ordered set
of statements that constitute a straight-line transaction into a par-
tially ordered set of statements based on the transaction’s data-flow
and commit point. PWV then schedules each decomposed transac-
tion’s constituent statements using a deterministic scheduler. Intu-
itively, PWV can produce schedules that are similar to those pro-
duced by a locking-based concurrency control protocol that is not
two-phase; that is, a protocol which releases locks on records, and
then goes on to acquire more locks on different records later on, but
nonetheless guarantees serializability.

4.1 Transaction decomposition

The input to PWV’s scheduler is a totally ordered set of decom-
posed transactions. A decomposed transaction is a partially ordered
set of the transaction’s constituent statements. This partially or-
dered set can be represented by a directed acyclic graph (DAG)
whose nodes we refer to as pieces. The edges of the DAG define
the order in which its pieces can execute.

There exist two situations under which an edge is created from
piece p1 to po. First, the input of p> depends on the output of p;
(data dependencies). Second, p2 contains an update statement, and
follows its transaction’s commit point, while p; precedes the com-
mit point (commit dependencies). Intuitively, commit dependen-
cies prevent pieces that follow a transaction’s commit point from
performing updates until the transaction is guaranteed to commit.

Figure 2 shows an example of transaction decomposition. The
transaction shows logic which is invoked when a customer attempts
to purchase a set of items from hypothetical online shopping portal.
The transaction first tries to decrement the count of each requested
item (lines 1-8). The transaction aborts if any of the item’s counts
is zero (lines 4-5). The transaction then updates some application-
specific statistics, in this case, the total number of items sold (lines
9-10). Finally, the transaction updates the outstanding amount due
from the customer (lines 11-12).

The transaction’s decomposition is shown below the straight-line
code (in Figure 2). Edges corresponding to data dependencies are
represented by solid arrows. Edges corresponding to commit de-
pendencies are represented by dashed arrows. The transaction can
safely commit after the count of every item requested by the cus-
tomer is successfully decremented. Each item count decrement is
represented by a piece P;. Piece S updates the total number of
items sold, and only depends on the number of items the customer
purchases. Importantly, the write in piece S does not depend on the
output of any other piece. However, because it follows the trans-
action’s commit point, .S has a commit dependency on each P;. In
contrast, piece C, which updates the customer’s outstanding bill,
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1 price=20

2 for p_id in p_id_list:

3 prod = DB.write_ref(p_id, “products”)

4 if prod.count == 0:

5 ABORT()

6 else: ’
7 prod.count -= 1

8 price += prod.price

9 stats = DB.write_ref(“statistics”) |

10 stats.num_purchases += p_id_list.size() .
11 cust = DB.write_ref(c_id, “customer”)

12 cust.bill += price ‘

Figure 2: A straight-line transaction decomposed into a partially
ordered set of pieces. Solid edges represent data dependencies.
Dashed edges represent commit dependencies.

depends on the output of every piece P; (note that C' also has a
commit dependency on each P;). In particular, C’s write depends
on the sum of the price of each item. An item’s price is only ob-
tained after the execution of the corresponding piece P;. Pieces
that are not ordered via an edge or path in the graph can be exe-
cuted concurrently. In particular, each item update piece P; does
not depend on any other item update piece.

In our current implementation, transactions are decomposed by
hand. However, PWV’s decomposition procedure can be made
fully automatic, and thus would not require any developer effort.
In its full generality, the algorithm for automatically decomposing
transactions is beyond the scope of this paper, but we describe a
simplified algorithm that creates a piece for each transaction state-
ment: First create one piece per unique record that is read or written
by the transaction. Data dependencies between pieces can be cre-
ated using the following three steps. First, construct a transaction’s
statement-level control flow graph (where each statement corre-
sponds to a single piece). Second, perform a reaching-definitions
analysis on the control flow graph [8]. Third, for every definition
that reaches a particular statement, construct an edge to the piece
from the piece that creates the definition. For commit dependen-
cies, create an edge to a writing piece that follows a transaction’s
commit point from every abortable piece.

PWV’s decomposition algorithm is modular; a particular trans-
action’s decomposition does not depend on any other transaction.
As a consequence, transactions can be decomposed on clients or
by admission control prior to being submitted to PWV. For the re-
mainder of this section, we assume that PWV takes transactions’
decomposed pieces as input.

4.2 Rendezvous points

PWYV must execute the pieces of a decomposed transaction in
an order that is consistent with the DAG constructed via the anal-
ysis of a transaction’s data and commit dependencies. PWV co-
ordinates the execution of pieces whose execution must be ordered
using rendezvous points, a mechanism for synchronizing a partially
ordered set of transaction statements originally proposed by Pandis



et al. in their work on data oriented transactions [40]. In addition to
using rendezvous points to coordinate the execution of dependent
pieces, PWYV re-purposes rendezvous points (RVPs) to implement
a lightweight transaction commit protocol [12].

Coordinating dependent pieces. PWYV associates a single ren-
dezvous point (RVP) with every piece that has at least one depen-
dency. For instance, in the decomposed transaction described in
Figure 2, PWYV associates a RVP with the customer update piece
C, since it depends on each product update piece P;. Furthermore,
two or more pieces can share a single RVP if they share the same
set of parent pieces. In Figure 2, both C' and S have the same set
of parent pieces; P, ..., P,. C and S can therefore share a RVP.

A RVP is used to determine when all of a dependent piece’s par-
ents have finished executing. For this purpose, a RVP uses a counter
whose value is initialized to the number of parent pieces of a partic-
ular dependent piece. Each parent piece contains a reference to this
RVP, and decrements the RVP’s counter when it completes execut-
ing. When the value of the counter reaches zero, the downstream
pieces associated with the RVP are ready to execute. In Figure 2’s
decomposed transaction example, the RVP counter associated with
C and S is initialized to n 4 1 (corresponding to its parent pieces
pieces P, ..., Pn).

Committing transactions. PWYV associates a single RVP with ev-
ery abortable piece in a transaction. We refer to this RVP as the
transaction’s commit RVP. The commit RVP’s counter is initialized
to the number of abortable pieces. When an abortable piece finishes
its execution and determines that it can commit, it decrements the
value of the counter. However, if a piece must abort, it atomically
sets the value of the counter to -1. The final value of the counter is
either O or negative. If the value is 0, the transaction can commit.
If the counter’s value is negative, the transaction must abort.

4.3 Piece ordering constraints

In order to guarantee serializable and recoverable execution, PWV
must appropriately order pieces corresponding to different trans-
actions. PWV must deal with write-read, write-write, and read-
write conflicts between pieces. Among these classes of conflicts,
only write-read and write-write conflicts can impact recoverability.
Read-write conflicts cannot impact recoverability because the abort
of a reader has no impact on a later writer.

If transaction 77 is serialized before 7%, and one or more pairs
of their constituent pieces conflict, then PWV imposes constraints
on the order in which 73 and 7%’s pieces can execute. Assume that
pieces P and P» conflict (where P, and P> correspond to 7 and
T>, respectively). PWV orders the execution of ; and P based on
Constraints 1 and 2 below. Constraint 1 captures ordering due to
write-read and write-write conflicts, and is divided into two cases
depending on whether the preceding writer can abort. Constraint
2 captures ordering due to read-write conflicts.

Constraint 1. There exists a write-read or write-write conflict
between P; and Ps.

a) P can abort because it precedes 7' ’s commit point. In this
case, all of T1’s abortable pieces (including P;) must execute
before Ps.

b) P, cannot abort because it follows 73’s commit point. In
this case, P1 must execute before P».

Constraint 2. There exists a read-write conflict between P; and
Ps. In this case, P; must execute before Ps.

The constraints above ensure that PWV produces only serializ-
able and recoverable schedules. For serializability, PWV ensures
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that if 71 is serialized before 7%, then P; is always executed be-
fore P». For recoverability, PWV ensures that transactions never
observe dirty reads using Constraint 1a.

4.4 Executing pieces

This section describes a multi-core optimized implementation of
PWYV which respects the ordering constraints from Section 4.3.

4.4.1 System model and assumptions

PWYV divides the records in the database across a set of mutu-
ally exclusive partitions. Each partition processes pieces that read
and write records in its partition. PWV can guarantee that a piece
always writes records in a single partition by assigning each read
or update statement its own piece. The techniques described in this
section assume that PWV is deployed on a single multi-core server,
such that a single CPU core is assigned a partition of the database.

Intuitively, PWV imposes two total orders; first, a total order
on each transaction’s pieces, second, a total order on transactions
themselves. PWYV processes transactions in batches, ordered as fol-
lows: Each transaction’s pieces are ordered according to a topologi-
cal sort of the decomposed transaction’s DAG (Section 4.1). Pieces
from different transactions are ordered according to transaction or-
der in the input log; if transaction 7% precedes transaction 75 in the
log, then all pieces of 11 precede all pieces of T5.

Given a batch of totally ordered pieces (as described above), each
core only processes pieces that read or write records on its parti-
tion. In certain cases, it may be impossible to deduce in advance
which partition must execute a piece. Such an ambiguous piece is
replicated and processed by every partition. Upon ascertaining the
correct partition at runtime, irrelevant replicas immediately commit
without executing any logic, while the relevant piece is executed as
usual (as Section 4.4.2 will describe).

4.4.2  Partition local concurrency control

PWYV must ensure that it executes pieces such that the constraints
in Section 4.3 are satisfied. PWV ensures that the serialization or-
der of transactions in a particular batch is exactly the same as the
total order in which the transactions are received as input.

When a partition receives a batch of pieces, it first constructs a
dependency graph whose edges represent conflicts among pieces
within the partition. PWV constructs this dependency graph in its
entirety (for a particular batch), before it executes the first piece
in the batch. This partition-local dependency graph captures read-
write, write-read, and write-write conflicts among pieces. PWV’s
dependency graphs are similar to those used in prior determinis-
tic concurrency control algorithms [19, 20, 49]. These prior al-
gorithms use dependency graphs in a shared-everything context,
while PWV’s dependency graphs are partition-local.

In order to construct a batch’s dependency graph, PWV needs to
determine piece-wise conflicts. This either requires determination
of read- and write-sets as is done in other deterministic systems
[19,20, 45], or alternatively, a piece can conservatively request to
access to arbitrary ranges of records, such as a partition or an entire
table (Section 4.5.2 discusses this issue in detail).

A piece can be in one of three states, Unexecuted, Executed,
and Completed. Non-abortable pieces can either be in state Unex-
ecuted or Completed. After executing, abortable pieces first tran-
sition to Executed, and eventually transition to Completed after
their corresponding transactions’ commit decisions are determined.
All pieces are initially Unexecuted.

Once a partition core constructs a batch’s dependency graph,
it progresses through the total order of pieces generated in Sec-
tion 4.4.1 and performs three checks to see if it can immediately



execute that piece. The first check ensures that a piece P is cor-
rectly ordered with respect to pieces from other transactions. The
second and third checks ensure that P is correctly ordered with
respect to pieces in its own transaction.

e First, for every piece P’ in the partition-local dependency graph
which P depends on, the partition core checks whether P’ is
Completed. This step ensures that conflicting pieces execute
according to the pre-determined total order of transactions.

e Second, the partition core checks that P’s RVP counter is zero.
This step ensures that P’s data dependencies have been satisfied.

e Third, if P is not abortable then the partition core checks whether
P’s corresponding transaction has obtained a commit decision
(by checking the corresponding commit RVP). This step ensures
that non-abortable pieces only execute if their corresponding
transactions commit. This check always holds if P is abortable.

If all three of the above checks hold, there exist two cases de-
pending on whether P is abortable. If P is abortable, then it is
executed. If P is non-abortable and the third check determines that
P’s transaction committed, then P is executed. However, if the
third check determines that P’s transaction aborted, then P can be
ignored and its state directly transitioned to Completed. If any of
the above three checks does not hold, P is added to a list of pending
pieces, and the core moves on to the next piece in the batch.'

On executing piece P, its core decrements the count on each of
P’s children’s RVPs (Section 4.2). If P is non-abortable, its state
transitions to Completed. If P is abortable and can commit, the
partition core decrements the corresponding commit RVP’s counter
and P’s state transitions to Executed. If P’s commit decrements
the RVP’s counter to zero, then it means P’s transaction has com-
mitted, and the partition core proceeds to transition every abortable
piece’s state to Completed (including P’s). If P is the first piece to
abort, the partition core undoes the writes of the pieces that com-
mitted before P (even if the pieces reside on remote partitions),
and mark their state as well as P’s as Completed. Note that remote
undo is safe because the abortable pieces are still in state Executed,
and as a consequence, later conflicting pieces from different trans-
actions are blocked because of the first check above.

The above partition-local mechanisms guarantee that the order-
ing constraints of Section 4.3 hold. The first step, which checks
whether conflicting pieces have finished executing, ensures Con-
straint 1b and Constraint 2 hold, while the first step and the com-
mit protocol above together ensure that Constraint 1a holds.

PWV’s constraints enable implementations that exploit both intra-
transaction parallelism and early write visibility. Our implementa-
tion uses the a priori total ordering of transactions and their pieces
to correctly order pieces across different transactions. Prior decom-
position algorithms cannot exploit intra-transaction parallelism. This
limitation is fundamental because these algorithms cannot make
any a priori ordering guarantees across multiple pieces correspond-
ing to a pair of conflicting transactions [36,43,48,52,55].

4.5 Discussion
4.5.1 Deferred constraint checks

Database constraints on records are usually checked as soon as
update statements that could invalidate the constraints are evalu-
ated. However, certain types of constraints (such as those involving
the values of two or more records) are rendered temporarily incon-
sistent if evaluated after a single update statement. Transactions

U As an optimization, our implementation performs the third check even
if P is abortable. If its transaction aborted, P does not need to execute,
regardless of whether or not it is abortable, and can directly transition to
Completed, even if the first two checks do not hold.
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typically fix these constraints with later updates. Database systems
therefore allow certain constraint checks to be deferred to the end
of transactions’ execution [3].

If applications use deferred integrity constraints, then PWV must
place the commit point of any transaction that triggers the deferred
constraint check at the end of its execution. Importantly, this does
not mean that PWV cannot be used by such applications, only that
certain transactions’ writes cannot be made visible early. Further-
more, because PWV uses a modular decomposition procedure, de-
ferred constraint checks in one transaction do not affect the commit
point of other transactions, even if they conflict. It should be noted
that practitioners have proposed that applications should avoid de-
ferred constraint checks when possible; for example, by grouping
updates together using multiple assignment operators [1,2].

4.5.2 Comparison to prior deterministic systems

As explained in Section 3.1, certain deterministic systems use
speculative execution to determine a transaction’s read- and write-
sets prior to its execution. These systems use read- and write-set
knowledge to relax the pre-determined total order on transactions
into a partial order [19,45].

PWYV similarly needs to determine conflict information prior to
transaction execution. In particular, PWV leverages piece-wise
conflict information in order to execute pieces out of order on each
partition (Section 4.4.2). However, PWV’s early write visibility
discipline enables an alternative mechanism to the speculative exe-
cution required by prior deterministic systems.

If their read- and write-sets are unknown, pieces can conserva-
tively specify ranges of records that they may need to access. These
ranges can be arbitrarily imprecise; for instance, a piece may re-
quest exclusive access to an entire table even though it only updates
a handful of records in the table. While conservatively requesting
coarse-grained access to a range of records can limit concurrency
in conventional serializable protocols [42,46], PWV’s piece-wise
execution reduces the duration for which conflicting transactions
are blocked, and thus substantially ameliorates any performance
penalty associated with coarse-grained requests for record access.

Even when read- and write-sets are known in advance, we have
found that coarse-grained conflict specification can improve the
performance of PWV — especially under lower contention work-
loads. Coarse-grained conflict information allows PWV to tradeoff
logical concurrency between conflicting pieces for reduced concur-
rency control overhead, in the spirit of hierarchical locking [23].
‘We explore this tradeoff in our experimental evaluation (Section 5.3).

4.6 Proof of optimality

This section proves that if transactions’ read- and write-sets can
be deduced a priori, then PWV’s piece ordering constraints are
necessary and sufficient to guarantee serializability (SR) and avoid
cascaded aborts (ACA) in the absence of failures. We term these
two properties together as SR ACA. Our proof pertains to transac-
tion histories permitted by PWV’s piece ordering constraints (Sec-
tion 4.3), not our specific implementation of these constraints (Sec-
tion 4.4). The implication of this proof is that, when transactions’
read- and write-sets are known a priori, it is impossible for an SR
ACA protocol to extract more concurrency from a workload than
an ideal implementation of PWV.

Our proof asserts that, under the assumptions above, PWV per-
mits all valid serializable transaction histories (unlike, for instance,
two-phase locking, which cannot permit certain valid serializable
histories [12, 18]). Section 4.3 showed that PWV’s constraints on
pieces are sufficient to guarantee serializability. We prove that these



constraints are also necessary if transactions’ read- and write-sets
are known a priori.

We define a transaction’s constituent read, write, and commit/abort

statements as its operations. We denote read, write, and commit
operations of transaction T; as r;[z], w;[z], and c¢;, respectively
(where reads and writes occur on record x). We denote operation
01 preceding operation o2 as 01 < 02.

If a transactions’ read- and write-sets are known a priori, PWV
can assign each read and write operation to a single piece. The
proof sketch below therefore describes constraints on individual
read and write operations, not pieces. Given two conflicting trans-
actions, 75 and T such that T is serialized before T;, PWV im-
poses the following constraints on the order in which their opera-
tions can execute:

e Case la. If w;[z] conflicts with o;[z], and w;[z] < ¢; (where
o0; is either r; or w;), then PWV ensures that ¢; < o;[z]. No
SR ACA concurrency control protocol can produce the order
w;lz] < oj[x] < ¢; because T; may abort, and o;[x] would
have observed an uncommitted write (w;[x]) which could have
rolled back prior to ¢;. Furthermore, no serializable concurrency
control protocol can produce o;[zx] < w;[z] because doing so
would violate the assumption that 7; is serialized before 7.

Case 1b. If w;[z] conflicts with o;[z], and ¢; < w;[x], then
PWV ensures that w;[z] < oj[z]. No SR ACA concurrency
control protocol can produce o;[x] < w;[z] because doing so
would violate the assumption that 7 is serialized before 7.

Case 2. If r;[z] conflicts with w;[z], then PWV ensures that
ri[z] < w;lz]. No SR ACA concurrency control protocol can
produce w;[x] < r;[z] because it violates the assumption that
T; is serialized before T5.

4.7 Corner cases

PWYV classifies each of a transaction’s pieces as abortable based
on the transaction’s logic (specifically, the location of explicit abort
statements) and constraints on database values, such as integrity
constraints. Above, we classified all other types of aborts as system-
induced, which are eliminated by deterministic database systems.
However, there exist corner cases that fall in between these two cat-
egories, in which even deterministic systems would abort the trans-
action, but nonetheless are not caused by abort statements in trans-
action logic or integrity constraints. Two examples of such corner
cases are integer overflows and infinite loops. One naive corner
case handling mechanism is to consider all pieces that modify inte-
gers or involve loops (and so on for all corner cases) as abortable.

Obviously, this naive solution would lead to a large number of
pieces being marked as abortable, precluding PWV’s ability to make
many writes visible early. A better approach is to engineer a solu-
tion to deal with each corner case individually. For loops, it is
possible to use static analysis to detect loops that will definitely
terminate. Only for the case where the static analysis fails to guar-
antee that a loop will terminate do the pieces corresponding to the
loop’s logic need to be marked as abortable. For integer overflows,
the system could simply allow integers to overflow (as is the default
setting in many modern database systems). Alternatively, the size
of the integer (or entire column) can be dynamically increased in
order to accommodate the overflow.

Although dealing with corner cases on a case-by-case basis us-
ing software engineering techniques, such as static analysis and
exception handling, is likely the optimal solution, our current im-
plementation uses a more general approach. Our implementation
optimizes for the common case where corner cases do not occur,

620

and suffers from reduced performance when they do. In particu-
lar, upon encountering a corner case, such as an integer overflow
or infinite loop, our implementation treats this as a full system fail-
ure, trashes the current database state, reloads state from the most
recent checkpoint, expunges the problematic transaction from the
log, and replays the log forward from the checkpoint without the
problematic transaction. Clearly, optimizations of this algorithm
are possible. For example, instead of trashing the entire database
state and replaying the entire log from a checkpoint, one could use
piece-wise conflict information to selectively re-execute only those
pieces which may have read the aborted transaction’s writes.

By selectively aborting problematic transactions, the above dy-
namic error handling mechanism prevents these expunged transac-
tions from affecting stable database state. However, it does not pre-
vent the writes performed by such aborted transactions from being
visible to the application running over the database (for instance,
via simple read queries). Our current implementation delays re-
turning results of any data to the application until any transactions
that contributed to these results have finished execution. We im-
plemented this via an epoch-based external visibility mechanism,
similar to the mechanism used in Silo [46], where read results are
returned to the user at the end of each batch of transactions.

S. EVALUATION

This section evaluates PWV against three serializable protocols
— locking, transaction chopping, and optimistic concurrency con-
trol (OCC) — and a read committed protocol.

Locking. This implementation is based on two-phase locking. The
implementation acquires locks in lexicographic to eliminate dead-
locks [42]. To avoid the overhead of maintaining a separate lock
table, logical locks are implemented as MCS reader-writer latches
co-located with records [35,47].

Transaction chopping. This implementation is based on Wang et
al.’s IC3 protocol [48]. IC3 uses a serializable protocol to schedule
transactions’ constituent pieces, and dynamically enforces causal
dependencies across conflicting pieces. Our chopping implementa-
tion uses locking to guarantee serializable execution of pieces.

OCC. This implementation is based on Silo [46]. OCC validates
transactions using decentralized timestamps, and avoids writing
shared-memory for records that are only read.

Read committed. We implemented read committed isolation (RC)
by modifying the OCC algorithm above. Our RC implementa-
tion provides PL-2 isolation [5], which imposes two constraints on
transactions’ reads and writes. First, transactions can only read
committed values of records. Second, if two transactions perform
conflicting writes, then their writes must be consistently ordered [5,
6]. Our RC implementation buffers transactions’ writes until com-
mit time. A writer will therefore only interact with a reader at com-
mit time. RC uses a record latch — Silo’s per-record TID word [46]
— to ensure that reads observe only committed values of records.
A writer acquires this latch while copying a record’s updated value
from its local buffer. Readers spin on the latch until it is free. RC
deals with write-write conflicts using MCS latches, which, as in
our locking implementation, are co-located with records [34,47].
At commit time, a transaction acquires its write latches in lexi-
cographic order, and then copies updated records’ values from its
local write buffers. Our RC implementation provides PL-2 isola-
tion, which provides more concurrency than the PL-2L isolation
provided by most real-world implementations of RC [5,11,23,32].



We conduct our experimental evaluation on a single 40-core ma-
chine, consisting of four 10-core Intel E7-8850 processors and 128-
GB of memory. Our operating system is Linux 3.19.0. All experi-
ments are performed in main-memory, so secondary storage is not
utilized for our experiments. Every implementation explicitly pins
long running threads to CPU cores.

5.1 Effect of contention

In this experiment, we use the Yahoo! Cloud Serving Bench-
mark to understand PWV’s basic performance characteristics [14].
The database consists of a single table of 1,000,000 records. Each
record is 1,000 bytes in size. The workload in this section consists
of a single type of transaction; an update transaction that performs
20 read-modify-write (RMW) operations. The records updated by
each transaction are chosen from a zipfian distribution. We vary
contention by varying the zipfian parameter, theta [24]. PWV’s
batch size is set to 10,000 transactions. We partition data using a
random hash function, as a consequence most PWV transactions
span more than 10 partitions.

The experiments in this section assume that transactions do not
contain any abort statements, that is, they are guaranteed to commit
before they begin executing. As a consequence, in PWYV, there is
no delay from the time that an individual update is performed, and
the time it is made visible to other transactions. We perform three
sets of experiments, one under low contention, one under high con-
tention, and one under varying contention (Figure 3). Transaction
chopping does not provide any benefit to our locking implementa-
tion in this experiment because it decomposes transactions based
on table-level accesses. We thus omit transaction chopping from
this set of experiments.

Figure 3a shows the results of the low contention experiment. We
measure the throughput of each implementation while varying the
number of available CPU cores. The zipfian parameter, theta’, is
set to 0. Figure 3a indicates that each system scales similarly under
low contention because conflicts among transactions are rare.

Figure 3b shows the results of the same experiment under high
contention. In this case, the records updated by each transaction
are chosen from a zipfian distribution with theta set to 0.9. Locking
and OCC’s throughput drops significantly as compared to the low
contention experiment. This is because in the high contention ex-
periment, the likelihood that a pair of transactions conflicts is much
higher. Figure 3b also shows that RC’s throughput significantly
decreases under contention. Although RC does not impose any or-
der among conflicting reads and writes, writes across transactions
must still be consistently ordered. Accordingly, our RC implemen-
tation acquires write locks on records at commit time, before trans-
actions copy updated values from their buffers into the database
(Section 5). The decrease in RC’s throughput under high con-
tention occurs due to transactions acquiring the same write locks
at commit time. Importantly, these locks are acquired at commit
time, and held for much shorter duration than locks acquired by se-
rializable locking. This explains why RC can attain a much higher
peak throughput than locking under high contention. It should be
noted that since transactions perform only updates, locking-based
PL-2L implementations which hold long-duration write locks on
records would perform the same as serializable locking.

Finally, we find that PWV’s throughput trend is completely dif-
ferent from the other concurrency control algorithms. The locking
and OCC lines remain nearly flat, while RC peaks at 12 cores and
plateaus thereafter. In contrast, PWV’s throughput increases with
core count without plateauing. Since transactions contain no abort

Theta can take values between 0 and 1. Larger values of theta correspond
to higher contention.
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Figure 3: Effect of contention on throughput.

statements, PWV can make an update visible as soon as it com-
pletes, without waiting for the corresponding transaction to finish
executing in its entirety. This decoupling of a single transaction’s
constituent writes is the reason that contention does not adversely
affect PWV’s throughput. At 40 cores, PWV outperforms OCC,
Locking, and RC by 15x, 7x, and 3x, respectively.

To better understand the behavior of each algorithm, we mea-
sured each algorithm’s throughput while varying contention. Fig-
ure 3c shows the results of the experiment (contention increases
with increasing theta). Locking and OCC’s throughputs decrease
at medium-low levels of contention (theta range of 0.3 to 0.6). RC
and PWV’s throughput remain very similar from low to medium
contention. RC’s throughput decreases when theta increases from
0.7 to 0.8 (medium to medium-high contention). PWV’s through-
put remains nearly constant despite variations in contention.

These experiments show that PWYV is highly robust to contention
in the ideal scenario that transactions never experience logic-induced
aborts. Under high contention, PWV can outperform conventional
serializable protocols by more than order-of-magnitude. PWV even
outperforms our highly-optimized non-serializable read committed
implementation, indicating that PWV can provide applications that
fit this ideal with fast serializable isolation.

5.2 Effect of commit point

In this experiment, we limit PWV’s ability to make individual
writes visible as soon as they complete. We augment transactions’
logic with explicit abort statements. By varying the position of
transactions’ abort statements with respect to its update statements,
we can control which writes can be made visible immediately.

We term the point at which a transaction contains an abort state-
ment its commit position. The value of a transaction’s commit posi-



PWV —¥— RC —4—  Locking OCC
10M (a) Low contention (theta = 0)

o I I I I I I I I I
@
LO08ME—
S TN ARk — KK
E06M[-
g
204M|-
g
2 02M|-
F ooM Y I T T IR SR S B

0 2 4 6 8 10 12 14 16 18 20

Commit position
(b) High contention (theta = 0.9)

< 1.0M — 71 T 1 1 T
@
2 08M|-
c
£ 06M
=1
204M
=] - e e e - - - - e
5 oo H—F+H—+—+—"F—+—"F—+—+
< n n n n n n n n n
[ 00 M i i i i i i i i i

0 2 4 6 8 10 12 14 16 18 20

Commit position

Figure 4: Effect of commit point on throughput.

tion corresponds to the number of write operations that precede it.
We measure the effect of changing a transaction’s commit position
under low and high contention. As in Section 5.1, we use trans-
actions that perform 20 read-modify-writes. The parameters of the
low and high contention experiments are the same as Section 5.1.

Figure 4a shows the result of the low contention experiment.
Locking, OCC, and RC’s throughputs do not change while vary-
ing a transaction’s commit position. The fact that a transaction
contains an explicit abort statement has no effect on these proto-
cols. PWV’s throughput also remains nearly constant while vary-
ing transactions’ commit position. However, small variations occur
because each core needs to perform slightly more work to execute
transactions; PWV must execute the RVP-based commit protocol
(Section 4.2), and writing pieces that follow a transaction’s commit
point must wait for the commit protocol to complete.

Figure 4b shows the result of the high contention experiment. As
before, locking, OCC, and RC’s throughputs do not change with
commit position. In contrast, PWV’s throughput decreases sig-
nificantly with increasing commit position. This is because PWV
cannot make a transaction’s writes visible until its commit posi-
tion. Under high contention, this delayed visibility hurts through-
put. Unlike the other algorithms, PWV employs intra-transaction
parallelism by executing a single transaction’s updates in parallel
on multiple cores. Intra-transaction parallelism minimizes the exe-
cution time of an individual transaction, which reduces write visi-
bility delay. Thus, PWV’s throughput remains significantly higher
than locking and OCC'’s, even when every algorithm makes writes
visible at the end of each transaction (the right-most point of Fig-
ure 4b).

5.3 Reducing concurrency control overhead

‘We now examine the performance implications of PWV’s coarse-
grained conflict isolation mechanisms, whereby transactions can
request access to a set of keys that is a guaranteed to be a super-
set of the keys they actually access. We show that coarse-grained
isolation can significantly improve PWV’s performance under low
contention, while preserving its advantages under high contention.

We evaluate the throughput of each system under a workload
consisting of an equal mix of TPC-C NewOrder and Payment trans-
actions [4]. We use two versions of PWYV for this benchmark: stan-
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dard PWYV, and PWV-coarse. In order to access the District, Cus-
tomer, NewOrder, OrderLine, Order, and History tables, both PWV
and PWV-coarse specify read and write requests at the granularity
of (warehouse-id, district-id) foreign-key pairs. We partition these
tables by (warehouse-id, district-id) pairs. Pieces which request ac-
cess to a table via the same (warehouse-id, district-id) foreign-key
pair are always processed by the same partition, but records with
the same (warehouse-id, district-id) foreign-key from different ta-
bles, say Customer and NewOrder, can reside on different parti-
tions. PWV and PWV-coarse differ in their conflict specification
mechanisms for Stock records. PWYV isolates pieces at the gran-
ularity of Stock record primary keys, while PWV-coarse isolates
conflicting accesses to the Stock table at the granularity of ware-
houses. In PWV-coarse, each piece effectively requests exclusive
access to the entire set of stock records within a single warehouse.
Thus, if two pieces update stock records within the same ware-
house, then PWV-coarse determines that they conflict, even if their
read- and write-sets do not overlap.

We also measure the impact of coarse-grained isolation on con-
ventional recoverability mechanisms by implementing a version of
coarse-grained locking. Like PWV-coarse, coarse-grained locking
protects all the stock records within a warehouse with a single lock.
Furthermore, we include two versions of our implementation of
IC3’s transaction chopping protocol [48]. A standard version of
IC3, which isolates pieces at the granularity of reads and writes,
and a version which exploits commutativity. We refer to these al-
gorithms as chopping and chopping-comm, respectively. Note that
PWYV does not make any commutativity assumptions.

We first show the results of a low contention experiment in which
we simultaneously vary the number of database cores and ware-
houses (the number of warehouses is equal to number of cores).
The non-PWV algorithms affinitize a core to a particular ware-
house; requests which originate at a particular warehouse are al-
ways processed by the same core. This experiment therefore repre-
sents the best case scenario for these systems; locality is maximized
and conflicts are minimized because transactions on a particular
origin warehouse are always processed by the same core [42,46].

Figure 5a shows the results of the experiment. Every algorithm’s
throughput scales with increasing core count. However, there ex-
ist significant differences in absolute throughput achieved by each
algorithm. First, both chopping and chopping-comm are outper-
formed by locking because of the extra overhead they impose on
tracking dependencies between pieces at runtime. Chopping-comm
outperforms chopping despite the lack of conflicts because it main-
tains less chopping-related meta-data corresponding to updates by
commuting pieces. Locking outperforms locking-coarse because
locking-coarse induces unnecessary conflicts. Since approximately
10% of NewOrder transactions update stock records from remote
warehouses, these transactions will block due to spurious stock up-
date conflicts. This reduction in concurrency outweighs any poten-
tial benefit in reduced concurrency control overhead.

In contrast, the opposite effect is observed for PW V-coarse, where
the reduced overhead greatly outweighs the reduction in concur-
rency. PWV-coarse pipelines the execution of transactions to min-
imize the impact of coarse-grained isolation on blocking. If two
transactions conflict, PWV-coarse only imposes an order between
the transactions’ conflicting pieces, not entire transactions.

Figure 5b shows the result of a high contention experiment in
which we fix the number of warehouses to 1, and vary the num-
ber of database cores. In non-PWYV algorithms, the entire data-
base is shared across all cores of the system. Due to increasing
contention, OCC, locking, and locking-coarse’s throughput remain
mostly stagnant with increasing core count. Surprisingly, chopping
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Figure 5: TPC-C NewOrder and Payment throughput.

is unable to outperform any of these systems. There are two rea-
sons for this. First, if two pieces corresponding to a pair of trans-
actions conflict, then later non-conflicting pieces corresponding to
the same pair of transactions are constrained [48]. Second, dy-
namically tracking dependencies across pieces imposes overhead
at runtime, which worsens under increased contention.

In contrast, PWV and PWV-coarse are able to outperform both
RC and chopping-comm, despite the fact that they provide seri-
alizable isolation and make no assumptions about commutativity
of pieces. PWV and PW V-coarse outperform chopping-comm be-
cause they impose no constraints on the execution of non-conflicting
pieces, while chopping-comm must constrain non-conflicting pieces
(although these constraints are minimized due to commutativity).
The difference between RC and PWV is smaller than prior exper-
iments because RC must acquire fewer commit time write locks
and consequently holds write locks on the most contended records
(Warehouse and District records) for short durations.

PWV-coarse | Locking | OCC RC | Chopping-comm
40 warehouses 2ms 8.2ms 3.4ms | 4.5ms 42ms
1 warehouse 7.3ms 73ms 534ms | 10ms 136ms

Figure 6: 95" %ile latency for batches of 5000 NewOrder and
Payment transactions under maximum throughput (40 cores).

Finally, Figure 6 shows the 95" percentile latency of processing
batches of 5,000 TPC-C transactions. Figure 6 shows that PWV-
coarse’s multi-core scalability does not come at the expense of la-
tency; PWV-coarse’s 95" percentile latency latency is lower than
that of every other protocol under both high and low contention.

6. RELATED WORK

Transaction decomposition. Transaction chopping is the most
well-known mechanism for serializable transaction decomposition
[43], but has two important limitations relative to PWV; it permits
only a single sub-transaction to abort, and only permits a pair of de-
composed transactions to conflict on a single sub-transaction. As
a consequence of these two limitations, chopping produces coarse-
grained decomposed transaction. Indeed, recent systems based on

623

transaction chopping, such as transaction chains [55] and Salt [51],
resort to the use of application semantics to reduce conflicts among
sub-transactions. In contrast, PWV places no restrictions on which
pieces of a decomposed transaction can abort and the number of
piece-wise conflicts between a pair of decomposed transactions.

Rococo dynamically fixes serializability violations among pieces
of a decomposed transaction with no outgoing data dependencies
[36]. However, pieces with outgoing data dependencies must be
scheduled using conventional concurrency control. Recent work
in optimistic systems that employ delayed write visibility proposes
addressing serializability violations by selectively re-executing a
subset of transactions’ logic [15,50]. In contrast, PWV never vio-
lates serializability at runtime; transactions’ pieces are executed in
an order that is consistent with a pre-determined total order.

IC3 [48] and Runtime Pipelining [52] address limitations in con-
ventional transaction chopping by dynamically enforcing causal
dependencies across pieces. Furthermore, both IC3 and Runtime
Pipelining deal with aborts via cascaded rollbacks or defaulting
to a rollback-safe decomposition based on conventional transac-
tion chopping. Unlike IC3 and Runtime Pipelining, PWV uses a
pre-determined total order to enforce causal dependencies across
pieces, and avoids cascaded rollbacks via early commit points.

Faleiro et al. propose a decomposition mechanism that breaks a
transaction’s logic is into two pieces, an eager and a lazy piece [20];
a transaction’s eager piece is executed as soon as the transaction
enters the database, while the lazy piece is deferred. Lazy transac-
tions are coarsely decomposed based on transaction commit points.
In contrast, PWV decomposes a transaction using both, a transac-
tion’s commit point and its data-flow. PWV can therefore decom-
pose transactions at a much finer granularity than lazy transactions.

Write visibility. Jones et al. propose a speculative write visibil-
ity discipline to avoid making new transactions wait on distributed
coordination required to commit earlier transactions [27]. OPT is
a distributed commit protocol where transactions are permitted to
read the uncommitted writes of transactions in two-phase commit’s
prepare phase [25]. Reddy et al. propose a speculative write visibil-
ity discipline in which a transaction executes against both the pre-
image and after-image of preceding uncommitted transactions [41].
This forked execution prevents cascading aborts at the cost of ex-
tra CPU and memory resources. Agrawal and El Abbadi propose
ordered shared locks [7], which permit transactions to read uncom-
mitted writes of preceding transactions. Each of these write vis-
ibility mechanisms must permit dirty reads to avoid the overhead
associated with delayed write visibility. In contrast, PWV prevents
dirty reads altogether, and instead relies on deterministic execution
to arrive at early transaction commit decisions.

Exploiting application semantics. A Saga is decomposed trans-
action that exploits application-specific semantics to avoid serializ-
able isolation and tolerate aborted reads [21]. Alonso et al. propose
a logical inverse undo operation to avoid the overhead of delayed
write visibility while simultaneously avoiding cascaded aborts [9].
Gawlick and Kinkade, and O’Neil proposed variants of the escrow
method to exploit commutative operations on contended records
[22,39]. Doppel exploits commutative operations on hot records to
replicate such records, and allow concurrent commutative updates
to each replica [37]. Bailis et al. propose an application dependent
correctness criterion I-confluence, that determines whether a co-
ordination free execution of transactions will preserve application
invariants [10]. Conway et al. propose using monotonicity analy-
sis to eliminate coordination in distributed applications [13]. Each
of these prior techniques exploits application semantics to enable



either a new recoverability or isolation mechanism, or both. In
contrast, PWV makes no assumptions about application semantics,
while still guaranteeing recoverability and serializability. PWV’s
novelty lies in its use of early write visibility and piece-wise sched-
uling of transactions to significantly reduce the duration of conflict-
induced blocking.

Transaction scheduling mechanisms. QURO reorders transaction
statements to reduce contended lock hold times [53]. DORA is
a partitioned system that exploits intra-transaction parallelism on
multi-core servers [40]. Both DORA and QURO use two-phase
locking to guarantee serializability, and hence inherit the limita-
tions of delayed write visibility. Whitney et al. [49], and Faleiro
and Abadi [19] propose using dependency graphs to schedule trans-
actions in deterministic systems. PWV uses a similar scheduling
mechanism within a partition, but at the granularity of transaction
pieces. Faleiro and Abadi’s work on deterministic multi-version
concurrency control is complimentary to PWV; PWV can use multi-
versioning to ensure that reads never block writes.

7. CONCLUSIONS

This paper identifies write visibility delay as an important in-
hibitor of database concurrency and introduces early write visibil-
ity, a recoverability mechanism that enables writes to become vis-
ible as soon as a transaction executes any statements that could
cause it to abort. To enable early write visibility, we designed
PWYV, a new concurrency control protocol that leverages database
determinism to prevent arbitrary transaction aborts, and found that
PWYV can significantly outperform modern serializable and non-
serializable concurrency control protocols.
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