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The structure of scattering amplitudes in supergravity theories continues to be of interest. Recently, the 
amplitude for 2 → 2 scattering in N = 8 supergravity was presented at three-loop order for the first 
time. The result can be written in terms of an exponentiated one-loop contribution, modulo a remainder 
function which is free of infrared singularities, but contains leading terms in the high energy Regge limit. 
We explain the origin of these terms from a well-known, unitarity-restoring exponentiation of the high-
energy gravitational S-matrix in impact-parameter space. Furthermore, we predict the existence of similar 
terms in the remainder function at all higher loop orders. Our results provide a non-trivial cross-check 
of the recent three-loop calculation, and a necessary consistency constraint for any future calculation at 
higher loops.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Scattering amplitudes in gauge and gravity theories continue to 
be intensively studied, due to a wide variety of both formal and 
phenomenological applications. Our focus in this paper is N = 8
supergravity in four spacetime dimensions, which is of interest 
for a number of reasons. Firstly, it may prove to be an ultravi-
olet finite theory of perturbative quantum gravity [1–5], and in 
any case has a special status as its amplitudes arise in the low 
energy limit from type II superstring theory [6]. Secondly, calcu-
lations in maximally supersymmetric theories can be simpler than 
in less symmetric scenarios, making such theories the ideal fron-
tier for developing new calculational techniques. Thirdly, there are 
a number of conjectures regarding the structure of amplitudes in 
maximally supersymmetric theories, which higher-order computa-
tions are able to shed light on.
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One of the simplest amplitudes in terms of external multi-
plicity is that of four-graviton scattering, results for which have 
been previously calculated at one-loop [6–9] and two-loop [10–13]
order. In the maximally supersymmetric theory, the tree-level re-
sult factors out, such that the amplitude may be written in the 
form

iM4 = iM(0)
4

(
1+

∞∑
L=1

M(L)
4

)
, (1.1)

where M(0) is the tree-level contribution, and M(L) an implic-
itly defined correction factor at L-loop order. The latter is in-
frared divergent, such that M(L) has a leading 1/εL pole in d =
4 − 2ε spacetime dimensions. Additional structure arises, how-
ever, from the fact that infrared divergences in gravity theo-
ries are known to exponentiate [11,14–19], where the logarithm 
of the soft (IR-divergent) part of the amplitude terminates at 
one-loop order, in marked contrast to (non-Abelian) gauge theo-
ries [20–29]. This motivates the following ansatz for the all-order 
amplitude:
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iM4 = iM(0)
4 exp[M(1)

4 ]F4, (1.2)

where M(1)
4 is the full one-loop correction factor, including also its 

infrared singular part, and F4 is an infrared finite remainder func-
tion, commencing at two-loop order. Indeed, results for the latter 
have been presented at two-loop order for a variety of supergrav-
ity theories in ref. [11–13], and their implications discussed further 
in refs. [19,30].

Recently, the four-graviton scattering amplitude in N = 8 su-
pergravity has been obtained at an impressive three-loop or-
der [31]. The authors compared their results with the form of 
eq. (1.2), confirming that the three-loop remainder function is in-
frared finite. This itself provided a highly non-trivial cross-check of 
their results. However, as in previous studies [13,19,30], they also 
examined the behaviour of the remainder function in the high en-
ergy Regge limit. This corresponds to highly forward high energy 
scattering, such that the centre of mass energy is much greater 
than the momentum transfer. The authors of ref. [31] noted in par-
ticular the curious property that the remainder function, although 
infrared finite, contains leading contributions in the high energy 
limit, suggesting that their structure can be explained using known 
results regarding high energy and / or soft limits. Indeed this is the 
case, as we will show in this paper.

High energy scattering in gauge and gravity theories has been 
studied for many decades. For example, generic scattering be-
haviour in the Regge limit formed a crucial ingredient in the 
S-matrix programme of strong interactions, which predated the 
discovery of QCD (see e.g. [32] for a review). Obtaining similar 
behaviour in perturbative quantum field theory has been pursued 
over many decades, with relevant work in (super-)gravity includ-
ing [33–42]. Recently, methods from gauge theory have been used 
to analyse gravitational physics, including clarifying the relation-
ships between both theories in certain kinematic limits [15,17,19,
43–49]. Of particular relevance here is the outcome of the studies, 
started in the late 1980’s [50–64], of high-energy (transplanckian) 
gravitational scattering in the Regge-asymptotics regime1 in both 
string and field theories (see [67] for a recent review). Indeed, in 
order to explain the three-loop findings of ref. [31], we will use 
a very well-established property of gravitational scattering in the 
leading Regge limit, namely that the S-matrix has a certain ex-
ponential structure in transverse position (i.e. impact parameter) 
space, in terms of the so-called eikonal phase. This may be ex-
panded in the gravitational coupling constant, before being Fourier 
transformed to momentum-transfer space order-by-order in per-
turbation theory. Given that a product in position space2 is not a 
product (but rather a convolution) in momentum space, the expo-
nentiated eikonal phase in the former does not directly lead to an 
exponential form in momentum space. The upshot of this is that 
by making the ansatz of eq. (1.2) in momentum space, a mismatch 
occurs, giving leading Regge contributions in the remainder func-
tion.

We will explicitly verify the form of the two- and three-loop 
remainder functions in the (leading) Regge limit. Furthermore, we 
will use our findings to predict additional terms at higher loops, 
before forming a conjecture for the leading Regge behaviour of 
the remainder function at arbitrary order in perturbation theory. 
Our results provide a cross-check of the three-loop calculation in 

1 A different high-energy regime, at fixed scattering angle, was also considered at 
about the same time within string theory [65,66].
2 In the following we will often refer to transverse space (momentum) as, sim-

ply, space (momentum), but it is important to stress that longitudinal momentum 
(energy) are never converted into the corresponding space (time) variables. This dis-
tinction is also important [50,51] to recover classical General Relativity expectations 
from the eikonal approximation when the eikonal phase is parametrically large.
Fig. 1. Labelling of 4-momenta for the four-graviton scattering process.

ref. [31], whilst also setting consistency constraints on any future 
higher-loop calculations.

The structure of our paper is as follows. In section 2, we review 
previous results about fixed order results for supergravity ampli-
tudes, and also the exponentiation of the position space amplitude 
in terms of the eikonal phase. In section 3, we verify the form 
of the remainder function up to three-loop order in the leading 
Regge limit. In section 4, we extend our analysis to arbitrary or-
ders in perturbation theory. Finally, in section 5 we discuss our 
results and conclude.

2. Review of previous results

2.1. The remainder function up to three-loop order

As discussed above, the remainder function F4 of eq. (1.2) is 
defined after subtracting the one-loop contribution from the log-
arithm of the 4-graviton scattering amplitude. It thus begins at 
two-loop order, and we may then consider the perturbative ex-
pansion

F4 = 1+
∞∑
L=2

F (L)
4 , (2.1)

where F (L)
4 is the L-loop contribution, including coupling factors 

other than those associated with the tree-level amplitude. Explicit 
results for the two-loop contribution (in a variety of supergravity 
theories) have been presented in ref. [11–13]. To present results, 
we label 4-momenta as shown in Fig. 1, from which we may define 
the Mandelstam invariants

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2. (2.2)

Note that all 4-momenta in Fig. 1 are physical (e.g. rather than 
all outgoing), so that we are dealing with the physical scattering 
region

s ≥ 0, t,u ≤ 0. (2.3)

Furthermore, momentum conservation implies s +t+u = 0, so that 
only two Mandelstam invariants are independent. The Regge limit 
may then be formally defined as s � −t . Alternatively, defining the 
dimensionless ratio

x = −t

s
, (2.4)

the Regge limit corresponds simply to x → 0. Until recently, only 
the O(ε0) contribution of the two-loop remainder function was 
known, whose leading behaviour in the Regge limit may be written 
as [19]
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Fig. 2. A representative (crossed) ladder graph, where all particles are gravitons. The 
sum of all such diagrams in the leading Regge limit builds up the exponentiated 
amplitude of eq. (2.8).

F (2)
4 = x

(αG s

2

)2
{

− 2π2 log2 x− 4π2 log x+ π4 + 4π2 (2.5)

+ iπ

[
4

3
log3 x+ 4 log2 x+ 8

(
1+ π2

3

)

× (1− log x) + 16ζ3

]}
+O(x2) +O(ε),

where we introduced the parameter

αG ≡ GN

π
(4π)ε

�2(1− ε)�(1 + ε)

�(1 − 2ε)
= GN

π
+O(ε). (2.6)

Given that F (2)
4 is O(x), it vanishes in the strict Regge limit. How-

ever, the results of ref. [31] have now demonstrated that this is not 
true at higher orders in the dimensional regularisation parameter 
ε , nor at higher-loop level. In fact, the result in eq. (6.5) of ref. [31]
is3

F (2)
4 = α2

G s
2π2

[
3ζ3ε+

(
π4

20
−6ζ3 log(−t)

)
ε2+O(x) +O(ε3)

]
,

F (3)
4 = −2

3
iα3

G s
3π3ζ3 +O(x) +O(ε). (2.7)

These contributions are non-vanishing as x → 0; we will explain 
their origin in the following sections.

2.2. Impact-parameter exponentiation and the eikonal phase

The Regge limit of forward scattering consists of highly en-
ergetic particles that barely glance off each other. As such, any 
exchanged radiation must be soft (i.e. have an asymptotically small 
4-momentum), and the emitting particles are then said to be 
in the eikonal approximation. One may then show [50,51] that 
the dominant behaviour at arbitrary loop orders is given by the 
(crossed) horizontal ladder graphs of Fig. 2, in which all particles 
are gravitons. Furthermore, this situation does not depend on the 
amount of supersymmetry: in the leading Regge limit, the am-
plitude is dominated by the exchanged particle of highest spin, 
namely the graviton. It is then possible to sum such graphs to all 
perturbative orders by working at fixed impact parameter x⊥ , a 
(d − 2)-dimensional vector transverse to the incoming particle di-
rection and which, at the leading eikonal level, can be thought as 
the transverse distance of closest approach between the two in-
coming hard gravitons. One may then write the complete eikonal 
amplitude as (see e.g. [68])

iMeik. = 2s
∫

dd−2x⊥e−iq⊥·x⊥
(
eiχ(x⊥) − 1

)
, (2.8)

3 The ε2 contribution to F (2)
4 is not explicitly written in (6.5) of [31], but can 

be deduced from the ancillary files attached to the arxiv version of [31]. The ap-
parent sign discrepancy between F (3) and eq. (6.5) results from our choosing s > 0
whereas they have s < 0.
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frar
ere the quantity iχ(x⊥) is known as the eikonal phase, and is 
en in d = 4 − 2ε dimensions by4 [50,51]

(x⊥) = −iGN s�(1 − ε)
(πx2⊥)ε

ε
. (2.9)

eq. (2.8), q⊥ is the (d − 2)-dimensional momentum transfer 
t is Fourier-conjugate to x⊥ . In terms of the above Mandel-
m invariants, one has t 
 −|q⊥|2 in the leading Regge limit. 
e exponentiation of the amplitude in terms of a large eikonal 
ase has the important consequence of restoring partial-wave 
itarity, which is violated as s → ∞ at each loop order due to 
viton exchange [50,51]. Equation (2.8) has a well-defined phys-
l interpretation [50–52], in which iχ represents the phase shift 
perienced by one of the incoming particles in the field set up 
 the other, thus forming a link between old-fashioned quantum 
chanical scattering theory and perturbative QFT approaches (see 
. ref. [69] for an excellent review). Importantly, the exponen-
tion occurs in position space. To obtain the momentum-space 
plitude at a given order in perturbation theory, one must Taylor 
pand the exponential in the Newton constant GN , before carry-
 out the Fourier transform:

eik. = 2s
∞∑
n=1

1

n!
∫

dd−2x⊥e−iq⊥·x⊥[iχ(x⊥)]n. (2.10)

each term, the product of phase factors [iχ(x⊥)]n becomes a 
nvolution in momentum space, which may itself be given a di-
t physical interpretation. First, one may express the position-
ace eikonal phase as an inverse Fourier transform:

(x⊥) = −4π iGN s

∫
dd−2k⊥
(2π)d−2

eik⊥·x⊥

(−k2⊥ + iε)
, (2.11)

ere iε denotes the usual Feynman prescription. This allows us 
rewrite eq. (2.10) as

eik. = 2s
∞∑
n=1

(−4π iGN s)n

n!
∫

dd−2x⊥e−iq⊥·x⊥

×
(

n∏
i=1

∫
dd−2ki⊥
(2π)d−2

eiki ·x⊥

(−k2
i⊥ + iε)

)

= 2s(2π)d−2
∞∑
n=1

(−4π iGN s)n

n!

×
n∏

i=1

(∫
dd−2ki⊥
(2π)d−2

1

(−k2
i⊥ + iε)

)

×δ(d−2)

(
q⊥ −

n∑
i=1

ki⊥

)
. (2.12)

ch term in the second line consists of a momentum space Feyn-
n integral, with n particles being exchanged, each described by 
tandard propagator in (d −2)-dimensions. It is the delta function 
t makes this a convolution in momenta rather than a simple 
duct, and it simply corresponds to the fact that the sum of the 

changed momenta should be equal to q⊥ , namely the total mo-
ntum transfer that is conjugate to the impact parameter. As we 
ll see in the following section, it is precisely the lack of a sim-
 product in momentum space that leads to the presence of the 
n-trivial remainder function of eq. (2.7).

This result holds at finite ε and its validity is unrelated to the problem of in-
ed singularities originating in the ε → 0 limit discussed in this paper.



4 P. Di Vecchia et al. / Physics Letters B 798 (2019) 134927
3. The three-loop remainder function in the Regge limit

Having seen how to describe the leading Regge limit of the 
four-graviton amplitude in supergravity to all orders via the 
eikonal phase, we now have everything we need to explain the re-
sults of ref. [31], presented here in eq. (2.7). To obtain the L-loop 
remainder function, we may start with eq. (2.10), and identify 
n = L + 1. Substituting eq. (2.9) then yields

iMeik. = 2s
∞∑
L=0

1

(L + 1)!
(−iGN s�(1 − ε)πε

ε

)L+1

×
∫

d2−2εx⊥e−iq⊥·x⊥
(
x2⊥

)(L+1)ε

= 2s
4π iGN s

q2⊥

∞∑
L=0

1

L!

[
− iGN s�(1 − ε)

ε

(
4π

q2⊥

)ε]L

×�(1 − ε)�(1 + Lε)

�(1 − (L + 1)ε)
. (3.1)

The second line allows us to identify the Regge limit of the tree-
level amplitude from the L = 0 term:

iM(0)
4 = 8π iGN s2

−t
+O(x). (3.2)

Examining the one-loop term then allows us to construct the cor-
rection factor entering eq. (1.2)

M(1)
4 = iM(1)

4

iM(0)
4

= − iGN s

ε

�2(1 − ε)�(1 + ε)

�(1 − 2ε)

(
4π

−t

)ε

. (3.3)

Let us now rewrite eq. (3.1) as

iMeik. = iM(0)
4

∞∑
L=0

1

L!
[
− iGN s

ε

�2(1− ε)�(1 + ε)

�(1 − 2ε)

(
4π

−t

)ε]L

×
{

�L(1− 2ε)�(1 + Lε)

�L−1(1 − ε)�L(1+ ε)�(1 − (L + 1)ε)

}
.

(3.4)

Were it not for the term in curly brackets, we would find that the 
full momentum-space amplitude is simply the tree-level amplitude 
multiplied by the exponential of the one-loop correction of eq. (3.3). 
By comparing eqs. (1.2) and (3.4), we thus find that the remainder 
function is given by

F4 = exp
[−M(1)

4

] ∞∑
L=0

[
M(1)

4

]L
L!

×
{

�L(1− 2ε)�(1 + Lε)

�L−1(1− ε)�L(1+ ε)�(1 − (L + 1)ε)

}
+O(x). (3.5)

This is a complete all-orders expression in the leading Regge limit 
x → 0, which may be systematically expanded in GN to obtain the 
result at a given loop order. Performing such an expansion (also in 
the dimensional regularisation parameter ε), one finds

F4 = 1+ α2
G s

2π2
[
3ζ3ε +

(
π4

20
− 6ζ3 log(−t)

)
ε2 +O(ε3)

]

+ α3
G s

3π3
[
−2

3
iζ3 +O(ε2)

]
+O(α4

G) +O(x), (3.6)

i
s
a
i

4

e
a
a
n
p
t
T
t

a
t
b
i
F

F
w

f

f

f

f

f

w
w
f
e
a
t

∏
j

s
t
fi

n agreement with eq. (2.7) and thus precisely confirming the re-
ults5 of ref. [31]. We can now go further than this, however, 
nd predict the structure of the remainder function in the lead-
ng Regge limit at higher orders in perturbation theory.

. The remainder function to all orders in the Regge limit

In the previous section, we obtained a general expression, 
q. (3.5), for the remainder function F4 in the leading Regge limit, 
nd confirmed the results of a recent three-loop calculation (which 
lso necessarily included O(ε) at O(G2

N )). However, the all-order 
ature of eq. (3.5), in both GN and ε , means that we can ex-
and this further. In doing so, we predict the existence of non-zero 
erms in the remainder function at four-loop order and beyond. 
his potentially provides a highly non-trivial cross-check of any fu-
ure calculations in perturbative gravity.

We have expanded eq. (3.5) to 16 orders in GN , finding that 
ll poles in ε vanish. This is to be expected, given the aforemen-
ioned fact that all infrared singularities in gravity are generated 
y the exponentiation of the one-loop amplitude [11,14–19]. Turn-
ng to the O(ε0) terms of the leading energy remainder F4 =
4,0 +O(ε) +O(x), we may write the L-loop contribution as
(L)
4,0 = (iGN s)

L f (L), (4.1)

here we find the explicit results

(2) = 0 f (7) = ζ̄7

f (12) = 1

4! ζ̄
4
3 + ζ̄9ζ̄3 + ζ̄7ζ̄5

(3) = ζ̄3 f (8) = ζ̄5ζ̄3

f (13) = 1

2
ζ̄7ζ̄

2
3 + 1

2
ζ̄ 2
5 ζ̄3 + ζ̄13

(4) = 0 f (9) = 1

3! ζ̄
3
3 + ζ̄9

f (14) = 1

3! ζ̄5ζ̄
3
3 + ζ̄11ζ̄3 + 1

2
ζ̄ 2
7 + ζ̄9ζ̄5 (4.2)

(5) = ζ̄5 f (10) = 1

2
ζ̄ 2
5 + ζ̄7ζ̄3

f (15) = 1

5! ζ̄
5
3 + 1

2
ζ̄9ζ̄

2
3 + ζ̄7ζ̄5ζ̄3 + 1

3! ζ̄
3
5 + ζ̄15

(6) = 1

2
ζ̄ 2
3 f (11) = 1

2
ζ̄5ζ̄

2
3 + ζ̄11

f (16) = 1

3! ζ̄7ζ̄
3
3 + 1

4
ζ̄ 2
5 ζ̄ 2

3 + ζ̄13ζ̄3+ζ̄9ζ̄7 + ζ̄11ζ̄5

ith ζ̄n = 2ζn/n. Despite the rather formidable nature of eq. (3.5), 
e see that the results for the O(ε0) contributions have a simple 

orm. It is apparent that the arguments of the zeta functions in 
ach term in the sums are such that they form a partition of L into 
 sum of odd integers greater than one. The generating function for 
he number of such partitions is
∞

=1

1

1− z2 j+1
= 1+ z3 + z5 + z6 + z7 + z8 + 2z9 + 2z10 + 2z11

+3z12 + 3z13 + 4z14 + 5z15 + 5z16 + O
(
z17

)
(4.3)

o the coefficient of zL on the right-hand side of eq. (4.3) tells us 
he number of individual terms in each f (L) of eq. (4.2). We then 
nd that we can summarise all of eq. (4.2) as the compact formula

5 See footnote 3.
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F (L)
4,0 = (iGN s)

L
∑
pr(L)

∏
j

1

n j !
(
2ζL j

L j

)n j

, (4.4)

where the sum is over all restricted partitions of L, as mentioned 
above, the L j ’s are the distinct odd integers entering in the parti-
tion and n j is the number of times each L j appears, so we have

L =
∑
j

L jn j . (4.5)

In fact, one may observe6 that eqs. (4.1), (4.2) and (4.4) may be 
compactly summarized by

F4,0 = 1+
∞∑
L=2

F (L)
4,0 = exp

⎡
⎣ ∞∑

j=1

(iGN s)
2 j+1ζ̄2 j+1

⎤
⎦

= e−2iGN sγ

�2(1+ iGN s)
exp

[
log

(
π iGN s

sin(π iGN s)

)]

= e−2iGN sγ �(1 − iGN s)

�(1 + iGN s)
. (4.6)

The same result can be obtained from the ε → 0 limit of (2.8)
without expanding the exponential of χ(x⊥) (see ref. [19] for a 
similar observation). Denoting the ε0 terms of eqs. (2.9) and (3.3)
by χ0 and M(1)

4,0 respectively, we may write

χ0 = −GNs
(
log(πx2⊥) + γ

)
, eM

(1)
4,0 = eiGN sγ

(
4π

q2⊥

)−iGN s

.

(4.7)

We can then perform the Fourier transform of eq. (2.8) in d = 4
(i.e. restricting to the ε-independent part)∫

d2x⊥e−iq⊥·x⊥eiχ0(x⊥)

= 4π iGN s

q2⊥
e−iGN sγ

(
4π

q2⊥

)−iGN s

(4.8)

×�(1 − iGN s)

�(1 + iGN s)
= 4π iGN s

q2⊥
eM

(1)
4,0F4,0,

and check explicitly that the last step is consistent with the re-
sult of eq. (4.6).7 This derivation can be seen as a proof of the 
result (4.4) for the ε0 contribution, but we stress in any case that 
a complete all-order expression for the remainder function (which 
is more powerful than a finite-order ε expansion) has already been 
given in eq. (3.5).

The next unknown order in the four-graviton amplitude is four 
loops. It is easily checked from eq. (3.5) that, as at two loops, the 
O(ε0) contribution to the remainder function (in the leading Regge 
limit) vanishes. However, there is a nonzero contribution beyond 
this, given by

F (4)
4 = −5(GNs)

4ζ5ε +O(ε2) +O(x). (4.9)

We do not expect this result to be explicitly confirmed in the near 
future: calculating the O(ε) part of the four-loop amplitude would 
presumably be first carried out as part of a five-loop calculation!

6 We would like to thank Henrik Johansson for this observation.
7 Note that, for ε → 0, the whole effect of F4,0 boils down to a renormalization 

of an unobservable (and not explicitly written) infinite Coulomb phase originating 
from the leading eikonal resummation.
An interesting observation is that the above results respect 
the conjectured uniform transcendentality property of amplitudes in 
theories with maximal supersymmetry. That is, we can associate a 
transcendental weight n with the zeta value ζn , where all rational 
coefficients are taken to have weight zero. The sum of weights at 
O(εm) and L-loop order is then

w = L +m. (4.10)

Beyond the leading order, the Regge limit breaks this uniform 
transcendentality property, as, for instance, one approximates 
ln(−u/s) ∼ x losing the transcendental contribution of the loga-
rithm. Since the leading eikonal does not depend on the number 
of supersymmetries, the uniform weight property for N = 8 super-
gravity manifest in (4.10) is inherited by the lower supersymmetric 
cases. We stress that this property of the leading term is exact to 
all orders, not just the ε0 order considered above. For the ampli-
tude itself at a given loop order, there is a dominant pole

∼ 1

εL

coming from the exponentiated IR singularity in the one-loop con-
tribution. All subleading terms in ε (in the leading Regge limit) 
come from expanding Euler gamma functions, and the coefficients 
of all such expansions have increasing uniform weight as the 
power of ε increases. Thus, this accounts precisely for the depen-
dence of eq. (4.10).

5. Discussion

In this paper, we examined the form of the four-graviton scat-
tering amplitude in N = 8 supergravity, which was recently cal-
culated at three-loop order [31]. It is conventional to define a re-
mainder function for this amplitude, constituting what is left upon 
factoring out the tree-level amplitude, and the one-loop correction 
factor [13]. The three-loop calculation, which includes an evalua-
tion of the O(ε) part of the two-loop result, revealed the existence 
of leading terms in the remainder function in Regge’s high energy 
limit, at non-negative powers of the dimensional regularisation pa-
rameter ε .

In this paper, we have shown that these contributions follow 
precisely from the known exponentiation of the four-graviton am-
plitude in position space, in terms of the so-called eikonal phase. At 
a given order in perturbation theory, a product of one-loop ampli-
tudes occurs, which becomes a convolution in momentum space, 
whose physical interpretation is that the transverse momentum 
transfer (conjugate to the impact parameter) must be democrati-
cally shared between the exchanged gravitons at that order. This 
in turn means that the amplitude does not straightforwardly expo-
nentiate in momentum space, and we have derived an all-orders 
expression – in both the gravitational coupling GN and dimen-
sional regularisation parameter ε – for the remainder function in 
the Regge limit. As well as confirming the results of ref. [31], we 
also predict explicit contributions at higher loop orders. We ob-
tained a particularly convenient combinatorial form for the O(ε0)

contributions, which we showed can be directly obtained from the 
leading eikonal expression in d = 4. The higher loop remainder 
function respects maximal transcendentality to all orders.

There are a number of possible extensions of our analysis. 
Firstly, one could look at predicting the structure of subleading 
terms in the Regge limit (see e.g. refs. [30,44,54,57,61–64,70] for 
previous work in this area). Secondly, it would be interesting to 
extend the analysis discussed in this paper to higher loops by 
starting from the integral expressions for the four- and five-loop 
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amplitudes of refs. [71,72]. Finally one can study the remain-
der function in theories with less than maximal supersymmetry. 
This is not independent of the exploration of subleading eikonal 
contributions. Indeed, the leading Regge behaviour would be ex-
pected to be the same for less supersymmetric gravity theories, 
given that this kinematic regime is dominated by the exchange 
only of leading soft particles of highest spin (i.e. the graviton). 
Three-loop calculations in non-maximal supergravity theories do 
not yet exist, thus our results already provide a highly useful con-
straint.
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