Latch-free Synchronization in Database Systems:
Silver Bullet or Fool’s Gold?

Jose M. Faleiro and Daniel J. Abadi

Yale University

ABSTRACT

Recent research on multi-core database architectures has made the
argument that, when possible, database systems should abandon the
use of latches in favor of latch-free algorithms. Latch-based algo-
rithms are thought to scale poorly due to their use of synchroniza-
tion based on mutual exclusion. In contrast, latch-free algorithms
make strong theoretical guarantees which ensure that the progress
of a thread is never impeded due to the delay or failure of other
threads. In this paper, we analyze the various factors that influence
the performance and scalability of latch-free and latch-based algo-
rithms, and perform a microbenchmark evaluation of latch-free and
latch-based synchronization algorithms. Our findings indicate that
the argument for latch-free algorithms’ superior scalability is far
more nuanced than the current state-of-the-art in multi-core data-
base architectures suggests.

1. INTRODUCTION

Access to large-scale multi-core servers is becoming increas-
ingly democratized. For instance, it is now possible to now ob-
tain access to virtual machine instances consisting of 64 physical
CPU cores on Amazon EC2 [8], while large multi-core servers have
been available on the market for several years. This trend has led
to significant research interest in database system architectures that
effectively exploit parallelism on a single machine.

One perceived issue with conventional DBMS architectures is
their widespread use of latches. In order to protect the integrity of
shared data-structures within the database system, latches ensure
that only one thread at a time can modify a shared data-structure.
Latch-based algorithms are thought to be susceptible to performance
problems at scale; if a thread is delayed while holding a latch, then
no other thread in the system can acquire the same latch for at least
the duration of this delay. In contrast to latch-based algorithms,
latch-free algorithms provide strong theoretical progress guaran-
tees which, at minimum, ensure that no thread is blocked due to the
delay or failure of other threads [40,41,43]. Several research papers
have therefore made the argument that latch-free algorithms scale
better than or outperform latch-based algorithms [25,44,51,52].

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

This paper argues that latch-free algorithms’ theoretical guaran-
tees are mostly irrelevant to performance and scalability on multi-
core hardware. The most important factor that influences the scala-
bility of a synchronization mechanism is its ability to avoid con-
tention on global memory locations, irrespective of whether the
mechanism is latch-based or latch-free. We argue, and show ex-
perimentally, that when latch-free algorithms’ theoretical guaran-
tees do become relevant, the performance problems in latch-based
algorithms are not fundamental to their use of latches. Instead,
the performance problems arise due to inefficient allocation of re-
sources, such as using more OS threads than available CPU cores.

This paper highlights the oft under-appreciated fact that latch-
free algorithms generally require idiosyncratic memory manage-
ment mechanisms. Latch-free memory management mechanisms
add complexity and overhead relative to latch-based algorithms.
These mechanisms are often ignored or omitted in published de-
scriptions of latch-free algorithms, and have consequently been a
source of bugs in implementations of these algorithms [4, 6].

We perform a set of microbenchmarks that make an apples-to-
apples comparison between a latch-free algorithm and three classes
of latch-based algorithms. We find that while the latch-free algo-
rithm does outperform simple busy-waiting latches, the results in
comparison to more sophisticated backoff latches are mixed. Fur-
thermore, we also find that the latch-free algorithm is never able to
outperform a scalable queuing latch.

This paper is not intended to make a case against latch-free al-
gorithms. Instead, we show that the argument for the superior scal-
ability of latch-free algorithms is more nuanced than a scan of the
current literature on multi-core database architectures would sug-
gest (often exacerbated by the fact that papers compare latch-free
algorithms against inefficient coarse-grained latching algorithms).
‘We highlight the various factors that influence the performance and
complexity of latch-free algorithms, and hope that this discussion
will inform future research and database system implementations.

2. LATCH-FREE ALGORITHMS

Latch-free algorithms provide strong theoretical guarantees that
distinguish them from latch-based algorithms. These guarantees
pertain to the progress that threads can make during concurrent exe-
cution. While several progress guarantees exist [40,41,43]; at mini-
mum, all of these guarantees ensure that no thread is blocked due to
the delay or failure of other threads. Latch-based algorithms make
no such guarantees. Latch-based algorithms guarantee correct con-
current execution of threads via mutual exclusion; in order to access
a shared data-structure, a thread acquires a latch, which prevents
other threads from simultaneously accessing the data-structure.

This section makes the case that the scalability and performance
of a synchronization mechanism is dependent on its avoidance of

contention on global memory locations (Section 2.1). This is far
more important than any progress guarantees made by the mech-
anism. Furthermore, the progress guarantees of latch-free algo-
rithms can lead to increased overhead due to memory management
issues not present in latch-based algorithms (Section 2.2) and other
areas of additional complexity (Section 2.3).

2.1 Scalability

2.1.1 Synchronization performance

Modern database systems exploit parallelism in multi-core hard-
ware by employing some form of multi-threading '. The threads in
a system exchange information via shared data-structures. If mul-
tiple threads are allowed to concurrently access to a shared data-
structure without any coordination, then the data-structure is sus-
ceptible to corruption due to race conditions. In order to prevent
race conditions, threads must synchronize their accesses to shared
data-structures [42].

Latches are an explicit form of synchronization, which are used
to ensure that only one thread can ever obtain exclusive access to a
data-structure. A latch typically consists of a single word in mem-
ory, whose value indicates whether or not a thread currently holds
the latch. Threads use various combinations of reads and writes
in order to acquire a latch (a specific combination yields a par-
ticular latching algorithm). In a latch-free algorithm, threads use
atomic instructions to ensure that they correctly update or read a
shared data-structure. These atomic instructions are executed on
one or more words in shared memory. Threads in both classes of
algorithms thus read and write one or more shared words in mem-
ory in order to correctly synchronize their access to shared data-
structures. The performance of both classes of algorithms is there-
fore tied to the performance of concurrent reads and writes against
a single word in memory.

There are two rules of thumb that determine the performance
of concurrent reads and writes to a particular memory location on
multi-core hardware [12,19,24,45]. First, atomic instructions, such
as cmp-and-swp and xchgq, that write (or attempt to write) a
particular word in memory are executed serially. Thus, if several
cores concurrently attempt atomic update instructions on a particu-
lar word in memory, the time taken to process these instructions is
proportional to the number of writing cores. Second, the new value
of a recently written word in memory is serially propagated to read-
ing cores. That is if a core writes the value of a word in memory,
and several other cores read the value of the word, the new value of
the word will propagate to the reading cores in time proportional to
the number of readers.

Several latching implementations are unscalable under contention
because they interact badly with the two characteristics of multi-
core hardware above. In the simplest implementation of a latch,
cores repeatedly attempt to atomically test-and-set the value of a
word in memory from 0 to 1 (performed via an xcghg on x86 ar-
chitectures). An atomic test-and-set unconditionally sets a memory
to a specified value and returns the previous value of the word. If
a core’s test-and-set returns 0, then it means that the value of the
word successfully transitioned from O to 1 due to the core’s test-
and-set. If a core’s test-and-set returns 1, then it means that the
previous value of the word was 1, and hence that another core has
already acquired the latch. Performing test-and-sets in a tight loop
puts pressure on the memory controller associated with the latch
word and increases traffic across NUMA nodes. This can delay
non-conflicting memory requests by cores not executing the test-

"Note that both multi-processing and multi-threading are equiva-
lent for the purposes of this discussion.

and-set, including the core executing the critical section. Further-
more, in order to release the latch, the latch holder must atomi-
cally change the value of the latch word from 1 to 0. This write
must compete with the test-and-sets performed by threads trying
to acquire the latch. This delay in releasing the latch effectively
increases the length of the critical section.

In order to rectify these issues, Segall and Rudolph proposed an
enhancement to test-and-set latches; instead of repeatedly perform-
ing a test-and-set on the latch word in a tight loop, cores attempting
to acquire the latch could first read the value of the word, and only
perform a test-and-set if the tested value is O [67]. This latch was
termed a test-and-test-and-set (TATAS) latch. TATAS latches al-
low cores to spin on locally cached copies of the latch word while
another core holds the latch. TATAS latches seem to address both
issues with simple test-and-set latches; since cores first spin on lo-
cally cached values of the latch word, they avoid generating pres-
sure on memory controllers and NUMA interconnects. In addition,
latch release does not have to compete with test-and-set requests by
cores attempting to acquire the latch.

Unfortunately, the above benefits only apply to lengthy critical
sections. Anderson showed that if a critical section is relatively
short, then the performance of the TATAS latch is dominated by
transient behavior which occurs while the latch changes ownership
across cores [12]. In particular, if a core C releases the latch, then
several cores Cy, Cs, ..., Cp, will notice this change. The first
of these cores to perform a subsequent test-and-set will then take
ownership of the latch (say C1). However, this ownership change
will not prevent C5, ... C,, from performing unsuccessful test-
and-sets. This causes a transient flood of test-and-sets requests.
Only when every one of Cs, ..., Cy, has finished performing an
unsuccessful test-and-set does the system quiesce. If this time to
quiesce is comparable to the critical section length, then TATAS
latches suffer from the same scalability problems as simple test-
and-set latches.

The underlying problem with test-and-set and TATAS latches is
that threads spin on a single global memory location. Spinning on a
global location can cause serious scalability bottlenecks in latching
algorithms that perform atomic modifications or reads on global lo-
cations. There exist two mechanisms to avoid spinning on global
locations:

Backoff mechanisms in which each atomic modification or read
is separated by some number of noop instructions. The backoff
between successive iterations is often increased via an exponential
distribution [12]. Another commonly used backoff mechanism is
to rely on the operating system to deschedule threads. This backoff
mechanism is used in the GNU C library’s Pthread mutex imple-
mentation [2].

Scalable latching data-structures in which threads spin on thread-
local or core-local data-structures. Spinning on local data-structures
prevents the cost of spinning operations degrading with core counts.
The most famous example of such a latching algorithm is the MCS
latch [59]. The MCS latch constructs an explicit queue of threads
waiting to acquire the latch. Each thread has an associated queue
node, and this queue node is appended to a queue using an atomic
operation (nodes are enqueued using a single xchgq instruction).
The queue node at the beginning of the queue corresponds to the
current latch holder. If a thread’s appended queue node is not the
first node in the queue, the thread spins on a flag in its local queue
node. When the latch holder completes its critical section, it sets the
flag in the next queue node. The corresponding thread then notices
this change and begins executing the critical section. MCS latches

avoid the scalability bottlenecks of conventional latch implementa-
tions because threads do not read or write a shared memory location
in a loop; when the latch changes ownership, a single thread writes
the next thread’s queue node flag, and each thread spins on its local
queue node’s flag. In contrast, conventional latching implementa-
tions permit multiple threads to write to a single global memory
location (via test-and-sets) in a loop, and are subject to slow downs
because these test-and-set requests are serialized, and induce cache
coherence traffic to invalidate and reload cache lines on cores which
read the value of the latch word [12, 19,24,45].

Unlike latch-based algorithms, threads in latch-free algorithms
never obtain mutually exclusive access to a shared data-structure.
Threads in a latch-free algorithm only use atomic instructions to
make their writes atomic. In the vast majority of latch-free al-
gorithms, threads speculatively read shared state, perform some
local computation based on this speculative read, and attempt to
atomically “commit” the computation based on the speculative read
[38,44,52,62]. In the time between the thread’s speculative read
and attempt to commit, another thread may have invalidated the
thread’s read due to a conflicting update. Threads typically use the
cmp—and-swp instruction to validate that the shared state did not
change values.

The cmp-and-swp instruction takes three arguments, the ad-
dress of a word in memory, the value which word is expected to
contain, and a new value. cmp—and-swp checks that the word’s
value is equal to the old value, and if so, swaps the old value with
the new value. If the word’s value is not equal to the old value, the
instruction leaves it unchanged.

Speculative latch-free algorithms are prone to the same scalabil-
ity bottlenecks as latching algorithms. If updates fail often due to
contention, then threads will repeatedly retry the operation. The
repeatedly retried cmp-and-swp instructions are serialized, and
lead to slowdowns because they are executed by threads that suc-
cessfully speculate, as well as those whose speculation fails. These
serialized instructions causes failures to slow down the successes.
As a consequence, the “conflict window” of a speculative operation
effectively increases. If the increase in the “conflict window” is
comparable to the length of the speculative computation, then this
effect is akin to increasing critical section size in TATAS latches.

Due to the optimistic nature of many latch-free algorithms, and
the well-known costs of optimism (such as copying overhead —
see Section 2.2.1), it is tempting to conclude that the differences
between speculative latch-free and non-speculative latch-based al-
gorithms are analogous to the differences between optimistic and
pessimistic concurrency control in database systems [49]. How-
ever, this paper aims to show that the opposite is closer to the truth.
Speculative latch-free algorithms and latch-based algorithms are
more alike than different because both classes of algorithms per-
form updates to shared memory locations. As a consequence, un-
der contention, both classes of algorithms are governed by the same
underlying hardware performance characteristics. In contrast, the
differences between optimistic and pessimistic concurrency control
in database systems arise due to their contention handling mecha-
nisms — pessimistic concurrency control blocks the execution of a
transaction in the presence of another conflicting transaction, while
optimistic concurrency control aborts transactions upon detecting
conflicts. Optimistic and pessimistic concurrency control are thus
governed by a different set of tradeoffs; optimistic concurrency
control wastes resources in a fully loaded system under high con-
tention, while pessimistic concurrency control produces unneces-
sarily conservative schedules in an under-loaded system under low
contention [10].

Another point to note is that the techniques used by scalable
latching implementations cannot be directly used by latch-free im-
plementations. Scalable latching implementations effectively de-
termine the order in which threads can take ownership of a latch a
priori. If a thread is delayed after having determined its priority,
then every later thread of lower priority is delayed. However, latch-
free algorithms must guarantee that the delay or failure of a par-
ticular thread never prevents other threads from making progress.
As a consequence, pre-determining the order in which threads ex-
ecute a critical section is incompatible with latch-free algorithms’
theoretical guarantees, and can, at best, only be used as an auxil-
iary contention handling mechanism; when using pre-determined
thread priorities a latch-free algorithm must have a way to “time-
out” of the pre-determined order and fall-back to using cmp—-and-
swp operations [26].

2.1.2 Scheduling requests

Database systems use the notion of multi-programming levels
(MPLs) to determine the maximum number of requests that can si-
multaneously execute. Database systems typically implement MPLs
by assigning each request to an abstract DB worker, which corre-
sponds to the execution context of the request within the database.
DB workers are then mapped to an operating system execution con-
text, such as a process or thread [39]. The choice of mapping from
DB workers to OS contexts can have a significant impact on per-
formance.

If the number of OS contexts exceeds the number of available
CPU cores, then at least two contexts will be multiplexed over a
single CPU core. The scheduling of OS contexts is handled by the
operating system, which assigns a fixed time slice to each context,
and preempts a context when its slice expires. Despite proposals
for workload-aware schedulers [13], operating systems are usually
unaware of whether preempted contexts have acquired latches. A
context may therefore be preempted while it is holding a latch.

Most (but not all) database systems assign each DB worker to
a single OS context (by either creating a new context or maintain-
ing a pool of free contexts), and rely on the OS to timeslice con-
texts on CPU cores [39]. In addition, database systems tradition-
ally use MPLs far higher than the number of available CPU cores.
They therefore typically have more DB workers than available CPU
cores. In database systems in which there is a 1:1 correspondence
between DB workers and OS contexts (including most widely-used
database systems), the number of OS contexts significantly exceeds
the number of available CPU cores. This can lead to thrashing due
to latch holder preemption.

In this traditional database system architecture, the progress guar-
antees of latch-free algorithms are extremely valuable because a
preempted context will never block or delay the execution of other
contexts in the system (Section 2). Prior research has therefore
(correctly) advocated that latch-free algorithms offer a “drop-in”
solution to the preemption problem.

However, the root cause of the preemption problem is not data-
base systems’ use of latches, but rather that database systems use
more OS contexts than available CPU cores and their reliance on an
OS with insufficient knowledge about user-level synchronization
to schedule these contexts. There is no fundamental reason that
forces database systems to implement multi-programming by as-
signing requests to unique contexts. Instead of assigning requests to
unique contexts, a database system could itself implement a sched-
uling mechanism in user-space without relying on OS support [39].
This scheduling mechanism could ensure that it never uses more
contexts than available CPU cores. Several research prototypes
and new main-memory DBMS products already use this process-

ing model [31,37,65,66,72,74,75]. Furthermore, database systems
have a long tradition of implementing user-level scheduling of con-
texts (via DBMS threads) in environments where OS support for
multi-processing was non-existent or inefficient [71].

Researchers in the software transactional memory (STM) com-
munity have also made the case that a system should limit the num-
ber of contexts it uses to the number of available CPU cores [30].
Early STM algorithms were designed to be non-blocking or wait-
free so as to be robust to unexpected sources of delay beyond the
control of the application (such as thread preemptions and page
faults) [34]. However, more recent STM algorithms forego non-
blocking and wait-free synchronization, and instead use latches
to synchronize conflicting transactions [27,28, 30]. Latches sim-
plify STM algorithms and permit the use of important optimiza-
tions, such as in-place updates, which latch-free algorithms pre-
clude. (Section 2.2 discusses some of these issues in detail.)

2.2 Memory management

Latch-based algorithms do not permit a thread access to a data-
structure if one or more conflicting threads are concurrently ac-
cessing the data-structure. In contrast, latch-free algorithms cannot
restrict a thread from accessing a data-structure due to the pres-
ence of conflicting threads, because the restricted thread is unable
to make progress if any conflicting thread is delayed. These delays
violate latch-free algorithms’ stringent progress guarantees (Sec-
tion 2) [40,41,43]. As a consequence, latch-free algorithms must
permit threads unrestricted access to a data-structure. This require-
ment has subtle implications on latch-free algorithms’ design.

2.2.1 Copying overhead

In a latching algorithm, threads acquire latches to update shared
data-structures. A thread which has acquired a latch is guaran-
teed mutually exclusive access to the data-structure protected by
the latch. The thread can therefore perform in-place updates on
the data-structure. These updates may temporarily make the data-
structure inconsistent with respect to program invariants [9]. These
inconsistencies are safe because the latch prevents other threads
from accessing the data-structure, and hence noticing temporary
inconsistencies due to in-place updates.

In contrast, latch-free algorithms must permit a thread unrestricted
access to a data-structure, even while other threads attempt conflict-
ing reads or writes. Threads must always be permitted unrestricted
access to a data-structure because of the stringent progress guar-
antees latch-free algorithms provide. In order to allow threads to
make progress regardless of the presence of conflicting threads, the
state of the data-structure must always be consistent. As a conse-
quence, in order to update a complex data-structure, threads must
make a copy of a data-structure (or a portion of a data-structure),
and perform their updates against this local copy. These updates
are made visible to other threads via an atomic instruction [11, 36,
43,56].

Latch-free algorithms that perform updates on complex data-
structures must therefore pay the extra cost of copying a portion of
a data-structure. Furthermore, if the algorithm in question is specu-
lative, then the cost of copying the data-structure extends the dura-
tion of conflict window in which the update has a chance of failing
(Section 2.1.1). Finally, operating on copies of data-structures can
lead to worse cache utilization than in-place updates.

2.2.2 Garbage collection

Since latch-free algorithms permit multiple threads to simulta-
neously operate on an object, if an object is deleted by a thread,
then its memory cannot be immediately freed to the operating sys-

tem or allocator. This is because one or more threads may still
be accessing the deleted object. Latch-free algorithms on dynamic
data-structures therefore typically use a form of deferred memory
reclamation. Examples of deferred memory reclamation include
hazard pointers [60] and epoch-based reclamation [58].

There are two problems associated with deferred memory recla-
mation. First, they impose extra overhead in order to determine
when an object can be safely reclaimed. It should be noted that
some techniques, such as the epoch-based mechanism used in read-
copy-update [58], have very low overhead. However, the choice of
reclamation technique is not independent of the algorithm [44].

Second, and more importantly, deferred memory reclamation can-
not be used as a black box, in the way that conventional memory al-
locators are used. Instead, memory reclamation logic is algorithm
dependent, and therefore entangled with the implementation of a
latch-free algorithm. For instance, the addition of correct memory
reclamation to Michael and Scott’s lock-free queue [62] requires
non-trivial changes to the algorithm itself [60].

2.2.3 Memory re-use

If a thread uses cmp—and-swp instructions for correctness, it
may miss concurrent updates by other threads. Consider the fol-
lowing sequence of events. Thread 7" reads the value A from a
word in memory. Thread T’ changes the value of the word from A
to B, and then back to A. If 7" then attempts to cmp—and-swp the
value of the word based on its earlier read, it will succeed despite
the fact that the word’s value changed twice: from A to B, and back
to A. This behavior, known as the ABA problem, can lead to sub-
tle bugs if correctness depends on the the fact that no intervening
updates occurred between 7"s read and its cmp-and-swp [42].

The ABA problem typically manifests in latch-free algorithms
on pointer-based data-structures, such as linked-lists and queues.
For instance, consider a latch-free implementation of a sorted linked-
list [38]. In order to insert a new node with value 7 (N7) in the
linked-list, a thread traverses the list until it finds an appropriate
pair of adjacent nodes. Suppose the pair of adjacent nodes contain
values 5 and 9 (/N5 and No). The thread performing the insertion
sets N7’s next pointer to reference Ng. Next the thread attempts
to atomically set /N5’s next pointer to N, while validating that N5
still points to Ng using a cmp-and-swp instruction. However,
if N5 is deleted by another thread and then re-inserted with new
value 8, N7’s cmp—and-swp will still succeed. This is because
N7’s cmp—and-swp finds that N5’s next pointer still points to Ny.
However, this insertion renders the linked-list inconsistent because
nodes are no longer sorted.

In the above example, the unfortunate sequence of events occurs
because N5 is re-used between the time N7’s thread performs a
read and cmp-and-swp [42]. Preventing the ABA problem re-
quires a mechanism that makes freed memory available to threads
after no references to the freed memory can possibly exist. The
ABA problem is subtly different from the garbage collection prob-
lem; garbage collection ensures that memory is not freed too early,
while ABA prevention ensures that memory is not re-used too early.

2.3 Complexity

Latch-free algorithms are notoriously complex to specity, let alone
implement. Indeed, even experts have designed incorrect algo-
rithms that have required corrections to be incorporated over time.
For instance, Valois’ lock-free linked list algorithm [76] was shown
to contain a race condition [61]. Michael and Scott’s lock-free
queue algorithm [62] contained two errors, identified and rectified
two years later [63].

2.3.1 Modularity

Researchers have argued that latch-free algorithms can simplify
the design of operating systems. Operating systems are suscepti-
ble to deadlocks if interrupt handler code and non-interrupt han-
dler code acquire the same latch [9]. Since latch-free algorithms
can never lead to deadlocks, researchers and practitioners have pro-
posed using latch-free algorithms to simplify interrupt handler code
[20,36].

Fortunately, database system threads and processes never have to
deal with interrupts. Latch-free algorithms therefore do not provide
the same modularity benefits to databases as they do to OS kernels.
Indeed, one could argue that latch-free algorithms decrease modu-
larity in non-interruptible systems, such as databases, because they
require idiosyncratic memory management code (Section 2.2).

2.4 Discussion

While the focus of this section has been the limitations and over-
heads of latch-free algorithms, there certainly exist scenarios where
latch-free algorithms may provide better scalability than latch-based
algorithms. For instance, certain latch-free algorithms permit mul-
tiple threads to make changes to a data-structure concurrently [38,
44,76].

In general, developers and architects should determine how their
algorithms interact with the performance characteristics of multi-
core hardware (Section 2.1.1). Simply converting a latch-based
algorithm to a latch-free algorithm is rarely a recipe for success.
Indeed, there exist concurrent algorithms that combine latches with
and synchronization-free operations to good effect. For example,
the read-copy-update technique [58] (widely used in the Linux ker-
nel) and the Masstree main-memory index structure [57] both up-
date no meta-data for reads but use latches for writes.

3. CASE STUDY: TREE-BASED INDEXES

Indexes are well-known to be an important component of data-
base systems. They allow fast access to database records, and typ-
ically implement an interface for inserting, deleting, and search-
ing index entries. At any point in time, multiple insert, delete, and
search requests may be concurrently executing against an index. In-
dexes must therefore support employ synchronization mechanisms
to correctly order concurrent requests.

Tree-based indexes, such as B*trees, are an important class of
index because they provide an ordered record access method [22].
Ordered access methods can be used to evaluate range predicates
and scans. B*trees provide an associative mapping from index val-
ues to sets of records. Like all tree-based data-structures, B*trees
are hierarchical. Leaves store a set of record-identifiers correspond-
ing to particular index values, while internal nodes only store meta-
data to navigate to index values at the leaves [22]. Every B*tree
consists of a single root node, and every other node is accessed via
the root. This hierarchy makes it challenging to implement B*trees’
interface in a scalable manner — every updater and reader must tra-
verse the tree from the root, and must therefore synchronize their
access to the root. The root and, in general, nodes higher up in the
tree can therefore turn into scalability bottlenecks. This section dis-
cusses the design of concurrency control mechanisms for B*trees
that address the scalability challenges above.

3.1 Contention for logical locks

The most well known mechanism for correctly synchronizing
concurrent B*tree operations is latch coupling [70]. Starting from
the root, a request acquires a latch on a node, determines a child
node to follow, and recursively continues this process for the child
node. A search acquires intention-shared (IS) latches on nodes, and

releases a node’s latch once a child node’s latch is acquired. An
update (insert or delete) acquires shared-intention-exclusive (SIX)
latches on nodes. An updater holds SIX latches on a sequence of
consecutive internal nodes until it is certain that the nodes are safe
from modification [70]. If an operation attempts to insert a new
entry in a full leaf node, the leaf node is split into two nodes. This
causes an insertion to occur in the parent node, which in turn may
cause the parent to split if it is full, and so forth. A node may sim-
ilarly be deleted when the number of elements it contains is below
a threshold. Update requests convert their SIX latches to exclusive
(X) latches for every internal node that needs to be updated due to
the insertion or deletion of child nodes.

SIX latch requests are compatible with IS requests, but incom-
patible with other SIX requests. Thus, an updater allows read-
ers to simultaneous access to a node, but prevents other updaters
from accessing the node. This latching strategy is pessimistic;
updaters acquire SIX latches in anticipation of modifications and
thus block other updaters from accessing the node, even though
the node may never actually be modified. It should be noted that
because of B*trees’ hierarchical organization, the likelihood of a
internal node being modified due to a deletion or insertion of a
child node decreases exponentially from leaf to root. As a conse-
quence, SIX latches on “higher up” internal nodes, such as the root,
are mostly held for short durations, typically only while the updater
checks whether child node is full. Nevertheless, even short duration
SIX latches on the root can significantly impact the performance of
B*trees. Indeed, in their B*tree performance study, Srinivasan and
Carey found that SIX latches can significantly deteriorate perfor-
mance even when the number of updates in a workload is much
smaller than the number of searches [70].

Subsequent B*tree algorithms were designed to avoid blocking
requests on the root node, even for short durations. In these al-
gorithms, updaters descend to the appropriate leaf using the same
latch mode as searches (in S or IS modes). Upon reaching the leaf
and detecting the need for node insertion or deletion, updaters per-
form internal node modifications moving from leaves to higher up
nodes. Based on the techniques they use to correctly interleave tree
descent and bottom-up modification requests, these algorithms can
be classified into two categories. First, those such as ARIES/IM,
which use a form of optimistic concurrency control to synchronize
reads by descending requests and bottom-up modifications [64].
Second, those such as B'™trees, which maintain extra information
in internal nodes so that reads can always correctly navigate the
tree [50].

3.2 Contention on shared memory

In both ARIES/IM and the B"™tree, threads descending the tree
latch couple their way down to leaves using shared latches. As
a consequence, both algorithms permit significantly more concur-
rency than B*tree algorithms in which descending update requests
employ SIX latches [70]. On today’s multi-core hardware, how-
ever, read latch acquisition is not a negligible cost in the presence
of contention. Even though individual operations request the same
compatible latch mode, each operation causes some modification
of shared internal latch meta-data, such as a counter representing
the number of readers [5, 66]. Since every operation traverses the
tree via the root, this internal meta-data is updated on every oper-
ation, even if no pair of operations actually conflicts. If multiple
requests concurrently attempt to traverse the tree, then the time to
update the root latch’s meta-data is proportional to the number of
concurrent requests (Section 2.1). Modern B*tree indexing algo-
rithms are designed to avoid this frequent synchronization, while

using bottom-up algorithms for tree modifications (in the spirit of
B'"™{rees [50] and ARIES/IM [64]).

Cha et al. proposed an optimistic reader-writer synchronization
mechanism for B trees, OLFIT [21]. In OLFIT, requests acquire
exclusive latches to update a node and increment a node-specific
version number. To read a node, a request waits for the latch to
be released, reads the version number, and optimistically reads the
node’s contents. This read is then validated by checking that the
node’s version number is unchanged. Reading a node, performed
by every request while descending the tree, therefore requires no
writes to shared memory locations. Furthermore while node up-
dates acquire an exclusive latch, nodes higher up in the tree, such
as the root, are updated exponentially less often than leaves. As
a consequence, OLFIT eliminates frequent synchronization on the
root. OLFIT’s use of timestamps to validate optimistic reads is a
powerful design pattern for scalable reader-writer synchronization.
Timestamp-based validation forms the basis of several recent sys-
tems, including Masstree [57], a main-memory multi-core index,
and Silo [75], an optimistic main-memory multi-core database.

In a similar vein, the Bw-tree uses multi-versioning to elimi-
nate the need for reads to update shared meta-data [52]. The Bw-
tree maintains a node’s state as a linked-list of immutable “deltas”,
which must be combined to produce the state of the node. Re-
quests update a node by encoding the update in a new immutable
delta, and appending the delta to a node’s linked-list. Requests read
a node’s state by combining the linked-list of updates. The linked-
list is periodically compacted to bound the overhead of combin-
ing deltas. Bw-tree requests can read a node’s state without inter-
acting with updates — reads construct a snapshot of a node state
by following a linked-list of immutable deltas, while updates per-
form a latch-free append on the tail of the linked-list. However,
the increase in concurrency comes at the expense of increased read
overhead due to pointer dereferences and CPU cycles involved in
constructing a node’s state from a linked-list of deltas.

The OLFIT and Bw-tree algorithms differ due to their use of
latch-based and latch-free mechanisms, respectively. This differ-
ence does not impact the scalability of either algorithm. Instead,
both algorithms are scalable because requests avoid updating fre-
quently accessed shared memory, such as the root node, while de-
scending the tree. Both algorithms can therefore avoid the scalabil-
ity limitations of sequential updates to a single memory location at
the hardware-level (Section 2.1).

4. EXPERIMENTAL EVALUATION

4.1 Microbenchmarks

This section compares the performance of a latch-free synchro-
nization algorithm to three classes of latching algorithms; a busy-

waiting spinlock (TATAS spinlocks), backoff latches which put threads

to sleep under contention (Pthread mutexes), and scalable latches
which avoid spinning on a global memory location (MCS latches).
We evaluate each synchronization primitive on a benchmarking
framework which precisely controls amount of parallel and serial
work each thread must perform. Threads execute in two phases —
a serial and parallel phase. Both serial and parallel phases consist
of a fixed number of noop instructions. The duration of the se-
rial and parallel phases is varied by changing the number of noop
instructions to execute.

The synchronization algorithms differ in the mechanism they use
to execute the serial phase. In the latching algorithms, each thread
can only execute the serial phase if it owns the corresponding latch.
Threads in the latch-free algorithm use the approach proposed in
Herlihy’s generic methodology for constructing latch-free objects

[43]. Each thread reads the value of a counter prior to executing
the serial phase, speculatively executes the serial phase, and then
attempts to atomically cmp—and-swp the old counter value with
its incremented value. The thread successfully executes its serial
phase if the cmp-and-swp succeeds. If the cmp-and-swp fails,
the thread reads the value of the counter again and attempts to re-
execute the serial phase. The latch-free algorithm is representative
of other implementations of linearizable latch-free data-structures
[41,44,52,62]. The latch-free algorithm contains an optimization to
reduce spurious cmp—and-swp instructions executed by a thread.
After speculatively executing the serial phase, a thread will first
read the value of the counter and check that the value is unchanged
before attempting a cmp—and-swp instruction [18]. We do not
account for latch-free algorithms’ memory management overhead
(Section 2.2).

We run our experiments on a single 80-core machine, consisting
of eight 10-core Intel E7-8850 processors and 128GB of memory.
The operating system used is Linux, kernel version 3.19.0-61. We
perform three sets of experiments, each corresponding to a par-
ticular level of contention; low, medium, and high. The parallel
phase in each experiment consists of 200,000 cycles, while the low,
medium, and high contention serial phases respectively consist of
100, 1,000, and 10,000 cycles. These serial phase lengths respec-
tively correspond to 0.05%, 0.5%, and 5% of the parallel phase.

4.1.1 Low contention

Figure 1 shows the results of the low contention experiment. All
algorithms scale perfectly when the number of threads is less than
or equal to the number of available CPU cores (note that the x-axis
uses a log-scale). Figure 1b shows the latency distribution of each
algorithm under 80 threads (the number of threads is equal to the
number of available CPU cores) — there no significant difference
between the algorithms.

(a) Scalability (80 cores)
1.0M \ \ | \

| MCS —6—
= Latch-free

S06ML Pthread —&—
S TATAS —|—

=
90.4M
c

_08M

[
02M

| | & p
0 20 40 80 180 320 640
Number of Threads

.0OM
001

(b) Latency CDF (80 threads)

1.2 \\\\\\‘ T T \\\\\\‘ T T 1T T 117
o)
® 10 [
&
e 081 ves —o—
« 0.6 |- Latch-free
2 Pthread —é—
S 041 TATAS —B—
8 02 |
LI- 0-0 \\\\\\‘r \\\\\\‘ L1111
10’ 10° 10° 10*

Serial Phase Latency (cycles)

Figure 1: Performance of synchronization algorithms
under low contention. Serial phase = 100 cycles. Paral-
lel phase = 200,000 cycles. Serial phase = 0.05% Parallel
phase.

When the number of threads exceeds the available CPU cores,

we see differences between each algorithm. The MCS latch’s through-

put completely collapses. The MCS latch constructs a queue of
threads waiting to acquire the latch. If any thread in the queue
is preempted, even if it does not yet own the latch, then all later
threads are delayed until the preempted thread is rescheduled. In
contrast, the TATAS latch’s throughput does not degrade as signif-
icantly because, unlike in the MCS latch, preemptions of threads
that do not hold the latch do not affect other threads. The Pthread
latch’s throughput also degrades with increasing thread count, but
outperforms the TATAS latch. The Pthread latch puts threads to
sleep in the kernel if they fail to acquire the latch [2]. If a thread is
preempted while holding the latch, other threads will fail to acquire
the latch and get put to sleep in the kernel. The kernel is eventu-
ally left with no choice but to execute the thread which holds the
latch because other threads get put to sleep before their scheduling
quantum expires. This has the effect of diminishing the impact of
preemption on the Pthread latch’s throughput.

In contrast to the latch-based algorithms, the latch-free algo-
rithm’s throughput is unaffected by increasing the number of threads
beyond available CPU cores. Throughput does not decrease be-
cause thread preemption in the latch-free algorithm never impedes
other threads. Throughput does not increase because the server’s
physical CPU resources are fully utilized at 80 threads. (The server
contains 80 CPU cores.) The use of more threads, beyond 80, there-
fore does not increase throughput.

4.1.2 Medium contention

Figure 2 shows the results of the medium contention experiment
(serial phase is 0.5% of the parallel phase).

(a) Scalability (80 cores)

1.0M :

\
MCS —6—
.. 0-8 M atch-free
a Pthread —é—
£06M- TATAS —&—

=
204M
IS

—
02M

oM
001

Number of Threads

15 (b) Latency CDF (80 threads)
. T ‘ T T T ‘ T T T ‘ T T T ‘

1.0
0.8 I
0.6
0.4
0.2

0.0 #g— L
103—' 4

Fraction of Requests

10° 10° 107 108
Serial Phase Latency (cycles)

Figure 2: Performance of synchronization algorithms
under medium contention. Serial phase = 1,000 cycles.
Parallel phase = 200,000 cycles. Serial phase = 0.5% Par-
allel phase.

The TATAS latch scales until 40 cores, but its throughput drops
dramatically thereafter; its throughput at 80 cores is less than half
its throughput at 10 cores. The reason for the drop in throughput is

the transient flood of xchgq instructions executed by cores when
the latch changes ownership. These xchgq instructions impede
latch holding threads when they attempt to release the latch, effec-
tively increasing the length of the serial phase. Furthermore, the
effect of spurious xchgq instructions gets worse with increasing
core count because more cores contribute to the transient flood of
xchgq instructions.

The latch-free algorithm scales to 50 cores, but like the TATAS
latch, its throughput drops significantly thereafter. The reason for
the drop in throughput is also similar. Threads read the value of
a counter before executing the serial phase, and validate that the
value of the counter is the same at the end of the serial phase us-
ing a cmp-and-swp instruction. If multiple threads attempt to
execute the n'" iteration of the serial phase, then only one thread
will succeed. However, some of the threads will also attempt spu-
rious cmp-and-swp instructions because they do not notice the
change in the counter value (despite the optimization which checks
the value of the counter before attempting the cmp-and-swp).
These spurious cmp—and-swp instructions will delay threads at-
tempting to execute later iterations because atomic instructions on
the same memory word are executed sequentially. As in the TATAS
latch, this effectively increases the length of the serial phase.

The Pthread latch’s throughput does not collapse after peaking.
This is because the Pthread latch has a built-in contention handling
mechanism. Threads attempt to acquire the latch with two succes-
sive cmp-and-swp attempts; if they fail, they are put to sleep in
the Linux kernel [2]. The Pthread latch’s latency distribution shows
the effect of backing-off (Figure 2b). About 75% of serial phase ex-
ecutions occur without threads backing off, while the other 25% are
executed by threads that are put to sleep in the kernel — indicated
by the two distinct latency profiles of requests. The variance in
latency of serial phases executed without backoff (at the left-hand
side of the graph) occurs because of competing cmp-and-swp
requests.

The MCS latch scales perfectly when the number of threads does
not exceed the number of CPU cores. When acquiring the latch,
threads perform a single xchgq instruction on the latch word and
then spin on a local cache line [59], avoiding the overheads associ-
ated with transient floods of spurious cmp—-and-swp instructions
and cache invalidations (Section 2.1.1). The MCS latch’s latency
distribution has a much smaller mean and variance than other syn-
chronization algorithms. The differences in latency across the last
20% of requests is due to queuing delay.

4.1.3 High contention

Figure 3 shows the results of the high contention experiment.
We set the size of the serial phase to 5% of the parallel phase. The
MCS latch’s throughput increases until 20 cores and then plateaus.
The reason is a lack of parallelism in the workload (1/20th of each
transaction is serial).

The TATAS and latch-free algorithms exhibit the same behav-
ior as in the medium contention experiment. Throughput increases
until 20 cores and then begins to decrease. The difference be-
tween both lines occurs because the TATAS latch’s transient be-
havior when the latch changes ownership does not depend on the
length of the critical section. This is because cores using the TA-
TAS latch spin in a tight loop. In contrast, cores using the latch-free
algorithm speculatively execute the serial phase between attempts
to commit via cmp—and-swp instructions.

The Pthread latch does not outperform the latch-free algorithm’s
throughput in this experiment. As Figure 3b indicates, a much
larger fraction of threads are put to sleep in the Linux kernel (about
75%).

(a) Scalability (80 cores)

MCS —o—
= 04M Latch-free
803 M Pthread —é—
S TATAS —/—
>
202M
<

Number of Threads

- (b) Latency CDF (80 threads)
. T ‘ T T T ‘ T T T ‘ T T T ‘ T

[]

3 MCS —e—

I 0.8 |- Latch-free

o Pthread —&—

5 0.6 TATAS —&— -

S 04 _

8 02 .

“ 0.0 b) o
~10° 10 10° 108 107 108

Serial Phase Latency (cycles)

Figure 3: Performance of synchronization algorithms
under high contention. Serial phase = 10,000 cycles. Par-
allel phase = 200,000 cycles. Serial phase = 5% Parallel
phase.

Figure 3b also shows that the MCS latch provides more reli-
able performance than any other algorithm. This is because MCS
latches determine the priority of threads prior to the execution of
the serial phase. The latency trend has an important implication
for concurrent applications; if the progress of a system depends on
stragglers (for instance, algorithms based on barrier synchroniza-
tion [42]), then non-scalable synchronization algorithms can cause
serious degradation in performance.

4.2 Queuing experiment

This section shows the effect of avoiding repeated updates against
a single shared memory location on a concrete example. We built
two versions of a concurrent queue, one latch-based, the other latch-
free. Both versions have been used in recently published systems.
Jung et al., and Wang and Kimura used the latch-based concurrent
queue to construct lists of logical locks in a multi-core optimized
lock manager [47,78]. The latch-based queue is also used to deter-
mine thread priorities in the MCS latch [59]. Levandoski et al. use
the latch-free version of the queue to construct linked-lists of delta
updates for Bw-tree nodes (Section 3.2) [52].

1 xchg_enqg(Node *xtail, Node =*gnode) :
2 gnode->prev = INVALID

3 old_tail = xchgg(tail, gnode)

4 gnode->prev = old_tail

Figure 4: Pseudocode for latch-based enqueue
operations using the xcghq instruction.

Figure 4 shows pseudo-code for the latch-based enqueue algo-
rithm. The algorithm takes two arguments, a reference to the tail of
the list (which is itself a pointer to a node), and a reference to the

node to be inserted. The new node’s prev pointer is first marked
as INVALID (line 2). The algorithm then atomically changes the
tail to point to new node using the xchgq instruction (line 3). The
xchgq instruction returns the prior value of the tail, and the new
node’s prev pointer is then changed to reference the old tail value
(line 4). The list is temporarily rendered inconsistent between lines
3 and 4 — after atomically changing the tail to reference the new
node (line 3), the node’s prev pointer does not yet point to the
valid prior node. To prevent threads concurrently traversing the list
from observing this inconsistency, the new node’s prev pointer
is marked INVALID on line 2. Traversing threads spin on any
node’s INVALID prev pointer until it is changed by the insert-
ing thread on line 4. A new node’s prev pointer effectively serves
as an exclusive latch to prevent traversing threads from observing
inconsistent state.

1 cmpswp_eng(Node *xtail, Node =*gnode) :

2 while True:

3 gnode->prev = xtail

4 if cmpswp(tail, gnode->prev, gnode):
5 break

Figure 5: Pseudocode for latch-free enqueue operations
using the cmp—and-swp instruction.

Figure 5 shows pseudo-code for the latch-free enqueue algo-
rithm. The latch-free enqueue algorithm takes a reference to the list
tail and a reference to the new node as input. The algorithm first and
optimistically sets the new node’s prev pointer to the value of the
tail. The tail’s value is obtained by performing a read from memory
(line 3). The algorithm then attempts to atomically insert the new
node into the list by using an atomic cmp—and-swp instruction.
The cmp-and-swp atomically compares the latest value of the
tail with the new node’s prev pointer and sets the tail’s value to
reference the new node if the comparison succeeds (line 4). If the
comparison fails, the cmp—and-swp does not write the tail, and
the algorithm retries the steps above.

We compare the performance of these two algorithms using a
simple multi-threaded experiment. Each thread repeatedly enqueues
new nodes to the tail of a shared list using one of the algorithms
above. On successfully performing an enqueue, each thread waits
for a specified duration before attempting the next enqueue. We
vary contention in the experiment by varying this duration between
enqueue requests. We measure the overall throughput of each al-
gorithm (as the number of enqueues performed per second) under
low and high contention.

Figure 6a shows the result of the high contention experiment.
In this experiment, the duration between a successful enqueue and
the next enqueue on every thread is set to 10,000 cycles. Both
algorithms suffer from the scalability bottleneck of frequently up-
dating the tail — xchgqg and cmp-and-swp instructions are ex-
ecuted sequentially against the tail. However, the latch-based al-
gorithm outperforms the latch-free algorithm by nearly 3x at 80
threads. The difference arises because the latch-free algorithm exe-
cutes both successful and unsuccessful cmp-and-swp operations
against the tail. There are two sources of unsuccessful cmp-and-—
swp operations. First, several threads may read the latest value
of the tail and subsequently attempt to atomically insert their new
nodes into the list, but only one will succeed. Second, due to
hardware delays in propagating changes in the tail’s value (Sec-
tion 2.1), some threads may read a stale tail value and perform a
spurious cmp—and-swp which will never succeed. The latch-free
algorithm in our microbenchmark evaluation experienced similar

45M (a) High contention (10,000 cycles per enqueue)
: \ T T T T T
40M |
. 35M i
3 3.0M
5 25M
3 20M
£ 1.5M
1.0M XCHGQ (latch-based) —B—
0.5M CMI‘D-SWA‘I3 (Iatcr?-free) ‘ﬁl(— | | —
0.0 M1 0 20 30 40 50 60 70 80
Number of Threads
10M (b) Low contention (100,000 cycles per enqueue)
: T T T T T T
0.8M
5
So6ME
(@)
>
g 04 M-
= 02M L XCHGQ (latch-based) —B&—
BN CMP-SWAP (latch-free) —¥—
\ \ \ \ \ \
0.0 M1 0 20 30 40 50 60 70 80

Number of Threads

Figure 6: Scalability of latch-free and latch-based queues
under high and low contention. Throughput is measured
as number of successful enqueues per second.

sources of overhead (Section 4.1). In contrast, the latch-based al-
gorithm performs strictly as many xchgq instructions as there are
enqueues, and therefore experiences significantly less contention
for the tail of the linked-list.

Note that in the latch-based xchgq algorithm, threads traversing
the list must sometimes pay the cost of waiting for a newly inserted
node’s prev pointer to transition from INVALID to a valid ref-
erence. However, this cost is minimal because a newly inserted
node’s INVALID pointer is changed in the instruction following
the xchgqg (Figure 4). Furthermore, since a node’s prev pointer
can only be updated by the corresponding inserting thread, the
thread experiences no contention while changing a node’s prev
pointer.

Figure 6b shows the result of the low contention experiment. The
duration between a successful enqueue and the next enqueue in this
case is set to 100,000 cycles. There is no difference in the through-
put of the algorithms under low contention.

The experiments in this section show the importance of design-
ing synchronization mechanisms that minimize repeated updates on
contended shared memory locations. Repeated updates can cause
scalability issues because they are processed sequentially, and there-
fore increase the amount of sequential execution in a concurrent
program. A synchronization algorithm’s ability to reduce the num-
ber of these sequential operations on shared memory locations is
the single biggest factor that influences its scalability.

S. IMPLICATIONS

The results of our experimental evaluation indicate that, at the
hardware level, the only factor that affects the scalability of a syn-
chronization mechanism is its ability to avoid repeatedly reading or
writing a particular location in memory. This can be achieved by
designing synchronization algorithms in which threads spin on dif-
ferent memory locations (as in the MCS latch) or use backoff-based

contention management mechanisms (as in the Pthread latch). How-
ever, we also found that when a system is over-subscribed, pre-
emptive scheduling can impact the performance of user-space syn-
chronization mechanisms. Based on these observations, this sec-
tion outlines avenues for future research in the design of multi-core
database systems.

5.1 Context scheduling mechanisms

The limitations of user-level scheduling mechanisms arise be-
cause context scheduling software underneath the database, such as
the operating system or hypervisor, is unaware of user-level sched-
uling. For instance, in our experimental evaluation (Section 4),
both MCS and TATAS latches were built using user-level mech-
anisms, which performed badly when latch-holding threads were
preempted because the number of available threads exceeded the
number of available cores. This is far from a database specific
problem. For instance, Microsoft’s distributed actor-based pro-
gramming model, Orleans, employs user-level cooperative sched-
uling of tasks. The authors of the system explicitly state that Or-
leans is not intended to be run in a multi-tenant environment [16].
This assumption is often perfectly acceptable, even in virtualized
environments. Indeed, Orleans is widely deployed on Microsoft
Azure [3]. Furthermore, several classes of Amazon EC2 guarantee
that a single virtual core is assigned exclusive access to a hardware
hyperthread [1].

The utility of cooperative scheduling for server applications has
long been recognized, and has received recent attention from the
database research community. For instance, Johnson et al. propose
a user-level load control mechanism which detects when a system
may be overloaded and dynamically returns threads to the operating
system [46]. Giceva et al. propose building custom operating sys-
tem mechanisms for non-preemptive task-based scheduling [35]. In
addition, there exists a rich history of research on operating system
support, such as scheduler activations [13], for user-level sched-
uling. These mechanisms have seen recent adoption in Windows,
which supports User-Mode Scheduling (UMS), a form of coopera-
tive user-level thread-scheduling [7].

5.2 Message-passing

In general, any concurrent programming model based on com-
munication via shared memory cannot avoid synchronization. If
threads can perform conflicting modifications to data, then some
form of synchronization — using latching or latch-free mechanisms
— is necessary in order to prevent shared data-structures from be-
ing rendered inconsistent due to race conditions. The deleterious
impact of synchronization on scalability is therefore a fundamental
aspect of concurrent programming models based on shared mem-
ory.

As an alternative to shared memory, threads can use explicit
message-passing as a communication mechanism. The basic idea
behind message-passing is to avoid sharing state across multiple
threads. Instead, each thread maintains local state, and only that
thread is permitted to read or update that state. Explicit message-
passing can circumvent the synchronization overhead associated
with shared-memory communication. The problem with shared
memory synchronization is that its overhead gets worse with in-
creasing core counts. On the other hand, message-passing explic-
itly bounds synchronization overhead.

As a consequence of its attractive properties with respect to shared
memory, several multi-core systems have been built with the ex-
plicit goal of using message-passing as a communication mecha-
nism. The Barrelfish operating system [15] runs independent ker-
nel instances on each CPU core in a multi-core server. Remote

core locking [55] is a user-space library which employs a subset of
a machine’s cores as “server” cores. A particular critical section is
assigned to a server core, which executes critical sections on be-
half of threads. Ren et al. use explicit message-passing to avoid
synchronization on concurrency control meta-data in database sys-
tems [66].

One drawback of message-passing is queuing delay of messages
on cores. This queuing delay can impact the overall performance
of a system, if a particular request must go through a sequence
of multiple messages. For instance, Ren et al. found that queuing
delay can impact the performance of higher level abstractions built
on top of message-passing, such as concurrency control [66].

Finally, the distinction between message-passing and shared--
memory communication is not rigid. There exist several mediums
in between. For example, it is possible to limit shared-memory
interactions to threads which execute on a single NUMA socket,
while using explicit message-passing to communicate across sock-
ets.

5.3 Advanced planning

Fundamentally, synchronization constrains the schedules of con-
flicting operations on shared data. The precise nature of a valid
schedule depends on the application and algorithm. For example,
networking algorithms are resilient to stale information by design,
and can hence tolerate reading stale information to make routing
decisions [58]. Other applications, such as key-value stores may
guarantee linearizability for single key operations [57]. The lat-
ter imposes more constraints on schedules of conflicting opera-
tions, and this difference is in turn reflected in the synchronization
mechanisms used by each algorithm. Synchronization dynamically
constrains the execution of conflicting operations by forcing their
corresponding contexts to coordinate using latching or latch-free
mechanisms.

A system could alternatively determine valid schedules prior to
executing operations. Pre-determining schedules eliminates or re-
duces synchronization overhead when running operations because
a valid schedule has already been determined. At a high level, a
pre-determined schedule effectively partitions operations into sets,
such that operations in two different sets do not conflict. The op-
erations in different sets can therefore be executed concurrently
without the need for any synchronization. The PALM B-tree in-
dex is an example of an algorithm that employs such a scheduling
mechanism [68]. PALM supports normal B-tree index operations,
such as search, delete, and insert. PALM accumulates batches of
index operation requests, and performs an analysis on the oper-
ations in each batch. During its analysis, PALM divides oper-
ations into non-conflicting sets, and then assigns a single thread
to execute the operations in a particular set. Threads are thus as-
signed independent pieces of work to obviate any synchronization
during insert, delete, and lookup operations. In contrast, a con-
ventional B-tree implementation requires threads to perform some
form of synchronization in order to correctly perform updates and
lookups [21,50-52,57,70].

Recent work on multi-core concurrency control for database sys-
tems also makes use of advanced planning [31-33]. The key in-
sight underlying these systems is that pre-determining schedules
can avoid the overheads of concurrency control mechanisms based
on locking or optimistic validation. These systems totally order
transactions prior to their execution, and then relax the total or-
der into a partial order based on actual conflicts between trans-
actions. The partial ordering relationship between transactions is
represented using an explicit dependency graph constructed during
an analysis phase prior to transactions’ execution. These systems

use an event-driven task parallel execution model, where ordering
constraints between tasks are encoded via the explicit dependency
graphs above.

While advanced planning can eliminate or reduce the need for
synchronization, its mileage varies depending on the application
for two reasons. First, it introduces a tradeoff between scalabil-
ity and latency — advanced planning improves scalability by re-
ducing synchronization, but creates schedules by batching pending
operations, which increases latency. This increased latency may
hurt overall system performance. For instance, in the B-tree exam-
ple above, increased latency of index operations may cause logi-
cal locks on the corresponding data items to be held for longer or
may increase the chances for optimistic validation errors to mani-
fest [66]. Advanced planning therefore typically requires an end-
to-end understanding of the impact of increased latency on other
unrelated components or higher level abstractions.

Second, in order to construct schedules with opportunities for
concurrent execution, advanced planning requires that conflicts be-
tween operations can be deduced prior to their execution. It should
be noted however, that conflicts between operations need not al-
ways be precise. Advanced planning can only assign concurrent
work to tens or hundreds of physical CPUs. The number of non-
conflicting sets of operations therefore does not necessarily need to
be very large.

The multi-core transaction processing mechanisms above are ex-
plicitly designed to work around these two limitations. First, in
order to avoid the deleterious impact of increased latency, trans-
action schedules are created prior to their execution. This extra
latency involved in creating schedules does not increase the dura-
tion for which conflicting transactions are blocked due to conflicts.
On the contrary, it permits significantly more concurrency between
conflicting transactions than corresponding state-of-the-art concur-
rency control protocols by permitting the construction of aggressive
serializable transaction schedules [31, 32]. Second, to determine
whether transactions conflict, these transaction processing mech-
anisms speculatively execute a subset of transactions’ logic or in-
stead employ coarse-grained conflict information, at the granularity
of partitions or even entire tables, which can be obtained via static
analysis of transactions [32].

5.4 Asynchronous coordination

The best way to avoid synchronization is to use algorithms that
do not require it. There is a rich body of work on distributed
systems designed to avoid synchronization [14, 23, 53, 54, 69, 73].
These systems carefully constrain the guarantees they provide ap-
plications so that they can be implemented using asynchronous co-
ordination mechanisms.

Database system components which do not require synchronous
coordination can therefore be implemented using these techniques.
An example of this is the physical redo phase in recovery pro-
tocols such as Silo’s [75,79]. Physical redo log records corre-
spond to a single database object, and Silo timestamps physical
redo log records with sequence numbers. If it encounters multiple
log records to redo against the same page, then the latest log record
must win. Physical replay of redo log records can therefore be im-
plemented in a coordination-free manner because we can apply the
last-writer-wins rule to resolve race conditions [77] — the state of
a particular object is guaranteed to be deterministically recovered
regardless of the order in which log records are processed.

Even if an algorithm cannot be directly implemented using asyn-
chronous coordination, it may be possible to exploit domain-specific
knowledge to use asynchronous coordination under restricted set-
tings. A good example of such an algorithm is the read-copy-update

(RCU) read-writer synchronization mechanism used in the Linux
kernel [58]. RCU uses context-switch information to determine
whether a deleted object has any pending references. When an
object is deleted by a particular thread, RCU permits concurrent
threads to hold a reference to the object, and defers freeing the ob-
ject’s memory until no thread holds a reference to the object. Since
threads can only obtain access to an object while they are in the ker-
nel, a deleted object’s memory can be reclaimed after every CPU
core has performed at least one context switch. RCU eliminates
the need for more expensive mechanisms of tracking live refer-
ences to an object, such as reference counting. Maintaining ref-
erence counts can be expensive because it requires writes to shared
memory. These writes could turn into a scalability bottleneck on
frequently read objects [5, 66].

Recently proposed multi-version databases systems use memory
management techniques based on RCU [31, 48]. These systems
assign transactions to batches or epochs, and maintain a low-water-
mark corresponding to the latest epoch such that every transaction
in the epoch has finished executing. The memory corresponding to
versions of records deleted at or before the low-watermark epoch
can be reclaimed because the deleted objects can never be accessed
by transactions from epochs that follow the low-watermark.

Centiman is a distributed optimistic database system that vali-
dates transactions using asynchronous coordination [29]. Centiman
shards database objects across validator nodes, whose only role is
to validate transactions. Centiman clients drive transaction execu-
tion, and forward transactions to the appropriate set of validators
to obtain a commit decision. Each validator checks if a transac-
tion’s reads are invalidated by the writes of earlier transactions, and
if not, determines that the transaction can commit and remembers
the writes performed by the transaction on its partition. The client
commits the transaction if every validator determines that a trans-
action can commit. Validators which determine that a transaction
can commit even though it actually aborts (due to conflicts found
on other validators), continue to validate later transactions as if the
aborted transaction had committed. As a consequence, later trans-
actions may be conservatively aborted even though they could have
committed. Importantly, however, this protocol guarantees that
Centiman never commits a transaction that should have aborted.
Centiman uses an asynchronous protocol to periodically phase out
data on validators that locally committed transactions which were
actually aborted. Centiman effectively trades off precision during
commit processing for avoiding synchronous coordination in con-
ventional commit protocols such as two-phase commit [17].

Although they both solve problems that seem to necessitate syn-
chronous coordination, RCU and Centiman demonstrate that it is
possible to exploit domain-specific knowledge to implement effi-
cient asynchronous coordination mechanisms.

6. CONCLUSIONS

Latch-free algorithms usually (but not always) outperform their
latch-based counterparts when the number of OS contexts exceeds
the number of cores in the system. However, as modern database
systems — especially main-memory database systems — move to
a process model where there is a one-to-one mapping between OS
contexts and processing cores, the progress guarantees of latch-
free algorithms are marginalized. Instead they are subject to the
same types of synchronization overheads as latch-based algorithms.
Our generic latch-free algorithm was never able to outperform a
scalable queue-based latching algorithm in such an environment.
Furthermore, latch-free algorithms often necessitate idiosyncratic

memory management mechanisms and other complexities not present

in latch-based systems. We thus caution the database community

from rushing to implement latch-free algorithms without a careful
investigation of scalable latch-based alternatives.

Finally, we emphasize that designers of scalable multi-core data-
base systems should focus on avoiding frequent synchronization on
a single location in shared memory. The scalability of a system
is determined by its ability to avoid this frequent synchronization
rather than its use of latch-based or latch-free algorithms.

7. ACKNOWLEDGMENTS

We thank Joseph Hellerstein, Hideaki Kimura, Justin Levandoski,
Ippokratis Pandis, Julian Shun, and the anonymous CIDR 2017 re-
viewers for their insightful comments on earlier versions of this pa-
per. This work was sponsored by the NSF under grant IIS-1527118.

8. REFERENCES

[1] EC2 instance types — amazon web services. https://aws.amazon.

com/ec2/instance-types/.

[2] The GNU C library (glibc). https://www.gnu.org/software/libc/.

[3] Microsoft orleans. https://dotnet.github.io/orleans/.

[4] Possible typo/bug in the michael and scott queue white paper

psuedo-code. https://tinyurl.com/zx7dqsb.

Reader/writer locks and their (lack of) applicability to fine-grained

synchronization. https:/tinyurl.com/gv7zfjt.

Use-after-free bug in maged m. michael and michael 1. scott’s

non-blocking concurrent queue algorithm. https://tinyurl.com/h4;jlutf.

[71 Windows User-Mode Scheduling. https://goo.gl/WJPSL3.

[8] X1 instances for ec2 — ready for your memory-intensive workloads.

https://tinyurl.com/hc7bgzz/.

Xv6, a simple Unix-like teaching operating system. https://pdos.

csail.mit.edu/6.828/2011/xv6.html.

[10] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control
performance modeling: Alternatives and implications. 7ODS, 12(4),
1987.

[11] J. Alemany and E. W. Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In PODC, 1992.

[12] T. E. Anderson. The performance of spin lock alternatives for
shared-money multiprocessors. TPDS, 1(1), 1990.

[13] T.E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.
Scheduler activations: Effective kernel support for the user-level
management of parallelism. 7TOCS, 10(1), 1992.

[14] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
1. Stoica. Highly available transactions: Virtues and limitations.
PVLDB, 7(3), 2013.

[15] A.Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania. The multikernel: A new
OS architecture for scalable multicore systems. In SOSP, 2009.

[16] P.Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans:
Distributed virtual actors for programmability and scalability.
Technical Report MSR-TR-2014-41, 24, Microsoft Research, 2014.

[17] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[18] B. N. Bershad. Practical considerations for lock-free concurrent
objects. Technical Report CMU-CS-91-183, CMU Computer
Science, 1991.

[19] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
Non-scalable locks are dangerous. In OLS, 2012.

[20] B. Cantrill and J. Bonwick. Real-world concurrency. Queue, 6(5),
2008.

[21] S. K. Cha, S. Hwang, K. Kim, and K. Kwon. Cache-conscious
concurrency control of main-memory indexes on shared-memory
multiprocessor systems. In VLDB, 2001.

[22] D. Comer. The ubiquitous b-tree. CUSR, 11(2), 1979.

[23] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and
D. Maier. Logic and lattices for distributed programming. In SoCC,
2012.

[5

—_

[6

—_

[9

—

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.gnu.org/software/libc/
https://dotnet.github.io/orleans/
https://tinyurl.com/zx7dqsb
https://tinyurl.com/gv7zfjt
https://tinyurl.com/h4jlutf
https://goo.gl/WJPSL3
https://tinyurl.com/hc7bgzz/
https://pdos.csail.mit.edu/6.828/2011/xv6.html
https://pdos.csail.mit.edu/6.828/2011/xv6.html

[24]

[25]

[26]

[27]
[28]

[29]

(30]

[31]
[32]
(33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
(471

(48]

[49]
[50]
[51]
[52]

[53]

[54]

T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In
SOSP, 2013.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql server’s
memory-optimized oltp engine. In SIGMOD, 2013.

D. Dice, D. Hendler, and I. Mirsky. Lightweight contention
management for efficient compare-and-swap operations. CoRR,
abs/1305.5800, 2013.

D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In DISC,
2006.

D. Dice and N. Shavit. Tlrw: return of the read-write lock. In SPAA,
2010.

B. Ding, L. Kot, A. Demers, and J. Gehrke. Centiman: Elastic, high
performance optimistic concurrency control by watermarking. In
SoCC, 2015.

R. Ennals. Software transactional memory should not be
obstruction-free. Technical Report IRC-TR-06-052, Intel Research
Cambridge, 2006.

J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion
concurrency control. PVLDB, 8(11), 2015.

J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein. High performance
transactions via early write visibility. PVLDB, 10(5), 2017.

J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation of
transactions in database systems. In SIGMOD, 2014.

K. Fraser and T. Harris. Concurrent programming without locks.
TOCS, 25(2), 2007.

J. Giceva, G. Zellweger, G. Alonso, and T. Rosco. Customized os
support for data-processing. In DaMoN, 2016.

M. Greenwald and D. Cheriton. The synergy between non-blocking
synchronization and operating system structure. In OSDI, 1996.

S. Harizopoulos and A. Ailamaki. A case for staged database
systems. In CIDR, 2003.

T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In DISC, 2001.

J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a
database system. Now Publishers, 2007.

M. Herlihy. Wait-free synchronization. TOPLAS, 13(1), 1991.

M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In DISC,
2003.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers, 2008.

M. P. Herlihy. A methodology for implementing highly concurrent
data structures. In PPOPP, 1990.

T. Horikawa. Latch-free data structures for dbms: design,
implementation, and evaluation. In SIGMOD, 2013.

R. Johnson, I. Pandis, and A. Ailamaki. Eliminating unscalable
communication in transaction processing. VLDBJ, 23(1), 2014.

R. F. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decoupling
contention management from scheduling. In ASPLOS, 2010.

H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A
scalable lock manager for multicores. In SIGMOD, 2013.

K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast
memory-optimized database system for heterogeneous workloads. In
SIGMOD, 2016.

H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM TODS, 6(2), 1981.

P. L. Lehman and S. B. Yao. Efficient locking for concurrent
operations on b-trees. TODS, 6(4), 1981.

V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The art of
practical synchronization. In DAMON, 2016.

J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A
b-tree for new hardware platforms. In /ICDE, 2013.

C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguica, and

R. Rodrigues. Making geo-replicated systems fast as possible,
consistent when necessary. In OSDI, 2012.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops. In SOSP, 2011.

[55]

[56]

[571
(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

(751
[76]
(771
[78]

[79]

J.-P. Lozi, F. David, G. Thomas, J. L. Lawall, G. Muller, et al.
Remote core locking: Migrating critical-section execution to improve
the performance of multithreaded applications. In USENIX ATC,
2012.

D. Makreshanski, J. Levandoski, and R. Stutsman. To lock, swap, or
elide: On the interplay of hardware transactional memory and
lock-free indexing. PVLDB, 8(11), 2015.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. In EuroSys, 2012.

P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger,

R. Russell, D. Sarma, and M. Soni. Read-copy update. In OLS, 2001.
J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. TOCS, 9(1),
1991.

M. M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. TPDS, 15(6), 2004.

M. M. Michael and M. L. Scott. Correction of a memory
management method for lock-free data structures. Technical Report
TR-599, University of Rochester Computer Science, 1995.

M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In PODC,
1996.

M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory
multiprocessors. JPDC, 51(1), 1998.

C. Mohan and F. Levine. Aries/im: An efficient and high
concurrency index management method using write-ahead logging.
In SIGMOD, 1992.

T. Neumann, T. Miihlbauer, and A. Kemper. Fast serializable
multi-version concurrency control for main-memory database
systems. In SIGMOD, 2015.

K. Ren, J. M. Faleiro, and D. J. Abadi. Design principles for scaling
multi-core oltp under high contention. In SIGMOD, 2016.

L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for
mimd parallel processors. In ISCA, 1984.

J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. Palm:
Parallel architecture-friendly latch-free modifications to b+ trees on
many-core processors. PVLDB, 4(11), 2011.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A
comprehensive study of convergent and commutative replicated data
types. Technical Report RR-7506, Inria — Centre
Paris-Rocquencourt, 2011.

V. Srinivasan and M. J. Carey. Performance of b+ tree concurrency
control algorithms. VLDBJ, 2(4), 1993.

M. Stonebraker. Operating system support for database management.
CACM, 24(7), 1981.

M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos,

N. Hachem, and P. Helland. The end of an architectural era (it’s time
for a complete rewrite). In VLDB, 2007.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in bayou, a
weakly connected replicated storage system. In SOSP, 1995.

A. Thomson, T. Diamond, S. chun Weng, K. Ren, P. Shao, and D. J.
Abadi. Calvin: Fast distributed transactions for partitioned database
systems. In SIGMOD, 2012.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
Transactions in Multicore In-memory Databases. In SOSP, 2013.

J. D. Valois. Lock-free linked lists using compare-and-swap. In
PODC, 1995.

W. Vogels. Eventually consistent. CACM, 52(1), 2009.

T. Wang and H. Kimura. Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. PVLDB,
10(2), 2016.

W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast
durability and recovery through multicore parallelism. In OSDI,
2014.

	Introduction
	Latch-free algorithms
	Scalability
	Synchronization performance
	Scheduling requests

	Memory management
	Copying overhead
	Garbage collection
	Memory re-use

	Complexity
	Modularity

	Discussion

	Case study: Tree-based indexes
	Contention for logical locks
	Contention on shared memory

	Experimental evaluation
	Microbenchmarks
	Low contention
	Medium contention
	High contention

	Queuing experiment

	Implications
	Context scheduling mechanisms
	Message-passing
	Advanced planning
	Asynchronous coordination

	Conclusions
	Acknowledgments
	References

