

1 **Title: Single Base-Pair Conformational Switch Modulates miR-34a**

2 **Targeting of Sirt1 mRNA**

3

4 **Authors:** Lorenzo Baronti¹, Ileana Guzzetti^{1†}, Parisa Ebrahimi^{2‡}, Sarah Friebe Sandoz^{1†},
5 Emilie Steiner^{1†§}, Judith Schlagnitweit¹, Bastian Fromm³, Luis Silva¹, Carolina Fontana^{1‡},
6 Alan A. Chen² and Katja Petzold^{1*}

7 **Affiliations:**

8 ¹Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm
9 Sweden.

10 ²Department of Chemistry and RNA Institute, University at Albany, SUNY, Albany, NY,
11 12222 USA

12 ³Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren
13 Institute, Stockholm University, Stockholm, Sweden

14 [§]Current affiliation: Laboratoire SABNP, UMR INSERM 1204, Université d'Evry-Val-
15 d'Essonne – Université Paris-Saclay, Evry, France

16 [‡]Current affiliation: Departamento de Química del Litoral, Facultad de Química & CENUR
17 Litoral Norte, Universidad de la República, Paysandú, Uruguay

18 [†]These authors contributed equally to this work

19 ^{*}Correspondence to: katja.petzold@ki.se

20

1 **Summary:**

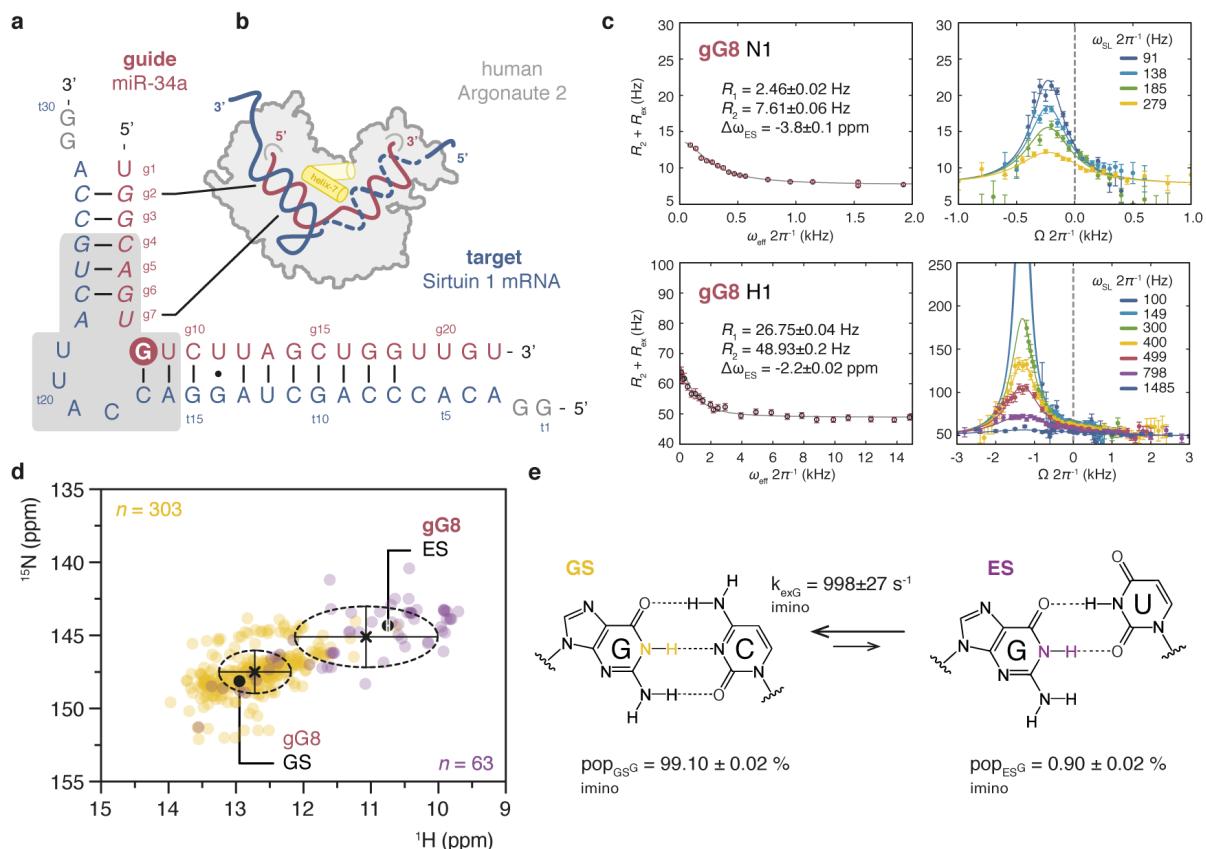
2 MicroRNAs (miRNAs) regulate translation levels of messenger RNAs (mRNAs). Currently,
3 the main parameter explaining target selection and repression efficiency is the base-pairing
4 between the miRNA and mRNA in the seed region. Employing $R_{1\rho}$ relaxation dispersion
5 Nuclear Magnetic Resonance and molecular simulation, we reveal a dynamic switch based on
6 a single base-pair rearrangement in the miRNA–mRNA duplex, elongating the weak 7mer
7 seed to a complete 8mer seed. This switch additionally causes a co-axial stacking of the seed
8 and supplementary helix in human Argonaute 2 protein (hAgo2) such that the active state,
9 reminiscent of prokaryotic Ago, becomes favored. Stabilizing this transient state exhibits
10 enhanced target repression in cells, indicating the importance of the miRNA–mRNA
11 structure. Our observations tie together the current understanding of the step-wise miRNA
12 targeting process from the initial “screening” state to an “active” state and unveil the role of
13 the RNA duplex in hAgo2 beyond the seed.

14

1 **Main Text:**

2 MicroRNAs (miRNAs), non-coding RNA molecules, regulate gene expression by targeting
3 messenger RNAs (mRNAs). Each mature miRNA, ~22 nucleotides (nts), is bound to one
4 Argonaute protein (hAgo1-4), forming the RNA-Induced Silencing Complex (RISC). In
5 RISC, nts 2-6 of the guide miRNA (g2-g6) are pre-arranged to recognize mRNA targets
6 through Watson-Crick (WC) base-pairing¹⁻³ in the seed (Fig. 1a-b). This base-pair
7 complementarity (g2-g8) largely determines RISC activity^{4,5}, e.g. sites with only g2-g6
8 (5mer) complementarity are rejected as unspecific. In *hAgo2*, sites with prolonged base-
9 pairing, \geq g2-g7 (\geq 6mer), are able to override the checkpoint imposed by helix-7 and induce a
10 conformational transition in the protein allowing an extended 3'-pairing of the RNA⁶. The
11 interplay between the 3'-end of the seed and helix-7 modulates this process, due to inherent
12 flexibility⁷. Bioinformatics analysis of validated miRNA–mRNA pairs cannot discern
13 sequence determinant in this region, beyond a preference for forming bulges⁸. X-ray
14 structures of ternary complexes are unable to resolve the central region of the duplex,
15 supporting its flexibility⁹. *In vitro* biochemical studies showed that mismatches in this region
16 contribute little to target binding affinity but can impair catalytic siRNA cleavage in
17 *Drosophila* Ago2¹⁰. Implying that dynamics of the central RNA bases are essential for the
18 fate of target mRNAs, however, the precise nature of the guide-target interaction beyond the
19 seed region remains unclear.

20 We employ Nuclear Magnetic Resonance (NMR) to observe this dynamic process underlying
21 miRNA–mRNA targeting. To deduce a structural model of the RNA's conformational
22 transition, we combine these measurements with molecular simulations and Dual-Luciferase
23 Reporter (DLR) assay.


1 We study hsa-miR-34a-5p (miR-34a), part of evolutionary conserved miR-34/449 family¹¹⁻¹⁵,
2 targeting the Silent Information Regulator 1 (Sirt1), a p53 deacetylating enzyme, in a tumor-
3 suppressive feedback loop. Using $R_{1\rho}$ NMR Relaxation Dispersion (RD), we show that the
4 weak 7mer-A1 seed of the miR-34a–mSirt1 duplex (Fig. 1b) is in equilibrium with a transient
5 and low-populated excited state (ES) that results in an 8mer seed with a G:U base-pair at its
6 3'-end. The extended seed alters the topology of the duplex by shifting the bending angle
7 between the seed and the 3'-helix in RISC, as shown by simulations. In a cell-based assay,
8 the structural mimic of the extended seed exhibits ~2-fold increase in target downregulation.
9 Our data suggest a model for RISC undergoing a structural transition mediated by RNA
10 dynamics, where RISC first recognizes its target by screening for correct seed pairing, and
11 then transitions into an active complex, where miR-34a 3'-end is released and fully binds
12 mSirt1.

13 Seed dynamics of miR-34a–mSirt1 binding site

14 Since RISC recognizes thousands of distinct binding sites with no apparent sequence
15 preference beside the seed, we hypothesize that miRNA–mRNA pairs possess distinct
16 conformational characteristics in the central bulge, which facilitate accommodation within
17 hAgo2.

18 First, we solved the secondary structure of miR-34a bound to the validated target site in Sirt1
19 mRNA (miR-34a–mSirt1 duplex)¹⁶ by NMR (Fig. 1a, Fig. S2, SD2). The overall fold
20 confirmed the secondary structure predicted using MC-Fold (Fig. 2a, Extended Data Fig. 1):
21 the 5nts seed constitutes an A-form 5'-helix between gG2:tC27 and gG6:tC23 base-pairs,
22 gG8:tC17 and gG18:tC7 form a 3'-helix containing a wobble gU11:tG14 base-pair. These
23 two helices are separated by a 4nts asymmetric bulge on the mSirt1 side, (tC18-tU21) (Fig.
24 1a&2a).

1 To study the structure and dynamics of the bulge, we designed a shortened hairpin construct
 2 (miR-34a–mSirt1 bulge) containing the 4nts bulge and enclosing regions (Fig. 1a grey box,
 3 2a). The correct fold was confirmed by chemical-shifts (CSs) comparison of the shared
 4 residues (Fig. S2). The intrinsic flexibility of the miR-34a–mSirt1 complex precluded a
 5 traditional NMR tertiary structure calculation with a single, static conformation. Therefore,
 6 we used an NMR-informed computational approach and computed the RNA's
 7 conformational ensemble using Replica-Exchange Molecular Dynamics (REMD) simulations
 8 constraining the base-pairing determined from imino ^1H - ^1H NOEs derived by NMR (Fig.
 9 S3). Simulations were varied in temperature, for exploration of RNA conformations fulfilling
 10 the experimental constraints, resulting in an ensemble of 153 structures. One representative
 11 structure of the ensemble is shown in Fig. 2d and the relative stem-to-stem angle distribution
 12 in Fig. 2g.

1 **Figure 1 | Conformational dynamics in seed of miR-34a–Sirt1 mRNA.** **a**, Secondary structure of
2 miR-34a–mSirt1 duplex determined by NMR. Seed (*italic*), 5 base-pairs. Grey box indicates nts
3 selected for reduced construct for R_{1p} RD measurements. **b**, Sketch of hAgo2 accommodating miR-
4 34a–mSirt1 duplex. **c**, ^{15}N and ^1H R_{1p} RD profiles of gG8N1 and gG8H1 report on a single base-pair
5 switching of gG8:C→gG8:U (red in **a**). **d**, CSs distribution of $^1\text{H}-^{15}\text{N}$ 1 moieties of G's in G:C
6 (yellow) or G:U (purple) from the BMRB¹⁷. Crosses: average for CSs of G:C and G:U, respectively;
7 dashed ellipses: 1s.d.; black dots: CSs for gG8 in ground state (GS) and RD-derived excited state
8 (ES). **e**, G:C→G:U base-pair switch highlighting the G's $^1\text{H}-^{15}\text{N}$ 1 groups in yellow and purple.

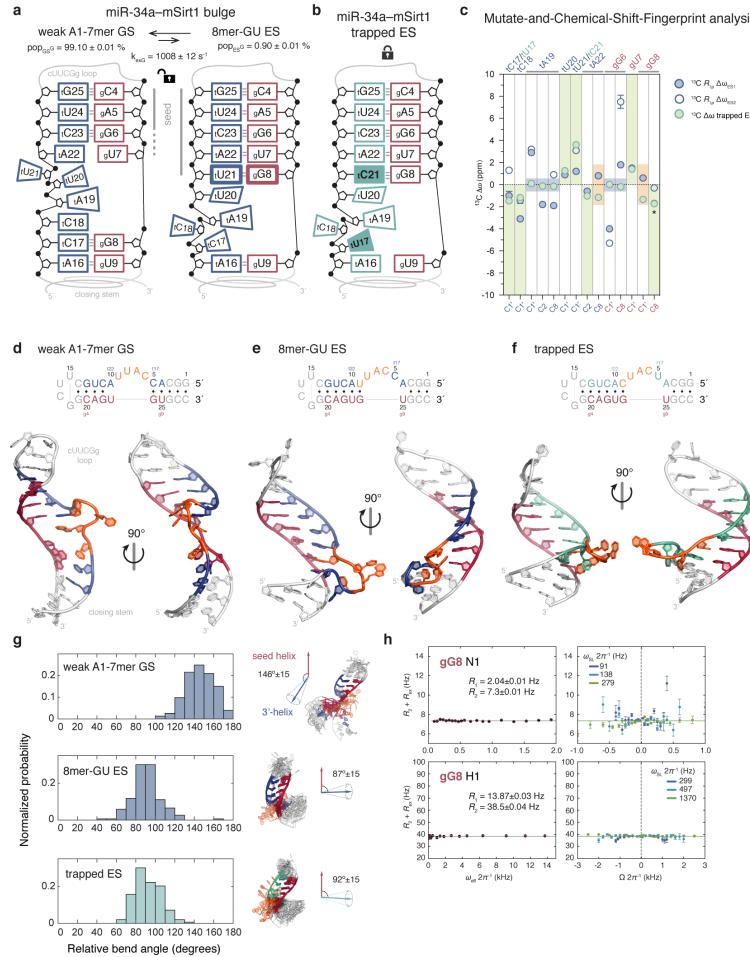
9

10 Although classified as 7mer-A1 binding site by prediction tools (e.g. Targetscan¹⁸), we found
11 that the miR-34a–mSirt1 duplex and the reduced construct represent a less stable structure,
12 as stability of gU7:tA22 closing base-pair at the 3'-end of the seed is significantly reduced as
13 shown by NMR¹⁹ (Fig. 2a, S2a and S3a, SD2–3). We suggest therefore that a weak pairing in
14 position 7 might explain previously observed sequence-specific differences in RISC-target
15 binding affinity⁶. In agreement with nearest-neighbor models for A:U closing hairpins²⁰, we
16 propose that 6mer/7mer-A1 seeds ending with closing A:U base-pairs in position 7, might not
17 suffice for a stable displacement of hAgo2's helix-7, resulting in significantly lower binding
18 affinities, closer to the predicted 6mer affinity.

19 To assess the base-pair dynamics, we measured ^{15}N , ^{13}C and ^1H R_{1p} NMR RD^{21–24}
20 experiments. $^1\text{H}-^{15}\text{N}$ 1 of gG8H1, gG8N1 and ^{13}C gG8C8, tU21C6, tC17C1', tU20C1',
21 tA19C8, tA19C2 and tA22C8 revealed a global exchange process, where the base-pair
22 gG8:tC17 interconverts from the most stable structure, the ground state (GS), to a minor
23 populated excited state (ES) with an exchange rate constant for $^1\text{H}-^{15}\text{N}$ 1 of gG8 (k_{exGimino}) of
24 $998 \pm 27 \text{s}^{-1}$ with ES population ($\text{pop}_{\text{ESGimino}}$) of $0.90 \pm 0.01\%$ and global k_{ex} (k_{exG}) of $1008 \pm 12 \text{s}^{-1}$
25 with ES population (pop_{ESG}) of $0.90 \pm 0.01\%$ (Fig. 1c, S6c and Data S1). Most importantly,

1 the individual CSs difference between GS and ES ($\Delta\omega_{\text{ES}} = \Omega_{\text{ES}} - \Omega_{\text{GS}}$), describing the
2 structure of the ES, was obtained by measuring ^1H ($\Delta\omega_{\text{ES}} = -2.20 \pm 0.02$ ppm) and ^{15}N ($\Delta\omega_{\text{ES}} =$
3 -3.8 ± 0.1 ppm) $R_{1\mu}$ RD datasets. This approach allowed us to infer that gG8 ES CSs resides in
4 a region of the ^1H - ^{15}N HSQC spectrum that is a signature for G:U wobble base-paired
5 guanosines. This was validated by querying the BMRB¹⁷ for ^1H - ^{15}N CSs of G:U base-
6 paired Gs of RNA-only entries and comparing them to the G:C distribution (Fig. 1d–e, S6c
7 and Data S1 Tab 1).

8 **Base-pair switch alters topology of complex**


9 When analyzing MC-Fold²⁵ output for alternative secondary structures fulfilling the NMR-
10 derived model (Fig. 1e), we found that a base-pairing partner switch between gG8:tC17 to
11 gG8:tU21 occurs within the third most energetically favorable structure (Fig. Extended Data
12 Fig. 1a–b). To characterize the nature of this process we measured additional ^{13}C $R_{1\mu}$ RD
13 experiments on aromatic C2/6/8 and sugar C1' nuclei, known reporters of sugar pucker,
14 stacking and base-pairing. The additional, individually fitted nuclei resulted in an exchange
15 process with average parameters of $k_{\text{EX}} = 1371\text{Hz}$ and $\text{pop}_{\text{ES}} = 1.9\%$; similar to the global fit
16 of ^1H , ^{13}C and ^{15}N datasets (Fig. S6–7 and Data S1 Tab 1). Based on known correlations
17 between our measured ^{13}C $R_{1\mu}$ $\Delta\omega$ values and structural propensities^{26–28}, we proposed a
18 refined secondary structure of the ES summarized in Fig. 2a.

19 To derive a 3D structural model of ES, high temperature REMD simulations of the GS were
20 performed, restraining 5 experimentally-determined base-pairs (Data S1 Tab 11)²⁹. A
21 putative conformation of the ES was identified as a cluster within simulations of GS in which
22 gG8:tU21 is base-paired to gG8:tC17. The ES conformer was sampled restraining gU9:tA16
23 and gG6:tC23. Mg^{2+} addition, experimentally and by simulation³⁰, did not show any
24 influence (Extended Data Fig. 5 and SD6). As with GS, one representative structure of the ES
25 ensemble (210 structures) is presented in Fig. 2e. The topology of the ES is altered compared

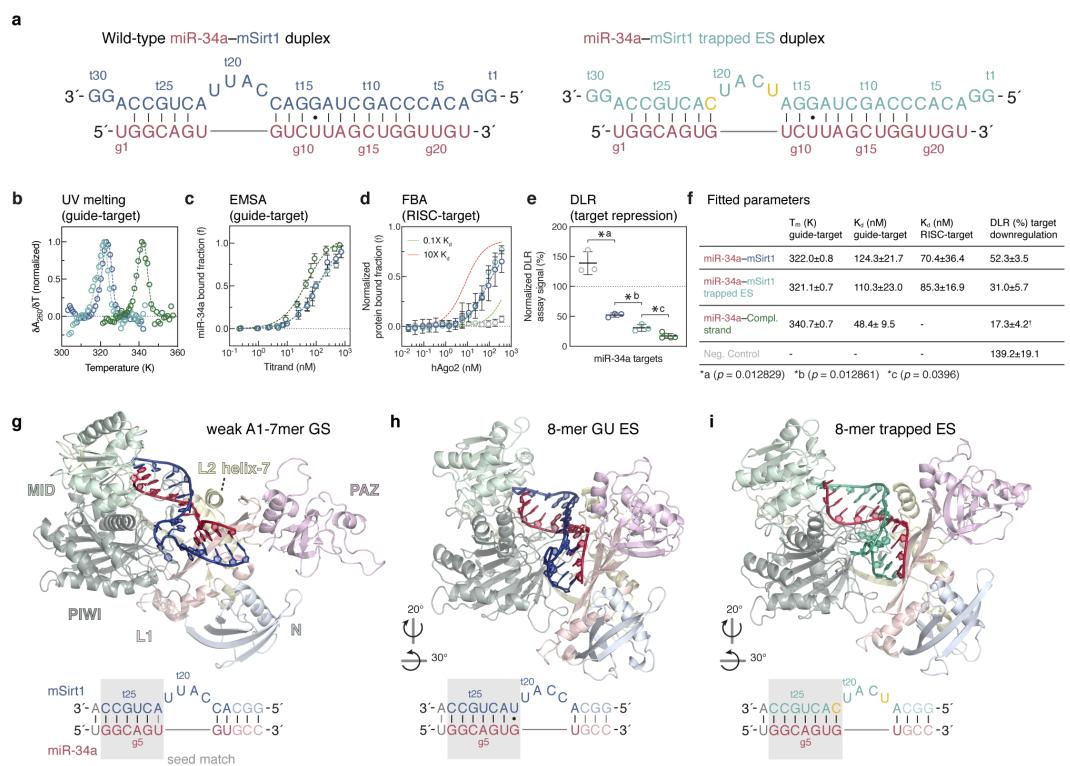
1 to GS, indicated by a stem-to-stem co-axial stack resulting in an angle distribution peaking
2 around 90° (Fig. 2g, middle).

3 To experimentally validate the candidate ES structure, we used the NMR Mutate-and-
4 Chemical-Shift-Fingerprint (MCSF) approach²⁶, where a substitution or chemical
5 modification is used to trap the proposed ES. CSs are then compared between the trapped ES
6 and $R_{1\rho}$ RD-derived data. We introduced a two-point isosteric substitution in the bulge
7 construct (swapping tC17→tU17 and tU21→tC21) promoting the repositioning of gG8 to the
8 seed 5'-helix, base-paired with tC21 (miR-34a–mSirt1 trapped ES), without impacting the
9 overall binding affinity. We determined the secondary structure of trapped ES by NMR (Fig.
10 2b and S4) and used imino ^1H - ^1H NOE's as sparse constraints to calculate structural
11 ensembles via REMD (Fig. 2f). As expected, the trapped ES forms an additional gG8:tC21
12 base-pair elongating the seed 5'-helix, resulting in identical base-pairing patterns and inter-
13 helical bending angles as observed in the ES (Fig. 2g, bottom).

14 The MCSF showed remarkable agreement for C1's, tA22C2 and gG8C8 (Fig. 2c, green)
15 confirming that the trapped ES well represents the overall topology of the ES modeled from
16 $R_{1\rho}$ RD data. The sugar puckers measured by $^3J_{\text{H}1\text{-H}2}$ for tU20, tU21 (dominant C2'-*endo*)
17 and tC18 (dominant C3'-*endo*) that were expected to interconvert to their opposite
18 configuration in ES from $R_{1\rho}$ RD (Fig. 2a), were successfully recapitulated in the trapped ES
19 (Fig. 2b). Furthermore, co-axial stacking between the two helices is validated by CSs of
20 tA22H8/C8, tA16H8/C8 and gG8H8/C8 shifting to a region characteristic of nts embedded in
21 uninterrupted A-form helix²⁷ (Extended Data Fig. 4 and Fig. S5a).

1
2 **Figure 2 | Structure and conformation of miR-34a-mSirt1 excited state.** **a**, Secondary structures
3 of bulge region (Fig. 1a, grey). Left: GS solved by NMR. Right: ES resulting from $R_{1\rho}$ RD-derived
4 CSs (gG8:tC17→gG8:tU21, bold box). **b**, Stabilization of ES conformation by isosteric two-point
5 substitution tC17→tU17/tU21→tC21 (trapped ES). Secondary structure solved by NMR. **c**, MCSF
6 analysis of trapped ES validates the ES model (green). Expected perturbations are observed at site of
7 modification (orange), tA19 and gG6 (blue) explained in SD5, Extended Data Fig. 2. Individually
8 fitted ${}^{13}\text{C} R_{1\rho}$ RD-derived $\Delta\omega$ are in blue, full dots for ES1 and hollow dots ES2, for 3-state fitting
9 datasets. **d–f**, Representative conformations from NMR-informed REMD of GS **d**, ES **e**, trapped ES **f**.
10 **g**, Inter-helical bend-angle distributions for GS (top), ES (middle) trapped ES (bottom). Mean and s.d.
11 of angles distribution derived from REMD. **h**, $R_{1\rho}$ RD profiles of trapped gG8N1&H1 show loss of
12 dynamics, in the timescale probed.

1 Inconsistencies for tA22C8 and gG8C1' are a consequence of the substitution (Fig. 2c,
2 orange, Extended Data Fig. 2). tA19 and gG6 datasets report on presence of a second,
3 thermodynamically similar excited state (ES2) (Fig. 2c, blue). However, this conformation
4 could not be trapped experimentally and is discussed in SD5 and Extended Data Fig. 2.
5 Interestingly, when probing dynamics of the trapped ES with RD experiments, no exchange
6 with alternative conformations was detected in the probed timescale (Fig. 2h, Fig. S8–9, Data
7 S1 Tab 3).


8 In summary, our results show that the miR-34a–mSirt1 binding site is in equilibrium between
9 a high-populated weak 7mer-A1 GS and a low-populated 8mer-GU seed-elongating ES
10 ('8mer-GU ES'), where position 8 is occupied by a G:U base-pair, a motif previously
11 observed for miR-48^{31,32}. Upon GS→ES switch, both $R_{1\rho}$ RD data and REMD indicate re-
12 arrangement of the bulge and a stacking of the two helices.

13 **Functional relevance of 8mer-GU excited state**

14 We compared wild-type (WT) miR-34a–mSirt1 and miR-34a–mSirt1 trapped ES (Fig. 3a) by
15 measuring thermal stability followed by UV absorption, RNA-RNA binding affinity by
16 Electrophoretic Mobility Shift Assay (EMSA) and RISC target affinity by Filter-Binding
17 Assay (FBA) of miR-34a-loaded hAgo2 (Fig. 3b-d). We found that melting temperature (T_m)
18 and dissociation constant (K_d) were unchanged (Fig. 3b and c, Extended Data Fig. 3),
19 showing that the substitution does not affect the duplex stability *in vitro*. Similarly, binding
20 affinity of hAgo2 towards the target RNAs in FBA is the same within error (Fig. 3d). Next,
21 we asked if the two binding sites, despite similar stability, have different target
22 downregulation levels in cells. DLR assay in HEK293T cells of miR-34a co-transfected for
23 the WT weak 7mer-A1 results in $52.3\pm3.5\%$, as previously reported¹⁶ (Fig. 3e blue), while
24 trapped ES 8mer $31.0\pm5.7\%$ (Fig. 3e turquoise), showing that the two-point substitution
25 trapping the ES results in an ~2-fold significant increase in downregulation of the target.

1 Taken together, the FBA and DLR assays suggest that, for stably-bound 3'-paired targets, the
2 binding affinity cannot fully explain the observed biological data.

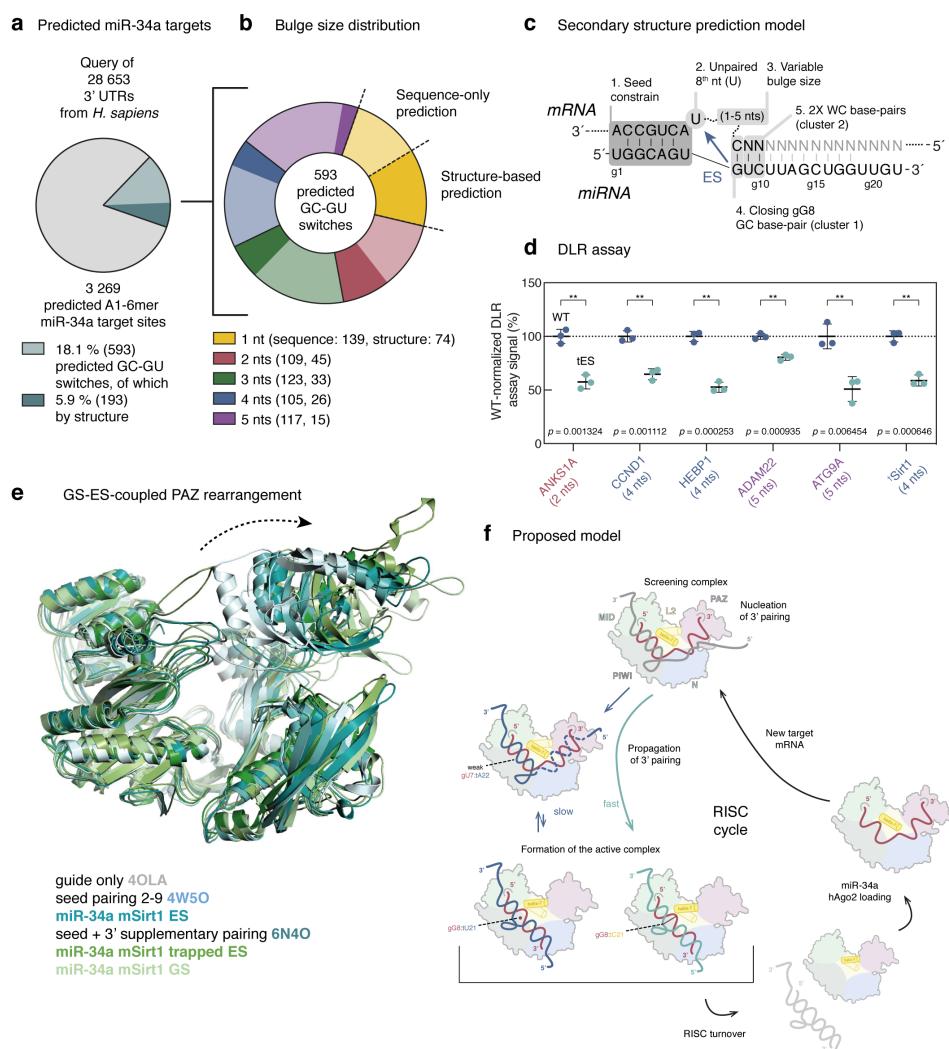
3 This difference prompted us to compute the RNA structure in the context of RISC⁶. We used
4 slow-growth simulation to test whether the calculated ensembles of miR-34a–mSirt1 bulge
5 GS, ES and trapped ES (Fig. 2d–f) could be accommodated in hAgo2 binding site. Starting
6 from the crystal structures⁶ the visible crystallographic A-form seed helix was replaced with
7 conformations from the miR-34a–mSirt1 bulge GS, ES and trapped ES ensembles and then
8 aligned with the seed of the co-crystal (Fig. S10).

9

10 **Figure 3 | Biophysical and functional characterization of WT and trapped ES miR-34a–mSirt1**
11 **duplexes. a**, Secondary structures of the WT and trapped ES (tC17→tU17/tU21→tC21 in yellow). **b–**
12 **d**, WT (blue) and trapped ES (turquoise) show comparable stability as indicated by equivalent T_m (**b**,
13 UV melting), K_d (**c**, EMSA) and binding to miR-34a loaded RISC (**d**, FBA) within error. (Extended
14 Data Fig. 3, Extended Data Table 1). **e**, DLR assay reveals an ~2-fold increased miR-34a

1 downregulation of trapped ES (8mer - turquoise) with respect to WT (weak 7mer-A1 - blue). Grey:
2 Scrambled negative control. Green: highest level of downregulation (siRNA-type). **f**, Table with fitted
3 parameters for a–e and *p*-values from DLR (paired, two-tailed t-test), [†]performed independently. **g–i**,
4 Slow-growth simulated RNA structures bound to hAgo2 (PDB: 4W5O)⁶. **g**, GS (Fig. 2a&d) PAZ-
5 oriented conformation. **h**, Oppositely, ES (Fig. 2a&e), co-axial, N-PIWI-oriented conformation,
6 recapitulated the 8mer trapped ES **i**.

7


8 The resulting ternary complexes are shown in Fig. 3g–i. GS ensemble samples the 3'-helix of
9 miRNA–mRNA within the PAZ domain (Fig. 3g), where the miRNA is bound prior to target
10 binding^{1,2,6,33}. In contrast, the 8mer–GU ES conformation adopts a global bend angle stacking
11 the 3'-helix co-axially with the seed and favoring binding along the PIWI-N domains (Fig.
12 3h), also recapitulated in the trapped ES (Fig. 3i).

13 While only small conformational changes in the crystal structure of hAgo2 are needed to bind
14 the microRNA–mRNA complex in the GS state, accommodating the ES state requires
15 pivoting of the PAZ domain (Fig. 4e, Video S1), consistently with prior studies, where
16 simulations identified these PAZ domain movements leading to more “open” hAgo2
17 conformations^{34–36}. Intriguingly, the slow-growth induced-fit conformation of hAgo2–ES is
18 reminiscent of binding modes observed for DNA-bound prokaryotic Ago ternary
19 complexes^{37–40} (Extended Data Fig. 6), suggesting that hAgo2 undergoes structural changes
20 during target recognition and down-regulation activity.

21 We therefore performed a sequence search for other GS→ES instances in the 28,653
22 isoforms of 19,432 genes of 3'-UTRs of human protein coding genes. A minimal A1-6mer
23 seed resulted in 3,269 predicted target sites for miR-34a (Fig. 4a), where a sequence search
24 and secondary structure prediction for the GS→ES motif was then performed using MC-
25 Fold²⁵, resulting in bulge sizes from 1nt (139 and 74 representatives), 2nt (109 & 45), 3nt

1 (123 & 33), 4nt (105 & 26) and 5nt (117 & 15), respectively. In a more stringent cluster, with
2 3 WC base-pairs following the bulge, 22 targets could be identified (Fig. 4c). We selected 5
3 different targets for further investigation using DLR assay in HEK293T (HEBP1, ADAM22,
4 ATG9A⁴¹, ANKS1A and CCND1⁴²). All 5 mRNA candidates we tested were downregulated
5 in the trapped ES form compared to WT, ranging from 50-80% downregulation efficiency
6 (Fig. 4d and Materials and Methods section), suggesting that conformational switching of
7 bulged miRNA–mRNA complexes is a general mechanism for modulating downregulation
8 efficiency.

9

10

1 **Figure 4 | Proposed mechanism of down-regulation for GC-GU switches in miR-34a loaded**
2 **RISC.** **a**, Predicted miR-34a targets in human 3'-UTRs (grey), that can experience GC-GU switch by
3 sequence (18.1%) and by structure (5.9%). **b**, Distribution of bulge sizes (by sequence, lighter, or
4 structure, darker color). **c**, Model of criteria used to search for GC-GU switches. **d**, DLR assay of 5
5 target mRNAs repression with respective trapped ES. All datasets were internally and WT-normalized
6 for comparison, [†]performed independently. Shown are *p*-values (paired, two-tailed t-test) **e**, Overlay
7 of X-ray structures and slow-growth simulations. **f**, Proposed mechanism for the miRNA-mRNA
8 switch in RISC from a screening into an active state.

9

1 **Discussion**

2 While seed matching is important, it is only the first step of the RISC cycle. Subsequently, it
3 is believed that nucleation from the 3'-helix can propagate towards the central region. This,
4 in concert with disengagement of the miRNA 3'-end from the PAZ domain leads to an active
5 complex, or rather the final step in the RISC activity cycle⁴³.

6 We propose that in the case of miR-34a–mSirt1, this process is mediated by a conformational
7 transition triggered by gG8 switching its base-pairing partner. In its GS, miR-34a–mSirt1
8 adopts a 7mer-A1 seed, closed by a weak base-pair in position g7, better described as a 6mer-
9 A1 seed, which is unable to fully displace hAgo2's helix-7 (Fig. 2a). The GS accesses a
10 distribution of inter-helical bend angles placing the miR-34a 3'-end towards the PAZ domain,
11 favoring initial target engagement and nucleation of the 3'-helix⁴³ (Fig. 4f). During the
12 GS→ES transition, gG8 repositions to the seed helix and pairs with tU21, resulting in an
13 extended 8mer–GU seed. The re-arrangement of gG8 causes co-axial stacking of the two
14 helices and therefore release of the 3'-end of miR-34a from PAZ, re-orienting the RNA
15 duplex towards PIWI domain (Fig. 3g–h). This process is accommodated by the concerted
16 widening of the N-PAZ channel⁶ that facilitates binding of the new stem-to-stem orientation
17 to the cleft and repositioning along the PIWI-N channel in a second binding mode. This ES
18 conformation is similar to the catalytically competent state reported for prokaryotic Ago^{37–40}
19 (Fig. 3I&J, 4e, Extended Data Fig. 6a–b) and a recent hAgo2 structure confirms that the 3'-
20 helix is mobile⁹.

21 We thus propose that the GS→ES transition described here presents a mechanism to achieve
22 an active, “catalytically competent” RISC, promoting mRNA down-regulation^{43,44}. While
23 hAgo2-bound miRNA is not known to cleave targets with partial complementarity, it is

1 possible that these conformational changes enable RISC to achieve multiple turnovers, that
2 will increase downregulation of the target mRNA⁴⁵⁻⁴⁷ (Fig. 4f).

3 Our biophysical and in-cell functional results support this hypothesis by showing a ~2-fold
4 increase of downregulation upon GS→ES stabilization while maintaining RNA–RNA
5 stability. We show that 5 selected mRNA targets of miR-34a have similar increases in
6 downregulation efficiency upon being trapped in their ES (Fig. 4d). This finding indicates
7 that the mechanism proposed in our work could be a widespread feature of bulged binding
8 sites containing partial or extended 3'-pairing.

9 We have demonstrated that the structural transitions of the guide–target RNA in RISC
10 provides a mechanistic explanation for bulged complexes, enabling a more accurate
11 prediction of microRNA target downregulation. With ever-increasing interests in adapting
12 RNA-guided nuclease machineries for therapeutic, diagnostic, and technology applications,
13 we believe that leveraging the power of RNA conformational dynamics will lead to the
14 design of better guide RNAs as well as a deeper understanding of these macromolecular
15 complexes.

1 **Methods**

2 **RNA sample preparation**

3 RNA samples were produced *in-house* by T7 *in vitro* transcription^{48,49}, unless otherwise
4 stated. Modified DNA templates (Integrated DNA Technologies (IDT)) with oxy-methylated
5 C2' groups in the first two 5' nucleotides were used to reduce the 3'-OH heterogeneity of the
6 product⁵⁰. *In vitro* transcription reactions were supplemented with 20% DMSO to improve
7 reaction yield and reduce side products⁵¹. ¹³C, ¹⁵N labeled NMR samples were produced by
8 supplementing the transcription reaction with ¹³C, ¹⁵N fully labeled NTPs (Merck Sigma-
9 Aldrich). High-Performance Liquid Chromatography Ultimate3000 uHPLC system (Thermo
10 Scientific) was used to purify the product of interest from abortive transcripts in two
11 chromatographic steps (Ion-Pair Reverse Phase and Ion-Exchange under denaturing
12 conditions) further described the Supplementary Information Methods section. hsa-miR-34a-
13 5p 3'-Cy3 labeled and single stranded mSirt1 trapped ES were purchased from Integrated
14 DNA Technologies (IDT) as chemically synthesized RNA oligonucleotides purified by
15 RNase free HPLC purification. A complete list of RNA and DNA sequences used in this
16 work is available in Data S1 Tab 10.

17 **hAgo2 protein sample preparation and RISC reconstitution**

18 Human Argonaute 2 (hAgo2) cloned into pFastBac HT plasmid was obtained as described in
19 the original publication⁵². hAgo2 was expressed in Sf9 insect cells and purified from the
20 clarified cell lysate through a nickel affinity chromatography and a gel-filtration
21 chromatography step. The fractions containing hAgo2 were pooled together, concentrated
22 and stored at -80 °C. Further details of hAgo2 sample preparation are described in details in
23 the Supplementary Information Methods section.

1 Purified hAgo2 was incubated with a ~2-fold excess of in vitro transcribed miR-34a in 50
2 mM Tris-HCl pH 8.0, 300 mM NaCl, 300 mM Imidazole, and 0.5 mM TCEP supplemented
3 with 10 µg/ml of Bovine Serum Albumin (BSA) (Sigma-Aldrich) for 6 h at 37 °C. The
4 assembled RISC (hAgo2-miR-34a complex) was then separated from unbound excess RNA
5 using a gel filtration chromatography step. Loading of the guide miR-34a into RISC was
6 assessed by an improved Northern Blot for the detection of small RNA^{53,54}. Further
7 experimental details of RISC reconstitution are described in the Supplementary Information
8 Methods section.

9 Thermal denaturation monitored by UV absorption

10 Thermal denaturation monitored by UV absorption at 260 nm (A_{260}) was performed using an
11 Evolution 260 Bio UV-Vis Spectrophotometer (Thermo Scientific) equipped with PCCU1
12 Peltier Control and Cooling Unit (Thermo Scientific). All samples were dissolved in NMR
13 buffer (15 mM Sodium Phosphate, 25 mM NaCl, 0.1 mM EDTA, pH 6.5). Fitting of the
14 normalized differential melting curves (DMCs), as described in Supplementary Information
15 Methods section, allowed for estimation of the melting temperature T_m and thermodynamic
16 parameters presented in Extended Data Table 1 and Data S1 Tab 7.

17 Electrophoretic Mobility Shift Assay (EMSA)

18 hsa-miR-34a-5p 3'-Cy3 was incubated at a final concentration of 24 nM with increasing
19 amounts of unlabeled single stranded partner (mSirt1, mSirt1 trapped ES or Complementary
20 strand) in NMR buffer (15 mM Sodium Phosphate, 25 mM NaCl, 0.1 mM EDTA, pH 6.5) to
21 a final volume of 10 µl. The total reaction volumes were mixed with 10 µl of 100% glycerol
22 (Sigma-Aldrich) and subsequently loaded into a 10% non-denaturing Tris-Borate-EDTA
23 (TBE) poly-acrylamide gel. Fluorescence signals relative to the free and bound form of hsa-
24 miR-34a-5p 3'-Cy3 were quantified using ImageJ software⁵⁵. Fitting of the binding curves to

1 a standard binding isotherm, as described in Supplementary Information Methods section,
2 allowed for estimation of the equilibrium dissociation constants K_d presented in Extended
3 Data Table 1 and Data S1 Tab 8.

4 Equilibrium filter binding assay

5 3'-Cy3 labeled target RNAs (mSirt1, mSirt1 trapped ES or scrambled control) were
6 incubated at a constant concentration of 0.5 nM with increasing amounts of hAgo2-miR-34a
7 complex in target binding buffer⁶ (30 mM Tris-HCl pH 8.0, 100 mM Potassium Acetate, 2
8 mM Magnesium Acetate, 2.5 mM TCEP, 0.005% v/v NP-40 supplemented with 10 μ g/ml
9 yeast tRNA (Sigma-Aldrich) and 10 μ g/ml BSA (Sigma-Aldrich)) to a final volume of 100 μ l
10 and incubated for 1h at 37 °C. After incubation, samples were readily applied to a DHM-48
11 dot-blot apparatus (Scie-Plas) and filtered through a nitrocellulose membrane Amersham
12 Protran (GE Healthcare Life Sciences) and a positively charged nylon membrane Amersham
13 Hybond-N⁺ (GE Healthcare Life Sciences). Fluorescence signals relative to the free (nylon)
14 and protein bound (nitrocellulose) form of 3'-Cy3 target RNAs were quantified using ImageJ
15 software⁵⁵. Fitting of the binding curves to a standard binding isotherm, as described in
16 Supplementary Information Methods section, allowed for estimation of the equilibrium
17 dissociation constants K_d presented in Extended Data Table 1 and Data S1 Tab 9.

18 NMR spectroscopy

19 All NMR assignment and $R_{1\rho}$ relaxation dispersion (RD) experiments were acquired on a
20 Bruker AVANCE III 600 NMR spectrometer operating at 600 MHz for ¹H, equipped with a
21 cryogenically cooled QCI probe.

22 *Sequence-specific resonance assignment* – Sequence-specific resonance assignment
23 experiments were performed on ¹³C, ¹⁵N fully labeled RNA samples dissolved in 15 mM

1 $\text{Na}_2\text{HPO}_4/\text{NaH}_2\text{PO}_4$, 25 mM NaCl, 0.1 mM EDTA, pH 6.5. Unless otherwise stated,
2 assignment of aromatic ^{13}C 2/5/6/8- ^1H 2/5/6/8, sugar ^{13}C 1'- ^1H 1' and imino ^{15}N 1/3- ^1H 1/3
3 resonances was achieved using a standard set of ^1H - ^{13}C , ^1H - ^{15}N 2D HSQCs, 3D HCNs, HNN
4 COSY and ^1H - ^1H NOESY (all acquired using 175 ms mixing time) NMR experiments as
5 described in Fürtig *et al.*,⁵⁶ recorded at different temperatures (9.0 °C, 22.4 °C and 35.9 °C)
6 (Fig. S1, S3 and S4). For miR-34a–mSirt1 duplex, only a reduced set of imino ^{15}N 1/3- ^1H 1/3
7 resonances were assigned using ^1H - ^{15}N 2D HSQCs, HNN COSY and ^1H - ^1H NOESY NMR
8 experiments (Fig. S2). Assigned CSs were deposited to the Biological Magnetic Resonance
9 Bank (BMRB)¹⁷ for hsa-miR-34a-5p (entry 27225), miR-34a–mSirt1 bulge (entry 27226) and
10 miR-34a–mSirt1 trapped ES (entry 27229).

11 ^1H , ^{13}C and ^{15}N $R_{1\text{p}}$ RD – ^1H , ^{13}C and ^{15}N $R_{1\text{p}}$ RD NMR experiments were acquired as
12 previously described in the respective original publications²¹⁻²³, using ^{13}C , ^{15}N fully labelled
13 (^{13}C and ^{15}N $R_{1\text{p}}$) or natural abundance unlabeled (^1H $R_{1\text{p}}$) RNA samples dissolved in 15 mM
14 $\text{Na}_2\text{HPO}_4/\text{NaH}_2\text{PO}_4$, 25 mM NaCl, 0.1 mM EDTA, pH 6.5. In brief, for each spin-lock power
15 (ω_{SL}), data points were recorded as a function of different relaxation delays (T_{EX}). For each
16 residue, variable delay (VD) lists were optimized in order to achieve a maximum decay of
17 1/3 of the starting peak intensity ($T_{\text{EX}} = 0$ s). To account for a reduced loss in peak intensity
18 for large offsets ($\Omega 2\pi^{-1}$), a subset of off-resonance datasets was recorded with an extended
19 VD list comprising longer maximal T_{EX} values, care was taken, that no additional heating
20 occurred. In all datasets, data points with signal-to-noise ratio (S/N) < 20 for ^1H , ^{13}C and S/N
21 < 10 for ^{15}N were discarded. VD lists for each dataset are reported in Supplementary Data S1.

22 Peak intensities were extracted from deconvoluted 1D datasets and plotted as a function of
23 T_{EX} . $R_{1\text{p}}$ values were obtained from fitting of the data to a mono-exponential decay and error
24 estimates were computed as one standard deviation (s.d.) using a Monte Carlo simulation

1 method⁵⁷ with 500 iterations. Potential artefacts (e.g. arising from Hartmann-Hahn matching
2 conditions or strong ¹H-¹H and ¹³C-¹³C homo-nuclear coupling that results in deviation from
3 mono-exponential behavior, were excluded from subsequent analysis by discarding
4 exponential fits with $R^2 < 0.985$. $R_{1\rho}$ values as a function of ω_{SL} were subsequently fitted,
5 using the Laguerre approximation⁵⁸ (Supplementary Methods Eq. (4)) assuming absence of
6 exchange ($R_{\text{ex}} = 0$), fast exchange regime (Reduced Laguerre form where $k_{\text{ex}} \gg \Delta\omega$)
7 (Supplementary Methods Eq. (5)), 2-state exchange (Supplementary Methods Eq. (6)) or a 3-
8 state exchange (Supplementary Methods Eq. (7-8)) using the models and fitting methods
9 further described in the Supplementary Information Methods section. Selection of the best
10 fitting model for each dataset was performed using a statistical F-test²⁷. Degrees of freedoms
11 were calculated as the number of data points minus the number of fitted parameters for each
12 model. Fitted parameters, reduced χ^2 values resulting from the fit and exact p -values from the
13 statistical F-test for each dataset are reported in Data S1.

14 Global fitting was performed assuming the presence of one collective exchange process to a
15 minor populated state (ES^G) characterized by the global parameters k_{ex}^G (global exchange
16 rate) and p_{ES}^G (population of ES^G) shared across the datasets. Each dataset was fitted using
17 the best fitting model resulting from the individual fits and the fitted parameters as initial
18 guesses for the global fit using a 2-state (Supplementary Methods Eq. (6)) and a 3-state
19 (Supplementary Methods Eq. (7-8)) exchange model. For those dataset, globally fitted using
20 3-state exchange model (Supplementary Methods Eq. (7-8)), we assigned one excited state to
21 the global fit (ES^G) while leaving the fitting of the parameters relative to the second state
22 (k_{EX2} , p_{OES2} , $\Delta\omega_{\text{ES2}}$) unconstrained during the fit, fundamentally equivalent to fit them
23 individually. Error estimates of the fitted global parameters were computed as one s.d. using
24 a Monte Carlo simulation method⁵⁷ with 500 iterations. Selection of the best fitting model
25 was performed using a statistical F-test²⁷. Degrees of freedoms were calculated as the number

1 of data points minus the number of fitted parameters for each model. Fitted global
2 parameters, reduced χ^2 values resulting from the fit and exact *p*-values from the statistical F-
3 test for the global fittings are reported in Data S1.

4 Exponential fittings, individual and global fittings and model selection were performed using
5 an *in-house* written Python (2.7) code (<https://www.python.org/>) available upon request.

6 Secondary structure prediction

7 All secondary structure predictions were performed using MC-Fold 1.6.0²⁵, unless otherwise
8 stated, providing as input the nucleotide sequence of each construct. Structures consisting of
9 two strands were simulated by using a UUCG connection loop.

10 Chemical-shift distribution of G:C and G:U base-pairs

11 PDB IDs and nucleotide numbers of Guanosines involved in either G:C or G:U base-pairs
12 were obtained using RNA FRABASE 2.0⁵⁹. PDB ID matching BMRB entries and were
13 selected using the “Matched submitted BMRB-PDB entries” list. Subsequently, chemical-
14 shifts from ¹H1-¹⁵N1 assigned couples only, were extracted from the BMRB entries,
15 duplicates and mis-referenced couples were removed. A total of 303 G:C and 63 G:U unique
16 ¹H1-¹⁵N1 couples were obtained (Fig. 1).

17 All atom, explicit solvent Molecular Dynamics simulations

18 Atomistic simulations of miR34a-mSirt1 bulge, were initialized using starting structures
19 generated by MC-Fold and MC-Sym²⁵. All-atom, explicit solvent molecular dynamics
20 simulations were performed using GROMACS 5.0.7⁶⁰ and the modified Chen-Garcia force
21 field for RNA⁶¹ including backbone phosphate modifications of Steinbrecher *et al.*,⁶². The
22 structure was solvated with 6,664 TIP4P-Ew⁶³ waters in a 6.1 nm cubic box, and salt

1 conditions of 1 M excess, KCl were represented by 161 K⁺ and 134 Cl⁻ ions using the
2 activity-coefficient calibrated parameters of Cheatham and Joung⁶⁴. In order to enhance
3 exploration of diverse bulge conformations using temperature replica-exchange without
4 inadvertently inducing RNA melting, five harmonic restraints were assigned with a force
5 constant of 500 kJ mol⁻¹ nm⁻² on the middle H-bond of the three initial G:C base-pairs and
6 C14:G19 and G13:C20 (tG25:gC4) in the seed region, which are all observed to be well
7 formed under NMR experimental conditions of 9 – 35.9 °C. The initial structures were
8 energy minimized and equilibrated at 1 atm constant pressure with random initial velocities
9 drawn from a Boltzmann distribution. Using Replica Exchange Molecular Dynamics
10 (REMD), 24 individual replicas spanning a temperature range of 77 – 147 °C were simulated
11 to evaluate the conformational flexibility of miR34a–mSirt1 bulge. The exchange rate was
12 25% with attempted temperature swaps every 1000 steps (2 ps), which is also how often
13 coordinates were saved. Once equilibrated, production simulations were propagated for ~670
14 ns per replica, a total of 16.08 μs of cumulative simulation time. Structural clustering based
15 on all-heavy-atom RMSD was accomplished utilizing the Daura *et al.*, algorithm⁶⁵ on 30,000
16 evenly spaced snapshots taken from the lowest temperature replica (27 °C) using a cut-off of
17 5.0 Ångströms. The most highly populated cluster, which contains >60% of all structures in
18 the 27 °C replica, is reported as the GS ensemble (Fig. 2g). A separate set of REMD
19 simulations consisting of 25 replicas spanning 25 – 77 °C were also simulated using identical
20 settings as above. Each replica sampled for 478 ns for a cumulative total of 11.95 μs of
21 sampling, and identical cluster analysis was performed on the 25 °C replica. Details on
22 REMD simulations of miR-34a bulge ES and trapped ES, as well as inter-helical bending
23 angle distributions are further described in Supplementary Information Methods section.

24 *Alignment of GS/ES ensembles into AGO2 crystal structure* – 250 randomly picked snapshots
25 from each REMD ensemble (GS, ES and trapped ES) were initially aligned into the 4W5T⁶

1 PDB structure. Each simulation structure was aligned such that the backbone phosphates
2 positions of bases g2-g8 to matched those of the crystal structure. For visual clarity, only 20
3 of the 250 conformations are graphically depicted in Fig. S10.

4 *Slow-growth simulations of GS/ES insertion into hAgo2 complex* – In order to ascertain the
5 ability of the hAgo2 protein to physically accommodate the miR-34a–mSirt1 RNA
6 complexes in the GS and ES states, representative snapshots from each ensemble were
7 inserted into the hAgo2 protein using slow-growth binding simulations⁶⁶. Starting with the
8 4W5O⁶ PDB structure, the existing partial miRNA–mRNA complex was deleted and missing
9 hAgo2 amino acids were modelled in. The UUCG tetraloop used to anchor the NMR
10 construct was mutated in-place to match the native miR-34a–mSirt1 seed sequence, and the
11 initial RNA conformation was determined by aligning the backbone positions of bases g2-g8
12 to match the crystallographic RNA seed helix. The RNA was then inserted using a slow-
13 growth process in which RNA-protein VdW and electrostatic interactions were completely
14 decoupled at t = 0 s, and then linearly increased to 100% interaction in a 100 ps stochastic
15 dynamics simulation at 47 °C with 1 fs time-steps. This method only succeeds if the RNA
16 could be accommodated by flexing of the protein to resolve minor steric overlaps. Successful
17 slow-growth attempts were then solvated in explicit solvent and ions, minimized, and
18 simulated for a ~10 ns N,P,T simulation at 25 °C and 1 atm. The conformations shown in Fig.
19 3e-g are from the final frames of these simulations.

20 Dual Luciferase Reporter (DLR) assay

21 *Plasmids* – All mRNA targets dual luciferase reporter (DLR)⁶⁷ plasmids were generated by
22 cloning a synthetic dsDNA (Data S1 Tab 10a) into the *XhoI* and *NotI* restriction sites of
23 psiCHECK2-miR-34 WT⁶⁸. Fully complementary binding site is the unmodified
24 psiCHECK2-miR-34 MT plasmid⁶⁸. As a negative control, the mutated hsa-miR-34a-5p

1 binding site of psiCHECK2-miR-34 MT was used⁶⁸. These plasmids were a gift from Joanne
2 Weidhaas (Addgene plasmid #78258 and #78259). The newly generated plasmids were
3 verified by sequencing.

4 *Cell lines and culture* – HEK293T cells (CRL-11268) were obtained from ATCC and
5 cultured in Dulbecco's Modified Essential Medium (DMEM, Gibco) supplemented with 10%
6 Fetal Calf Serum (FCS, Gibco).

7 *DLR Assay* – HEK293T cells were seeded 24 h prior to transfection in 12 well plates. Cells
8 were transfected at 70 - 90% confluence with 1.6 µg of plasmid DNA and with or without 40
9 pmol of hsa-miR-34a-5p/hsa-miR-34a-3p (guide/passenger) duplex using Lipofectamine
10 2000 (Invitrogen) according to the manufacturer's protocol. After 24 h, cells were washed
11 with Phosphate Buffer Saline (PBS) once and luciferase activity was measured with the DLR
12 assay system (Promega) according to the manufacturer's protocol on a Promega GloMax 96
13 microplate luminometer using a 1s delay and 10s integration time. For each sample the signal
14 corresponding to the Renilla luciferase activity was acquired and normalized relative to the
15 Firefly luciferase signal. Samples without co-transfected miR-34a were set to 100% and
16 downregulation of samples co-transfected with miR-34a was calculated based on this. Results
17 show the average and standard deviation of at least three independent biological replicates.
18 For statistical analysis, a paired, two-sided t-test was performed. Error bars represent one s.d.
19 ** p ≤ 0.01, *p ≤ 0.05.

20 Predicted target screening of GC to GU switches

21 In total 28'653 3'-UTR sequences, including all isoforms, of all 19'432 protein-coding genes
22 for human were downloaded from TargetScan¹⁸. The sequences were bioinformatically
23 screened for putative mir-34a targets using regular expression. Specifically, sequences were
24 selected that included the reverse complement sequence of a canonical 6mer-A1, followed by

1 a U or C as first nucleotide of the bulge. Thereafter, to allow for a bulge of up to 6
2 nucleotides, the sequence was unspecified for position 1-5 and the bulge was closed with a C
3 base-pairing with the G from the miR-34a leading to this conformational switch model (5'-
4 'C[A,G,U,C]{1,5}[U,C]ACUGCCA' – 3').

5 Each of the 532 mRNA targets (593 with all isoforms) were screened according to the
6 possibility to form different bulges sizes (from 1 to 5 nts) with a G-C or a G-U as closing
7 base pair. Thereafter, the secondary structure of each mRNA-UUCG-miR34a complex was
8 simulated using MC-Fold 2.32²⁵; different mRNA lengths were tested, until maximum 8 nts
9 were added to a mRNA sequence of 22nts. Each length was screened to identify examples of
10 ground and excited states similar to those observed for Sirt1 and defined according to the
11 following structural features. A Ground State (GS) was defined having: 1) a non-base-paired
12 U (position t21 in mSirt1) after the seed, followed by a number of unpaired bases equaling
13 the length of the bulge; 2) a GC Watson-Crick base pair closing the bulge, followed by 2 base
14 pairs, in the 3'-helix (Fig 4c sketch), cluster 1. 3) A second more stringent cluster (cluster 2)
15 is described by 2 additional base pairs, Watson-Crick in addition, instead after the GC closing
16 base pair. An Excited State (ES) was defined having the U (position t21in mSirt1) after the
17 seed pairs with the G in position gG8 (in miR-34a). For obvious structural reason, in all
18 clusters, we excluded structures where the miR-34a sequence was folding onto itself or where
19 shortening of the seed was occurring. Only sequences were considered if the GS and the ES
20 were present for at least 3 different lengths and all the lengths have at least a GS or an ES. Of
21 the 5 target tested, only CCND1 and ATG9A were previously confirmed a miR-34a
22 targets^{41,42}.

1 Data availability

2 NMR sequence specific resonance assignment of hsa-miR-34a-5p (entry 27225), miR34a–
3 mSirt1 bulge (entry 27226) and miR34a–mSirt1 trapped ES (entry 27229) constructs were
4 deposited in the BMRB. The plasmids used in this work for the DLR assay were a gift from
5 Joanne Weidhaas (Addgene plasmid #78258 and #78259). All data and code used for data
6 analysis are available upon request. The ensembles of REMD simulations have been
7 deposited to the PDB-DEV #264 (<https://pdb-dev.wwpdb.org>).

1 **Supplementary Information** Supplementary Information including Supplementary
2 Discussion, Supplementary Methods, Figures, Tables and Data can be found in the attached
3 documents.

4 **Acknowledgments** The authors acknowledge the members of the Petzold lab and the Emma
5 R. Andersson lab for the insightful discussions. Furthermore, the authors acknowledge the
6 time and effort and valuable comments of the anonymous reviewers. K.P. acknowledges
7 funding from the Swedish Research Council (2014-04303), the Swedish Foundation for
8 Strategic Research (Project No. ICA14-0023), Harald och Greta Jeansson Stiftelse
9 (JS2014-0009), Eva och Oscar Ahréns Stiftelse, Åke Wiberg Stiftelse (#467080968 & M14-
10 0109), Cancerfonden (CAN 2015/388), Karolinska Institute and the department of Medical
11 Biochemistry and Biophysics (KID 2-3707/2013 & the support for the purchase of a 600MHz
12 Bruker NMR spectrometer) and Ragnar Söderberg Stiftelse (M91/14). A.A.C. acknowledges
13 support from National Science Foundation grant MCB1651877. B.F. acknowledges funding
14 from the Strategic Research Area (SFO) program of the Swedish Research Council (VR)
15 through Stockholm University. This work used the computational resources from the
16 Extreme Science and Engineering Discovery Environment (XSEDE) [allocation TG-
17 MCB140273 to AAC], which is supported by National Science Foundation grant number
18 ACI-1548562. J.S. acknowledges funding through a Marie Skłodowska-Curie IF (EU H2020
19 / Project No. 747446). We kindly acknowledge Prof. Ian MacRae, Department of Integrative
20 Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA for
21 providing us with plasmid expressing hAgo2 as gift. We acknowledge the Lund University
22 Protein Production Platform (LP3) (Lund, Sweden) and the Protein Science Facility at the
23 Karolinska Institute department of Medical Biochemistry and Biophysics (Stockholm,
24 Sweden) for the help with hAgo2.

1 **Author contributions:** L.B. and K.P. conceived the project. L.B. carried out the majority of
2 the experiments and data analysis with assistance from I.G, E.S., S.F.S., K.P. and L.S.. P.E.
3 and A.A.C. carried out the REMD simulation and slow-growth docking. I.G. and B.F.
4 performed the target screening of GC-to-GU switches. J.S. and C.F. provided advice in
5 design and analysis. L.B. K.P. and A.A.C. wrote the manuscript and all authors contributed to
6 the final version.

7 **Author Information** The authors declare no competing interests. Correspondence and
8 requests for materials should be addressed to K.P. (katja.petzold@ki.se).

1 **Extended Data and Supplementary Figure Captions**

2 **Extended Data Table 1 | T_m and K_d fitted parameters.** **a**, Thermal denaturation monitored
3 by UV absorption. Parameters derived from fitting of Supplementary Equation (1a or 1b) as
4 described in the Supplementary Methods section. T_m and h obtained from the fit are
5 presented with their 95% CI as estimate of the experimental error. Mean T_m is presented with
6 the associated s.d. Complete fitting details and statistics are presented in Data S1 Tab 7. **b&c**,
7 EMSA and FBA. Parameters derived from fitting of Supplementary Equation (2) as described
8 in the Supplementary Methods section. K_d values obtained from the fit are presented with
9 their 95% CI as estimate of the experimental error. Complete fitting details and statistics are
10 presented in Data S1 Tab 8 and 9. **d**, Northern blot. The fraction of hAgo2 loaded with the
11 guide RNA of interest was estimated using Northern blot as described in the Supplementary
12 Methods section.

13

14 **Extended Data Figure 1 | Secondary structure prediction using MC-Fold.** Secondary
15 rearrangements among the 10 lowest energy structures are calculated using MC-Fold²⁵.
16 Ranking according to the predicted energy difference from the MFE is indicated in each label
17 ($\Delta\Delta G(n)$ in unreferenced kcal mol⁻¹ as described in the MC-Fold original paper²⁵). Secondary
18 structures with single base pair opening in the cUUCGg region were omitted from the
19 representation. **a**, miR-34a (red) and mSirt1 (blue) duplex connected by a cUUCGg loop
20 (black). The MFE correspond to an A1-7mer binding site. Suboptimal structures (3) and (5)
21 suggest possible modulation of the binding site to a 8mer GU and an A1-6mer configuration,
22 respectively. **b**, miR-34a (red) mSirt1 (blue) bulge construct comprising an cUUCGg loop
23 and a closing stem (black). The secondary structure distribution of miR-34a–mSirt1 bulge
24 follow the same trend as the full-length duplex, where dashed lines connect identical bulge
25 structures. Suboptimal structures were used to validate or reject models of excited states (ES)

1 secondary structures based on R_{1p} NMR RD data: (1) MFE correspond the assigned ground
2 state structure (GS). (3) Satisfies the 1H_1 and $^{15}N_1$ R_{1p} NMR RD data on gG6(G24) being
3 G:U base paired with tU20(U9). (5) is mutually exclusive with (3) in structural terms and
4 satisfies the ^{13}C R_{1p} NMR RD data measured on tA19 that indicate this residue adopting a
5 base paired conformation. Therefore (3) was proposed as ES1 and (5) as a second ES2.
6 Conformations (6) and (7) are not agreeing and partially clashing with our R_{1p} NMR RD data
7 and can therefore be excluded to be an excited state. **c**, miR-34a (red) and mSirt1 (turquoise)
8 trapped ES duplex connected by a cUUCGg loop (black). Substituted nts used for trapping
9 the ES are highlighted in yellow. The MFE correspond to a 8mer binding site. **d**, miR-34a
10 (red) mSirt1 (turquoise) trapped ES construct comprising an cUUCGg loop and a closing
11 stem (black). Substituted nts used for trapping the ES are highlighted in yellow. The
12 secondary structure distribution of miR-34a–mSirt1 trapped ES follow a similar trend as the
13 full-length duplex, where dashed lines connect identical bulge structures.

14

15 **Extended Data Figure 2 | Mutate-and-Chemical-Shift-Fingerprint (MCSF) analysis of**
16 **miR-34a–mSIRT1 bulge and trapped ES, and analysis of ^{13}C tA22C8 outliers.** We used
17 the MCSF approach²⁶ to cross-validate the candidate ES (ES1) modelled using R_{1p} derived
18 GS→ES chemical shift differences (**a** ^{13}C R_{1p} $\Delta\omega$ data, blue dots and **b**, left). We generated
19 an ES1 mimic (trapped ES) using a two-point substitution predicted to stabilize the proposed
20 conformation (**b**, bottom). For each reporter, we compared ^{13}C R_{1p} $\Delta\omega$ data with the chemical
21 shift differences derived from the assignment of the bulge and the trapped ES constructs (**a**,
22 ^{13}C $\Delta\omega$ trapped ES data, turquoise dots). **a**, The MCSF analysis validates our ES1 model
23 (green boxes) with exceptions arising from the limitation of the mimic (orange boxes) and
24 from the presence of a second ES (ES2 b, right) (violet boxes). **b**, The proposed model for
25 ES2 satisfies the ^{13}C R_{1p} $\Delta\omega$ data measured for tA19 and gG6 and **c** allows us to draw a free

1 energy landscape for the entire star-like 3-state exchange process. Additional discussion of
2 the MCSF analysis and ES2 can be found in Supplementary Discussion 5. Since the transition
3 coefficient (κ), was assumed to be 1^{27} , the transition states energy (TS1 and TS2), calculated
4 using Supplementary Eq. (11), has to be considered an upper limit of this exchange process.
5 **e&f**, The substitution site ($tU21 \rightarrow tC21$) perturbs the chemical environment of tA22C8 that
6 is directly neighboring (3' top) the substituted nucleobase (orange sphere in **b**). Conversely
7 tA22C2 (green sphere), pointing towards the miR-34a strand (red) experience an equivalent
8 chemical environment in bulge (blue) and trapped ES (turquoise) constructs. Thus, explaining
9 the inconsistency in the MCSF profile for tA22C8 (Fig. S12a, orange box). **e**, Secondary
10 structure of tA22 in the miR-34a–mSirt1 bulge excited state (left) and trapped ES (right)
11 constructs. The substitution site ($tU21 \rightarrow tC21$) is highlighted (grey wavy line). **f**, Overlay of
12 average structures of the bulge ES (blue) and trapped ES (turquoise) from REMD ensembles,
13 aligned according to residues gU7 and tA22. Residues gU7, gG8, tU21 and tA22 are shown.
14 tA22C8 (orange) and tA22C2 (green) ^{13}C atoms are shown.

15

16 **Extended Data Figure 3 | Biophysical and biochemical characterization of the**
17 **constructs.** **a**, Individual A260 UV melting profiles for the constructs used in this study.
18 miR-34a, miR-34a–mSirt1 duplex, miR-34a–mSirt1 trapped ES duplex and miR-34a–
19 Complementary strand duplex were measured as three independent replicates. Normalized
20 differential melting curves ($\delta\text{A260}/\delta\text{T}$) plotted as a function of Temperature (K) (circles) and
21 fitted to either Supplementary Equation (1a) or (1b) (line), depending on the molecularity of
22 the system. For each construct, each replicate is presented in a different shade of the
23 corresponding colour. **b**, Electrophoretic Mobility Shift Assay (EMSA) titration profiles for
24 miR-34a–mSirt1 duplex, miR-34a–mSirt1 trapped ES duplex and miR-34a–Complementary
25 strand duplex measured as three independent replicates. Gel images were acquired by Cy3

1 fluorescence detection. During the titration miR-34a 3'-Cy3 was kept at a constant
2 concentration of 24 nM, which set the sensitivity limit to estimate the dissociation constant
3 (K_d) (Supplementary Figure 1 a–c). mSirt1 and mSirt1 trapped ES were found to be
4 equivalent in their ability to form a stable RNA-RNA duplex with miR-34a. Tighter binding
5 was observed for the complementary strand (48.4 ± 9.5 nM), compared to the mSirt1
6 (124.3 ± 21.7 nM) and mSirt1 trapped ES (110.3 ± 23.0 nM) titrations provided a control for the
7 dynamic range of K_d estimation with this technique. Bound/total miR-34a 3'-Cy3 ratio
8 plotted as a function of titrant concentration (circles) and fitted a standard binding isotherm
9 (line) (Supplementary Equation (2)). **c**, Equilibrium Filter Binding Assay profiles for mSirt1,
10 mSirt1 trapped ES and a scrambled control binding miR-34a-loaded hAgo2. The three targets
11 were measured as three independent replicates and fitted to a standard binding isotherm (line)
12 (Supplementary Equation (2)). The 95% Confidence Interval is presented as estimate of the
13 experimental error. Similarly to the EMSA, mSirt1 and mSirt1 trapped ES were found to be
14 equivalent in their ability to form a stable ternary complex within RISC. The simulated
15 dataset (dotted line) indicate curves corresponding to K_d values ten times lower (red) or ten
16 times higher (green) than the average value for mSirt1, mSirt1 trapped ES, providing a frame
17 for the amplitude of our experimental error. **d**, Northern blot for the detection of miR-34a
18 loaded in hAgo2. A standard calibration curve (naked miR-34a) was used to obtain an
19 estimate of miR-34a in RISC. R^2 from the calibration curve is shown, whereas the two outer
20 curves indicate the 95% Confidence interval of the calibration line fit. The average ratio of
21 hAgo2 (pmole) and miR-34a loaded (pmole), was used to obtain a fraction of hAgo2 loaded
22 with our guide ($\sim1.5\%$). The complete list of fitted parameters for UV melting, EMSA
23 titration, FBA titration and Northern blot can be found in Table S1a, b, c and d, respectively.
24 The complete fitting analysis of UV melting, EMSA titration, FBA titration can be found in
25 Data S1 Tab 7, 8 and 9, respectively.

1

2 **Extended Data Figure 4 | DLR assay of additional miR-34a targets.** 5 targets of different
3 bulge sizes were studied as described in the Materials and Method section of the main
4 manuscript. **a**, Standard DLR normalization (relative to control condition where no miR-34a
5 duplex is transfected) is show. Despite the large variability between replicates, consistent
6 increase in downregulation is observed among replicates for WT and tES constructs
7 (connecting lines). **b**, When the dataset are internally normalized and the WT condition is set
8 to 100% (mean value), the variation due to experimental replicas is attenuated and the trend
9 observed in **a** is maintained.

10

11 **Extended Data Figure 5 | miR-34a–mSirt1 bulge Mg²⁺ titration followed by NMR.**
12 HSQCs overlay of different Mg²⁺ titration steps. **a**, ¹H-¹³C aromatic 2/6/8 HSQC. **b**, ¹H-¹³C
13 sugar 1' HSQC. **c**, ¹H-¹⁵N imino 1/3 HSQC. The titration steps are color-coded as indicated
14 by the inset (**a**, top left). Additional overlay of the miR-34a–mSirt1 trapped ES is presented
15 in grey in **a** and **b**. The arrows indicate the chemical shift trajectory during the titration. The
16 dashed lines connect equivalent peaks in the miR-34a–mSirt1 bulge and trapped ES
17 constructs.

18

19 **Extended Data Figure 6 | Slow-growth insertion of ES-RNA into hAgo2 predicts ability**
20 **of bulged miR/mRNA complexes to access an alternate dsRNA binding mode of hAgo2.**
21 Comparison of slow-growth induced-fit hAgo2 structures with existing X-ray structures via
22 structural alignment. **a**, hAgo2 after induced-fit with ES, RNA binds in the PIWI-adjacent
23 groove rather than PAZ domain. **b**, *T. thermophilus* Ago crystal structure reported by Patel
24 and coworkers⁶⁹ similarly shows an DNA/RNA duplex binding in the analogous PIWI-

1 adjacent groove (PDB 3hm9). **c–j**, RMSD for each indicated pair of Ago structures were
2 measured after structural alignment of either all protein atoms (all) or excluding the PAZ,
3 PIWI loops and helix-7 atoms (subset aligned) - these atoms still count towards RMSD. The
4 subset-aligned structures are shown to illustrate that most of the RMSD difference arises
5 from pivoting motions of the PAZ domain coupled with small shifts in helix 7 and PIWI
6 loops to accommodate the inserted ES RNA structures. **c**, GS (yellow) and 4ola (pink)
7 RMSD: 2.065 Å (all) and 2.62 Å (subset aligned). **d**, ES (green) and 4ola (pink) RMSD: 1.4 Å
8 (all) and 1.65 Å (subset align). **e**, Trapped ES (bright pink) and 4ola (dark pink) RMSD 1.9 Å
9 (all) 2.18 (subset align). **f**, ES (green) and GS (yellow) RMSD: 2.1 Å (all) and 2.2 (subset
10 align). **g**, Trapped ES (pink) and ES (green) RMSD: 1.6 Å (all) 1.33 Å (subset align). **h**, ES
11 (green) and 6n4o (gray) RMSD: 2.05 Å (all) and 2.065 Å (subset align). **i**, ES (green) and
12 3hm9 (gray) RMSD 4.52 Å (all). **j**, GS(yellow) and 3hm9 (gray) RMSD: 3.85 Å (all).

13

14 **Supplementary Figure 1 | Uncropped images of EMSA gels and Northern Blot**
15 **membrane. a–c**, Uncropped gel images acquired as described in Supplementary Information
16 Methods section. For each target RNA strand three, independently performed, replicates are
17 presented. Values obtained from the gel presented are plotted in Fig. 3c and Extended Data
18 Fig. 3b. Red arrows indicate free miR-34a 3'-Cy3 labelled (22 nts), blue arrows indicate
19 target bound miR-34a 3'-Cy3 labelled (hetero-duplexes). **d**, Uncropped image of Northern
20 Blot positively-charged nylon membrane aquired as described in Supplementary Information
21 Methods section. Values obtained from the membrane presented here were used to estimate
22 hAgo2 loading with miR-34a and presented in Extended Data Table 1.

23

1 **References**

1. Elkayam, E. *et al.* The Structure of Human Argonaute-2 in Complex with miR-20a. *Cell* **150**, 100–110 (2012).
2. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. *Science* **336**, 1037–1040 (2012).
3. Nakanishi, K., Weinberg, D. E., Bartel, D. P. & Patel, D. J. Structure of yeast Argonaute with guide RNA. *Nature* **2012** *491*:7426 **486**, 368 (2012).
4. Grimson, A. *et al.* MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. *Molecular Cell* **27**, 91–105 (2007).
5. Nielsen, C. B. *et al.* Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. *RNA* **13**, 1894–1910 (2007).
6. Schirle, N. T., Sheu-Gruttaduria, J. & MacRae, I. J. Structural basis for microRNA targeting. *Science* **346**, 608–613 (2014).
7. Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C. & MacRae, I. J. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. *EMBO J.* **37**, 75–88 (2018).
8. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? *Nature reviews genetics* **9**, 102 (2008).
9. Sheu-Gruttaduria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. *The EMBO journal* **e101153** (2019).
10. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties.(Report). *Cell* **151**, 1055 (2012).
11. Bommer, G. T. *et al.* p53-mediated activation of miRNA34 candidate tumor-suppressor genes. *Current biology* **17**, 1298–1307 (2007).
12. Tarasov, V. *et al.* Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest. *Cell Cycle* **6**, 1586–1593 (2007).
13. Chang, T.-C. *et al.* Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. *Molecular Cell* **26**, 745–752 (2007).
14. He, L. *et al.* A microRNA component of the p53 tumour suppressor network. *Nature* **2012** *491*:7426 **447**, 1130 (2007).
15. Raver-Shapira, N. *et al.* Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. *Molecular Cell* **26**, 731–743 (2007).
16. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. *Proceedings of the National Academy of Sciences* **105**, 13421–13426 (2008).
17. Ulrich, E. L. *et al.* BioMagResBank. *Nucleic Acids Research* **36**, D402–D408 (2007).
18. Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. *elife* **4**, e05005 (2015).
19. Dallmann, A. *et al.* Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity-optimized NMR pulse sequences. *Angew. Chem. Int. Ed.* **52**, 10487–10490 (2013).
20. Vecenie, C. J. & Serra, M. J. Stability of RNA Hairpin Loops Closed by AU Base Pairs †. *J. Am. Chem. Soc.* **126**, 11813–11817 (2004).
21. Nikolova, E. N., Gottardo, F. L. & Al-Hashimi, H. M. Probing Transient Hoogsteen

1 Hydrogen Bonds in Canonical Duplex DNA Using NMR Relaxation Dispersion and
2 Single-Atom Substitution. *J. Am. Chem. Soc.* **134**, 3667–3670 (2012).

3 22. Hansen, A. L., Nikolova, E. N., Casiano-Negróni, A. & Al-Hashimi, H. M. Extending
4 the Range of Microsecond-to-Millisecond Chemical Exchange Detected in Labeled
5 and Unlabeled Nucleic Acids by Selective Carbon 1p NMR Spectroscopy. *J. Am.*
6 *Chem. Soc.* **131**, 3818–3819 (2009).

7 23. Schlagnitweit, J., Steiner, E., Karlsson, H. & Petzold, K. Efficient Detection of
8 Structure and Dynamics in Unlabeled RNAs: The SELope Approach. *Chem. Eur. J.*
9 **24**, 6067–6070 (2018).

10 24. Steiner, E., Schlagnitweit, J., Lundström, P. & Petzold, K. Capturing Excited States in
11 the Fast-Intermediate Exchange Limit in Biological Systems Using 1H NMR
12 Spectroscopy. *Angew. Chem. Int. Ed.* **55**, 15869–15872 (2016).

13 25. Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure
14 from sequence data. *Nature* **2012** *491*:7426 **452**, 51 (2008).

15 26. Dethoff, E. A., Petzold, K., Chugh, J., Casiano-Negróni, A. & Al-Hashimi, H. M.
16 Visualizing transient low-populated structures of RNA. *Nature* **2012** *491*:7426 **491**,
17 724–728 (2012).

18 27. Xue, Y. *et al.* in *Laboratory Methods in Enzymology: RNA* (eds. Woodson, S. A. &
19 Allain, F. H. T.) **558**, 39–73 (Academic Press, 2015).

20 28. Clay, M. C., Ganser, L. R., Merriman, D. K. & Al-Hashimi, H. M. Resolving sugar
21 puckers in RNA excited states exposes slow modes of repuckering dynamics. *Nucleic*
22 *Acids Research* **45**, e134–e134 (2017).

23 29. Ebrahimi, P., Kaur, S., Baronti, L., Petzold, K. & Chen, A. A. A two-dimensional
24 Replica-Exchange Molecular Dynamics method for simulating RNA folding using
25 sparse experimental restraints. *Methods* (2019).

26 30. Li, P. & Merz, K. M., Jr. Metal ion modeling using classical mechanics. *Chemical*
27 *reviews* **117**, 1564–1686 (2017).

28 31. Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W. & Pasquinelli, A. E. Pairing
29 beyond the Seed Supports MicroRNA Targeting Specificity. *Molecular Cell* **64**, 320–
30 333 (2016).

31 32. Brancati, G. & Großhans, H. An interplay of miRNA abundance and target site
32 architecture determines miRNA activity and specificity. *Nucleic Acids Research* **46**,
33 3259–3269 (2018).

34 33. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3'-end recognition by
35 the Argonaute2 PAZ domain. *Nat Struct Mol Biol* **11**, 576 (2004).

36 34. Wang, Y., Li, Y., Ma, Z., Yang, W. & Ai, C. Mechanism of microRNA-target
37 interaction: molecular dynamics simulations and thermodynamics analysis. *PLoS*
38 *Comput Biol* **6**, e1000866 (2010).

39 35. Kong, R. *et al.* Exploring the RNA-bound and RNA-free human Argonaute-2 by
40 molecular dynamics simulation method. *Chemical biology & drug design* **90**, 753–763
41 (2017).

42 36. Bhandare, V. & Ramaswamy, A. Structural dynamics of human argonaute2 and its
43 interaction with siRNAs designed to target mutant tdp43. *Advances in bioinformatics*
44 **2016**, (2016).

45 37. Wang, Y. *et al.* Structure of an argonaute silencing complex with a seed-containing
46 guide DNA and target RNA duplex. *Nature* **2012** *491*:7426 **456**, 921 EP –

47 38. Sheng, G. *et al.* Structure-based cleavage mechanism of *Thermus thermophilus*
48 Argonaute DNA guide strand-mediated DNA target cleavage. *Proceedings of the*
49 *National Academy of Sciences* **111**, 652 (2014).

50 39. Dozzen, K. W. & Doudna, J. A. DNA recognition by an RNA-guided bacterial

1 Argonaute. *PLOS ONE* **12**, e0177097 (2017).

2 40. Liu, Y. *et al.* Accommodation of Helical Imperfections in Rhodobacter sphaeroides

3 Argonaute Ternary Complexes with Guide RNA and Target DNA. *Cell Reports* **24**,

4 453–462 (2018).

5 41. Huang, J. *et al.* miR-34a Modulates Angiotensin II-Induced Myocardial Hypertrophy

6 by Direct Inhibition of ATG9A Expression and Autophagic Activity. *PLOS ONE* **9**,

7 e94382 (2014).

8 42. Sun, F. *et al.* Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle

9 arrest. *FEBS letters* **582**, 1564–1568 (2008).

10 43. Bartel, D. P. Metazoan MicroRNAs. *Cell* **173**, 20–51 (2018).

11 44. Gebert, L. & MacRae, I. J. Regulation of microRNA function in animals. *Nature*

12 *Reviews Molecular Cell Biology* (2018).

13 45. Park, J. H., Shin, S.-Y. & Shin, C. Non-canonical targets destabilize microRNAs in

14 human Argonautes. *Nucleic Acids Research* **45**, 1569–1583 (2017).

15 46. Jo, M. H. *et al.* Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs.

16 *Molecular Cell* **59**, 117–124 (2015).

17 47. De, N. *et al.* Highly Complementary Target RNAs Promote Release of Guide RNAs

18 from Human Argonaute2. *Molecular Cell* **50**, 344–355 (2013).

19

20 **Methods References**

21

22 48. Beckert, B. & Masquida, B. in *Rna* 29–41 (Springer, 2011).

23 49. Baronti, L., Karlsson, H., Marušič, M. & Petzold, K. A guide to large-scale RNA

24 sample preparation. *Anal Bioanal Chem* **410**, 3239–3252 (2018).

25 50. Kao, C., Zheng, M. & Rüdisser, S. A simple and efficient method to reduce

26 nontemplated nucleotide addition at the 3' terminus of RNAs transcribed by T7 RNA

27 polymerase. *RNA* **5**, 1268–1272 (1999).

28 51. Helmling, C. *et al.* Rapid NMR screening of RNA secondary structure and binding.

29 *Journal of biomolecular NMR* **63**, 67–76 (2015).

30 52. De, N. & MacRae, I. J. in *Argonaute Proteins* 107–119 (Springer, 2011).

31 53. Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of

32 small RNA. *Nature Protocols* **3**, 1077 (2008).

33 54. Rio, D. C. Northern blots for small RNAs and microRNAs. *Cold Spring Harbor*

34 *Protocols* **2014**, pdb-prot080838 (2014).

35 55. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of

36 image analysis. *Nature methods* **9**, 671 (2012).

37 56. Fürtig, B., Richter, C., Wöhnert, J. & Schwalbe, H. NMR spectroscopy of RNA.

38 *Chembiochem* **4**, 936–962 (2003).

39 57. Metropolis, N. & Ulam, S. The monte carlo method. *Journal of the American*

40 *statistical association* **44**, 335–341 (1949).

41 58. Palmer, A. G. & Massi, F. Characterization of the dynamics of biomacromolecules

42 using rotating-frame spin relaxation NMR spectroscopy. *Chemical reviews* **106**, 1700–

43 1719 (2006).

44 59. Popenda, M. *et al.* RNA FRABASE 2.0: an advanced web-accessible database with

45 the capacity to search the three-dimensional fragments within RNA structures. *BMC*

46 *bioinformatics* **11**, 231 (2010).

47 60. Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through

48 multi-level parallelism from laptops to supercomputers. *SoftwareX* **1-2**, 19–25 (2015).

49 61. Chen, A. A. & Garcia, A. E. High-resolution reversible folding of hyperstable RNA

50 tetraloops using molecular dynamics simulations. *Proceedings of the National*

1 *Academy of Sciences* **110**, 16820–16825 (2013).

2 62. Steinbrecher, T., Latzer, J. & Case, D. A. Revised AMBER parameters for bioorganic

3 phosphates. *Journal of chemical theory and computation* **8**, 4405–4412 (2012).

4 63. Horn, H. W. *et al.* Development of an improved four-site water model for

5 biomolecular simulations: TIP4P-Ew. *The Journal of chemical physics* **120**, 9665–

6 9678 (2004).

7 64. Joung, I. S. & Cheatham, T. E., III. Determination of alkali and halide monovalent ion

8 parameters for use in explicitly solvated biomolecular simulations. *The Journal of*

9 *Physical Chemistry B* **112**, 9020–9041 (2008).

10 65. Daura, X. *et al.* Peptide folding: when simulation meets experiment. *Angew. Chem.*

11 *Int. Ed.* **38**, 236–240 (1999).

12 66. Hu, H., Yun, R. H. & Hermans, J. Reversibility of Free Energy Simulations : Slow

13 Growth May Have a Unique Advantage.(With a Note on Use of Ewald Summation).
Molecular Simulation **28**, 67–80 (2002).

14 67. Grentzmann, G., Ingram, J. A., Kelly, P. J., GESTALAND, R. F. & Atkins, J. F. A

15 dual-luciferase reporter system for studying recoding signals. *RNA* **4**, 479–486 (1998).

16 68. Salzman, D. W. *et al.* miR-34 activity is modulated through 5'-end phosphorylation in

17 response to DNA damage. *Nature Communications* **7**, 10954 (2016).

18 69. Wang, Y. *et al.* Nucleation, propagation and cleavage of target RNAs in Ago silencing

19 complexes. *Nature* **2012** *491*:7426 **461**, 754 (2009).

20

21