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ABSTRACT

This paper introduces a dynamic graph partitioning algo-
rithm, designed for large, constantly changing graphs. We
propose a partitioning framework that adjusts on the fly as
the graph structure changes. We also introduce a replica-
tion algorithm that is tightly integrated with the partition-
ing algorithm, which further reduces the number of edges
cut by the partitioning algorithm. Even though the pro-
posed approach is handicapped by only taking into consider-
ation local parts of the graph when reassigning vertices, ex-
tensive evaluation shows that the proposed approach main-
tains a quality partitioning over time, which is comparable
at any point in time to performing a full partitioning from
scratch using a state-the-art static graph partitioning algo-
rithm such as METIS. Furthermore, when vertex replication
is turned on, edge-cut can improve by an order of magnitude.

1. INTRODUCTION

In recent years, large graphs are becoming increasingly
prevalent. Such graph datasets are too large to manage on
a single machine. A typical approach for handling data at
this scale is to partition it across a cluster of commodity ma-
chines and run parallel algorithms in a distributed setting.
Indeed, many new distributed graph database systems are
emerging, including Pregel [22], Neod4j, Trinity [34], Horton
[30], Pegasus [15], GraphBase [14], and GraphLab [21].

In this paper, we introduce data partitioning and replica-
tion algorithms for such distributed graph database systems.
Our intention is not to create a new graph database system;
rather our data partitioning and replication algorithms can
be integrated with existing scalable graph database systems
in order to improve the performance of the current imple-
mentation of their parallel query execution engines.

The most common approach for partitioning a large graph
over a shared-nothing cluster of machines is to apply a hash
function to each vertex of the graph, and store the vertex
along with any edges emanating from that vertex on the
machine assigned to that hash bucket. Unfortunately, hash
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partitioning graph data in this fashion can lead to subopti-
mal performance for graph algorithms whose access patterns
involve traversing the graph along its edges. For example,
when performing subgraph pattern matching, patterns are
matched by successively traversing a graph along edges from
partially matched parts of the graph. If the graph is parti-
tioned in a way that nodes close to each other in the graph
are physically stored as close to each other as possible, the
network traffic of such graph algorithms can be significantly
reduced.

In general, there are two goals that are desirable from a
partitioning algorithm for workloads with traversal-oriented
access patterns. First, if two vertices are connected by an
edge, it is desirable for those two vertices to be stored on
the same physical machine. If a partitioning algorithm as-
signs those vertices to two different machines, that edge is
referred to as being “cut”. Second, the size of the subgraph
(in terms of the number of vertices and edges) stored on
each partition should be approximately equal, so that graph
algorithms can be parallelized equally across the cluster for
maximum performance. These two goals are often in con-
flict. For example, it is easy to guarantee that no edge is ever
cut if the entire graph is stored on a single machine, How-
ever, the partitioning would be extremely unbalanced, and
graph algorithms would not be able to leverage the parallel
resources in the cluster. On the other hand, hash parti-
tioning usually gets near perfect balance of assignment of
vertices and edges to nodes, but yields a high number of cut
edges.

The dual goals of minimizing edge cut and maintaining
balanced partitions is usually formulated as the k-balanced
partitioning problem. k-partitioning has been studied exten-
sively, and there exist many k-partitioning algorithms, both
in the theoretical space, and some which have practical im-
plementations. However, almost all of these k-partitioning
algorithms run on static graphs — namely, the whole graph
is known before the partitioning algorithm starts. The best
known of these include METIS [17] and Chaco [12], which
go through multiple levels of coarsening and refinement. Re-
cent work includes lighter-weight algorithms that make sev-
eral passes through the static graph and partition it without
storing the entire graph in memory [35, 37, 25].

While getting a good initial partitioning of a static graph
is certainly important, many modern graphs are dynamic,
with new vertices and edges being added at high rates, and
in some cases vertices and edges may be removed. There-
fore, a good initial partitioning may degrade over time. It
is inefficient to repeatedly run the static graph partitioning



algorithm to repartition the entire graph every time the par-
titioning starts to degrade a little. Instead, it is preferable
to incrementally maintain a quality graph partitioning, dy-
namically adjusting as new vertices and edges are added to
the graph. For this reason, there has been several recent
research efforts in dynamic graph partitioning [33, 32, 31,
40, 39, 42].

Another important aspect of distributed systems is repli-
cation for fault tolerance by replicating data across several
machines/nodes so that if one node fails, the data can still
be processed by replica nodes. In general, the level of fault
tolerance is specified by a minimum number of copies. If the
entire subgraph stored on a particular node is replicated to
an equivalent replica node, then replication can be consid-
ered completely independently from partitioning. However,
more complicated replication schemes are possible where dif-
ferent parts of the subgraph stored on a node are replicated
to different nodes depending on which nodes store subgraphs
“closest” to that particular part of the subgraph. Replicat-
ing data in this way can significantly improve the edge-cut
goals of partitioning, while maintaining the required fault
tolerance guarantees.

One possible replication algorithm is to make replicas of
all non-local neighbors for every vertex in the graph [27, 13]
so that all accesses for neighbors are local. Unfortunately,
many graphs contain “high degree” vertices (vertices asso-
ciated with many edges), which end up getting replicated
to most (if not all) nodes under such a replication algo-
rithm. The effect is thus that some vertices get replicated
far more than the minimum level required for fault toler-
ance, while other “low degree” vertices do not get replicated
at all. A good replication algorithm needs to ensure a min-
imal replication for each vertex, while judiciously using any
extra replication resources to replicate those vertices that
will benefit the partitioning algorithm the most.

One problem with replication is keeping the replicas in
sync. For graphs where the vertices contain attributes that
are updated frequently, the update cost is multiplied by the
number of replicas. Furthermore, many bulk-synchronous
parallel (BSP) graph processing algorithms (such as well-
known implementations of page rank, shortest paths, and
bipartite matching [22]) work by updating ongoing calcula-
tions at each vertex upon each iteration of the algorithm.
Enforcing replication of these running calculations at each
iteration cancels out the edge-cut benefits of replication.

Previous approaches to dynamic graph partitioning were
designed for graph applications where computations involve
frequent passing of data between vertices. Therefore, they
do not consider replication as a mechanism to reduce edge-
cut, since the cost of keeping replicas in sync with each other
during the computation is too high. In contrast, our work
focuses on workloads that include read-only graph computa-
tions. While vertices and edges may be frequently added or
deleted from the graph, and they may even occasionally be
updated though explicit graph update operations, the pro-
cessing operations over the graph fall into two categories —
“read-only” and “non-read-only”. Replication has the po-
tential to improve the locality of read-only operations with-
out hindering the performance of non-read-only operations
that involve writing temporary data that can be deleted at
the end of the computation (since the replicas can be ignored
in such a scenario). Perhaps the most common read-only
operation is sub-graph pattern matching and graph isomor-
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phism — such operations are prevalent in SPARQL database
systems where queries are expressed as a subgraph pattern
matching operation over RDF data. However, read-only op-
erations are also common for other types of graph systems.
For example, triangle finding over social network data is an
important tool for analyzing the properties of the network.

The primary contribution of our work is therefore the in-
troduction of the first (to the best of our knowledge) dy-
namic graph partitioning algorithm that simultaneously in-
corporates replication alongside dynamic partitioning. We
first propose a new, lightweight, on-the-fly graph partition-
ing framework that incorporates new edges instantly, and
maintains a quality partitioning as the graph structure changes
over time. Our approach borrows techniques and calcula-
tions from single-pass streaming approaches to (non-dynamic)
graph partitioning. We leverage the flexibility of the stream-
ing model to develop a vertex replication policy that dra-
matically improves the edge-cut characteristics of the par-
titioning algorithm while simultaneously maintaining fault
tolerance guarantees. Since the reduction in edge-cut that is
derived from replication is only applicable for certain graph
operations, we also contribute a model that specifies the ef-
fective edge-cut of a replicated graph given a specific class
of graph algorithm.

We also run an extensive evaluation of Leopard — an im-
plementation of our dynamic partitioning and replication
algorithm — on eleven graph data sets from various do-
mains: Web graphs and social graphs and synthetic graphs.
We find that even without replication, our stream-based dy-
namic partitioning approach produces an “edge-cut” similar
to the edge-cut of the same graph if it had been repartitioned
using a state-of-the-art static partitioning algorithm at that
point in time. However, once replication is turned on, Leop-
ard produces edge-cuts many factors smaller — in two cases
transforming datasets with 80% edge-cut to 20% edge-cut.

2. BACKGROUND AND RELATED WORK

Even without considering dynamic graphs, static graph
partitioning by itself is an NP-hard problem [11] — even
the simplest two-way partitioning problem is NP-hard [10].
There are several linear programming-based solutions that
obtain an O(log n) approximation for k-way partitioning
[1, 8]. However, these approaches tend to be impracti-
cal. Various practical algorithms have been proposed that
do not provide any performance guarantees, but prove effi-
cient in practice. For small graphs, algorithms such as KL
[19] and FM [9] are widely used. For large graphs, there
are several multi-level schemes, such as METIS [17], Chaco
[12] , PMRSB [3] and Scotch [26]. These schemes first go
through several levels of coarsening to roughly cut the graph
into small pieces, then refine the partitioning with KL [19]
and/or FM [9] and finally project the pieces back to the finer
graphs. These algorithms can be parallelized for improved
performance, such as in ParMetis [18] and Pt-Scotch [5]. To
handle billion-node graphs, Wang et al. [41] design a multi-
level label propagation method on top of Trinity [34]. It
follows the framework of coarsening and refinement, but re-
places maximal match with a label propagation [29] method
to reduce memory footprint.

Most of the research on partitioning of dynamic graphs
focus on repartitioning the graph after a batch of changes
are made to an original partitioning that cause the original
partitioning to deteriorate [33]. In general, two approaches



are used. The first approach is scratch-map partitioning,
which simply performs a complete partitioning again using
a static partitioner [32]. The second (more commonly used)
approach is diffusive partitioning. It consists of two steps:
(1) a flow solution that decides how many vertices should
be transferred between partitions using linear programming
and (2) a multi-level diffusion scheme that decides which
vertices should be transferred [31, 40]. These repartition-
ing schemes are heavyweight and tend to process a batch
of changes instead of one change at a time. Furthermore,
they tend to come from the high performance computing
community, and do not consider replication alongside parti-
tioning. In contrast, in this paper we focus on light-weight
dynamic partitioning schemes that continually update the
partitioning as new changes are streamed into the system,
and tightly integrate replication with partitioning.

More recent works introduce light-weight partitioning al-
gorithms for large-scale dynamic graphs. Vaquero et al. [39]
propose a framework that makes use of a greedy algorithm
to reassign a vertex to a partition with the most neighbors,
but at the same time defers some vertex migration to ensure
convergence. Xu et al. [42] propose methods for partitioning
based on a historical log of active vertices in a graph pro-
cessing system. Our work differs from theirs since we do not
assume any kind of historical information of how the graph
is processed. More importantly, the systems proposed by
Vaquero and Xu et al. are designed for BSP graph process-
ing systems that continuously update vertices in the graph
with temporary data associated with running computations.
Therefore, they do not consider replication as a mechanism
for improving edge-cut, due to the overhead of keeping repli-
cas updated with this temporary data. In contrast, a central
contribution of our work is the consideration of read-only
graph algorithms (such as subgraph pattern matching oper-
ations, triangle finding, and certain types of graph traversal
operations) for which replication of data has the potential
to reduce edge-cut and greatly improve the performance of
these read-only operations. Thus the integration of parti-
tioning and replication is the focus of our work, but not the
other works cited above.

There have been several recent papers that show how
treating replication as a first class citizen in graph database
systems can greatly improve performance. Pujol et al. [27]
use replication to ensure that neighbors of a vertex are al-
ways co-located in the same partition as the vertex. In other
words, if a vertex’s neighbors are not originally placed in the
same partition as a vertex, they are replicated there. How-
ever, such a strong guarantee comes with significant over-
head — high degree vertices get replicated a large number
of times, and keeping the replicas consistent requires sig-
nificant communication. Mondal and Deshpande fix this
problem by defining a novel fairness requirement to guide
replication that ensures that a fraction of neighbors (but not
necessarily all neighbors) of a vertex be located in the same
partition [23]. Furthermore, they use a clustering scheme to
amortize the costs of making replication decisions. However,
the main focus of the Mondal and Deshpande paper is repli-
cation, and their system is built on top of a hash partitioner.
In contrast, our work focuses on reducing edge-cut through
a combination of light-weight graph partitioning and repli-
cation. Partitioning and replication are built together as a
single component in Leopard, and work in conjunction to
increase locality of query processing.
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Duong et al. show that another important benefit of repli-
cation is to alleviate load skew at query time [7]. Without
replication, the partitions that store “popular nodes” get
overwhelmed with requests for the values of those nodes.
Replicating these popular nodes spreads out the resources
available to serve these requests and reduces load skew. Sim-
ilar to the work by Pujol et al. and Mondal and Deshpande,
the replication scheme performed by Duong et al. also re-
duces edge-cut by using the number of neighbors in a local
partition to guide the replication algorithm. The algorithm
presented by Duong et al. is for the complete partitioning of
a graph. This work does not discuss incremental repartition-
ing as the graph structure changes over time (this is explictly
left by Duong et al. for future work). In contrast, our fo-
cus in this paper is on the dynamic repartitioning problem.
The integration of replication considerations into dynamic
repartitioning algorithms is non-trivial, and has not been
addressed by the above-cited related work.

Leopard’s light-weight dynamic graph partitioning algo-
rithm builds on recent work on light-weight static partition-
ers. These algorithms partition a graph while performing a
single pass through the data — for each vertex read from
the input graph dataset, they immediately assign it to a
partition without the knowledge of the vertices that will be
read afterward. Because of the online nature of these algo-
rithms, lightweight heuristics are often used to decide where
to assign vertices, including the linear deterministic greedy
(LDG) approach [35] and FENNEL [37]. LDG uses mul-
tiplicative weights to maintain a balanced partitioning and
FENNEL leverages modularity maximization [4, 24] to de-
ploy a greedy strategy for maintaining balanced partitions.
Nishimura and Ugander [25] advanced this work by intro-
ducing several-pass partitioning and stratified partitioning.
Similarly, Ugander and Backstrom introduce an iterative al-
gorithm where each iteration does a full pass through the
data-set and uses a linear, greedy, label propagation algo-
rithm to simultaneously optimize for edge locality and parti-
tion balance [38]. However, the single-pass algorithms, along
with the Nishimura et. al. and Ugander et. al. algorithms
are designed to be run on demand, in order to occasionally
(re)partition the entire graph as a whole. Furthermore, they
do not consider replication. In contrast, our focus in this pa-
per is on continuously repartitioning a graph in a lightweight
fashion as it is dynamically modified. Furthermore, we ex-
plicity consider replication for fault tolerance as a tool for
simultaneously improving partitioning.

3. VERTEX REASSIGNMENT

One key observation that serves as the intuition behind
Leopard, is that the dynamic graph partitioning problem
is similar to the one-pass partitioning problem [35, 37] de-
scribed in Section 2. In many cases, what makes most dy-
namic graphs dynamic are new vertices and edges that are
added. Therefore at any point in time, a dynamic graph
can be thought of as an intermediate state in the midst of a
one-pass partitioning algorithm. Consequently, the heuris-
tics that have been used for one-pass algorithms can be lever-
aged by Leopard.

The intuition behind the one-pass streaming heuristics is
the following: to achieve a low cut ratio, a new vertex should
be assigned to the existing partition with most of its neigh-
bors. However, at the same time, a large partition should
be penalized to prevent it from becoming too large.



The FENNEL scoring heuristic is presented in Equation
1. P; refers to the vertices in the ith partition. v refers
to the vertex to be assigned and N(v) refers to the set of
neighbors of v. o and 7y are parameters.

argmax{|N(v) N P;| — a%(|PiD77l}7
1<i<k

(Equation 1)

This heuristic takes a vertex v as the input, computes a
score for each partition, and places v in the partition with
the highest score. |N(v) N P;| is the number of neighbors of
v in the partition. As the number of neighbors in a partition
increases, the score of the partition increases. To ensure a
balanced partitioning, it contains a penalty function based
on the number of vertices, |P;|, in the partition. As the
number of vertices increases, the score decreases.

While one-pass partitioning algorithms are able to get a
good initial partitioning at very low overhead, they fall short
in three areas that are important for replicated, dynamic
partitioning (1) a vertex is assigned only once and never
moves, (2) they do not consider deletes, and (3) they do
not consider replication. Therefore, we cannot use a simple
adaptation of the one-pass streaming algorithms.

We first discuss the introduction of selective reassignment
into streaming algorithms in this section. We defer the de-
scription of the full dynamic partitioning algorithm that in-
cludes a tight integration with replication to Section 4.

Example 1 illustrates a motivation for reassignment.

ExXAMPLE 1. Suppose there are two partitions P1 and Ps.
For the sake of simplicity of this example, we assume that the
two partitions are roughly balanced at all times, so we only
focus on the number of neighbors of a vertex to determine
where it should be placed.

After loading and placing the first 100 edges into different
partitions, verter v has 3 meighbors in P1 and 2 neighbors
in Py. Hence, P1 is the better partition for v. However,
after loading and placing another 100 edges, vertex v mow
has 4 neighbors in P1 and 10 neighbors in P>. The better
partition for v is now Ps. Therefore, the optimal partition
for a vertex changes over time as new edges are added (or
deleted) — even though most of these new edges are added
to a partition different than where v is located.

Leopard therefore continuously revisits vertices and edges
that have been assigned by the one-pass partitioning algo-
rithm, and reassigns them if appropriate. Theoretically, all
vertices could be examined for reassignment every time an
edge is added (or deleted). However, this is clearly imprac-
tical. Instead Leopard uses a more strategic approach.

When an edge (v1, v2) is added or deleted, most vertices
are minimally affected. Only those vertices in the graph
near the edge are likely to be influenced enough to poten-
tially justify a move. If v; and v are located on different
partitions, they become good candidates for reassignment
because they now have one additional (or less) neighbor on
a different partition. In particular, v; should perhaps be
moved to v2’s partition, or vice versa. This may cause a
ripple effect among neighbors of a reassigned vertex — once
a vertex moves to a new machine, its neighbors may also be
better off being moved to a new machine.

Therefore, when a new edge (v1, v2) is added, v1 and vz are
chosen as the initial candidates for examination of potential
reassignment. If either one of them are reassigned, then the
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immediate neighbors of the moved vertex are added to the
candidate set. This candidate set thus contains the set of
vertices immediately impacted by the recent graph activity.
A subset of the vertices in this candidate set are examined
for potential reassignment. This examination process in-
volves reapplying the score function (e.g., Equation 1) to
these candidates. The algorithm for choosing the particular
subset of candidates that will be re-scored and potentially
reassigned is given in the following section.

3.1 Timing of Reassignment Examination

After examination candidates are chosen, Leopard must
decide whether examination should be performed on those
candidates. As described above, examining a vertex v for
reassignment involves calculating a score (e.g., Equation 1)
for the placement of v on every partition in the cluster. This
scoring process includes a calculation based on the number
of neighbors of v in each partition, which requires informa-
tion to be accessed regarding where v’s neighbors are lo-
cated. If the vertex location lookup table is small enough
to be hosted on one machine, then the cost of the lookup
is small. However, for massive graphs, the lookup table is
spread across the cluster, and this cost can be significant
(Leopard uses a distributed consistent hash table [16] that
maps vertex identifiers to their respective partitions). In
general, examination comes with a non-negligible cost, and
should not be performed when there is little probability of
the examination resulting in reassignment.

As a vertex’s number of neighbors increases, the influence
of a new neighbor decreases. For example, in one experi-
ment that we ran in Section 6, a vertex with 10 neighbors is
reassigned to a new partition upon receiving an 11th neigh-
bor 13% of the time, while a vertex with 40 neighbors is
reassigned to a new partition upon receiving a 41st neigh-
bor only 2.5% of the time. Therefore, it is less cost-efficient
to pay the reassignment examination cost for a vertex with
a large number of existing neighbors, since it is likely that
this examination work will be wasted, and the vertex will
remain in its current partition.

Leopard therefore occasionally avoids the reassignment
examination computation of a candidate vertex v if v already
has many neighbors in the graph. Nonetheless, Leopard en-
sures that even vertices with a large number of neighbors
get examined periodically. The pseudocode for the logic on
when to skip examination is shown in Figure 1. Given a ver-
tex v and a threshold ¢, the function skips the computation
of the reassignment scores if the ratio of skipped computa-
tion to the total neighbors of v is less than ¢. This has the
effect of making the probability of performing reassignment
examination after adding a new neighbor to v proportional
to (1 —t)/(t)(v.neighbors).

Upon breaking up this formula into its two components,
it can be seen that there are two factors that determine
whether an examination should be performed: 1/(v.neighbors)
and (1 —¢)/t. This means that as the number of neighbors
increases, the probability of examination for reassignment
goes down. At the same time, as t approaches 0, examina-
tion will always occur, while as ¢ approaches 1, examination
will never occur.

There is clearly a tradeoff involved in setting ¢. A larger ¢
skips more examinations and reduces the partitioning qual-
ity, but improves the speed of the algorithm. Section 6 re-
visits this tradeoff experimentally (see Figures 10 and 11).



Function ToExamineOrNot(v, threshold)
if an edge is added then
v.neighbors++
else if an edge is deleted then
v.neighbors——
end if
if (v.skippedComp + 1) + v.neighbors > threshold then
compute the reassignment scores for v
v.skippedComp = 0
else
v.skippedComp++
end if

Figure 1: Algorithm for deciding when to examine a vertex
for reassignment.

4. LEOPARD PARTITIONING

We now present the complete Leopard partitioning algo-
rithm that tightly integrates replication with dynamic par-
titioning.

Replication serves two purposes in Leopard: providing
fault tolerance and improving access locality. Fault toler-
ance is achieved by replicating vertices to different machines.
By having n copies of each vertex, every vertex is still acces-
sible even if the system loses n — 1 machines. Some graph
database systems are built on top of distributed file systems
such as HDFS that provide their own replication mecha-
nisms for fault tolerance. Such mechanisms are redundant
with Leopard’s replication and should be avoided if possible
when used in conjunction with Leopard (for example, HDFS
has a configuration parameter that removes replication).

Better access locality improves performance. Even if an
edge (v1, v2) is cut (meaning that v and vz are in separate
partitions, which usually results in them being stored on
separate machines), if a copy of vz is stored on v;’s partition
(or vice versa), computation involving v1 and v may still
proceed locally without waiting for network communication.

Most systems treat replication for access locality and fault
tolerance separately [7, 13, 27]. For example, a partitioner
will create an initial partitioning, and certain important ver-
tices are selectively replicated to multiple partitions in or-
der to reduce the edge-cut. Afterwards, entire partitions (or
shards of partitions) are replicated to other machines for
fault tolerance. This has the effect of “double-replicating”
these important vertices. This may not be the most efficient
use of resources. A better edge-cut may have been achiev-
able had additional important vertices been replicated dur-
ing the first phase instead of double-replicating the original
set of important vertices. Leopard thus takes the approach
of simultaneously considering access locality and fault tol-
erance in order to avoid this waste of resources. It is im-
portant to note, however, that recovery from failures are
more complicated when multiple shards or partitions need
to be accessed in order to recover the data on the failed
machine. Although novel in the graph database space, this
approach of trading off recovery complexity for improved re-
source utilization has been performed before in the context
of column-store database systems. Different combinations
of columns (in potentially different sort orders) are stored
on different machines, while ensuring that at least k copies
of each column are located across the cluster [36].

The primary downside to replication is the cost of keep-
ing replicas in sync with each other. If an update to the
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data stored inside a vertex must be performed, this update
must be propagated to all replicas, and this must happen
atomically if replicas are not allowed to not temporarily di-
verge for a particular application. In this paper, we classify
updates into two categories: permanent updates to funda-
mental attributes of vertices or edges in a graph (e.g. chang-
ing the name of a user in a social network), and temporary
updates to vertices or edges that occur over the course of
a graph computation. In this section, we assume that the
former type of updates happen far less frequently than reads
of these vertices or the addition or removal of vertices and
edges. However, several solutions have been proposed in the
research community for how to handle replication when this
assumption does not hold [6, 28]. We make no assumptions
about the latter type of updates (temporary updates) and
discuss them in more detail below.

4.1 Replication, Access Locality and Cut

An access from a vertex v to a neighbor w is local if v and
u are placed on the same machine. Otherwise it is remote.
When vertices are not replicated, this is directly related to
whether edge (v,w) is cut, and edge cut ratio can be used to
predict access locality. However, the definition of cut ratio
is more complicated when considering vertex replication.

Figure 2 illustrates this complexity for a sample graph
containing vertices in triangle. In the case without replica-
tion (a), all three edges are cut. In the case with replication
(b), A, B and C are replicated to partitions 3, 1 and 2, re-
spectively. It could be argued that the edge (A, B) is no
longer cut, since partition 1 now contains a copy of both A
and B. By the same logic, the edge (A, C) would no longer
be cut since partition 3 now contains both vertices. How-
ever, if a query wanted to access A, B, and C, this query
cannot be performed locally. In other words, even though
the edge (A, B) is not cut, and the edge (A, C) is not cut,
we cannot transitively deduce that A, B, and C' are in the
same partition. In contrast, in a system without replication,
such a transitive property would hold.

B
©

Partition 3

Partition 2 Partition 1 Partition 2

Partition 3

(a) Partitioning without replication (b) Partitioning with replication

Figure 2: Partitions without and with replication. A’, B’
and C’ are replicas.

The fundamental problem is that replication adds a direc-
tion to an edge. When B is replicated to A’s partition, it
allows B to be accessed from the partition with the master
copy of A. However, it does not allow A to be accessed from
the partition with the master copy of B. Therefore half of
all co-accesses of A and B will be non-local (those that ini-
tiate from B’s master copy) and half are local (those that
initiate from A’s master copy). In other words, vertex repli-
cation repairs the “cut” edges between the replicated vertex
and all vertices on the partition onto which it is replicated,
but these edges are only “half”-repaired — only half of all
accesses to that edge will be local in practice.



Furthermore, in some cases Leopard chooses to let the
replicas diverge. In particular, temporary data that is as-
sociated with every vertex during an iterative graph com-
putation (that is updated with each iteration of the com-
putation) are not propagated to replicas. The reason for
this is that it only “pays off” to spend the cost of send-
ing data over the network to keep replicas in sync if each
replica will be accessed multiple times before the next up-
date. For iterative graph computation where updates occur
in every iteration, this multi-access requirement is not met.
Therefore, Leopard does not propagate this temporary data
to replicas during the computation, and thus replica nodes
cannot be used during the computation (since they contain
stale values). In such a scenario, the effective edge cut with
replication is identical to the edge cut without replication.

In order to accurately compare the query access locality of
an algorithm over a replicated, partitioned graph against the
locality of the same algorithm over an unreplicated graph,
we focus on effective edge cut, which prevents an overstate-
ment of the benefit of replication on edge-cut. In order to
precisely define effective edge cut, we classify all graph op-
erations as either “read-only” and “non-read-only”. Read-
only operations do not write data to vertices or edges of the
graph during the operation. For example, sub-graph pat-
tern matching, triangle finding, and certain types of graph
traversal operations are typically read-only. In contrast,
non-read-only operations, such as the iterative BSP algo-
rithms discussed above, potentially write data to the graph.
The effective edge cut is defined relative to the classifica-
tion of a particular operation being performed on a graph.
Given an operation, O, and an edge (u,v), Figure 3 pro-
vides a value for the effective cut for that edge. When cal-
culating the edge-cut for the entire graph, edges for which
DefineEffectiveCut returns “HALF CUT” have only half
of the impact relative to fully cut edges on the final edge-
cut value. This accounts for the uni-directional benefit of
replicating a vertex to a new partition.

Figure 4 shows examples corresponding to the four cases
presented in the edge cut definition for read-only operations.

4.2 Minimum-Average Replication

Leopard uses a replication scheme called MAR, an acronym
of Minimum-Average Replication. As the name suggests,
the scheme takes two parameters: the minimum and average
number of copies of vertices. The minimum number of copies
ensures fault tolerance and any additional copies beyond the
minimum provides additional access locality. In general, the
average number of copies specified by the second parameter
must be larger than or equal to the first parameter. Figure
5 shows an example graph with MAR.

Given a vertex, the MAR algorithm decides how many
copies of it should be created and in which partitions they
should be placed. Leopard uses a two step approach. First, a
modified version of the vertex assignment scoring algorithm
is run. Second, the scores generated from the first step are
ranked along with recent scores from other vertices. Vertices
with a high rank relative to recent scores get replicated at a
higher rate than vertices with relatively low scores.

4.2.1 Vertex assignment scoring with replication
Because of replication, the assignment score functions need

to be modified to accommodate the presence of secondary

copies of vertices and to remain consistent with the new edge
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Function DefineEffectiveCut(v, u, O)
// p(v) and s(v) denote the primary copy
// and a secondary copy of v, respectively.
// O is the operation being performed on the graph.
if p(v) and p(u) are on the same partition then
return NOT CUT
else if p(v) and s(u) are on the same partition &
p(u) and s(v) are on the same partition then
if O is read-only
return NOT CUT
else
return CUT
else if p(v) and s(u) are on the same partition |
p(u) and s(v) are on the same partition then
if O is read-only
return HALF CUT
else
return CUT

else
return CUT
end if

Figure 3: A definition of effective edge cut
of vertex replication.

in the presence

v U

primary | second. | primary | second. Edge (v, u)
1 2,3 1 4,5 NO CUT
1 2,3 2 1,3 NO CUT
1 2,3 2 3,4 HALF CUT
1 3,4 2 3,4 CcuT

Figure 4: Examples of location of primary and secondary
copies and the corresponding cut for a read-only operation.
A value of 2,3 in the secondaries column means that the
secondary copies are placed on partitions 2 and 3.

cut definition given in Section 4.1. In particular the score
function (see e.g., Equation 1) requires the list of all neigh-
bors of the vertex being scored on each partition. Given a
vertex v that is currently being scored, we make the defini-
tion of whether a vertex u is a neighbor of v in partition P
dependant on whether we are currently scoring the primary
or secondary copy of v:

DEFINITION 1. Consider a graph G = (V,E). p(v) and
s(v) denote the primary copy and a secondary copy of v,
respectively. u is a neighbor of v on partition P if (v,u) € E
and also one the following holds:

(1) v is a primary copy and p(u) € P
(2) v is a primary copy and s(u) € P
(8) v is a secondary copy and p(u) € P

Given that this definition is dependent on whether the
primary or secondary copy of v is being scored, Leopard
computes two scores for each partition, P: one for the pri-
mary copy of v and one for secondary copies. The primary
copy will be placed in the partition with the highest pri-
mary copy score, and secondary copies are placed according
to their scores using the algorithm presented in Section 4.2.2.

4.2.2 Ranking scores for secondary copies

After computing the score for a secondary copy of vertex
v for each candidate partition, these scores are sorted from
highest to lowest. Since there is a minimum requirement of



(a) Partition 1

Input Graph
Figure 5: Example of Minimum-Average Replication of an input graph, where the minimum = 2 and average = 2.5. The
primary copy of each vertex is shown in light blue and their secondary copies are highlighted in a darker blue. 8 vertices have
2 copies, 2 have 3 copies, and 2 (the best-connected vertices) have 4 copies. The copy of J in partition 2 does not improve
access locality, but is required for fault tolerance.

Function ChoosePartitions(v, min, average)
choose a partition for the primary copy of v:
run the scoring algorithm for primary copy location
Pyrimary = the partition with the highest score
Place primary copy of v on Pprimary

choose partitions for the secondary copies of v:

run the scoring algorithm for secondary location (
excluding Pprimary) and get a set of scores A

sort A from high to low
Pin = (min — 1) partitions with the highest scores
B = all recently computed secondary copy scores
C=BUJA
sort C' from high to low
/* k (see below) is the number of partitions */

Pyyerage = partitions whose score appear in the

average—1
top —7—7—

Pseconda'ry = Pmin U Paverage
Place secondary copies of v on partitions in Psecondary

of all scores

Figure 6: An algorithm to choose partitions for the primary
and secondary copies for a vertex.

copies, M, necessary for fault tolerance, secondary copies
are immediately placed in the partitions corresponding to
the top (M — 1) scores. However, the MAR parameter cor-
responding to the average number of copies, A, is usually
higher than M, so additional copies may be created. To de-
cide how many copies to make, Leopard compares the scores
for v with the s most recent scores for other vertices. Com-
mensurate with the extent that the scores for v are higher or
lower than the average scores for the s most recent vertices,
Leopard makes the number of copies of v higher or lower
than A. The specific details of how many copies are created
are presented in the algorithm in Figure 6.

There are two reasons why the comparison of v’s scores
are only made with the most recently computed scores of
s vertices, instead of all scores. First, for a big graph, the
number of all computed scores is large. It is space consuming
to store them and time consuming to rank them. Second, as
the graph grows larger, the scores tend to rise. Therefore,
the scores computed at the initial stages are not comparable
to the scores computed at later stages. The parameter s,
representing the sliding window of score comparisons, is a
customizable parameter. In practice, s can be small (on the
order of 100 scores), as the function of this window is only to
get a statistical sample of recent scores. Thus, this window

(b) Partition 2

546

® e ©
@

Oo‘e .
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of scores takes negligible space and easily fits in memory.
The following example illustrates how MAR works.

EXAMPLE 2. Assume parameters of M (minimum) = 2
and A (average) = 3 for MAR and the number of partitions
is 5. Also assume the sliding window s has a size of 24.

When running the vertex assignment scoring algorithm for
the primary copy of a vertex v, partitions 1 through 5 get
scores of 0.15, 0.25, 0.35, 0.45 and 0.55, respectively. Since
partition 5 has the highest score, it is chosen as the partition
for the primary copy of v.

After running the vertex assignment scoring algorithm for
the secondary copies of v, partitions 1 through 4 get scores
of 0.1, 0.2, 0.3 and 0.4, respectively (partition 5 is excluded
because it already has the primary copy). Since M is 2 and
partition 4 has the highest score, it is tmmediately chosen
as the location for a secondary copy (to meet the minimum
copy requirement). Including partition 5, there are now two
partitions with copies of v.

The four scores for the secondary copies (i.e., 0.1, 0.2, 0.8
and 0.4) are then combined with the 24 recent scores in the
sliding window s and all 28 scores are then sorted. If any
of v’s three other secondary scores are in the top %}f—l
_ 3-1

=1 = 50% of all scores, then additional copies of v are

made for those partitions.

S. ADDING AND REMOVING PARTITIONS

In some circumstances, the number of partitions across
which the graph data is partitioned must change on the fly.
In these cases, Leopard needs to either spread out data to
include new partitions or concentrate the data to fewer par-
titions. Decreasing the number of partitions is relatively
straightforward in Leopard. For every vertex placed on the
partitions to be removed, we run the vertex reassignment
scoring algorithm and assign it to the best partition accord-
ingly. We will therefore now focus on adding new partitions.

A simple approach to adding a new partition would be
to either use a static partitioner to repartition the entire
graph over the increased number of partitions, or to reload
the entire graph in Leopard with a larger value for P (the
number of partitions). Unfortunately, performing a scan
through the entire graph to repartition the data is expensive,
and is particularly poor timing if the reason why partitions
are being added is because machines are being added to
accommodate a currently heavy workload.



Graph V]| |E| Density | Clustering Coef. | Diameter [20] Type
Wiki-Vote (WV) 7,115 100,762 | 3.9% 103 0.1409 3.8 Social
Astroph 18,771 198,050 | 1.1% 1073 0.6306 5.0 | Citation
Enron 36,602 183,831 | 2.7+ 107 0.4970 48 | Email
Slashdot (SD) 77,360 469,180 | 1.6+ 10 ¢ 0.0555 4.7 Social
NotreDame (ND) 325,729 1,090,108 | 2.1%107° 0.2346 9.4 Web
Stanford 281,903 1,992,636 | 5.0 % 10°° 0.5976 9.7 Web
BerkStan (BS) 685,230 6,649,470 | 2.8 %10 ° 0.5967 9.9 Web
Google 875,713 4,322,051 | 1.1%10°° 0.5143 81| Web
LiveJournal (LJ) 1,846,609 42,851,237 | 3.7%10°° 0.2742 65| Social
Orkut 3,072,441 117,185,083 | 2.5 10 ° 0.1666 4.8 Social
BaraBasi-Albert graph (BA) | 15,000,000 | 1,800,000,000 | 1.6 10> 0.2195 4.6 | Synthetic
Twitter 41,652,230 | 1,468,365,182 | 1.7+ 10 © 0.1734 4.8 Social
Friendster (F9) 65,608,366 | 1,806,067,135 | 8.4% 10 " 0.1623 58 | Social

Figure 7: Statistics of the graphs used in the experiments. Diameter is reported at 90th-percentile to eliminate outliers.

Instead, Leopard first selects a group of vertices as seeds
for a new partition, and then runs the vertex reassignment
scoring algorithm on their neighbors, the neighbors of their
neighbors, the neighbors of the neighbors of their neighbors,
and so on until all partitions are roughly balanced. Leop-
ard proceeds in this order since the neighbors of the seed
vertices that were moved to the new partition are the most
likely to be impacted by the change and potentially also
move to the new partition. This results in a requirement to
compute the reassignment scores for only a small, local part
of the graph, thereby keeping the overhead of adding a new
partition small.

There are several options for the initial seeds for the new
partitions.

e Randomly selected vertices from all partitions.

e High-degree vertices from all partitions.

e Randomly selected vertices from the largest partitions
(to the extent that there is not a perfect balance of
partition size).

We experimentally evaluate these approaches in Section 6.4.

6. EVALUATION
6.1 Experimental Setup

Our experiments were conducted on 4th Generation Intel
Core i5 and 16GB memory with Ubuntu 14.04.1 LTS.

6.1.1 Graph datasets

We experiment with several real-world graphs whose sizes
are listed in Figure 7. They are collected from different
domains, including social graphs, collaboration graphs, Web
graphs and email graphs. The largest graph is the Friendster
social graph with 66 million vertices and 1.8 billion edges.

We also experiment with a synthetic graph model, the
well-known BaraBasi-Albert (BA) model [2]. It is an algo-
rithm for generating random power-law graphs with pref-
erential attachment. For the parameters to this model, we
used n = 15,000,000, m = 12 and k = 15.

We transform all of these graphs into dynamic graphs by
generating a random order of all edges, and streaming edge
insertion requests in this order. Although this method for
generating dynamic graphs does not result in deletions in
the dynamic workload, we have also run experiments that
include deletions in the workload, and observed identical re-
sults due to the parallel way that Leopard handles additions
and deletions of edges.

6.1.2 Comparison Points

We consider the following five partitioning approaches as
comparison points.

1. Leopard. Although Leopard supports any vertex as-
signment scoring function, for these experiments we use
the same scoring function used by Tsourakakis et al.
(FENNEL) [37]. As suggested by Tsourakakis et al., the
FENNEL parameters we use throughout the evaluation
isy =15 and a = \/E‘Vllil‘5 The sliding window we
use for the score ranking mechanism described in Section
4.2.2 contains up to 30 recent vertices.

2. One-pass FENNEL partitioning. This comparison
point is a traditional one-pass streaming algorithm with
the FENNEL scoring function (with the same parameters
as above). Like all traditional streaming algorithms, after
a vertex has been placed in a partition, it never moves.
This comparison point is used to evaluate the benefit of
vertex reassignment in Leopard.

3. METIS [17]. METIS is a state-of-the-art, widely-used
static graph partitioning algorithm. It does not handle
dynamic graphs, so we do not stream update requests to
METIS the same way we stream them to Leopard and
FENNEL. Instead, we give METIS the final graph, af-
ter all update requests have been made, and perform a
static partitioning of this final graph. Obviously, having a
global view of the final graph at the time of partitioning is
a big advantage. Therefore, METIS is used as an approx-
imate upper bound for partitioning quality. The goal for
Leopard is to get a similar final partitioning as METIS,
despite not having a global view of the final graph while
partitioning is taking place.

4. ParMETIS [31]. ParMETIS is a state-of-the-art par-
allel graph partitioning algorithm. It is designed for a
different type of dynamic graph partitioning than Leop-
ard. In particular, ParMETIS is designed for bulk repar-
titioning operations after many vertices and edges have
been added to the graph. This makes comparison to
Leopard non-trivial. Leopard continuously maintains a
good partitioning of a graph, while ParMETIS allows a
partitioning to deteriorate and then occasionally fixes it
with its batch repartitioner. We thus report two sepa-
rate sets of ParMETIS results — shortly before and after
the batch repartitioner has been run. At any point in
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' Onerp‘ass FENNEL ‘—
Leopard

METIS ===
ParMETIS (post-rp) ——
PagMETIS (pre-rp) mm=m
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edge cut ratio (A)

0%

WV  Astroph Enron  SD LJ  Orkut Twitter FS BA BS Stanford ND Google

input graphs
Figure 8: Edge cut experiment. Cut ratio for hash parti-
tioning is independent of the data set, and so it is displayed
just once on the left-hand side.

time, ParMETIS will have a partitioning quality in be-
tween these two points. In order to present ParMETIS in
a good light, we use FENNEL to maintain a reasonable
quality partitioning in between repartitioning operations
as new vertices and edges are added to the graph (in-
stead of randomly assigning new vertices and edges to
partitions until the next iteration of the repartitioner).

5. Hash Partitioning. Most modern scalable graph database

systems still use a hash function to determine vertex loca-
tion. Therefore, we compare against a hash partitioner,
even though it is known to produce many cut edges.

6.1.3 Metrics

We evaluate the partitioning approaches using two met-
rics: the edge cut ratio A and load imbalance p, which are
defined as

the number of edges cut

~ the total number of edges
(For replicated data, a cut edge is defined as in Figure 3)

__ the maximum number of vertices in a partition

the average number of vertices in a partition

6.2 Dynamic Partitioning

6.2.1 Comparison of Systems

In this section, we evaluate partitioning quality in the
absence of replication. We partition the eleven real-world
graphs into forty partitions using the five partitioning ap-
proaches described above and report the results in Figure 8.
The figure only presents the edge-cut ratio, since p (balance)
is approximately the same for all approaches (it has a value
of 1.00 for hash partitioning and varies between 1.02 to 1.03
for the other partitioners).

As expected, hash partitioning performs very poorly, since
the hash partitioner makes no attempt to place neighboring
vertices on the same machine. 39/40 (which is 97.5%) of
edges are cut, since with 40 partitions, there is a 1 in 40
probability that a vertex happens to end up on the same
partition as its neighbor.

The “One-pass FENNEL” partitioner also performs poorly,
since the structure of the graph changes as new edges are
added, yet the algorithm is unable to adjust accordingly.
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When comparing this partitioner to Leopard, the impor-
tance of dynamic reassignment of graph data becomes clear.
On the other hand, Figure 8 does not present the compu-
tational costs of partitioning. We found that the FENNEL
partitioner completes a factor of 44.6 times faster than Leop-
ard. So while Leopard’s partitioning is much better, it comes
at significant computational cost. However, this experiment
did not use the skipping optimization described in Section
3.1. In further experiments described below, we will find
that this factor of 44.6 computational difference can be re-
duced to a factor of 2 with only small changes in cut ratio.

ParMETIS either performs poorly or well depending on
how recently the batch repartitioner has been run. For this
experiment, the batch repartitioner ran after loading one
fourth, one half, and three fourths of the vertices and edges
of the graph, and a fourth time at the end, after the entire
graph dataset had been loaded. We present two results for
ParMETIS - shortly before this final batch repartitioning
is performed (labeled ParMETIS-pre-rp), and directly after
the final repartitioning is performed (labeled ParMETIS-
post-rp). ParMETIS-pre-rp is the worst case scenario for
ParMETIS — it has been the longest possible time since
the last repartitioning. In this period of time, vertices and
edges were added to the graph according to the FENNEL
heuristic. ParMETIS-post-rp is the best case scenario for
ParMETIS — it has just done a global repartitioning of
the graph. Although ParMETIS’ repartitioning algorithm
is lighter-weight than METIS’ “from-scratch” partitioning
algorithm, its edge-cut after this repartitioning operation is
close to METIS.

Surprisingly, Leopard is able to achieve a partitioning very
close to METIS and ParMETIS’ best case scenario (post-rp),
despite their advantage of having a global view of the final
graph when running their partitioning algorithms. Since we
use METIS as approximate upper bounds on partitioning
quality, it is clear that Leopard is able to maintain a high
quality partitioning as edges are added over time.

Although Leopard achieves a good partitioning for all the
graphs, the quality of its partitioning relative to METIS is
poorest for the Web graphs. An analysis of the statistics of
the graphs from Figure 7 shows that the Web graphs have
large diameters. Graphs with large diameters tend to be
easier to partition. Indeed, a static partitioner with global
knowledge is able to cut less than 1 in 10 edges in the Web
graphs we used in our experiments. However, without this
global knowledge, Leopard enters into local optima which
results in more edges being cut.

These local optima are caused by the balance heuristics of
the streaming algorithm. Leopard’s scoring formula is de-
signed to keep the size of each partition approximately the
same (as reported above, Leopard achieves a p-balance of
between 1.02 to 1.03). For graphs that are hard to par-
tition, such as the power law graph we generated using
the BaraBasi-Albert model, there are many vertices that no
matter where they are placed, they will result in many edges
being cut. Since the exact placement of these “problematic”
vertices will not have a large effect on the resulting quality
of the partitioning, they can be placed in the partition that
will most help to keep p low. In contrast, for partitionable
graphs, there are fewer of such “p-fixing” vertices, and occa-
sionally vertices are placed on a partition with much fewer
neighbors in order to avoid imbalance. This results in other
vertices from the same partition to follow the original vertex
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Figure 9: Effects of skipping examination on edge cut ratio.

to the different partition. The end result is that sets of ver-
tices that should clearly be part of one partition occasionally
end up on two or three different partitions.

This implies that Leopard should keep track of the neigh-
bor locality and balance components of Equation 1 sep-
arately. When there is frequent disparity between these
components, Leopard should occasionally run a static parti-
tioner as a background process, to readjust the partitioning
with a global view, in order to escape these local optima.

Although this experiment involves only adding new edges,
we also ran an experiment where edges are both dynamically
added and deleted. We found that the inclusion of edge dele-
tions in the experiment did not make a significant difference
relative to the workload with only addition of edges, since
both addition and removal of edges are treated as “relevant”
events that cause reassignment to be considered. We do not
present the results in more detail here due to lack of space.

6.2.2 Skipping

In Section 3.1 we described a shortcut technique, where
certain vertices with many existing neighbors (and are there-
fore unlikely to be reassigned) are not examined for reassign-
ment, even if a new edge adjacent to that vertex is added.
In our previous experiment, this shortcut was not used. We
now turn it on, and look more closely at how skipping ex-
amination of vertices affects the edge cut ratio.

The results are shown in Figure 9. As expected, as the the
skipping threshold increases (i.e., reassignment examination
is skipped more often), the quality of the cut suffers. The
lower the original cut ratio, the more damage skipping ver-
tex examination can have on cut ratio. The Slashdot graph
has close to a 80% ratio without skipping and the 0.9 skip-
ping threshold only increases the cut ratio to slightly above
80%. On the other hand, Google Web graph’s cut ratio dra-
matically jumps from 20% to 60%. However, for all graphs,
skipping thresholds below 0.2 have a much smaller effect on
cut ratio than higher thresholds.

Despite deteriorating the edge cut ratio, skipping vertex
examination can save resources by only forcing the system
to spend time examining vertices for reassignment if they
are likely to actually be reassigned as a result of the exam-
ination. We define the savings as a fraction of the original
number of examined vertices, vy, as:

number of vertices skipped for examination

" number of vertices examined at threshold 0’
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Figure 10: Computation savings vs. skipping threshold.
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Figure 11: Run time improvement vs. skipping threshold.

A higher (lower) v indicates higher (lower) savings of com-
putation resources related to reassignment examination.

Figure 10 shows how changing the skipping threshold leads
to reassignment examination savings. For dense graphs such
as Orkut and Twitter (which have over 70 edges per vertex),
a skipping threshold as low as 0.1 can result in an order of
magnitude reduction in the reassignment examination work
that must be performed. For sparser graphs, the benefits of
skipping vertex examination are less significant.

Figure 11 shows how this reassignment examination sav-
ings translates to actual performance savings. The figure
shows the end-to-end run-time as a ratio to that without
skipping of the partitioning algorithm for the same experi-
ment that was performed in Section 6.2.1. When comparing
the extreme left- and right-hand sides of the graph, the cost
of too much vertex reassignment is evident. The extreme
right-hand side of the graph (where the skipping ratio is 1),
results in there never being any reassignment ever. Leop-
ard simply loads the vertices and edges one by one, and
never moves a vertex from its initial placement. The ex-
treme left-hand side of the graph corresponds to the full
reassignment examination policy without any skipping. It
is consistent with Figure 10 that skipping is more benefi-
cial for denser graphs. We will use Orkut as an example
to illustrate the benefit of skipping. The total time to pass
through the Orkut graph without any reassignment is 215
seconds. The total time it takes to do the pass through the
data to examine every possible reassignment jumps to 9584
seconds. This shows the significant cost of dynamic reas-
signment and reexamination if left unchecked. However, a
skipping threshold of 0.2 reduces the run time by over a fac-
tor of 20 to 571 seconds. Note from Figure 9 that most of the
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Figure 12: Effect of number of partitions on edge-cut on the
Twitter graph

edge-cut benefits of Leopard remain with a skipping ratio of
0.2. Thus, while the skipping ratio parameter clearly leads
to an edge-cut vs. run-time tradeoff, it is possible to get
most of the edge-cut benefits without an overly-significant
performance cost with reasonably small skipping ratios.

In summary, for resource constrained environments, a thresh-

old between 0.1 and 0.2 produces a small decrease in parti-
tioning quality, while significantly improving the efficiency
of the reassignment process. Denser graphs can use smaller
thresholds, since most of the efficiency benefits of the skip-
ping optimization are achieved at thresholds below 0.1.

6.2.3 Scalability in the Number of Partitions

We now investigate how the cut quality changes as the
number of partitions varies. For this experiment, we varied
the number of partitions from 2 partitions to 256 partitions
for the two largest graphs in our datasets — the Twitter
and Friendster graphs. The results are shown in Figure
12. Both Leopard and METIS’s partitioning quality gets
steadily worse as the number of partitions increases. This
is because of the fundamental challenge of keeping the par-
titions in balance. With more partitions, there are fewer
vertices per partition. As clusters of connected parts of the
graph exceed the size of a partition, they have to be split
across multiple partitions. The denser the cluster, the more
edges are cut by splitting it.

Although the quality of the cut ratio of both Leopard and
METIS gets worse as the number of partitions increases,
the relative difference between Leopard and METIS remains
close to constant. This indicates that they have similar par-
tition scalability.

6.3 Leopard with Replication

We now explore the properties of the complete Leopard
implementation with replication being integrated with parti-
tioning. Since Leopard is the first system (to the best of our
knowledge) that integrates replication with dynamic parti-
tioning, it is not fair to compare Leopard with replication to
the comparison points we used above, which do not support
replication as a mechanism to improve edge cut. Thus, in
order to understand the benefits of incorporating replication
into the partitioning algorithm, we compare Leopard with
replication to Leopard without replication. However, since
we run on the same datasets as used above, the reader can
indirectly compare these results with the comparison points
used above (e.g. METIS, FENNEL, etc.), if desired.

For these experiments, we found that p (balance) remains
at values between 1.00 and 1.01. This is because Leopard
considers replication simultaneously with partitioning and
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Figure 13: Effect of replication on edge-cut.

therefore maintains the same balance guarantees whether
or not replication is used. We therefore only report on how
changing the average number of replicas for each vertex af-
fects edge cut ratio. These results are presented in Figure
13. To generate this figure, we enforced a minimum of 2
replicas for each vertex and varied the average number of
replicas from 3 to 5. For comparison, the first point in the
graph shows the edge-cut without replication (which can be
thought of as a minimum and average replica count of 1).

As expected, replication greatly reduces the cut ratio, de-
spite our conservative definition of “edge-cut” in the pres-
ence of replication presented above. Even the notoriously
difficult to partition Twitter social graph yields an order of
magnitude improvement in edge-cut, and with an average of
3 replicas per vertex. However, the marginal benefit of repli-
cation drops dramatically as the average number of copies
increases. For the Orkut social graph, the cut ratio reduces
to 10% with an average of 3 copies. Increasing to 5 copies
only brings the cut ratio further down to around 5%.

6.4 Adding Partitions

In Section 5 we described how Leopard repartitions data
when a new partition is added by seeding the new parti-
tion with existing vertices and examining neighbors of those
seeds for reassignment. We proposed three mechanisms for
choosing these seeds: (1) choose them randomly from all
partitions, (2) choose them randomly from the largest par-
tition, and (3) choose high degree vertices.
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Figure 14: Edge cut after adding a 41st partition

Figure 14 shows how these seeding strategies (which are
labeled “Random”, “Random + Balance”, and “High de-
gree” respectively) affect the quality of partitioning when
a new partition is added to the existing 40 partitions from
the previous experiments. The number of seeds was set to
5% of the average number of vertices in each partition after



adding a new partition. As a comparison point, we also mea-
sure the partitioning if 41 partitions had been used from the
beginning. As can be seen, seeding the new partition with
high-degree vertices is able to most closely result in a parti-
tioning similar to what the partitioning would have been had
41 partitions been used from the beginning. This is because
high degree vertices are often towards the center of a cluster
of vertices, and moving clusters intact to a new partition
avoids significant disruption of partitioning quality.

7. CONCLUSIONS

In this paper, we proposed a light-weight and customiz-

able partitioning and replication framework for dynamic graphs

called Leopard. We studied the effects of reassignment and
its timing on the quality of partitioning. By tightly integrat-
ing partitioning of dynamic graphs with replication, Leop-
ard is able to efficiently achieve both fault tolerance and
access locality. We evaluated our proposed framework and
found that even without replication, Leopard consistently
produces a comparable cut ratio to statically repartition-
ing the entire graph after many dynamic updates. However,
once replication is integrated with partitioning, the edge cut
ratio improves dramatically.
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