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Higgs oscillations in time-resolved optical conductivity
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Driving superconductors out of equilibrium is a promising avenue to study their equilibrium properties as

well as to control the superconducting state. Nonequilibrium superconductors are often studied using time-

resolved optical conductivity measurements. Thus, the characterization of a superconducting state in a pump

driven nonequilibrium state requires careful attention in the time domain. We calculate the time-resolved optical

conductivity of a pumped superconducting state using a nonequilibrium Keldysh approach. Through functional

derivation, the optical conductivity is obtained with full vertex corrections and used to characterize the transient

superconducting state. The transient optical conductivity shows the suppression of the superconducting order

parameter in the time domain. The subsequent recovery of the order parameter exhibits oscillatory behavior that

corresponds to the Higgs amplitude mode, and may be seen in several parts of the spectrum.

DOI: 10.1103/PhysRevB.100.174515

Advancements of time-resolved spectroscopic techniques

have enabled the measurement [1] and control [2–7] of hid-

den properties of ground states and low-energy excitations

in correlated materials, which are not easily accessible in

equilibrium. In the energy spectrum, relatively low-energy

scale—terahertz and midinfrared—frequencies have a special

place in such techniques because of their noninvasive nature

(to suppress the heat production that may destroy the ordered

state) and suitability for observation of low-energy excitations

of the ground states.

Within the context of superconductivity, the excitations of

superconducting condensate are of great interest. The scalar

nature of the condensate restricts any coupling to the elec-

tromagnetic (EM) field in the linear regime. Moreover, when

the superconducting order is perturbed by any means, the

underlying U(1) symmetry breaks spontaneously and results

in two oscillating bosonic modes: the massless phase, and

the massive amplitude mode—the Higgs mode [8–14]. The

elusive Higgs mode resides at a frequency of twice the su-

perconducting gap (2�). Recently, it has been shown that the

amplitude mode can be excited, and observed, by an EM field

using a coexisting order, e.g., charge density wave [15], by

nonlinear coupling to the EM field (generation of the third

harmonic) [16,17], by time-resolved conductivity [18], or by

using the presence of supercurrent [19,20].

Given that the optical conductivity is the primary probe

of the Higgs mode, a proper theoretical description of the

conductivity is a necessity. Numerous work has been done to

calculate the conductivity (and other response functions) of

correlated electrons in an equilibrium [21–24] and nonequi-

librium state [10,25–28]. In a nonequilibrium state, such as

induced by a pump-probe setup, a calculation of the con-

ductivity through the Bethe-Salpeter (BS) equation, which

*akumar13@ncsu.edu
†akemper@ncsu.edu

is necessary to capture the effects beyond the bare-bubble

susceptibility, becomes computationally prohibitive because

the Hamiltonian loses time-translational symmetry. Previous

solutions to this problem include exact diagonalization of the

Hamiltonian (which is limited by system size), mean-field

analyses of the BCS Hamiltonian (which is a priori not gauge

invariant and neglects inelastic collisions and dynamics of the

interactions) [29], and the time-dependent dynamical mean-

field theory (td-DMFT) [30,31] where optical conductivity of

a superconductor was not considered.

In this work, we go beyond these limitations and calculate

the time-dependent optical conductivity using a functional

derivation approach based on nonequilibrium Green’s func-

tions. We solve the Nambu-Gor’kov equations for electron-

phonon mediated superconductivity self-consistently on the

Keldysh contour and calculate the nonequilibrium interact-

ing Green’s functions in the time domain. We consider the

Holstein model with impurity scattering as a particular in-

stance to study the transient optical conductivity of a su-

perconductor. The optical conductivity is calculated by a

functional derivative of the current with respect to the applied

field. One of the advantages of this particular method is that

it naturally includes vertex corrections [32–34], but bypasses

the calculation of the BS equation in the time domain. In

equilibrium, our results reproduce several features of the

known conductivity of dirty superconductors such as an up-

turn towards low frequencies inside the gap [21,22]. In a

pump driven, nonequilibrium case, the conductivity reflects

the temporal dynamics of superconducting order including

suppression, recovery, and the Higgs oscillations. These are

clearly present in the features of the conductivity that are com-

monly associated with the superconducting order in equilib-

rium, i.e., the energy location of the gap, the coherence peak,

and the phonon features in the real part of the conductivity,

as well as in the inductive 1/ω low-frequency response in

the imaginary part. We quantify and characterize the transient

superconducting state using these features as well a purely
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time domain feature (the probe current). All the quantities

show excellent correlation to the gap dynamics which are

known from the underlying simulations [12].

Methods. We consider the Holstein Hamiltonian on two-

dimensional (2D) square lattice to simulate a phonon-

mediated, s-wave superconductor,

H =
∑

k,σ

ξ (k)c†
k,σ

ck,σ
+ �

∑

q

(

b†
qbq +

1

2

)

+
g

√
N

∑

σ

k,q

c
†
k+q,σ

ck,σ
(bq + b

†
−q) +

∑

i,σ

Vic
†
i,σ ci,σ . (1)

Here, ξ (k) (= −2Vnn[cos(kx ) + cos(ky)] − µ) is the nearest-

neighbor tight-binding energy dispersion measured relative

to the chemical potential µ, c
†
k, ck (b†

q, bq) are the standard

creation and annihilation operators for an electron (phonon),

g is the momentum-independent e-ph coupling constant, and

� is the frequency for the Einstein phonon. Vi is the cou-

pling between electrons and impurities which are distributed

randomly on lattice sites. The choice of the Hamiltonian is

appropriate for the time-dependent problem considered here

as the Hamiltonian can be handled computationally. While

this model was originally developed for electron-phonon

problems, a formally identical boson exchange model can be

used to treat repulsive spin-fluctuation-mediated interactions

[35].

The phonon subsystem is treated as a heat reservoir whose

properties do not change in time as we drive the electronic

subsystem, which is valid for the small pump fluences con-

sidered here [36,37]. The interactions are treated within a

self-consistent diagrammatic-perturbative framework, which

sums the diagrams to all orders of a subclass of diagrams

(see the Supplemental Material [38]) and ensures the con-

servation laws [39]. The superconducting state is treated

within a self-consistent Migdal-Eliashberg formalism, and

the time evolution is done by solving the Gor’kov equations

self-consistently on the Keldysh contour [12,38] (see also

Refs. [34,40–42]).

The pump field, which is applied in the (11) direction, is

included via the minimal coupling i.e., Peierls’ substitution

k(t) = k − A(t). In addition to the pump pulse, a secondary

(probe) pulse is included in the same way as the pump.

However, the probe amplitude and frequency are optimized

to ensure that the probe is in the linear-response regime and is

able to probe the conductivity within the 2� range. The pump

and probe pulse envelopes are taken to be Gaussian curves

A(t ′) = Amaxsin[ω(t ′ − t0)] exp( −(t ′−t0 )2

2σ 2 )(1, 1) with different

parameters.

For the simulation, we use band electronic parameters

Vnn = 0.25, µ = 0.0 eV, phonons parameters � = 0.2, g2 =
0.12 eV and impurity coupling 〈Vi〉2 = 0.01 eV. These pa-

rameters result in an equilibrium superconducting gap � ≈
46 meV at temperature T ≈ 83 K. The choice of parameters

does not represent a specific material. Rather, the parameters

were chosen for numerical tractability. For the pump and

probe field we use ωp = 1.5 eV, σp = 8 (1/eV) and ω =
0.01 eV, σ = 3 (1/eV), respectively.

To calculate transient conductivity we have used the

algorithm proposed in Refs. [33,34,43]. The central idea

FIG. 1. The conductivity of the Holstein model in equilibrium.

Panels (a) and (b) show the real and the imaginary part of optical

conductivity at different temperatures, respectively. The temperature

range spans the superconducting phase transition. The dark shaded

region shows the maximum superconducting optical gap near zero

temperature 2�(T ≈ 0). The light shaded region shows the phonon

window (0 < ω < � = 0.2 eV). Panel (c) displays the ratio of real

parts of conductivity in the superconducting state to normal state at

T = 25 meV. The dashed line in panel (a) shows σ1 calculated using

bare-bubble susceptibility at T = 12.2 meV.

is that first we calculate nonequilibrium current Jpump

for the pumped state without a probe via J(ta) =
N−1

k

∑

k ∇ξ (k − A) Im G<
k (t ′, t ′′ = t ′), where ta = t ′+t ′′

2
and

the derivative is taken along the field (11) direction. Then, for

each pump-probe delay time (t = probecenter − pumpcenter),

we calculate change in the current as function of time (δJ =
Jpump+probe − Jpump). The current and the probe time profiles

are then used to calculate time-dependent conductivity as

σ (t, ω) = δJ(t,ω)

Eprobe(ω)
. Here, we have taken the Fourier transform

along average-time axis ta (t ′ = t ′′). However, depending on

the experimental settings other time axes can also be used to

take the Fourier transform, as described in Refs. [44–49]. For

this particular choice, the length of the time signal averages

out the amplitude of the Higgs mode.

Equilibrium results. First, we calculate the conductivity of

the system in an equilibrium state, i.e., without a pump field.

The results are shown in Fig. 1 as a function of temperature T .

For reference, we have also labeled the curves by their equi-

librium superconducting gap 2� as determined from the static

component of the anomalous retarded self-energy �F
R (ω = 0).

In the normal state (T > Tc) we observe the Drude features

in the conductivity near zero frequency, and the effect of the

Einstein phonon at the phonon frequency �. The presence of

a phonon lowers the optical spectral weight in the vicinity of

the phonon frequency (�); this may be observed as a flattening

of the spectral weight in σ1 at �. It is important to note that

the minimum of the real part of the conductivity lies at the

phonon frequency � in the normal state and shifts by 2� in

the superconducting state. This particular feature will be used
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FIG. 2. Probe current in equilibrium state. Panel (a) shows the

probe current as a function of time at different temperatures in

equilibrium. The temperature range spans the superconducting phase

transition. Panel (b) displays the zoomed region around the global

minimum of the probe current. Panel (c) shows the correlation

between the probe-current minimum and the superconducting order

parameter calculated using �F
R(ω = 0).

to study the dynamics of the superconducting edge (the gap)

in the superconducting state.

In the superconducting state (T < Tc) we observe the

opening of the gap in the conductivity i.e., the lowering of

the optical spectral weight inside the 2� window (marked

by the first shaded region in the figure near zero frequency).

In addition, we note the shift of the minimum around the

phonon frequency from � to � + 2�. The normalized

conductivity [σ1(T < Tc)/σ1(T = 25)] is plotted in inset

(c), which clearly shows the opening of the gap and the

development of the coherence peak. The imaginary part of the

conductivity [Fig. 1(b)] can also be analyzed in a similar way

to characterize the superconducting state; it shows 1
ω

behavior

inside the 2� window. For comparison we include the

conductivity calculated from the bare-bubble susceptibility

χ (q = 0, ω) =
∫

d (t ′ − t ′′)
∑

k |vk|2[G>
k (t ′, t ′′)G<

k (t ′′, t ′) −
G<

k (t ′, t ′′)G>
k (t ′′, t ′)]e−iω(t ′−t ′′ ) in the figure (dashed line).

We observe noticeable qualitative differences because of the

vertex corrections in the conductivity calculated from the

functional derivation of probe current, mainly near the gap

edge and for low energies.

As has been shown in THz pump-probe experiments [18],

the probe current maximum or minimum can also be used as

an indicator to study changes in the physical state of a system,

e.g., phase transitions or pump induced changes in the system

response. We analyze our data in a similar way and plot the

equilibrium probe current at different temperatures ranging

from normal state to the superconducting state in Fig. 2. As

the temperature is reduced, rapid oscillations appear in the

probe current, and the minimum is reduced [see Fig. 2(b)].

The minimum of the probe current directly correlates with

the superconducting order parameter, which is shown in panel

(c) where we plot the first minimum of the probe current and

the superconducting order parameter. This particular feature

FIG. 3. Conductivity of the system in a pump driven nonequilib-

rium state. Panels (a) and (b) show the real part of optical conduc-

tivity as a function of frequency at different delay times for pump

fluence Amax = 0.2 (1/a0 ) and 0.4 (1/a0). Each curve is shifted by

an offset (scaled as the delay time) along Y axis to show the changes

in the transient conductivity. The top dashed line in each panel shows

the conductivity of normal state in equilibrium. Conductivity of the

superconducting state is shown by t = −40 (1/eV) in equilibrium.

The blue shaded region II shows the vicinity where the location of the

σ1 minimum resides near the phonon frequency �. The minima are

shown by the dotted curve connecting different delay-time curves.

The red shaded region I shows the region where the gap edge is

located and marked by the dotted line connecting different delay-

time curves.

can also be used to characterize the transient conductivity in a

pump driven superconductor which is shown in the following

sections.

Pump-probe results. Next, we discuss the dynamics of

electrons in a pump-driven nonequilibrium state. Figure 3

shows the real part (σ1) of the transient conductivity as a

function of pump-probe delay time for two pump fluences

Amax = 0.2, 0.4 (1/a0). We observe noticeable changes in the

conductivity from the equilibrium state [at t = −40 (1/eV)].

Mainly, the suppression of superconducting order can be

observed as the edge of the gap (indicated by red markers

in region I) moving towards zero during early delay times.

The second indicator, the location of the minimum in the

real part of the conductivity near the phonon frequency �,

also shifts on the frequency axis. These minima are located

within the shaded region II in the figure. Such suppression

of superconductivity is expected in the transient state of the

system when the pump drives the system because, intuitively,

the pump injects energy in the system and creates excitations.

These excitations raise the effective temperature of the system

and result in the observed superconducting order suppression.

It is important to notice that the effective-temperature picture

does not imply a local equilibrium in the transient state

as shown previously [12,13,50]. Rather, the system is in a

dynamic nonthermal state where oscillation of the superfluid

condensate is observed (this will be discussed in the following
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FIG. 4. Higgs oscillation. The figure shows the dynamics of the

superconducting order parameter in a pump induced nonequilibrium

state [for Amax = 0.2 (1/a0 )]. Panel (a) shows the order parameter as

a function of average time calculated using anomalous self-energy.

Panels (b) and (c) display the estimated order parameter using the

location of the minimum of the real part of optical conductivity

around the phonon frequency (shown in the blue shaded region II in

Fig. 3) and the gap edge location (the red shaded region I in Fig. 3),

respectively. Panels (d) and (e) show the probe current minimum and

σ1(ω = 0.09) as a function of time, respectively. All five quantities

shown in panels exhibit oscillations in time with approximately same

frequency [ωHiggs ≈ 2�(t )], which is calculated by fitting the data to

an oscillatory decaying function. The Fourier transform of the data

also shows a peak at the same frequency (f).

sections). For the larger fluence Amax = 0.4 (1/a0), the melt-

ing of the superconducting order is stronger and the gap is

closed further. Furthermore, it is important to notice that for

larger fluences the conductivity (σ1) does not show a “clear”

spectral gap in the spectrum as shown in Fig. 3(b) at delay

time t = 24 (1/eV). However, the superconductivity remains

in the system (as evidenced by a finite off-diagonal order) as

shown here [12]. Out of equilibrium, the direct connection

between a gap in the optical spectra and finite off-diagonal

order is broken.

Here, we study the dynamics of the superconducting order

parameter in the pump-induced nonequilibrium state from the

perspective of the time-resolved optical conductivity. Mainly,

we discuss the presence of the Higgs mode in our simulation.

Here they arise from a time dependence of the underlying

order parameter, which is reflected in the time-dependent

conductivity. For reference, we will use the superconducting

gap � = �F
R (ω = 0) as a function of average time. We

may estimate the order parameter using the gap edge in

σ1(ω), which in equilibrium occurs at ω = 2�. We define

the edge of the gap as the point ωedge on the frequency axis

where the mean of (
σ sc

1

σ ns
1

)max and (
σ sc

1

σ ns
1

)min is located within

the shaded region I in Fig. 3. Similarly, we use the σ1(ω)

minimum around the phonon frequency � as a reference.

These markers are shown in Figs. 4(a)–4(c), respectively.

We observe that the order parameter determined from �R
F

is suppressed when the pump is active at early times, and

it recovers back to the equilibrium value for later times,

exhibiting Higgs oscillations as it recovers. The gap edge

and the minimum location exhibit similar behavior, although

the relative change is larger at the minimum. All three

quantities show Higgs oscillations at approximately the same

frequency—in principle the frequency is time dependent as it

scales with the local (in time) gap [12], however in this time

range is it approximately constant. Note that there is a small

discrepancy in the order parameter value calculated using

various pieces of the conductivity data which may arise due

to the particular choice of delay axis to Fourier transform,

and due to the frequency resolution of the probe signal.

Besides these markers, the Higgs oscillations occur across

the response. For example, the probe-current minimum as a

function of delay time shows the Higgs oscillations as well

[cf. Fig. 4(d)]. Finally, the oscillatory behavior can also be

observed when considering σ1 at some fixed frequency ω0 as

shown in Fig. 4(e). Here we have chosen ω0 within the 2�

window, but the oscillation of the conductivity may be seen at

all frequencies as a function of time delay [Fig. 4(c)] [38].

Figure 4(f) presents the Fourier transform of the quantities

shown in Figs. 4(a)–4(e). Although the limited data length

leads to wide peaks, the various measurements all oscillate

at the same frequency. This is further confirmed by a curve

fit to a decaying oscillation (shown on the individual panels),

which yields the same frequency for all the measures.

In summary, we have presented the time-resolved optical

conductivity of a pumped superconductor based on the gauge

invariant, fully vertex corrected method. The results show that

the entire spectrum undergoes changes that reflect the under-

lying changes in the gap. There are shifts (in energy) of fea-

tures in the conductivity due to the reduction from �equilibrium

to some reduced �(t ), which itself oscillates in time. These

“Higgs” oscillations are thus visible in essentially the entire

spectrum. We quantify several features that are known to

correspond to the gap in equilibrium, e.g., the gap edge and

the phonon minimum, and connect them to the underlying gap

dynamics which are known from the calculations.

We stress the suitability of the method used in this work to

calculate transient optical conductivity. The method enables

calculation of the response functions beyond the bare-bubble

susceptibility. The effect of vertex corrections varies depend-

ing on the particulars of the system. For example, they are

expected to be minor for an electron-phonon system in the

Migdal limit, but not negligible when it comes to impurity

scattering in certain regimes (this effect is observed in Fig. 1

for low energies where the impurity scattering is significant).

The functional derivative method captures these faithfully and

may have broader applicability in the evaluation of equilib-

rium and nonequilibrium two-particle quantities.
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