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Abstract
In this paper, we present an adaptive step-size homotopy tracking method for computing
bifurcation points of nonlinear systems. There are four components in this new method:
(1) an adaptive tracking technique is developed near bifurcation points; (2) an inflation
technique is backed up when the adaptive tracking fails; (3) Puiseux series interpolation is
used to compute bifurcation points; and (4) the tangent cone structure of the bifurcation point
is approximated numerically to compute solutions on different branches. Various numerical
examples of nonlinear systems are given to illustrate the efficiency of this new approach.
This new adaptive homotopy tracking method is also applied to a system of nonlinear PDEs
and shows robustness and efficiency for large-scale nonlinear discretized systems.

Keywords Adaptive homotopy tracking · Bifurcation computation · Nonlinear systems

1 Introduction

Many mathematical models of natural phenomena, e.g., biology [22], physics [25,26] and
materials science [28], involve systems of nonlinear equations [14,19,20,22]. From a math-
ematical point of view, studies of these nonlinear equations can be formulated numerically
and theoretically to focus on solution structures such as bifurcations [40,41]. Theories and
numerical methods have contributed to a better understanding of these solution structures,
in which the bifurcation between solutions and parameters is the central question [17,43].
Although theory helps us to understand the solution structures in many cases [15,16], the
in-depth andmore quantitative study of these problems often requires large-scale simulations
to numerically compute bifurcations. A bifurcation occurs in a nonlinear parametric system
when the parameter change causes the solution structure to change. There are many types
of bifurcations, such as saddle-node bifurcation, transcritical bifurcation, pitchfork bifurca-
tion, and Hopf bifurcation with different theoretical classifications [30]. However computing
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these different bifurcation points numerically brings the same numerical challenge. In spe-
cific, this corresponds to the real part of an eigenvalue of the Jacobian passing through zero
and causes numerical challenges for Newton’s and Newton-like methods [11,49,50]. There-
fore, efficient numerical methods for computing bifurcations of large-scale systems are keys
to understanding these systems.

The homotopy continuation method [35–38] has been successfully used to compute
bifurcations and structural stabilities for studying parametric problems. Recently, several
numerical methods based on homotopy continuation methods have been developed for com-
puting bifurcation points of nonlinear PDEs [21,22]. These numericalmethods have also been
applied to hyperbolic conservation laws [23], physical systems [25,26] and some more com-
plex free boundary problems arising from biology [19,20]. However, the computational cost
becomesmore expensive and the efficiency becomes lowwhen they are applied to large-scale
systems. Therefore, an efficient homotopy continuation method for computing bifurcation is
needed to deeply study the large-scale nonlinear systems. In this paper, we will present an
efficient adaptive homotopy tracking method that integrates numerical methods from numer-
ical algebraic geometry and scientific computing so that we can apply this efficient method
to compute bifurcation points of large-scale nonlinear systems such as discretized systems
arising from nonlinear PDEs.

2 Homotopy ContinuationMethod

In this section, wewill first give an overview of the homotopy continuationmethod. Generally
speaking, a nonlinear parametric system is written as F : Rn × R → R

n,

F(u, p) = 0, (1)

where p is a parameter and u is the variable vector [2,39] that depends on the parameter p,
namely, u = u(p).

We want to start with solutions that are easy to find (e.g., radially symmetric solutions
in nonlinear PDEs [21]) in order to compute the bifurcation points where the other more
interesting solutions come from (e.g., non-radial solution [21]).

For this parametric system, the standard homotopy continuation method [10,46] uses a
predictor/corrector method to track the solution u as the parameter p varies. Basic prediction
and correction are both accomplished by considering a local model via its Taylor expansion:

F(u + �u, p + �p) = F(u, p) + Fu(u, p)�u + Fp(u, p)�p + Higher-Order Terms,

where Fu = ∂F/∂u is the n × n Jacobian matrix and Fp = ∂F/∂ p has size n × 1.

2.1 Predictor–Corrector Method

The predictor–corrector method consists of two parts: the first one is the predictor step
which gives a prediction of �u for any given �p based on numerical methods for solving
ordinary differential equation such as Euler method, the secant predictor method, and etc
(see [1] for more details); the second one is the corrector method which refines the predicted
solution based on numericalmethods for solving nonlinear systems such asNewton’smethod,
conjugate gradient methods and etc (see [1] for more details). In this section, we will use
the Euler predictor and the Newton corrector to illustrate the idea of the predictor–corrector
procedure. Other predictor–corrector method can be found in [1]. Given a solution (u0, p0)
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Fig. 1 An illustration of the
predictor–corrector Method

on the path, that is, F(u0, p0) = 0, we plan to compute a solution at p1 = p0+�p by setting
F(u0+�u, p0+�p) = 0. First wemake an Euler predictor step, solving the first-order terms
Fu(u0, p0)�u = −Fp(u0, p0)�p, and then letting ũ1 = u0 +�u. On the other hand, when
‖F(ũ1, p1)‖ is not sufficiently small, one may fix p1 to be constant by setting �p = 0 and
solving the following equation by using the Newton corrector:Fu(ũ1, p1)�u = −F(ũ1, p1).
Repeat this corrector step until ‖F(ũ1, p1)‖ is smaller than the chosen tolerance criterion,
then we can get u1 = ũ1 + �u and (u1, p1) is on the path (see an illustration in Fig. 1).

2.2 The Step-Size Control

Themain concern of a numerical path-tracking algorithm is deciding which of these methods
to use next and how large of a step-size �p to use in the predictor [3,12]. A trial-and-
error approach for the step-size control is used for homotopy continuation tracking: shorten
the step-size upon failure and lengthen it upon repeated successes [5,42]. This trial-and-
error approach can be computationally expensive and can lack efficiency when systems
are not well-conditioned, since the step-size becomes very small. Moreover, in the path
tracking process, at some critical points, the ill-conditioned Jacobian matrix Fu often causes
trouble either in the prediction or in the correction process. Various computational techniques,
such as pseudo-arclength continuation, Gauss-Newton continuation, and other adaptive step-
size strategies [12], have been developed to handle this difficulty. For instance, the path
tracking may encounter no difficulty at a turning point if the pseudo-arclength continuation
is adopted. However, bifurcations of large-scale nonlinear systems are usually complex (more
than turning points) and need a more sophisticated numerical method to compute.

3 Adaptive Homotopy Tracking with Bifurcation Detection (AHTBD)

To overcome this difficulty, an adaptive homotopy tracker is proposed to reduce the com-
putational cost. The basic idea of this adaptive homotopy tracker is to solve the step-size
simultaneously when we track the nonlinear system. For any given step-size h, we start with
a point on the solution path, denoted by (u0, p0), and want to find the next point to satisfy
the following augmented system
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F̃(u, p) =
(

F(u, p)
gvT (u − u0)(1 − s) + s(p − p0) − h

)
, (2)

where g = sign(−vTFu(u0, p0)−1Fp(u0, p0))/‖Fu(ũ, p̃)−1Fp(ũ, p̃)‖, s =
∣∣∣ λmin

λ̃min

∣∣∣, λmin

is the real part of the minimum eigenvalue of Fu at (u0, p0), and v is the corresponding
eigenvector. Here (ũ, p̃) is a generic point (i.e., randomly choosing p̃ to compute ũ) [5,42]
and λ̃min is the real part of the minimum eigenvalue of Fu at p̃.

Thus the next point on the path (u, p) is computed by solving the new augmented system
F̃ with an adaptive step-size. In particular, when the tracking parameter p is close to a
bifurcation point, λmin is very small, and s approaches zero, we then have gvT (u− u0) = h
instead of p − p0 = h which means that we change the tracking parameter from p to vT u;
when p0 is a generic point, namely, the original system is well-conditioned, we have s be
close to 1 and then p = p0 + h which is the “initial” target for the next point. Moreover, this
adaptive homotopy tracking process, whose pseudocode is outlined inAlgorithm 1, employs
the Newton-Krylov method to solve the augmented nonlinear system.

Algorithm 1: The pseudocode of the adaptive tracking algorithm.

Input: A step-size h, a start point (u0, p0), and an ending parameter pe
Output: A solution sequence on the path (ui , pi )Ni=1
Set i = 0;
while (p − p0)(p − pe) ≤ 0 do

Compute the minimum eigenvalue of Fu(ui , pi ) and the corresponding
eigenvector, v;
Solve the augmented system (2) and denote the solution as (ui+1, pi+1);
Set i = i + 1;

end

Remark 1 The augmented system (2) does not bring new singularities. In other words, if the
original system is full rank, then the augmented system must be full rank. In fact, if Fu is not
singular, the Jacobian matrix of the augmented system (2) can be written as

(
Fu Fp

gvT (1 − s) s

)
=

(
I 0

gvT (1 − s)F−1
u I

) (
Fu Fp

0 s − gvT (1 − s)F−1
u Fp

)
.

If the original systemhas full rank, namely, s �= 0, thenwe have s−(1−s)gvTF−1
u Fp �= 0,

which implies that the augmented system (2) also has full rank. On the other hand, if Fu is
singular, the Jacobian matrix of the augmented system could be non-singular.

Remark 2 The parameter tracking direction is the same as h. In fact, by solving
(

Fu Fp

gvT (1 − s) s

)(
�u
�p

)
=

(
0
h

)
,

we have

�p = h

s − (1 − s)gvTF−1
u Fp

.

Noticing the definition of g, we have s − (1− s)gvTF−1
u Fp > 0 if s �= 0, which implies that

�p has the same sign as h.
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3.1 Inflation Process

When the Jacobian matrix of the augmented system is ill-conditioned, the adaptive path
tracking algorithm based on Newton’s method is no longer satisfactory since it may converge
slowly or even diverge. Once such a circumstance occurs, the deflation technique has been
proposed to overcome this difficulty [27,34]. However, the deflated system is double the
size of the original nonlinear system, and sometimes even higher order derivatives need to
be taken into consideration [34]. Therefore this technique is hard to apply for large-scale
systems. In order to track large-scale systems, we need a different strategy, an inflation
process. The motivation of the inflation technique is based on iterative methods for the
ill-conditioned symmetric positive definite matrices. Let us consider a simple example with
(A+ε I )x = b (A and b are shown below), and apply the Gauss-Seidel method with stopping
criteria ‖Axk − b‖ ≤ 10−8 and x0 = b. Equation (3) shows the number of iterations for
different value of ε: the number of iterations increases dramatically from 18 to 54, 470 when
the matrix is ill-conditioned; the number of iterations drops to 2 when the matrix is singular.
Therefore iterative methods usually are effective for a singular system, but time-consuming
for a nearly singular system (see [33] for more theoretical results).

A =
⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦ , b =

⎡
⎣−1

−1
2

⎤
⎦ ∈ R(A).

ε # of of iteration
1 18

10−1 100
10−2 852
10−3 6,982
10−4 54,470
0 2

(3)

Based on this motivation, we will inflate the nearly singular system to a singular system.
More specifically, for a bifurcation point p∗, the system F(u∗, p∗) is singular. By denoting J
the Jacobian Fu(u, p), we know that J is ill-conditioned if p is close to p∗ so that Newton’s
method becomes difficult to converge. By decomposing �u as �u = �̃u + αv, then we
solve the following inflated system instead of Fu(u, p)�u = −F(u, p):(

J T J J T Jv
vT J T J λmin

)(
�̃u
α

)
= −

(
J T F(u, p)

vT J T F(u, p)

)
. (4)

Here λmin is the eigenvalue of J T J with the minimum norm and v is the corresponding
eigenvector. We use J T J instead of J to make sure the coefficient matrix is symmetric
positive semi-definite in order to guarantee the convergence of this inflation technique [33].
In fact, for any a ∈ R

n×1, b ∈ R, we have

(aT , b)

(
J T J J T Jv

vT J T J λmin

)(
a
b

)
= aT J T Ja + bvT J T Ja + aT J T Jvb + λminb

2

= aT J T Ja + 2λminba
T v + λminb

2

≥ λmin |a|2 − 2λmin |b||a||v| + λminb
2

≥ λmin(|a| − |b|)2,

(5)

which implies that the matrix in (4) is symmetric positive semi-definite. Therefore linear
iterative solvers such as Gauss-Seidel or GMRES [47,48] converge very quickly for solving
the singular inflated system (4) [33].
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Remark 3 Since (vT ,−1)T is in the kernel of (4), we have a family of solutions (�̃u +
kv, α − k) for (4), ∀k, for any given solution pair (�̃u, α). However �u is unique for any k
by the definition.

3.2 Puiseux Series Extrapolation

The power series endgame has been successfully used to handle the singularity in NAG
[2,39] for polynomial systems. This endgame technique is only used for homotopy tracking
very near t = 0, but cannot handle the bifurcation point during the tracking. In this paper,
we will develop a new numerical method based on the Puiseux Series Expansion (PSE) to
approximate the bifurcation point and the solution at the bifurcation point when the nonlinear
system is polynomial. The idea is to use the eigenvalue of the Jacobian matrix to interpolate
the solution near the bifurcation point. In particular, at the bifurcation point, the Jacobian
Fu has an eigenvalue with zero real part, say pb, and several branches can come together at
(ub, pb).We denote λ = mini |real(λi )|, where λi is the eigenvalue ofFu(u, p) for any given
(u, p). Then according to the classical Puiseux’s theorem (Chapter 7 in [13] & Corollary
A.3.3 in [42]) we use a Puiseux series expansion to approximate (u, p) in a neighborhood of
(ub, pb), called the PSE operating zone. Thus the following formulation is given by

u(λ) = ub +
∞∑
j=1

aiλ j/c1 and p(λ) = pb +
∞∑
j=1

biλ
j/c2 , (6)

where c1 and c2 are the winding numbers for path u(λ) and p(λ), respectively. Computing
the winding numbers c1 and c2 requires more advanced computational techniques in NAG
[5,29,42] but can not be applied directly for large-scale nonlinear systems, e.g., the discretized
polynomial systems of nonlinear PDEs. Thus in our algorithm, we make several guesses at
c1 and c2 to get the close connection to the curvature of the paths.

Moreover, we also need to compute leading terms of the PSE, namely,w = min{ j |a j �= 0}
and q = min{ j |b j �= 0}. Then (6) is rewritten as

u(λ) = ub + λw/c1 (aw +
∞∑

j=w+1

aiλ
j/c1 ) and p(λ) = pb + λq/c2 (bq +

∞∑
j=q+1

biλ
j/c2 ). (7)

We will show the procedure how to estimate q/c2, which can be extended to estimate w/c1
as well: for any constant k1 and k2, we have

p(k1λ) = pb + kq/c2
1 λq/c2(bq +

∞∑
j=q+1

bi (k1λ) j/c2),

p(k2λ) = pb + kq/c2
2 λq/c2(bq +

∞∑
j=q+1

bi (k2λ) j/c2).

When λ is small and k1 < 1, k2 < 1, we have

1 − kq/c2
1

1 − kq/c2
2

≈ p(λ) − p(k1λ)

p(λ) − p(k2λ)
.

Thus an approximation of q/c2 is obtained by solving the following nonlinear equation:

f (x) := 1 − kx1 − m(1 − kx2 ) = 0,
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where m = p(λ)−p(k1λ)
p(λ)−p(k2λ)

. For estimating w/c1, we multiply a random vector, , namely, using

αT u(k1λ) and αT u(k2λ) to repeat the above procedure. In summary, the algorithm for com-
puting the bifurcation point based on the PSE is as follows:

Algorithm 2: Implementing PSE

Given a sequence of points on the branch, say (un, pn, λn)Nn=1;
while |λ| < Tol do

Estimate the value of w/c1 and q/c2 by solving the nonlinear equation f (x) = 0;
for ci = 1 : M do

Use the first N − 1 points to approximate the Puiseux series;
Apply these approximations to extrapolate (uN , pN ) at λN ;

end
Determine the best value of ci by choosing the nearest extrapolating point on the
paths at λ = λN ;
Use the Puiseux series to approximate (ub, pb) at λ = 0;
if ‖F(ub, pb)‖ < Tol then

Break;
else

Set λ = λN
2 , generate a new point (uN+1, pN+1), and update the sequence of

points;
end

end

An illustrated example: We will use the following example to illustrate this PSE interpo-
lation process:

F(u, p) =
(

x2 − p2

(x + y)2 − p3

)
. (8)

In this example, exact solutions of one branch are

x = −
(1
2

)2/3
λ2/3, y =

(1
2

)1/3
λ2/3 + 1

2
λ and p =

(1
2

)2/3
λ2/3,

where λ is the minimum eigenvalue of the Jacobian matrix. By taking λ = 2, we have our
initial point x0 = −1, y0 = 2, and p0 = 1. By taking h = −0.1, we collect five points on this
solution path shown in Fig. 2. Four of them are used to compute coefficients of the Puiseux
series, the other one is to determine the winding numbers c1 and c2. Figure 2 shows different
solution trajectories by using PSE interpolation for different c1. Then c1 = 3 is the best
approximation for x , y. In fact, since p is a monomial of λ, when using a different winding
number c2, the ratio q/c2 is the same. Then the approximated bifurcation point becomes
x = −3.2 × 10−5, y = 1.1 × 10−4, and p = 3.2 × 10−5.

3.3 Tangent Cone

After computing the bifurcation point, the tangent cone of the bifurcation point needs to
be computed in order to track along different branches by using the Lyapunov-Schmidt
reduction [7,9,21]. The tangent cone T∗ and the Jacobian matrix J∗ at the bifurcation point
have the following relationship

T∗ ⊆ null(J∗),
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Fig. 2 The PSE interpolation in the illustrated example (8). The left part shows solution trajectories of y with
respect to λ for different c1; the right part shows parameter p with respect to λ

which implies that the tangent cone is contained in the tangent space at a bifurcation although
the tangent cone and tangent space are equal at a generic point. Then the null space of
the Jacobian is computed to obtain the tangent cone at a bifurcation by using the Taylor
expansion of the nonlinear system F in the null space of J∗. We will illustrate the procedure
of computing the tangent cone by assuming that the dimension of the null space of the J∗
is n − 1. Let’s denote the Jacobian Ju and the derivative Jp with respect to p at (u0, p0) as
A := [Ju, Jp] ∈ Rn×(n+1). Then we have[

Q1 Q2

q1 q2

]
= null(A), where Qi ∈ Rn×1 and qi is a scalar.

Similarly, � ∈ R1×n = null(AT ). Thus we assume that

�u = a1Q1 + a2Q2 and �p = a1q1 + a2q2,

where ai needs to be determined. We construct the following single polynomial g(a1, a2)

g(a) = �T F(u0 + a1Q1 + a2Q2, p0 + a1q1 + a2q2).

By using Taylor expansion at (0, 0), we have

g(a) ≈ g(0, 0) + aT
∂g

∂a
(0, 0) + aT H(0, 0)a,

where H(0, 0) is the Hessian matrix of g at (0, 0). Then a stratifies the following system:

aT H(0)a = 0

a1q1 + a2q2 = �p.

If the tangent cone has a more complex structure (such as when the dimension of the null
space of the Jacobian is more than 1), we need to introduce more variables ai and more
derivatives to determine the tangent cone.

Therefore, we summarize the AHTBD method as follows and outline the flow chart in
Fig. 3:

1. For a given initial point (u, p) on a solution path and a maximum step-size, solve the
augmented system (2) to track along the path;
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Fig. 3 The flow chart of the AHTBD method

2. If the augmented system (2) becomes ill-conditioned, the inflation process is introduced;
3. Near the bifurcation point, the PSE interpolation is used to approximate the bifurcation

point;
4. At the bifurcation point, the tangent cone is computed to determine the different tracking

solution branches, and then repeat the first step for each path.

4 Numerical Results

In this section, we apply the AHTBD method to several examples, ranging from a single
equation to a system of nonlinear PDEs, to show its efficiency. Both the AHTBDmethod and
the traditional homotopy tracking method are implemented and compared on Matlab. The
traditional homotopy tracking has been implemented in various packages such as Bertini [3],
HOM4PS [32], PHCpack [44] and others to handle the bifurcations. Among these existing
software, Bertini has more freedom to compute the bifurcations due to the adaptive multi-
precision path tracking [4] and the parallel endgame [6]. To fairly compare the AHTBD
method with the traditional homotopy tracking, we will implement both methods on Matlab.

4.1 An Example with a Turning Point

Our first example is used to test the efficiency of adaptive homotopy tracker by considering
the following system:

F(u, p) =
(

x2 − p
x2 − 2y2 + p

)
, (9)
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Table 1 Comparisons between adaptive and traditional homotopy tracking methods for (9)

h = −0.1 h = −0.2
Traditional Adaptive Traditional Adaptive

# of steps 19 16 15 9

bifurcation x 3 × 10−4 −1.695 × 10−5 3 × 10−4 −1.1 × 10−16

y −3 × 10−4 1.695 × 10−5 −3 × 10−4 1.1 × 10−16

p −5.7 × 10−7 5.5 × 10−6 −5.7 × 10−7 3.8 × 10−11

Fig. 4 Comparisons between adaptive (upper) and traditional (lower) homotopy tracking methods. The plot
of x v.s. p is illustrated for h = −0.2 (left) and h = −0.1 (right)

where u = (x, y)T is the variable while p is the parameter. The analytical solution is
x2 = y2 = p which has a turning point when p = 0. This example is used to illustrate
the efficiency of the adaptive homotopy tracker for computing the bifurcation point. We
choose u0 = (−1, 1) and p0 = 1 as our initial tracking point and compare the adaptive
homotopy tracker of the AHTBDmethod and the traditional homotopy tracker with different
step-sizes (h = −0.1 and h = −0.2). Table 1 and Fig. 4 show that the adaptive homotopy
tracker takes fewer steps to get to the bifurcation point. In particular, when the initial step-
size h becomes larger, the efficiency of the adaptive homotopy tracker is more obvious. The
traditional homotopy method finds the bifurcation by halving the step-size with less accuracy
(around 10−4), while the adaptive homotopy tracker approximates the bifurcation point by
doing the PSE extrapolation with higher accuracy (around 10−6).

4.2 Examples with Complex Bifurcation Structures

In this subsection,wewill use theAHTBDmethod to compute several exampleswith complex
bifurcation structures; namely, the bifurcation point is computed first by using the adaptive
homotopy tracker, and then the tangent cone algorithm is used to obtain different solution
branches.
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Fig. 5 Local bifurcation diagram
of (10): starting from the lower
branch (blue points), we compute
the bifurcation point first by
using the PSE interpolation and
then compute the tangent cone to
obtain the other solution branches
(green, red, and orange points)
(Color figure online)

Example 1 Given
F(x, p) = (x − p)4 + (x − p)(x + p), (10)

we have a bifurcation point at p = 0. In order to compute the local bifurcation diagram
at p = 0, we start from a point x = 1 and p = 1 to track along a solution path with
the step-size h = −0.1. When it is close to the bifurcation, namely, λmin < 0.1, we use
the PSE to approximate the bifurcation point. Afterwards the tangent cone is computed:
since the Jacobian Fx and the derivative Fp are both 0, the null space for A = [Fx , Fp] is
span{(0, 1)T , (1, 0)T } and the null space of AT is span{1}. Then two tangent directions are
obtained, (1, 1)T and (−1, 1)T . By setting different step-sizes, for example h = ±0.1, and
choosing a tangent direction, we obtain a solution on each branch. Starting from this point,
the adaptive homotopy algorithm is employed to continue tracking (see Fig. 5).

Example 2 The following equation represents two intersecting circles that imply complex
bifurcation structures shown in Fig. 6:

F(x, p) = (x2 + p2 − 1)((x − 1)2 + p2 − 1). (11)

We start to track along a solution path from point ( 12 ,
√
3
2 ) with different tracking directions

(blue point in Fig. 6). Figure 6 shows the AHTBD tracking process with the step-size |h| =
0.1. It is clearly seen that the tracking is almost uniform even though there are two bifurcation
points. Table 2 shows the comparison between theAHTBDand traditional homotopymethods

when the tracking starts at point ( 12 ,
√
3
2 ) and ends when reaching or passing the turning point

where |p| = 1. The two tables have the same starting point, while the tracking direction
is different. Although the traditional homotopy method may have higher accuracy for the
bifurcation point, it takes many more steps to reach the end point than the AHTBD method.
Moreover, the AHTBD method can pass the turning point easily (see Table 2 for h = −0.1),
while the traditional method stagnates at the turning point.
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Fig. 6 Local bifurcation diagram of (11). The AHTBD method is used to track from the blue point to the left
and right directions (Color figure online)

Table 2 Comparisons between AHTBD and traditional trial-and-error tracking methods along the branches
shown in Fig. 6 with different step-sizes for h

h = 0.1 h = 0.05

Trial-and-error AHTBD Trial-and-error AHTBD

# of steps 50 10 60 17

Bifurcation x 0.5002 0.5020 0.5002 0.5033

p 0.8659 0.8671 0.8659 0.8702

Endpoint x 0.0128 −0.2097 0.0128 −0.1020

p 0.9999 0.9778 0.9999 0.9948

# of steps 62 19 82 32

Bifurcation x 0.5002 0.5026 0.5002 0.4831

p −0.8659 −0.8675 −0.8659 −0.8756

Endpoint x 0.0080 −0.1637 0.0080 0.0054

p −1.0000 −0.9865 1.0000 −1.0000

Example 3 We consider the following equation which is used in [45] as an example of uni-
versal unfoldings of singularities of topological codimension two:

F(x, p) = (x − p)2 +
(1
3

− 2(x + p) + (x + p)3
)
(x − p). (12)

We used the AHTBDmethod to track the solution branch starting from (1, 1), which is shown
as the blue point in Fig. 7 and is tracked along two different solution branches after the first
bifurcation point. We also compared the traditional homotopy tracking with the AHTBD
method on two branches: diagonal and non-diagonal (red and blue, respectively, in Fig. 7).
In Table 3, we tracked from (1, 1) with h = −0.05 until p < −0.03. When tracking along
the non-diagonal branch, we encountered turning points where the AHTBD method works
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Fig. 7 Solution behavior of (12) with diagonal (red) and non-diagonal (blue) branches (Color figure online)

Table 3 Comparisons between AHTBD and traditional homotopy tracking methods for (12) along two
branches

Diagonal branch Non-diagonal branch

Trial-and-error AHTBD Trial-and-error AHTBD

# of steps 139 27 273 60

1st bifurcation x 0.6612 0.6609 0.6612 0.6609

p 0.6612 0.6609 0.6612 0.6609

2nd bifurcation x 0.0846 0.0873 0.0852 0.0860

p 0.0846 0.0837 0.0843 0.0843

well. However, for the traditional method, we have to switch the tracking parameter from p
to x in order to ensure the tracking process follows the correct direction.

4.3 An Example of Nonlinear PDEs

We compared the AHTBDmethod with the trial-and-error tracking method on the following
nonlinear differential equation: {

uxx = u2(u2 − p),

ux (0) = 0, u(1) = 0,

where u is the solution of differential equation and p is the parameter. There are multiple
solutions u for any given parameter p, moreover, the number of solutions increases as p
goes large. We discretized the differential equation by using the finite difference method and
obtained a nonlinear system of polynomial equations. For p = 18, we solved the discretized
nonlinear system by using Newton’s method with different initial guesses and obtained seven
solutions that is shown in Fig. 8. Thenwe tracked p from18 to 0with h = −0.4 and compared
two methods. The stopping criteria for the trial-and-error method is that the stepsize is less
than 1e−9 while it is p(p − 18) > 0 for the AHTBD method. We compared two methods
in the tracking steps and running time for the nonlinear system with 360 grid points in Table
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Fig. 8 Left: Non-trivial solutions of (4.3) at p0 = 18; Right: Solution behavior of (4.3) obtained by both the
AHTBD method (solid line) and the traditional method (asterisk)

Table 4 Comparisons between
the AHTBD method and the
trial-and-error method for the
discretized nonlinear system of
(4.3) with 360 grid points

Branch no. Trial-and-error AHTBD

Steps Elapsed time Steps Elapsed time

2 46 steps 1.1317s 31 steps 1.553s

3 57 steps 2.2933s 38 steps 1.7895s

4 33 steps 1.6764s 15 steps 0.7928s

5 30 steps 1.6732s 16 steps 0.8745s

4. The AHTBD method is more efficient to obtain the full solution behaviors for different
branches while the traditional trial-and-error tracking method obtains half of branches.

5 Application to a System of Nonlinear PDEs

We apply the AHTBDmethod to a system of nonlinear PDEs to model two species: consider
a competition between two species that are ecologically identical except in their dispersal
mechanisms. Let u = u(x), v = v(x) denote the densities of two competing species at
location x . Then the study of the interaction between a resident phenotype (u) with an
invader phenotype (v) can be modeled by the following system:

⎧⎪⎨
⎪⎩

∇(d∇u − αu∇m) = −u(m − u) in �,

∇(d∇v − βv∇m) = −v(m − u) in �,

d ∂u
∂n − αu ∂m

∂n = d ∂v
∂n − βv ∂m

∂n = 0 on ∂�.

(13)

Herem(x) is the per-capita growth rate, which represents the same resources that two species
are competing for. To reflect the heterogeneity of the environment, we assume that m(x) is a
nonconstant function to reflect the quality and quantity of resources available at the location
x . In Eq. (13), d is two species’ common random dispersal rates, and α, β are their rates of
directedmovement upward along the resource gradient. Theboundary condition is of a no-flux
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type, i.e., there is no net movement across the boundary. The solution behavior of this model
has been studied well in [8,18,24,31]: when α = β, two species co-exist, u = v. Bifurcation,
the so-called evolutionarily stable strategy (ESS), happens on the diagonal α = β, and the
behavior of the solution near the bifurcation point is described in [8,18,31]. In reality, it is
interesting to find out what happens for the bifurcation branch away from the bifurcation
point, and this is where the numerical computation is needed: to find the population densities
u and v as α and β moves far away from the ESS. Given m(x) = 1 + x , a unique positive
solution of u is defined by (13), namely, ũ = ũ(d, α). By standard theory, if some rare
population v is introduced into the resident population u at equilibrium (i.e. u ≡ ũ), then the
initial (exponential) growth rate of the population of v is given by λ, where λ = λ(α, β; d)

is the principal eigenvalue of the problem

{∇ · (d∇ϕ − βϕ∇m) + (m − ũ(d, α))ϕ = λϕ in �,

d ∂ϕ
∂n − βϕ ∂m

∂n = 0 on ∂�,
(14)

where the positive principal eigenfunction ϕ = ϕ(α, β; d) is uniquely determined by the
normalization

∫
�

ϕ(α, β; d) = 1. (15)

In particular, when α = β, we have ϕ(α, α; d) = ũ and λ(α, α; d) ≡ 0 for any d, α which
implies that two species u and v are identical when α = β.

When we couple (13) and (15) together and discretize the system by using the finite
difference method, we have the following coupled system:

F(β,u, v;α) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2d
h2
u2 − ( 2d

h2
+ 2α

h + α2

d )u1 + u1(m1 − u1)

d
h2

(ui+1 − 2ui + ui−1) − α
2h (ui+1 − ui−1) + ui (mi − ui )

(− 2d
h2

+ 2α
h − α2

d )uN + 2d
h2
uN−1 + uN (mN − uN )

2d
h2

v2 − ( 2d
h2

+ 2β
h + β2

d )v1 + v1(m1 − u1)

d
h2

(vi+1 − 2vi + vi−1) − β
2h (vi+1 − vi−1) + vi (mi − ui )

(− 2d
h2

+ 2β
h − β2

d )vN + 2d
h2

vN−1 + vN (mN − uN )

( v1
2 + v2 + · · · + vN−1 + vN

2 )h − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

(16)

For any given α0, u0 is solved by the discretization of (13). Then u0, β0 = α0, v0 = u0∫
� u0

is a solution of F(β,u, v;α) = 0. Given initial values (β0,u0, v0, α0), we track along the
diagonal branch α = β using α as a parameter. For our choice of m(x), there is only one
bifurcation. We applied the AHTBD method to track F(β,u, v;α) = 0, which is shown
in Fig. 9 by starting with α0 = 0.01 and ending with α0 > 0.3. We also compared the
AHTBD method with the traditional trial-and-error tracking method in Tables 5 and 6 and
demonstrated that theAHTBDmethod is faster than the traditional homotopy trackingmethod
for the nonlinear PDE example.
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Fig. 9 Diagram of α-β by tracking F(β, u, v; α) = 0 with respect to α

Table 5 Comparison between the AHTBD method and the traditional trial-and-error tracking with different
step-sizes for h (the number of grid points N = 320)

h Diagonal branch Non-diagonal branch

Trial-and-error AHTBD Trial-and-error AHTBD

0.01 88 steps (42.2808s) 25 steps (15.5970s) 88 steps (48.5956s) 26 steps (16.9497s)

0.02 70 steps (33.2463s) 16 steps (10.8033s) 70 steps (40.5963s) 15 steps (10.2496s)

Table 6 Comparison between the AHTBD method and the traditional trial-and-error tracking for number of
grid points N (the step-size is h = 0.01)

N Diagonal branch Non-diagonal lower branch

Trial-and-error tracking AHTBD Trial-and-error tracking AHTBD

80 85 steps (5.7142s) 28 steps (2.7299s) 85 steps (6.1369s) 26 steps (2.4906s)

160 96 steps (17.9011s) 29 steps (6.2515s) 96 steps (19.1336s) 28 steps (6.6682s)

320 88 steps (42.2808s) 25 steps (15.5970s) 88 steps (48.5956s) 26 steps (16.9497s)

6 Conclusions

We developed an adaptive homotopy tracking method to compute bifurcations for large-scale
nonlinear parametric systems. This new algorithm is designed for computing bifurcation
points and solutions on different branches through the bifurcations via adaptive tracking, the
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Puiseux interpolation, and the inflation process. Furthermore, an augmented system is intro-
duced to compute the adaptive parameter step-size while the inflation technique is backed up
when the augmented system becomes singular. We also employ the Puiseux series expansion
to interpolate bifurcation points, and different bifurcation branches are approximated based
on computing the tangent cone structure of the bifurcation point. Several numerical examples
for both polynomial systems and nonlinear systems of PDEs verify the efficiency of this new
method through comparison with the traditional homotopy continuation method. There are
still some numerical challenges for the adaptive homotopy tracking method developed in this
paper. For example, it would become challenging and might fail when we deal with a clus-
ter of bifurcations. Moreover, the efficient and accurate eigenvalue solver is required in this
adaptive tracking process. Thus inexact approximations of eigen data and inaccurate solution
points might also affect the numerical performance. We will explore these challenges more
carefully in the future.
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