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Abstract
The homotopy continuation method has been widely used to compute multiple solutions of
nonlinear differential equations, but the computational cost grows exponentially based on
the traditional finite difference and finite element discretizations. In this work, we presented
a new method by constructing a spectral approximation space adaptively based on a greedy
algorithm for nonlinear differential equations. Then multiple solutions were computed by
the homotopy continuation method on this low-dimensional approximation space. Various
numerical examples were given to illustrate the feasibility and the efficiency of this new
approach.

Keywords Multiple solutions · Nonlinear differential equations · Polynomial systems ·
Homotopy continuation

1 Introduction

Many mathematical models of natural phenomena, e.g., biology [18,19], physics [35,36] and
materials science [38], involve nonlinear systems of partial differential equations (PDEs) [21,
22,30,31,33]. Theories and numericalmethods for these nonlinear PDEs have been developed
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to gain a better understanding of the solution structures, in which bifurcations [46–49] and
multiple steady states [8,11,17,26,27,33,37] are the central questions [29,57]. Although PDE
theory can help us understand the solution structures in many cases [20,23–25], the in-depth
andmore quantitative study of these problems often requires numerically computingmultiple
steady-state solutions. Traditional numerical methods [43,53] focus on the unique time-
marching solution and are very hard to capture multiple solutions [46,47] and the structural
stability [48,49].

In order to address these challenges, homotopy continuation methods [39–42] have been
developed for computing multiple solutions, steady-states, and bifurcation diagrams of non-
linear PDEs [32,33]. These numerical methods show significant advantages in handling
nonlinear parametric PDEs and have been applied to hyperbolic conservation laws [34],
physical systems [35,36], and some more complex free boundary problems arising from
biology [30,31]. In practice, this approach may be computationally intensive due to the rapid
growth of the number of solutions when refining the mesh [2]. To address this difficulty, the
filtering method has been introduced to limit the number of paths to be followed at each step
for solving the nonlinear boundary value problem in one dimension [1] and semilinear ellip-
tic equations in two dimensions [2]. Another strategy for adapting homotopy continuation
method to solve PDE problems is the so-called bootstrapping method, which uses domain
decomposition to break the large polynomial system into small ones and track the solutions
back to the original system [33]. However, the computational cost for both methods grows
dramatically when the number of mesh points increases. Furthermore, the stopping criteria
and filtering conditions are constructed case by case.

The reduced basis method (RBM) has been widely used for solving parametric PDEs [15,
16,28,50,51,59]. The basic idea ofRBMis to construct a very low-dimensional approximation
space by the span of solutions corresponding to properly selected parameter values (usually
by a greedy algorithm), and then to use Galerkin projection to find solutions corresponding to
new parameter values in this approximation space. Motivated by the RBM, in this paper, we
developed a spectral discretization to reduce the size of the discretized polynomial system by
selecting basis functions (which are polynomials) of the spectral discretization adaptively by
a greedy algorithm. More specifically, we constructed an approximation space of very low
dimension for approximating nonlinear PDEs which, in turn, reduces the size of the discrete
polynomial systems significantly. This adaptive approach is able to reduce the computational
complexity significantly when combined with the homotopy continuation method to solve
the discretized polynomial systems.

The rest of this paper is organized as follows. We first gave a brief overview of numerical
methods for computing multiple solutions of nonlinear PDEs in Sect. 2. In Sect. 3, we
presented the details of the homotopy method with adaptive basis selection (HMABS) for
computing multiple solutions of nonlinear differential equations. Then, we discussed the
convergence analysis of the HMABS in Sect. 4. Finally, several numerical examples were
given in Sect. 5 to demonstrate the accuracy and efficiency of the HMABS approach.

2 Homotopy ContinuationMethods for Solving Nonlinear Differential
Equations

In this section, we briefly review existing homotopy continuation approaches for computing
multiple solutions of nonlinear differential equations. Based on the finite difference method,
the homotopy continuation method has been developed for solving the discretized polyno-
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mial systems [2], which is based on numerical techniques arising from numerical algebraic
geometry [5,56].

2.1 Homotopy ContinuationMethod

We consider a finite difference discretization of a differential equations with an uniform
mesh, namely, approximate a solution u by an n-tuple U = (U1,U2, . . . ,Un) ∈ R

n where n
is the number of grid points. Then the resulting discretization polynomial system is denoted
as

Fh(U) = 0, (1)

where h is the mesh size (i.e., h = (b − a)/(n + 1) with domain � = (a, b)). To solve (1)
by the homotopy continuation method, we first define the following homotopy function

H(U, t) = Fh(U)(1 − t) + γ t S(U) = 0, (2)

where γ is a randomly chosen complex number and t ∈ [0, 1] is the path tracking parameter.
Here S(U) is the start system defined by

S(U) =
⎛
⎜⎝
Uk
1 − 1
...

Uk
n − 1

⎞
⎟⎠ = 0

where k is the degree of each polynomial in Fh(U). When t = 1, H(U, 1) = S(U) = 0
can be solved for each Ui separately on the complex field. Although that the numerical
solutions of (2) are real, we have to track all the complex solutions of the start system in
order to guarantee all the real solutions of (2). Then the polynomial systems (2) is solved by
tracking t from 1 to 0. For a more detailed description of the numerical continuation method
for multiple solutions of differential equations, we refer the reader to [1–4]. However, the
computation cost of homotopy method is O(kn) therefore it is hard to solve a discretized
polynomial system based on a fine mesh.

2.2 BootstrappingMethod

The bootstrapping method [33], coupling homotopy and domain decomposition methods,
computes multiple solutions of nonlinear differential equation systems with natural paral-
lelizability. This approach shows that domain decomposition gives excellent guidance on
how to choose smaller systems to build up to a larger system. The basic idea of bootstrap-
ping method is to first use homotopy continuation to compute all solutions to the discretized
polynomial system FH (U) = 0 with a coarse grid of size H , and then using the solutions
as “boundary conditions” of subdomain systems, i.e., solve the hybrid system Fh,H (U) = 0
(h = H/m where m is the number of grid points on each subdomain). Then, solutions of the
discretized polynomial system Fh(U) = 0 with the fine grid of size h are computed through
the following homotopy:

H(u, t) = (1 − t)Fh(U) + t Fh,H (U) (3)

where t is the homotopy parameter.When t = 1, solutions of the hybrid system Fh,H (U) = 0
are solved based on the domain decomposition setup. Thus as tracking t from 1 to 0, the
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solutions on the fine grid will be obtained. Full details of the bootstrapping method can be
found in [33].

Thebootstrappingmethod,whichnaturally couples domaindecompositionwith homotopy
continuation methods, allows us to solve the discretized polynomial system on the complex
field to obtain multiple solutions. Nevertheless, recovering the full system on the fine grid
from subsystems on the coarse grid is time-consuming. The reason is that the size of the full
discretized polynomial system is too large to track on the complex field although each sub-
discretized polynomial system is small to solve easily. To address this difficulty,we choose the
spectral Galerkinmethod to discretize nonlinear differential equations which usually result in
polynomial systems with a smaller size. In fact, the advantage of the spectral discretization is
to obtain accurate numerical solutions by using a relatively low-dimensional approximation
space [52]. This low dimensionality in turn reduces the size of the discretized polynomial
systems which can be solved more efficiently by the homotopy continuation method.

3 HomotopyMethod with Adaptive Basis Selection

3.1 Model Problem and Spectral Galerkin Discretization

We consider the following semilinear elliptic equation with a homogeneous Dirichlet bound-
ary condition:

{−�u = f (u), in �

u = 0, on ∂�,
(4)

where� ⊂ R
d is an open bounded domain in d dimension and f (u) is a polynomial function

of u. The weak formulation of problem (4) is: seek u ∈ H1
0 (�) such that

F(u, v) := (A(u), v) = (∇u,∇v) − ( f (u), v) = 0, ∀v ∈ H1
0 (�), (5)

where (·, ·) is the usual L2 inner product. The Galerkin discretization of (5) is: find uN ∈ VN
such that

F(uN , v) = 0, ∀v ∈ VN , (6)

where VN ⊂ H1
0 (�) is a finite dimensional approximation space spanned by a set of basis

functions {φi }Ni=1. For spectral Galerkin method using the Legendre polynomials, VN is
composed of polynomial functions of degree k. Let us denote the numerical approximation
by

uN =
N∑
j=1

α jφ j . (7)

The discrete problem (6) is equivalent to a system of N polynomial equations with respect
to the unknown coefficients α = (α1, . . . , αN ),

GN ,i (α) := F

⎛
⎝

N∑
j=1

α jφ j , φi

⎞
⎠ = 0, i = 1, . . . ,N . (8)

Remark 1 Ourmethod is based on the polynomial basis satisfying given boundary conditions
which have been constructed by using Legendre polynomials in [14]. When the domain has
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an irregular boundary or the boundary conditions are complicated, we can use the finite
element method to compute basis functions first and then expand the solution by Galerkin
projection.

3.2 Adaptive Basis Selection

In order to reduce the size of the discrete polynomial system (8), we will choose an optimal
set of basis functions for the approximation space. By denoting a set of basis functions
of VN as {φi }Ni=1, we construct the following nested sequence of approximation spaces
V1 ⊂ V2 ⊂ · · · ⊂ VN , where Vl = span{Vl−1 ∪ φIl }, φIl is a basis function with index
Il (l = 1, . . . ,N ) determined by a greedy sampling strategy based on the a posteriori error
estimator

El(φ j ) := |F (
ul , φ j

) | ( j = 1, . . . ,N ).

Here ul := ∑l
i=1 αiφIi is a solution of the nonlinear polynomial system Gl =

(Gl,1, . . . ,Gl,l) with

Gl, j (α1, . . . , αl) := F

(
l∑

i=1

αiφIi , φI j

)
= 0, j = 1, . . . , l. (9)

Since Gl corresponds to a polynomial system, there could be multiple solutions for α =
(α1, . . . , αl). Thus, we use u

(p)
l (p = 1, . . . , S, where S is the number of solutions) to denote

these different solutions. Then, we choose

Il+1 := arg max1≤ j≤N
S∑

p=1

|F(u(p)
l , φ j )|. (10)

The above process is terminated if for a prescribed tolerance ε, we have

S∑
p=1

|F(u(p)
l , φIl+1)| < ε. (11)

Otherwise, set Vl+1 = span{Vl ∪ φIl+1}, and repeat the above process to construct the next
approximation space Vl+2. Then the detailed algorithm is outlined in Algorithm 1.

Algorithm 1: A greedy algorithm for constructing the approximation space

Input : Candidate basis function {φi }Ni=1, bilinear form F(u, v), and stopping tolerance ε.
Initialization: φI1 = φ1, V1 = span{φI1 }.
for l = 1 : N do

• solve the nonlinear system Gl (α) = 0;

• choose Il+1 = arg max1≤ j≤N
∑S

p=1 |F(u(p)
l , φ j )|;

• if
∑S

p=1 |F(u(p)
l , φIl+1

)| < ε then
break

end
• Vl+1 = span{Vl ∪ φIl+1

}.
end

Remark 2 Notice that the size of the nonlinear system (9) equals l which is typically very
small compared with (8). Thus the homotopy continuation method is efficient in computing
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all the complex solutions. In addition, the residual computations can be parallelized to further
increase the efficiency of the above algorithm.

3.3 HomotopyMethod for Solving the Discretized Polynomial System

In order to compute solutions of Gl+1(α) = 0, we define the following homotopy function:

H(α, t) =

⎡
⎢⎢⎢⎣

Gl+1(α1, . . . , αl+1)

α̃1 − α1
...

α̃l − αl

⎤
⎥⎥⎥⎦ (1 − t) + γ t

[
Gl(α1, . . . , αl)

F(ũl , φIl+1; α̃1, . . . , α̃l)

]
= 0,

(12)

where γ is a randomly chosen complex number to avoid singularities during the homotopy
tracking t from 1 to 0 which is called the γ -trick [5,56]. Here ũl = ∑l

i=1 α̃iφIi +αl+1φIl+1 ,
and α̃i are random complex numbers. Then the start system H(α, 1) can be decou-
pled into two systems: Gl(α1, . . . , αl) = 0 which has been solved in the previous step;
F(ũl , φIl+1; α̃1, . . . , α̃l) = 0 (defined in (6)) which is solved for αl+1 as the single variable
while α̃i are given random complex numbers. The solutions of the start system are hybrid:
all the real solutions fromGl(·) = 0 and all the complex solutions of the new added equation
F(·) = 0. This choice might miss some solutions of Gl+1(·) = 0 since we choose the real
solutions only for Gl(·) = 0. However, this choice reduces the computation significantly
and only real solutions are meaningful for Gl+1(·) = 0. Then, this homotopy H(α, t) can
efficiently solve Gl+1(α1, . . . , αl+1) = 0 by lifting l + 1 variables to 2l + 1 variables. This
homotopy setup is so called the diagonal homotopy which has been used for computing
proper lifts of intersections of algebraic sets (see [54,55] for more details). Moreover, this
homotopy method can be combined with adaptive stepsize and adaptive precision algorithms
[3,6] to provide reliability and efficiency.

Finally, we summarized the HMABS approach for computing multiple solutions of dif-
ferential equations as follows:

• choosing the candidate basis to form a complete normalized base of the Sobolev space
H1
0 {�};

• expanding the optimal basis space based on Algorithm 1;
• solving the discretized polynomial system Gl+1() = 0 by the homotopy setup in Eq.

(12).

4 Convergence Analysis

In this section we will prove the convergence of the HMABS approach for a single solution
case while the convergence for multiple solutions will be explored in the future since it will
involve other advanced techniques.

We assume that the nonlinear variational problem (5) has a solution u such that the Fréchet
derivative at the point u (denoted by DF(u)) is an isomorphism from H1

0 (�) to H−1(�)

which implies that u is an isolated solution. We find u by using Newton iteration. Starting
from an initial approximation u0 (≈ u), we solve for w ∈ H1

0 such that

< DF(uk)w, v >= −F(uk, v), ∀ v ∈ H1
0 (�), (13)
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and set uk+1 = uk + w. The linearized operator DF(u) : H1
0 (�) → H−1(�) given by

DF(u)w = −�w − Df (u)w satisfies

< DF(u)w, v >= (Df (u)w, v) − (∇w,∇v). (14)

The well-posedness of the linearized problem (13) follows from the coercivity and bound-
edness assumptions on DF and F .

For the discrete problem (6), following the general framework in [45,60], and the conver-
gence estimate for the greedy algorithm [10], we have the following estimate.

Theorem 1 Let u be an isolated solution of the nonlinear problem (5), VN the approximation
space of dimensionN , and ũN the approximated solution by the HMABS method. Assuming
DF(u) is Lipschitz continuous in a neighborhood of u, for some constants βN and η, we
have

‖u − ũN ‖1 ≤ Cβ−1
N inf

w∈VN
‖u − w‖1 + Ce−ηN , (15)

where N is the dimension of the approximation space obtained by the greedy Algorithm 1.

Proof Let uN be the spectral Galerkin approximation in VN . The result follows from the
triangle inequality

‖u − ũN ‖1 ≤ ‖u − uN ‖1 + ‖uN − ũN ‖1, (16)

the estimate from spectral approximation [9]

‖u − uN ‖1 ≤ Cβ−1
N inf

w∈VN
‖u − w‖1 (17)

and the convergence rate for greedy algorithm [10]

‖uN − ũN ‖1 ≤ Ce−ηN . (18)

��

5 Numerical Results

In this section, we applied the HMABSmethod to several numerical examples to demonstrate
the feasibility and the efficiency. We compared the HMABSmethod with both the traditional
homotopymethod and the bootstrappingmethod. The discretized polynomial systems solved
by the homotopy method were based on 20 grid points for 1D examples and 5×5 grid points
for 2D examples. The stopping criteria of the bootstraping method was based on the step
size, namely, h < 10−3 in 1D and hx < 10−2 and hy < 10−2 in 2D while the stopping
criteria of the HMABS approach was ε < 10−3 in Eq. (11) with N = 100. The residual
errors reported in this section were computed by taking the maximum value of the residual
of Eq. (5) evaluated by the numerical solution and different basis functions. All experiments
were run on a cluster consisting of a manager that uses one core of a Xeon 5410 processor
and up to 10 computing nodes, each containing two Xeon 5410 processors running 64-bit
Linux, i.e., each node consists of 8 processing cores. Comparisons of all the algorithms were
implemented on Matlab incorporated with the homotopy tracking package in Bertini [7].
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Table 1 Summary of solutions for example (19)

The HMABS method The spectral method

Basis L2 error Basis L2 error

{φ1} 2.7806 {φ1} 2.7806

{φ1, φ3} 5.7005e−2 {φ1, φ2} 2.7817

{φ1, φ3, φ5} 6.2725e−4 {φ1, φ2, φ3} 5.7918e−2

{φ1, φ3, φ5, φ7} 4.3018e−6 {φ1, φ2, φ3, φ4} 5.7821e−2

{φ1, φ3, φ5, φ7, φ9} 3.1736e−8 {φ1, φ2, φ3, φ4, φ5} 6.2516e−4

{φ1, φ3, φ5, φ7, φ9, φ11} 2.1938e−10 {φ1, φ2, φ3, φ4, φ5, φ6} 6.2273e−4

5.1 A 1D Example with One Exact Solution

We first verified the accuracy of the HMABS method by considering the following one
dimensional problem,

{−uxx + u2 = π2 sin(x) + sin(πx)2 in � = (0, 1),
u(0) = u(1) = 0,

(19)

which has an exact solution u(x) = sin(πx). In the HMABSmethod, we chose the following
basis functions

φi (x) = xi+2 − t

i2 + 3i + 2
, i = 0, 1, 2, . . . ,N ,

which satisfies

−(φi )xx = xi in �, φi = 0 on ∂�.

Since (19) has a unique solution, we use Newton’s method to compute the discretized polyno-
mial system instead of homotopy method. In Table 1, we compared the L2 error of HMABS
method with the spectral discretization. It clearly shows that the HMABS method selects the
odd basis only which is consistent with the polynomial expansion of the exact solution. The
L2 errors reported in Table 1 shows the spectral accuracy of the HMABS method which is
better than that of the traditional spectral method.

5.2 A 1D Example with Two Solutions

Secondly, we considered the following 1D example with two analytical solutions [33]

{
uxx = −λ(1 + u4) on (0, 1),
u′(0) = u(1) = 0,

(20)

where λ ∈ R+ is a parameter. Multiplying by ux and integrating over [0, x] on Eq. (20), we
obtained

1

2
(ux )

2 + F(u) − F(u0) = 0, (21)
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Table 2 Summary of solutions

λ Basis L2 error Residual

1st sol. 2nd sol. 1st sol. 2nd sol.

1 {φ0} 1.34e−2 6.79e−1 3.16e−2 1.26

{φ0, φ1} 6.43e−4 4.78e−2 3.75e−3 1.43e−1

{φ0, φ1, φ4} 2.49e−4 4.73e−3 3.23e−3 7.06e−2

{φ0, φ1, φ4, φ15} 2.12e−4 4.80e−3 4.24e−4 8.14e−2

{φ0, φ1, φ4, φ15, φ2} 9.15e−5 2.53e−3 2.58e−5 2.72e−2

{φ0, φ1, φ4, φ15, φ2, φ8} 8.44e−5 7.88e−4 8.32e−6 2.23e−3

{φ0, φ1, φ4, φ15, φ2, φ8, φ20} 8.42e−5 4.54e−4 3.52e−7 1.61e−3

1.2 {φ0} 5.26e−2 5.03e−1 1.01e−1 8.04e−1

{φ0, φ1} 2.30e−3 2.56e−2 1.40e−3 6.14e−2

{φ0, φ1, φ4} 7.49e−4 3.40e−3 1.19e−2 6.73e−2

{φ0, φ1, φ4, φ2} 3.36e−4 2.51e−3 3.74e−3 3.22e−2

{φ0, φ1, φ4, φ2, φ14} 2.18e−4 1.27e−3 1.43e−4 4.40e−3

{φ0, φ1, φ4, φ2, φ14, φ8} 1.84e−4 3.95e−4 4.20e−5 8.35e−4

where F(u) = ∫ u
0 λ(1 + s p)ds and u0 = u(0). Since ux < 0 for x > 0, we have

∫ u(x)

0

ds√
F(u0) − F(s)

= √
2(1 − x). (22)

There exists two solutions for λ < λ∗ ≈ 1.30107 [33]. Thus the exact solutions can be
obtained from (22) and compared with numerical solutions. The basis functions were chosen
as

φi (x) = xi+2 − 1

i2 + 3i + 2
, i = 0, 1, 2, . . . ,N ,

which satisfies {
(φi )xx = xi on (0, 1),
φ′
i (0) = φi (1) = 0.

(23)

Table 2 shows the L2 error and residual of the two numerical solutions obtained by the
HMABS method for λ = 1 and λ = 1.2 respectively. We can clearly see that the HMABS
method converges in about 6–7 iterations and then the size of discretized polynomial systems
are much smaller.

5.3 A 1D ExampleWith Multiple Solutions

Next, we considered the following parametric example with multiple solutions,
{
uxx = −π2

4 u2(u2 − p) on (0, 1),
u′(0) = u(1) = 0,

(24)

where p ∈ R+ is a parameter [13]. For this parametric problem, the number of solutions
increases as p increases. In particular, the solutions’ behavior of (24) is shown in Fig. 1.
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Fig. 1 Solutions’ behavior of (20): the solutions are projected by integrating x . When p is fixed, the number
of intersections represents the number of solutions of (20)

Table 3 Summary of solutions p Basis Residual # Solns

1 {φ0} 0.03182 2

{φ0, φ1} 0.00225 2

{φ0, φ1, φ4} 0.00014 2

8 {φ0} 0.61781 4

{φ0, φ1} 0.14805 6

{φ0, φ1, φ4} 0.02458 6

{φ0, φ1, φ4, φ11} 0.00212 4

{φ0, φ1, φ4, φ11, φ2} 0.00039 4

10 {φ0} 0.96285 4

{φ0, φ1} 0.62123 8

{φ0, φ1, φ5} 0.30865 16

{φ0, φ1, φ5, φ2} 0.02243 10

{φ0, φ1, φ5, φ2, φ17} 0.00395 8

{φ0, φ1, φ5, φ2, φ17, φ9} 0.00041 8

In [33], the shooting method was utilized to numerically confirm the number of solutions
of (20). In this example, we chose the same basis functions {φi }Ni=0 as the previous example.
Table 3 shows that the HMABS method produces the same number of solutions as the
shooting method. From Table 4, we can see that the HMABS method is much more efficient
than the traditional homotopy continuation and the bootstrapping method for computing the
same number of solutions.
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Table 4 Computing time
comparisons of different methods

p HMABS Bootstrapping Homotopy

1 3m26s 1h39m 1d12h

8 8m12s 3h20m 1d12h

10 10m30s 5h41m 1d12h

Table 5 Numerical results of Example (25)

p Basis Residual # Solns

800 {φ1,1} 10.293 1

{φ1,1, φ1,4} 4.6146 2

{φ1,1, φ1,4, φ1,2} 0.2832 6

{φ1,1, φ1,4, φ1,2, φ2,1} 0.0092 8

{φ1,1, φ1,4, φ1,2, φ2,1, φ2,2} 2.2737e−3 10

{φ1,1, φ1,4, φ1,2, φ2,1, φ4,1} 4.2839e−6 10

3000 {φ1,1} 75.0182 1

{φ1,1, φ1,2} 19.4927 4

{φ1,1, φ1,2, φ2,1} 1.0408 6

{φ1,1, φ1,2, φ2,1, φ1,3} 0.2319 8

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1} 0.1038 18

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2} 0.0361 22

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3} 1.8245e−3 18

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ3,4} 1.7405e−4 18

5000 {φ1,1} 120.3827 1

{φ1,1, φ1,2} 50.2736 4

{φ1,1, φ1,2, φ2,1} 10.3746 6

{φ1,1, φ1,2, φ2,1, φ1,3} 0.9763 14

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1} 0.1846 24

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2} 0.0518 46

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3} 0.0183 34

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ3,4} 5.2831e−3 30

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ3,4, φ4,3} 9.2836e−4 30

5.4 Verifying the Breuera–McKennab Conjecture in 2D

We applied the HMABS method to the Breuera–McKennab conjecture with multiple solu-
tions that have been studied in [12]:

{−�u = u2 − p sin(πx) sin(π y) in � = (0, 1) × (0, 1),
u = 0 on ∂�.

. (25)
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Table 6 Computing time
comparison for example (25)

p HMABS Bootstrapping

800 28m12s 39h45m

3000 30m24s 59h42m

5000 42m9s 71h13m

Fig. 2 The contours of the solutions to (27)

The HMABS method solved the Breuera–McKennab conjecture for different parameter p
with the basis functions {φi, j (x, y)} by solving the following linear differential equations:

{−�φi, j = xi y j in � = (0, 1) × (0, 1),
φi, j = 0 on ∂�.

. (26)

The number of multiple solutions computed by the HMABS method for p = 800, 3000 and
5000 is listed in Table 5 which coincides with those reported in [2,61]. Table 6 illustrates the
efficiency of the HMABS method when comparing with the bootstrapping method.

5.5 The Henon Equation in 2D

We also tested the HMABS method on the Henon equation [62] with r = 0 and q = 3,
namely,

{−�u = u3 in � = (0, 1) × (0, 1),
u = 0 on ∂�.

. (27)

The basis functions {φi, j (x, y)} of the HMABSmethod are the same as those of the previous
example. The first eight solutions of (27) have been computed numerically in [62]. The
HMABS method found 24 solutions shown in Fig. 2. The number of solutions with different
subspaces are listed in Table 7. The HMABS method is competitive with the method based
on numerical optimization present in [62]: although some of solutions shown in [62] are
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Table 7 Summary of solutions for example (27)

Basis Residual # Solns

{φ1,1} 0.04565 3

{φ1,1, φ2,3} 0.00889 5

{φ1,1, φ2,3, φ1,4} 0.00242 7

{φ1,1, φ2,3, φ1,4, φ4,1} 0.00168 11

{φ1,1, φ2,3, φ1,4, φ4,1, φ3,2} 5.6212e−4 14

{φ1,1, φ2,3, φ1,4, φ4,1, φ3,2, φ1,3} 1.3821e−4 20

{φ1,1, φ2,3, φ1,4, φ4,1, φ3,2, φ1,3, φ3,1} 8.0121e−5 24

{φ1,1, φ2,3, φ1,4, φ4,1, φ3,2, φ1,3, φ3,1, φ4,4} 4.8340e−5 24

Fig. 3 Stable steady state solutions for the 2D Gray–Scott model (dA = dS = 0.1, ρ = 0.05, and k = 0.2)

missed by the HMABS method, some unknown solutions are founded by introducing only 8
basis.

5.6 Applications in Pattern Formation Problems

Last, we applied the HMABS method to the pattern formation problem which is one of the
fundamental questions in mathematical biology, namely, how multiple patterns and different
solution structures can be computed efficiently for nonlinear biological models. TheHMABS
method provides a new approach to obtain the multiple patterns in this direction. In order to
demonstrate the idea, we will use the Gray–Scott model [44] as an example: two reactions
A+2S → 3S and S → P . Both reactions are irreversible, P is called an inert product [58]. A
nonequilibrium constraint is represented by a feeding term for A. Both A and S are removed
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Table 8 Iteration details of the HMABS method and comparisons with other methods for the Gray–Scott
model with different ρ and k (dA = dS = 0.1). The table shows the selected basis functions for every iteration

(ρ, k) Basis Residual # Solns

(0.2, 0.95) {φ1,1} 10.293 2

{φ1,1, φ1,4} 0.0827 4

{φ1,1, φ1,4, φ1,2} 0.00225 7

{φ1,1, φ1,4, φ1,2, φ2,1} 6.4739e−5 11

{φ1,1, φ1,4, φ1,2, φ2,1, φ4,1} 4.2839e−7 11

(0.35, 0.5) {φ1,1} 75.0182 1

{φ1,1, φ2,1} 1.0408 6

{φ1,1, φ2,1, φ1,3} 0.5746 11

{φ1,1, φ2,1, φ1,3, φ3,1} 0.1038 15

{φ1,1, φ2,1, φ1,3, φ3,1, φ3,1} 3.8373e−3 18

{φ1,1, φ2,1, φ1,3, φ3,1, φ3,1, φ3,2} 3.6112e−5 20

{φ1,1, φ2,1, φ1,3, φ3,1, φ3,1, φ3,2, φ3,4, } 2.8373e−6 15

{φ1,1, φ2,1, φ1,3, φ3,1, φ3,1, φ3,2, φ3,4, φ4,3} 1.7405e−7 15

(0.05, 0.2) {φ1,1} 120.3827 1

{φ1,1, φ1,2} 50.8272 3

{φ1,1, φ1,2, φ2,1} 10.3746 6

{φ1,1, φ1,2, φ2,1, φ1,3} 1.2834 12

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1} 0.1846 20

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2} 0.0518 24

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3} 0.0183 27

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3, φ3,4} 5.2726e−3 25

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3, φ3,4, φ4,3} 9.2836e−4 23

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3, φ3,4, φ4,3, φ1,4} 3.6252e−5 23

{φ1,1, φ1,2, φ2,1, φ1,3, φ3,1, φ3,2, φ2,3, φ3,4, φ4,3, φ1,4, φ4,1} 9.2836e−7 23

by the feed process [58]. The resulting reaction-diffusion equations in dimensionless units
with no-flux boundary conditions are [44]:

{ ∂A
∂t = dA�A − S2A + ρ(1 − A),

∂S
∂t = dS�S + S2A − (ρ + k)S.

(28)

This model describes the growth of an activator A reacted with substrate S fed from the
activator with a rate ρ, and S is converted to an inert product at the rate k. dA and dS are the
diffusion coefficients of A and S, respectively.

We applied the HMABSmethod to solve the steady state system of the Gray–Scott model
with dA = dS = 0.1, ρ = 0.05, and k = 0.2 in 2D. The stable steady states are shown in
Fig. 3. The results of different ρ and k are shown in Table 8. In this example, the HMABS
method is also comparedwith the homotopymethod and the bootstrappingmethod and shows
the computational efficiency with less computing time in Table 6.
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Table 9 Computing time
Comparison of HMABS with
other methods

(ρ, κ) HRBM Homotopy Bootstrapping

(0.2, 0.95) 8m23s 4d21h 4h12m

(0.35, 0.5) 21m23s 4d21h 12h19m

(0.05, 0.2) 30m34s 4d21h 1d1h

6 Conclusion

A homotopy method with adaptive basis selection has been developed to solve nonlinear
differential equation with multiple solutions. The idea is to choose optimal basis functions
to minimize the size of the discretized polynomial system. A new homotopy continuation
method is designed to efficiently solve this discretized polynomial system. The convergence
of the proposed method has also been discussed. We tested several 1D and 2D examples
to demonstrate the efficiency of the HMABS method. The computations in 3D shall be
considered in the future along with a detailed analysis of how to choose an optimal set of
basis functions (Table 9).
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