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Abstract 

An attractive feature of non-lattice-based ontology auditing 
methods is its ability to not only identify potential quality issues, 
but also automatically generate the corresponding  fixes. 
However, exhaustive manual evaluation of the validity of 
suggested changes remains a challenge shared with virtually 
all auditing methods. To address this challenge, we explore 
machine learning techniques as an aid to systematically 
evaluate the strength of auto-suggested relational changes in 
the context of existing knowledge embedded in an ontology. We 
introduce a hybrid convolutional neural network and 
multilayer perception (CNN-MLP) classfier using a 
combination of graph, concept features and concept 
embeddings. We use lattice subgraphs to generate a curated, 
loosely-coupled training set of positive and negative instances 
to train the classifier. Our result shows that machine learning 
techniques have the potential to alleviate the manual effort 
required for validating and confirming changes generated by 
non-lattice-based auditing methods for SNOMED CT. 
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Introduction 

Non-lattice-based ontology auditing methods are based on the 
principle of Formal Concept Analysis. They have shown 
effectiveness in suggesting missing hierarchical relations (or 
IS-A relations) and concepts in SNOMED CT (SNCT) [1-3] as 
well as other teminology systems. A non-lattice-based 
approach consists of the following steps: extracting non-lattice 
subgraphs with concept pairs voilating the lattice property; 
detecting defects in the extracted non-lattice subgraphs; 
suggesting relational changes automatically; and reviewing and 
validating suggested changes by an ontology curator or a 
domain expert. Figure 1 shows a non-lattice subgraph in the 
September 2017 release of SNOMED CT (US edition) [3]. 
Examination of this subgraph reveals a missing hierarchical 
relation between nodes 4 and 5: “Transient neonatal 
hyperglycemia” IS-A “Acute hyperglycemia.” 

 
Figure 1 - An example of non-lattice subgraph [3]. 

However, human review of change remediations requires 
significant manual effort.  The main motivation of this paper is 
to explore machine learning (ML) techniques as an aid to 
systematically evaluate the strength of auto-suggested 
relational changes using existing knowledge embedded in an 
ontology. Specifically, change predictions resulting from the 
IS-A relation prediction classifier can be compared with change 
suggestions using non-lattice subgraphs by assessing their 
agreement. When such an approach is used to audit the IS-A 
relations, it can bring benefits in two ways: the agreement 
between the ML prediction and non-lattice-based prediction 
can provide independent confirmation of the suggested IS-A 
changes, while disagreements may point to areas for 
improvements for both types of approaches. Furthermore, 
change suggestions generated by ML techniques may provide 
ranked list of changes based on numeric “strengths.” If an ML 
technique can reach a high level of performance (using e.g. 
precision and recall measures), it may serve as an independent 
auditing approach by itself independent of non-lattices. 
ML techniques have been widely used in knowledge graphs [4]. 
To arrive at an optimal subset of features, CNN has been used 
to automatically learn features [5]. Also pretrained word 
embeddings [6] have proven to be useful in neural network 
models for relation extraction. Recent study further improved 
performance by incorperating additional hand-crafted features 
[7]. Inspired by this, we propose a hybrid CNN-MLP classifier 
for IS-A relation prediction by exploring various knowledge in 
SNCT. Besides of concept embeddings, we analyze lexical and 
graph structural information in the entire directed acyclic graph 
(DAG) of SNCT, such as semantic meaning inheriting concept 
ancestors. Pesquita et al. [8] summerized two main semantic 
similarity approaches in an ontology graph for comparing 
concepts: node-based and edge-based. In this work, we 
aggregate node-based and edge-based similarity approaches as 
graph level features. Despite concept embeddings can present 
semantic meaning of concepts, we still handcraft concept level 
features as task specific features. Non-lattice-based auditing 
methods suggest IS-A relational changes to correct defects in 
non-lattice subgraphs and form lattice subgraphs [1-3]. Accord-
ingly, constructing training set from lattice subgraphs equips us 
with the same objective of non-lattice-based methods.  
In this paper, we introduce an ML approach to validate auto-
suggested insertion changes from non-lattice-based auditing 
methods. Combining various knowledge in lattice subgraphs 
and DAG of SNCT, we implement IS-A relation prediction and 
auto-insertion change suggestion as two subtasks in the 
workflow of validation. We apply CNN to explore the concept 
pair features in concept embeddings and combine the output of 
CNN with handcrafted graph, concept features via MLP to 



predict IS-A relations of concept pairs. Also evaluation metrics 
for subtasks are provided. Evaluation of our validation method 
is implemented on a reference set. 

Methods 

Our method consists of two main steps. In the first step, 
learning from various knowledge embedded in lattice 
subgraphs of SNCT, a hybrid CNN-MLP classifier is designed 
to predict IS-A relations of concept pairs. In the second step, 
based on the idea of majority voting [10], we validate the given 
insertion changes with predicted insertion changes generated by 
the classifier. 

Relation Prediction 

Figure 2 is an overview of our relation prediction workflow. 
First, we generate a training set using lattice subgraphs. Second, 
we pretrain concept embedding and develop graph and concept 
level features. Finally, we predict IS-A relations of concept 
pairs with a hybrid CNN-MLP classifier. 

 
Figure 2-An overview of the IS-A relation prediction workflow 

Lattice-based Training Set 
A desirable property of the IS-A relationship is that it conforms 
to the lattice property [9]. This is also a by-product of non-
lattice-based auditing methods: non-lattice subgraphs often 
become lattice-conforming by correcting hierarchical defects 
(e.g., inserting IS-A relations). Using this as working principle, 
we construct the training set for our CNN-MLP classifier using 
relations embedded in lattice subgraphs. Lattice subgraphs also 
allow us to naturally select a balanced set of positive samples 
and negative samples. Extracting all lattice subgraphs in SNCT, 
we construct a lattice-based training set with the following steps. 
1. Select a subset of concepts with label length, which is the 

number of words in a label, no longer than  . We denote 
this set of concepts as . 

2. Among all lattice subgraphs, choose those with size, which 
is the number of concepts in a subgraph, no more than , 
denoted as , and find those that contain any 
concept in . 

3. Form a positive training set by extracting IS-A edges and 
their transitive closure from step 2. Form a negative 
training set by extracting non-edge node pairs in step 2. 

Concept Embedding 
Learning from current ontologies, the embedding techniques 
[6] allow us to represent concepts and capture latent semantic 
properties of concepts. In SNCT, each concept contains an 
associated human readable label, and concepts occuring in the 
same relation could describe each other. We take relations 
represented with labels as sentences to learn word embeddings. 
After perfoming a few basic text preprocessing steps, such as 
removing punctuations and digits, converting to lowercase and 
stemming, we use a skip gram word2vec model [6] to produce 
word embeddings with 200 dimensions. To generate concept 
embeddings, a sequence of words in concept labels are 
transformed to a set of vectors by looking up pretrained word 

embeddings. The out-of-vocabulory (OOV) word is assigned a 
vector with zeros. Then the word embeddings are summed into 
a single embedding as a concept embedding.  
Feature Development 
The IS-A relation comes with a source concept  and a 
destination concept . We develop features based on two types 
of observations. One is that from global graph level of  entire 
IS-A DAG in SNCT, a concept at a lower level inherits 
semantics from its ancestors and is more specific in terms of the 
biomedical meaning [11]. The other is that measured from local 
level of concept pairs, if there are overlaps in noun phrases of 

 and  , the noun phrase in  usually contains more words 
than  as  becomes more specific. The more overlaping 
words the two concepts have, the more likely they  should form 
an IS-A relation. 
Graph level features. The work of Zhang et al. [11]  and Cui et 
al. [3] provides several heuristics to generate graph level 
features. Considering concept semantics inherited from its 
ancestors and path information, we design three graph level 
features for situations of a concept pair to be in an IS-A relation. 
All graph level features are explored from the entire active IS-
A graph of SNCT. 
1. Graph level dissimilarity. The semantic of a concept could 

be specified through a path to its descendants, that is, a 
concept inherits all semantics from its ancestors. A pair of 
concepts, inheriting semantics from different paths, may 
have some common ancestors. Non common ancestors of 

 distinguished  from , then the graph-level 
dissimilarity can be characterized by 

 
where  is the common ancestor set of  and , 
and   is the ancestor set of . 

2. Graph level similarity. The semantic of a concept could be 
simplified with a concept label. While a given concept 
inherits semantics from its ancestors, the concept labels of 
ancestors could be used to enrich the label of the concept. 
For an IS-A relation (say  IS-A ), because  is more 
specific than , the enriched label of  maybe a part of 
enriched label of , so we define graph level similarity as  

 
where  is the common enriched label set of 

and , and  is the enriched label set of . 
3. Path comparison. If  IS-A  , we assume that   has a 

shorter path to the root  than  does. We define a flag 
feature indicating whether the shortest path from  to  is 
shorter than that of  to . 

Concept level features. This category of features concerns 
about properties of labels in concept pairs. 
1. Chunk comparison. We observe that if there are overlaps 

between noun phrases in  and , the noun phrase in   
usually has more words than that in  . We design two 
flag features from all the extracted noun phrases in both  
and  to indicate word number comparison of noun 
phrases in  and  separately.  

2. Concept level overlap. This feature considers overlaps of 
pairwise concepts. We define it as: 

 
where  is the overlapped word set of and 

, and  is the word set of . High value lesser than 
one implies that the meaning of  approaches the meaning 
of . 

3. Concept level similarity. This feature concerns about the 
consine similarity of disjoint words in and , and 



disjoint words are represented with the summation of word 
embeddings. 

Neural Network Classification 
We design a hybrid CNN-MLP binary classifier to incorporate 
concept embedding and  handcrafted features (see Figure 3). 

 
Figure 3 - Architecture of hybrid CNN-MLP binary classifier 

We convolute the embeddings of concept pairs with 100 filters 
of window size 2 to get local features and use ReLU activation 
function. In order to fomulate a balanced feature vector between 
embeding features and handcrafted features, we transfer 100 
dimension vector into 10 dimension vector by fully connected 
layer in CNN, which then is concatenated with graph level and 
concept level features. The concatenated feature vector is fed 
into a one layer MLP with active function of ReLU for the 
hidden layer and sigmoid for the output layer. In order to 
evaluate the performance of features, we feed MLP with 
different feature combinations, thus the number of neurons of 
MLP hidden layer is decided by the average of neurons in MLP 
input and output layers. Time complexity of neural network 
depends on the architechture, especially the number of neurons, 
of the network. 

Validation of Auto-Suggested Insertion Changes  

The objective of our work is using an ML approach to validate 
auto-suggested insertion changes. The validation workflow 
involves four stages: test set generation, relation prediction, 
auto-insertion change suggestion, and majority voting based 
validation. In stage 1,  non-lattice-based auditing method [3] 
provides a set of non-lattice subgraphs containing auto-
suggested insertion changes. IS-A relations and their transitive 
closure (positive instances), and non-edge concept pairs 
(negative instances) are extracted from the given non-lattice 
subgraphs to form a test set. In stage 2, the IS-A relations of 
extracted positive instances and negative instances are 
predicted by our hybrid CNN-MLP binary classifier. In stage 3, 
we retrieve top N predictions ranked by IS-A relation 
probability outputs. The predicted false positives are the set of 
auto-suggested insertion changes provided by our classifier. In 
stage 4, inspired by majority voting [10], we confirm the auto-
suggested changes with the agreement between our classifier 
and the given auditing method. In this way, relational ML 
techniques alleviate the manual validation effort by confirming 
and validating changes automatically. 
In the validation workflow, our classifier is used in two 
subtasks: predicting IS-A relation of concept pairs in stage 2, 
and automatically suggesting insertion changes in non-lattice 
subgraphs in stage 3. To evaluate performance of subtasks and 
determine configuration of the classifier for the validation task, 
we specify a test set, a reference set and evaluation metrics next. 
Test Set and Reference Set 

To evaluate our method, we use relations in a random sample 
of 200 non-lattice subgraphs from [3] as a test set, which 
contains 1,545 IS-A and transitive closure of IS-A edges 
(positive instances),  3,019 non-edge node pairs (negative 
instances). A total of 223 insertion changes were auto-

suggested for the 200 non-lattice subgraphs [3]. Two domain 
experts confirmed 185 suggested insertions (a precision of 
82.96%), which serve as a reference set for evaluating the 
performance of this work.  

Evaluation of Relation Prediction  

To thoroughly analyze the relation prediction part along, e.g., 
comparing training set parameters ( ) and different categories 
of  features, we predict 1,545 positive instances and 3,019 
negative instances in the test set. For evalution, we report the 
precision-recall curve. 

Evaluation of Auto-Suggested Insertion Changes  
Motivated by precision and recall metrics, Zhang et al. 
introduced insertion recall and insertion precision [12] to 
evaluate an ontology quality assurance (OQA) method against 
validated changes. They considered an OQA method   as a 
group of subgraphs. Each subgraph may potentially capture 
missing IS-A relations as edges. A subgraph  is a graph 
consisting of a set of IS-A relations.  is a reference set of 
validated missing IS-A relations. Then: 

 

 
Our classifier outputs probabilities which can be used to rank 
instances in the test set from most probable IS-A relation to the 
least. In order to demonstrate the ability to validate auto-
suggested changes, we treat our method as an OQA method and 
take top N predictions as predicted IS-A relations. False 
positives predicted by our classifier are auto-suggested 
insertion changes. The reference set contains 185 validated 
missing IS-A edges and their transitive closure. We use  , 

 ,  [12] to evaluate auto-suggested insertion 
changes obtained via our method. The higher the , the 
greater the agreement between our method and domain expert’s 
validation, that is, more likely our method has the ability to 
alleviate the manual effort required for validating auto-
suggested changes. 

Results 

Dataset and Implementaion 
We used the September 2017 version of SNOMED CT (US 
edition) in this work. We constructed a lattice-based training set 
[1] by varying label length    and lattice size . The statistics 
of training set are shown in Table 1. While relation prediction 
performance was evaluated with the test set, the reference set 
was used to evaluate auto-insertion change suggestion. We 
implemented the model using Keras [13]. Declaring binary 
cross entropy as the loss function, we ran 10 epochs for all the 
training examples. Noun phrase chunk detection and 
preprocessing for learning embeddings were implemented with 
NLTK [14].  

Table 1 - Statistics of Training Set 

 # of positives # of negatives 
 151,553 243,197 
 515,954 1,005,074 
 197,630 319,286 
 693,776 1,351,872 



Relation Prediction 

Experiments were performed to evaluate IS-A relation 
prediction by permuting training set construction parameters 
and various feature categories. The experiments were 
performed on a MacBook Pro running  MacOS Sierra, with 16 
GB RAM and 2.7 GHz Intel Core i7 processor. 

 
Figure 4 - The performance of relation prediction varying fea-

ture categories and training set construction parameters 

Comparing Figure 4a), 4b) and 4c), the best prediction 
performance was produced with graph level features. When 
recall of IS-A relations was increased, the precision was 
decreased with concept level features. Though concept 
embeddings and concept level features both describe sementics 
of concept pairs, concept embeddings worked better than 
handcrafted concept level features. 
Figure 4a) shows that longer concept label expresses concept 
level features more effectively, slightly leading to prediction 
performance improvement. Figure 4b) shows that graph level 
features are independent with label length α and lattice size 𝜷 
which is coincident with development of graph features, 
especially while increasing recall. As for the feature category 
of concept embeddings, prediction performance varied with 
different settings of training set parameters, which may be 
explained by Table 2 by OOV word rate over test set while 
looking up pretrained word embeddings. More OOV words in 
test set resulted in decrease of relation prediction performance. 

Table 2 - Out-of-vocabulary word  rate over test set 

   
𝜶 = 𝟓 
	𝜷 = 𝟓 

𝜶 = 𝟓 
	𝜷 = 𝟏𝟎 

𝜶 = 𝟏𝟎 
	𝜷 = 𝟓 

𝜶 = 𝟏𝟎 
	𝜷 = 𝟏𝟎 

OOV rate 4.4% 3.7% 3.0% 2.6% 

 
Figure 5 shows that combining graph level features, concept 
level features and concept embeddings as the input of MLP had 
led to performance improvement. The best average precision 
was 0.972, achieved with α=5, 	β=5. Overall, our experiments 
showed that exploring various features was effective for IS-A 
relation prediction. 

 
Figure 5-The performance of relation prediction with feature 

combination varying training set construction parameters 

Auto-Suggested Insertion Changes 

In this set of experiments, we evaluated our auto-suggested 
insertion changes for non-lattice subgraphs. A set of 185 
validated missing IS-A relations was taken as the reference set. 
Among top N IS-A relation predictions, we evaluated auto-
suggested insertion changes by Rinsert , Pinsert , 	Finsert  values 
as defined in the subsection of auto-suggested insertion changes 
evaluation. Informed by the previous experiments, we 
configurated this set of experiments with feature combination 
and setting α=5, 	β=5. 

The test set contained 1,545 positive instances and 3,019 
negative instances. Ranked by probability outputs of our 
classifier, we kept top N predictions as IS-A relations (predicted 
positive instances). Predicted false positives constituted 
insertion change suggestions in the non-lattice subgraphs. The 
top 1,500 predictions contained 129 IS-A relations already 
identified in the reference set of 185 validated missing IS-A 
relations. As we retrieve more predicted IS-A relations from the 
ranked list (i.e., as N increases), we obtain more validated 
missing IS-A relations. Note that both insertion recall (Rinsert) 
and insertion precision (Pinsert ) increase as N increases. We 
stopped retrieving predictions at N=2,000 in case more 
irrelevant IS-A relations out of the referece set would be 
included. 

Table 3 - Evaluation of auto-suggested insertion changes at 
top N predictions 

𝑻𝒐𝒑	𝑵 𝑹𝒊𝒏𝒔𝒆𝒓𝒕(%) 𝑷𝒊𝒏𝒔𝒆𝒓𝒕(%) 𝑭𝒊𝒏𝒔𝒆𝒓𝒕(%) 
1500 69.57 59.80 64.50 
1600 80.98 69.35 74.94 
1700 85.32 72.36 78.57 
1800 86.41 72.86 79.35 
1900 89.67 75.38 82.22 
2000 90.21 75.88 82.74 

Compared with the reference set, Table 4 shows examples of 
auto-suggested insertion changes from top 2,000 predictions in 
and out of the reference set. For those out of the reference set, 
they may reveal additional insertation changes needed to make 
non-lattice subgraphs conforming to the lattice property.  

Table 4-Examples of auto-suggested insertion changes 
compared with the reference set 

In the reference set  
Source Concept Destination concept 
Thoracic spondylosis Spondylosis 
Sclerema neonatorum Neonatal dermatosis 
Acute empyema of sphenoidal sinus Sphenoidal sinusitis 
Oculocutaneous albinism Congenital anomaly of eye 
Degloving injury of genitalia Degloving injury of perineum 

 
Out of the reference set  
Source concept Destination concept 
Echography  scan B-mode for fetal growth rate Ultrasound scan of fetus 
Dilatation of anastomosis of bile duct Biliary dilatation procedure 
Feeding problems in newborn Feeding problem 
Physiological mobilization of the shoulder Procedure on shoulder region 
Carcinoma in situ of lower labial mucosa Tumor of lower labial mucosa 

The evaluation results and examples of auto-suggested 
insertion changes indicated that our method is effective to 
predict IS-A relations of concept pairs. Verified by the 
reference set, our method automatically suggested insertion 
changes for non-lattice subgraphs.  

Validation of Auto-Suggested Insertion Changes  

The performances of two subtasks in the workflow of 
validation, relation prediction and auto-insertion change 
suggestion, have been demonstrated to be promising by two sets 
of experiments. Configured with feature combination and α=5, 
	β=5  for the classifier, we evaluated 223 auto-suggested 
insertion changes in the test set. We compared insertion 



changes resulting from our classifier with the given 223 
insertion changes, and those changes with agreement were 
validated. The number of insertion changes validated by our 
classifier is shown in Table 5. Since 185 insertion changes were 
validated by domain experts, we also showed the number of 
expert-validated insertion changes among our classifier’s 
validation. Validated by our method, the auto-suggested 
insertion change precision improved from 82.96% to 86.46%. 
We can further alleviate manual effort by narrowing down the 
number of insertion changes with the improvement of 
precision. 

Table 5 – Validation evaluation at top N predictions 
compared with the reference set 

Top N # of Classifier 
Validated 

# of Expert 
Validated 

Precision 
(%) 

1500 150 129 86.00 
1600 174 149 85.63 
1700 183 157 85.79 
1800 185 159 85.95 
1900 191 165 86.39 
2000 192 166 86.46 

Discussion 

In this paper, we introduced a relational ML-based validation 
approach, CNN-MLP, to alleviate manual effort required for 
validating change suggestions in ontology auditing work. In 
addition to validating auto-suggested insertion changes, our 
experiments indicated that CNN-MLP classifier may be 
effectively used in tasks of concept pair relation prediction and 
ontology auditing. As shown in Table 4, five auto-suggested 
insertion changes were out of the reference set; although they 
were not  used to validate change suggestions in the reference 
set, they may provide additonal candidates for change 
redemiations.  
Evaluated with the reference set, the performances of auto-
suggested insertion change and auto-suggested insertion 
change validation look promising. However, note we have not 
addressed the task of auto-deletion change suggestion and 
deletion change validation due to the lack of the reference set 
containing validated deletion changes. Labeled data (or 
reference set) is required in the framework of supervised ML 
approach. SNCT is updated by domain experts twice a year, and 
it may be possible to treat insertion and deletion changes in 
different versions of SNCT as labeled data for ML based 
auditing or validation.  

Conclusions 

We have presented an ML approach to validate insertion 
changes generated by non-lattice-based auditing methods. In 
validation workflow, we introduced a hybrid CNN-MLP 
classifier to predict IS-A relations of concept pairs, and 
automatically suggest insertion changes for non-lattice 
subgraphs. Experiments on IS-A relation prediction achieves an 
average precision of 0.972, and auto-suggested insertion 
changes achieves 𝐹qrstuv  of 82.43% with top 2,000 predictions, 
which indicate the potential of our classifier to validate IS-A 
insertion changes. Validated with insertion changes resulting 
from our classifier, the precision of a given set of auto-
suggested IS-A insertion changes is improved from 82.96% to 
86.46%. 
By cumulating SNCT deletion changes as a surrogate reference 
set for ML approaches [12],  our future work will focus on 
exploring features to predict potentially incorrect IS-A relaitons 
for validating auto-suggested deletion changes in non-lattice 
subgraphs. 
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