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Abstract

An attractive feature of non-lattice-based ontology auditing
methods is its ability to not only identify potential quality issues,
but also automatically generate the corresponding  fixes.
However, exhaustive manual evaluation of the validity of
suggested changes remains a challenge shared with virtually
all auditing methods. To address this challenge, we explore
machine learning techniques as an aid to systematically
evaluate the strength of auto-suggested relational changes in
the context of existing knowledge embedded in an ontology. We
introduce a hybrid convolutional neural network and
multilayer — perception (CNN-MLP) classfier using a
combination of graph, concept features and concept
embeddings. We use lattice subgraphs to generate a curated,
loosely-coupled training set of positive and negative instances
to train the classifier. Our result shows that machine learning
techniques have the potential to alleviate the manual effort
required for validating and confirming changes generated by
non-lattice-based auditing methods for SNOMED CT.
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Introduction

Non-lattice-based ontology auditing methods are based on the
principle of Formal Concept Analysis. They have shown
effectiveness in suggesting missing hierarchical relations (or
IS-A relations) and concepts in SNOMED CT (SNCT) [1-3] as
well as other teminology systems. A non-lattice-based
approach consists of the following steps: extracting non-lattice
subgraphs with concept pairs voilating the lattice property;
detecting defects in the extracted non-lattice subgraphs;
suggesting relational changes automatically; and reviewing and
validating suggested changes by an ontology curator or a
domain expert. Figure 1 shows a non-lattice subgraph in the
September 2017 release of SNOMED CT (US edition) [3].
Examination of this subgraph reveals a missing hierarchical
relation between nodes 4 and 5: “Tramsient neonatal
hyperglycemia” 1S-A “Acute hyperglycemia.”
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Figure 1 - An example of non-lattice subgraph [3].

However, human review of change remediations requires
significant manual effort. The main motivation of this paper is
to explore machine learning (ML) techniques as an aid to
systematically evaluate the strength of auto-suggested
relational changes using existing knowledge embedded in an
ontology. Specifically, change predictions resulting from the
IS-A relation prediction classifier can be compared with change
suggestions using non-lattice subgraphs by assessing their
agreement. When such an approach is used to audit the IS-A
relations, it can bring benefits in two ways: the agreement
between the ML prediction and non-lattice-based prediction
can provide independent confirmation of the suggested IS-A
changes, while disagreements may point to areas for
improvements for both types of approaches. Furthermore,
change suggestions generated by ML techniques may provide
ranked list of changes based on numeric “strengths.” If an ML
technique can reach a high level of performance (using e.g.
precision and recall measures), it may serve as an independent
auditing approach by itself independent of non-lattices.

ML techniques have been widely used in knowledge graphs [4].
To arrive at an optimal subset of features, CNN has been used
to automatically learn features [5]. Also pretrained word
embeddings [6] have proven to be useful in neural network
models for relation extraction. Recent study further improved
performance by incorperating additional hand-crafted features
[7]. Inspired by this, we propose a hybrid CNN-MLP classifier
for IS-A relation prediction by exploring various knowledge in
SNCT. Besides of concept embeddings, we analyze lexical and
graph structural information in the entire directed acyclic graph
(DAG) of SNCT, such as semantic meaning inheriting concept
ancestors. Pesquita et al. [8] summerized two main semantic
similarity approaches in an ontology graph for comparing
concepts: node-based and edge-based. In this work, we
aggregate node-based and edge-based similarity approaches as
graph level features. Despite concept embeddings can present
semantic meaning of concepts, we still handcraft concept level
features as task specific features. Non-lattice-based auditing
methods suggest IS-A relational changes to correct defects in
non-lattice subgraphs and form lattice subgraphs [1-3]. Accord-
ingly, constructing training set from lattice subgraphs equips us
with the same objective of non-lattice-based methods.

In this paper, we introduce an ML approach to validate auto-
suggested insertion changes from non-lattice-based auditing
methods. Combining various knowledge in lattice subgraphs
and DAG of SNCT, we implement IS-A relation prediction and
auto-insertion change suggestion as two subtasks in the
workflow of validation. We apply CNN to explore the concept
pair features in concept embeddings and combine the output of
CNN with handcrafted graph, concept features via MLP to



predict IS-A relations of concept pairs. Also evaluation metrics
for subtasks are provided. Evaluation of our validation method
is implemented on a reference set.

Methods

Our method consists of two main steps. In the first step,
learning from various knowledge embedded in lattice
subgraphs of SNCT, a hybrid CNN-MLP classifier is designed
to predict IS-A relations of concept pairs. In the second step,
based on the idea of majority voting [10], we validate the given
insertion changes with predicted insertion changes generated by
the classifier.

Relation Prediction

Figure 2 is an overview of our relation prediction workflow.
First, we generate a training set using lattice subgraphs. Second,
we pretrain concept embedding and develop graph and concept
level features. Finally, we predict IS-A relations of concept
pairs with a hybrid CNN-MLP classifier.
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Figure 2-An overview of the I1S-A relation prediction workflow

Lattice-based Training Set

A desirable property of the IS-A relationship is that it conforms
to the lattice property [9]. This is also a by-product of non-
lattice-based auditing methods: non-lattice subgraphs often
become lattice-conforming by correcting hierarchical defects
(e.g., inserting IS-A relations). Using this as working principle,
we construct the training set for our CNN-MLP classifier using
relations embedded in lattice subgraphs. Lattice subgraphs also
allow us to naturally select a balanced set of positive samples
and negative samples. Extracting all lattice subgraphs in SNCT,

we construct a lattice-based training set with the following steps.

1. Select a subset of concepts with label length, which is the
number of words in a label, no longer than a. We denote
this set of concepts as Con(a).

2. Among all lattice subgraphs, choose those with size, which
is the number of concepts in a subgraph, no more than f3,
denoted as Lattice(f), and find those that contain any
concept in Con(a).

3. Form a positive training set by extracting IS-A edges and
their transitive closure from step 2. Form a negative
training set by extracting non-edge node pairs in step 2.

Concept Embedding

Learning from current ontologies, the embedding techniques
[6] allow us to represent concepts and capture latent semantic
properties of concepts. In SNCT, each concept contains an
associated human readable label, and concepts occuring in the
same relation could describe each other. We take relations
represented with labels as sentences to learn word embeddings.
After perfoming a few basic text preprocessing steps, such as
removing punctuations and digits, converting to lowercase and
stemming, we use a skip gram word2vec model [6] to produce
word embeddings with 200 dimensions. To generate concept
embeddings, a sequence of words in concept labels are
transformed to a set of vectors by looking up pretrained word

embeddings. The out-of-vocabulory (OOV) word is assigned a
vector with zeros. Then the word embeddings are summed into
a single embedding as a concept embedding.

Feature Development

The IS-A relation comes with a source concept C; and a
destination concept C,. We develop features based on two types
of observations. One is that from global graph level of entire
IS-A DAG in SNCT, a concept at a lower level inherits
semantics from its ancestors and is more specific in terms of the
biomedical meaning [11]. The other is that measured from local
level of concept pairs, if there are overlaps in noun phrases of
C; and C,, the noun phrase in C; usually contains more words
than C, as C; becomes more specific. The more overlaping
words the two concepts have, the more likely they should form
an IS-A relation.

Graph level features. The work of Zhang et al. [11] and Cui et
al. [3] provides several heuristics to generate graph level
features. Considering concept semantics inherited from its
ancestors and path information, we design three graph level
features for situations of a concept pair to be in an IS-A relation.
All graph level features are explored from the entire active IS-
A graph of SNCT.

1. Graph level dissimilarity. The semantic of a concept could
be specified through a path to its descendants, that is, a
concept inherits all semantics from its ancestors. A pair of
concepts, inheriting semantics from different paths, may
have some common ancestors. Non common ancestors of
C, distinguished C; from C,, then the graph-level
dissimilarity can be characterized by

GraphDissim(C,,C,)=1-CA(C,,C,)/A(C;)
where CA(C;,C,) is the common ancestor set of C; and C,,
and A(C,) is the ancestor set of C;.

2. Graph level similarity. The semantic of a concept could be
simplified with a concept label. While a given concept
inherits semantics from its ancestors, the concept labels of
ancestors could be used to enrich the label of the concept.
For an IS-A relation (say C; IS-A (), because (7 is more
specific than C,, the enriched label of €, maybe a part of
enriched label of €, so we define graph level similarity as

GraphSim(C,,C,)=CEL(C,,C,)/EL(C,)

where CEL(C,, C,) is the common enriched label set of
C,and C,, and EL(C,) is the enriched label set of C,.

3. Path comparison. If C; IS-A C,, we assume that C, has a
shorter path to the root R than C; does. We define a flag
feature indicating whether the shortest path from C,to Ris
shorter than that of C; to R.

Concept level features. This category of features concerns
about properties of labels in concept pairs.

1. Chunk comparison. We observe that if there are overlaps
between noun phrases in C; and C», the noun phrase in (}
usually has more words than that in C, We design two
flag features from all the extracted noun phrases in both C;
and C, to indicate word number comparison of noun
phrases in C; and C, separately.

2. Concept level overlap. This feature considers overlaps of
pairwise concepts. We define it as:

CUHCEPtOLP{CI,Cz):W(CI)nW(Cz)/W(Cz)
where W(C;)NW(C,) is the overlapped word set of C; and
C,, and W(C,) is the word set of C,. High value lesser than
one implies that the meaning of C; approaches the meaning
of C 2

3. Concept level similarity. This feature concerns about the
consine similarity of disjoint words in C;and C,, and



disjoint words are represented with the summation of word
embeddings.

Neural Network Classification

We design a hybrid CNN-MLP binary classifier to incorporate
concept embedding and handcrafted features (see Figure 3).
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Concept level features
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Figure 3 - Architecture of hybrid CNN-MLP binary classifier

We convolute the embeddings of concept pairs with 100 filters
of window size 2 to get local features and use ReLU activation
function. In order to fomulate a balanced feature vector between
embeding features and handcrafted features, we transfer 100
dimension vector into 10 dimension vector by fully connected
layer in CNN, which then is concatenated with graph level and
concept level features. The concatenated feature vector is fed
into a one layer MLP with active function of ReLU for the
hidden layer and sigmoid for the output layer. In order to
evaluate the performance of features, we feed MLP with
different feature combinations, thus the number of neurons of
MLP hidden layer is decided by the average of neurons in MLP
input and output layers. Time complexity of neural network
depends on the architechture, especially the number of neurons,
of the network.

Validation of Auto-Suggested Insertion Changes

The objective of our work is using an ML approach to validate
auto-suggested insertion changes. The validation workflow
involves four stages: test set generation, relation prediction,
auto-insertion change suggestion, and majority voting based
validation. In stage 1, non-lattice-based auditing method [3]
provides a set of non-lattice subgraphs containing auto-
suggested insertion changes. IS-A relations and their transitive
closure (positive instances), and non-edge concept pairs
(negative instances) are extracted from the given non-lattice
subgraphs to form a test set. In stage 2, the IS-A relations of
extracted positive instances and negative instances are
predicted by our hybrid CNN-MLP binary classifier. In stage 3,
we retrieve top N predictions ranked by IS-A relation
probability outputs. The predicted false positives are the set of
auto-suggested insertion changes provided by our classifier. In
stage 4, inspired by majority voting [10], we confirm the auto-
suggested changes with the agreement between our classifier
and the given auditing method. In this way, relational ML
techniques alleviate the manual validation effort by confirming
and validating changes automatically.

In the validation workflow, our classifier is used in two
subtasks: predicting IS-A relation of concept pairs in stage 2,
and automatically suggesting insertion changes in non-lattice
subgraphs in stage 3. To evaluate performance of subtasks and
determine configuration of the classifier for the validation task,
we specify a test set, a reference set and evaluation metrics next.

Test Set and Reference Set

To evaluate our method, we use relations in a random sample
of 200 non-lattice subgraphs from [3] as a test set, which
contains 1,545 IS-A and transitive closure of IS-A edges
(positive instances), 3,019 non-edge node pairs (negative
instances). A total of 223 insertion changes were auto-

suggested for the 200 non-lattice subgraphs [3]. Two domain
experts confirmed 185 suggested insertions (a precision of
82.96%), which serve as a reference set for evaluating the
performance of this work.

Evaluation of Relation Prediction

To thoroughly analyze the relation prediction part along, e.g.,
comparing training set parameters (&, ) and different categories
of features, we predict 1,545 positive instances and 3,019
negative instances in the test set. For evalution, we report the
precision-recall curve.

Evaluation of Auto-Suggested Insertion Changes

Motivated by precision and recall metrics, Zhang et al.
introduced insertion recall and insertion precision [12] to
evaluate an ontology quality assurance (OQA) method against
validated changes. They considered an OQA method M as a
group of subgraphs. Each subgraph may potentially capture
missing IS-A relations as edges. A subgraph s is a graph
consisting of a set of IS-A relations. £'is a reference set of
validated missing IS-A relations. Then:

{reE/7s EM,rEs}|
insert— |E1
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Our classifier outputs probabilities which can be used to rank
instances in the test set from most probable IS-A relation to the
least. In order to demonstrate the ability to validate auto-
suggested changes, we treat our method as an OQA method and
take top N predictions as predicted IS-A relations. False
positives predicted by our classifier are auto-suggested
insertion changes. The reference set contains 185 validated
missing IS-A edges and their transitive closure. We use R;,50,¢ »
Prsert » Finsere [12] to evaluate auto-suggested insertion
changes obtained via our method. The higher the 7, the
greater the agreement between our method and domain expert’s
validation, that is, more likely our method has the ability to
alleviate the manual effort required for validating auto-
suggested changes.

Results

Dataset and Implementaion

We used the September 2017 version of SNOMED CT (US
edition) in this work. We constructed a lattice-based training set
[1] by varying label length @ and lattice size S. The statistics
of training set are shown in Table 1. While relation prediction
performance was evaluated with the test set, the reference set
was used to evaluate auto-insertion change suggestion. We
implemented the model using Keras [13]. Declaring binary
cross entropy as the loss function, we ran 10 epochs for all the
training examples. Noun phrase chunk detection and
preprocessing for learning embeddings were implemented with
NLTK [14].

Table 1 - Statistics of Training Set

# of positives # of negatives

a=5pf=5 151,553 243,197
a=5p=10 515,954 1,005,074
a=10,=5 197,630 319,286
a=10,=10 693,776 1,351,872




Relation Prediction

Experiments were performed to evaluate IS-A relation
prediction by permuting training set construction parameters
and various feature categories. The experiments were
performed on a MacBook Pro running MacOS Sierra, with 16
GB RAM and 2.7 GHz Intel Core i7 processor.

a) Concept Level Features

b) Graph Level Features

<) Concept Embedding

Figure 4 - The performance of relation prediction varying fea-
ture categories and training set construction parameters

Comparing Figure 4a), 4b) and 4c), the best prediction
performance was produced with graph level features. When
recall of IS-A relations was increased, the precision was
decreased with concept level features. Though concept
embeddings and concept level features both describe sementics
of concept pairs, concept embeddings worked better than
handcrafted concept level features.

Figure 4a) shows that longer concept label expresses concept
level features more effectively, slightly leading to prediction
performance improvement. Figure 4b) shows that graph level
features are independent with label length a and lattice size 8
which is coincident with development of graph features,
especially while increasing recall. As for the feature category
of concept embeddings, prediction performance varied with
different settings of training set parameters, which may be
explained by Table 2 by OOV word rate over test set while
looking up pretrained word embeddings. More OOV words in
test set resulted in decrease of relation prediction performance.

Table 2 - Out-of-vocabulary word rate over test set

a=>5 a=5 a=10 a=10
=5 B =10 B=5 B =10
OOV rate 4.4% 3.7% 3.0% 2.6%

Figure 5 shows that combining graph level features, concept
level features and concept embeddings as the input of MLP had
led to performance improvement. The best average precision
was 0.972, achieved with =5, f=>5. Overall, our experiments
showed that exploring various features was effective for IS-A
relation prediction.
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Figure 5-The performance of relation prediction with feature
combination varying training set construction parameters

Auto-Suggested Insertion Changes

In this set of experiments, we evaluated our auto-suggested
insertion changes for non-lattice subgraphs. A set of 185
validated missing IS-A relations was taken as the reference set.
Among top N IS-A relation predictions, we evaluated auto-
suggested insertion changes by R, cers » Prsert » Finsers Values
as defined in the subsection of auto-suggested insertion changes
evaluation. Informed by the previous experiments, we
configurated this set of experiments with feature combination
and setting a=5, f=5.

The test set contained 1,545 positive instances and 3,019
negative instances. Ranked by probability outputs of our
classifier, we kept top N predictions as IS-A relations (predicted
positive instances). Predicted false positives constituted
insertion change suggestions in the non-lattice subgraphs. The
top 1,500 predictions contained 129 IS-A relations already
identified in the reference set of 185 validated missing IS-A
relations. As we retrieve more predicted IS-A relations from the
ranked list (i.e., as N increases), we obtain more validated
missing [S-A relations. Note that both insertion recall (R0
and insertion precision (/£,,;) increase as N increases. We
stopped retrieving predictions at N=2,000 in case more
irrelevant IS-A relations out of the referece set would be
included.

Table 3 - Evaluation of auto-suggested insertion changes at

top N predictions
TOp N Rinsert(%) Pinsert(%) Finsert(%)
1500 69.57 59.80 64.50
1600 80.98 69.35 74.94
1700 85.32 72.36 78.57
1800 86.41 72.86 79.35
1900 89.67 75.38 82.22
2000 90.21 75.88 82.74

Compared with the reference set, Table 4 shows examples of
auto-suggested insertion changes from top 2,000 predictions in
and out of the reference set. For those out of the reference set,
they may reveal additional insertation changes needed to make
non-lattice subgraphs conforming to the lattice property.

Table 4-Examples of auto-suggested insertion changes
compared with the reference set

In the reference set

Source Concept Destination concept
Thoracic spondylosis Spondylosis

Sclerema neonatorum Neonatal dermatosis

Acute empyema of sphenoidal sinus Sphenoidal sinusitis
Oculocutaneous albinism Congenital anomaly of eye
Degloving injury of genitalia Degloving injury of perineum

Out of the reference set

Source concept Destination concept
Echography scan B-mode for fetal growth rate Ultrasound scan of fetus
Dilatation of anastomosis of bile duct Biliary dilatation procedure
Feeding problems in newbom Feeding problem
Physiological mobilization of the shoulder Procedure on shoulder region
Carcinoma in situ of lower labial mucosa Tumor of lower labial mucosa

The evaluation results and examples of auto-suggested
insertion changes indicated that our method is effective to
predict IS-A relations of concept pairs. Verified by the
reference set, our method automatically suggested insertion
changes for non-lattice subgraphs.

Validation of Auto-Suggested Insertion Changes

The performances of two subtasks in the workflow of
validation, relation prediction and auto-insertion change
suggestion, have been demonstrated to be promising by two sets
of experiments. Configured with feature combination and a=>5,
p=5 for the classifier, we evaluated 223 auto-suggested
insertion changes in the test set. We compared insertion



changes resulting from our classifier with the given 223
insertion changes, and those changes with agreement were
validated. The number of insertion changes validated by our
classifier is shown in Table 5. Since 185 insertion changes were
validated by domain experts, we also showed the number of
expert-validated insertion changes among our classifier’s
validation. Validated by our method, the auto-suggested
insertion change precision improved from 82.96% to 86.46%.
We can further alleviate manual effort by narrowing down the
number of insertion changes with the improvement of
precision.

Table 5 — Validation evaluation at top N predictions
compared with the reference set

# of Classifier # of Expert Precision

Top N Validated Validated (%)

1500 150 129 86.00
1600 174 149 85.63
1700 183 157 85.79
1800 185 159 85.95
1900 191 165 86.39
2000 192 166 86.46

Discussion

In this paper, we introduced a relational ML-based validation
approach, CNN-MLP, to alleviate manual effort required for
validating change suggestions in ontology auditing work. In
addition to validating auto-suggested insertion changes, our
experiments indicated that CNN-MLP classifier may be
effectively used in tasks of concept pair relation prediction and
ontology auditing. As shown in Table 4, five auto-suggested
insertion changes were out of the reference set; although they
were not used to validate change suggestions in the reference
set, they may provide additonal candidates for change
redemiations.

Evaluated with the reference set, the performances of auto-
suggested insertion change and auto-suggested insertion
change validation look promising. However, note we have not
addressed the task of auto-deletion change suggestion and
deletion change validation due to the lack of the reference set
containing validated deletion changes. Labeled data (or
reference set) is required in the framework of supervised ML
approach. SNCT is updated by domain experts twice a year, and
it may be possible to treat insertion and deletion changes in
different versions of SNCT as labeled data for ML based
auditing or validation.

Conclusions

We have presented an ML approach to validate insertion
changes generated by non-lattice-based auditing methods. In
validation workflow, we introduced a hybrid CNN-MLP
classifier to predict IS-A relations of concept pairs, and
automatically suggest insertion changes for non-lattice
subgraphs. Experiments on [S-A relation prediction achieves an
average precision of 0.972, and auto-suggested insertion
changes achieves Fj;,¢q,+ 0f 82.43% with top 2,000 predictions,
which indicate the potential of our classifier to validate IS-A
insertion changes. Validated with insertion changes resulting
from our classifier, the precision of a given set of auto-
suggested [S-A insertion changes is improved from 82.96% to
86.46%.

By cumulating SNCT deletion changes as a surrogate reference
set for ML approaches [12], our future work will focus on
exploring features to predict potentially incorrect IS-A relaitons
for validating auto-suggested deletion changes in non-lattice
subgraphs.
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