REVIEW

WILEY

EZ-A ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY

Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals

Martin Tresguerres¹ | Alexander M. Clifford¹ | Till S. Harter¹ | Jinae N. Roa¹ | Angus B. Thies¹ | Daniel P. Yee¹ | Colin J. Brauner²

Correspondence

Martin Tresguerres, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0202. Email: mtresguerres@ucsd.edu

Funding information

Scripps Institution of Oceanography Doctoral Scholar Fellowship, Scripps Institution of Oceanography Postdoctoral Scholar Fellowship, National Science Foundation, Directorate for Biological Sciences, Grant/Award Numbers: GRFP 2019271478, PRFB 1709911; National Science Foundation, Division of Integrative Organismal Systems, Grant/Award Number: 1754994; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 2018-04172

Abstract

The acid-base relevant molecules carbon dioxide (CO₂), protons (H⁺), and bicarbonate (HCO₃⁻) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO₂, H⁺, and HCO₃⁻ have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO₂ relative to O₂ solubility that prevents internal CO₂/HCO₃⁻ accumulation to buffer pH, a lower O₂ content that may favor anaerobic metabolism, and variable environmental CO2, pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.

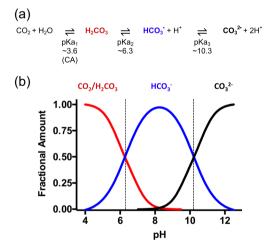
KEYWORDS

acid trapping, hypoxia, ocean acidification, oxygen transport, symbiosome

1 | INTRODUCTION

Proper cellular function depends on a series of tightly regulated, enzymatically catalyzed biochemical reactions, and therefore all organisms have evolved mechanisms to maintain appropriate conditions in their extra- and intracellular compartments. In biological systems,

hydrogen ions (H^+) are produced and consumed through various chemical reactions. Due to its extremely large charge to size ratio, H^+ immediately reacts with the electron cloud of adjacent molecules including the carboxy and amino functional groups of proteins thereby altering their ionization status, conformation, and function. Thus, the ability to regulate intracellular pH (pHi) is essential for life.


J Exp Zool. 2020;1-17. wileyonlinelibrary.com/journal/jez © 2020 Wiley Periodicals LLC

¹Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California

²Department of Zoology, University of British Columbia, Vancouver, Canada

The origin of pHi regulatory mechanisms is most likely rooted in the first protocells. It has been theorized that an important step in the origin of the first cell was the trapping of ribozymes and substrates within a membrane vesicle bilayer (Koch & Silver, 2005). An ability to maintain protoplasm pH within a range compatible with ribozyme activity would have enabled faster reaction rates and some degree of independence from the surrounding environment, providing a strong selective advantage. Regardless of its evolutionary origin, pHi regulation is essential for all extant organisms because intracellular acid-base homeostasis is continuously challenged by net H⁺ production from ATP-consuming reactions. During aerobic conditions, the synthesis of ATP through mitochondrial oxidative phosphorylation acts as a major sink for H⁺ that closely matches the H⁺ production from ATP hydrolysis (Hochachka & Mommsen, 1983). However, O₂ limitation typically leads to increased H⁺ production through anaerobic pathways, which, together with a lag in the mitochondrial H⁺ sink, can acidify pHi. Moreover, intracellular acidification can occur even during aerobic conditions if the outwardly directed CO₂ partial pressure (PCO₂) gradient decreases due to an increase in PCO2 in the extracellular fluids or the environment. In this case, some of the CO2 that is produced as an end product of cellular respiration will accumulate inside the cell and combine with water to produce H⁺ according to the reactions shown in Figure 1a.

These pH-dependent reactions have important implications for acid-base physiology: (a) in the presence of carbonic anhydrase (CA),

FIGURE 1 pH-dependent chemical equilibria between CO_2 , HCO_3^- , and CO_3^{2-} . (a) The equation describing the hydration of CO_2 and its subsequent equilibrium reactions with the other dissolved inorganic carbon (DIC) species. The pKAs shown under each reaction is the negative logarithm of the respective dissociation constant and indicate the pH at which the relevant DIC species are found in equimolar amounts. The hydration of CO_2 into H_2CO_3 is relatively slow; however, in the presence of carbonic anhydrase (CA) enzymes this reaction takes place virtually instantaneously. (b) pH-dependent relative proportion of DIC species. Notice how a more acidic pH favors CO_2/H_2CO_3 , a relatively neutral pH in the biological range favors HCO_3^- and a more alkaline pH favors CO_3^{2-} [Color figure can be viewed at wileyonlinelibrary.com]

an enzyme that catalyzes the left most reaction, equilibria are reached virtually instantaneously; (b) an increase in CO_2 leads to increased $[H^+]$ and thus has an acidifying effect; (c) most biological fluids and aquatic environments have a pH between 6 and 8, resulting in HCO_3^- as the dominant carbon species (Figure 1b); and (d) active acidification and alkalinization of a compartment can be used to modulate the ratio between the different carbon species, such as to accumulate CO_2 , HCO_3^- , or CO_3^- . Also important for acid-base regulation, H^+ , HCO_3^- , and CO_3^{2-} (as well as NH_4^+) are charged molecules and therefore require carrier proteins to cross lipid membranes. On the other hand, CO_2 (as well as O_2 and NH_3) as gas can rapidly diffuse through membranes and the process can be further facilitated by aquaporin and Rhesus (Rh) channel proteins (Musa-Aziz, Chen, Pelletier, & Boron, 2009).

To avoid the adverse effects of intracellular acidification, cells must be able to buffer excess H⁺ or actively extrude them at a rate equal to that of production. While all organisms routinely experience acid-base stress, life in aquatic environments poses particular acid-base challenges that are not found in terrestrial environments. In water, acid-base equivalents may be dissolved as ions, such as H⁺ and HCO₃, whereas in gaseous air, the only acid-base equivalent is CO2. In addition, the solubility of CO2 in water is about 30 times higher than that of O₂, and the diffusion ratio between the two gases is higher in water compared to air. Also, the O2 content in water is much lower than in air. Thus, the ventilatory volume of water required to meet the O2 demands of water breathers is far in excess of that required to ensure efficient excretion of respiratory CO₂ from blood to the water. Therefore, water breathers cannot elevate blood PCO₂ and [HCO₃⁻] to values as high as air-breathers, and thus they have a correspondingly lower internal fluid HCO₃⁻-buffering capacity (Dejours, 1994). In addition, ventilatory regulation of CO₂ excretion is not an effective strategy for acid-base regulation in water breathers because decreases in ventilation rate to elevate blood PCO₂ would limit O₂ uptake, and blood PCO₂ is already so low that hyperventilation is largely ineffective in reducing blood PCO₂ (Gilmour, 2001). As a result, systemic acid-base regulation in aquatic animals is largely dependent upon active transport of acid-base equivalents in exchange for counter ions between the animal and the environment. The first part of this article will discuss the most common acid-base disturbances in aquatic environments and some intra- and extracellular acid-base regulatory strategies that are uniquely used by aquatic animals.

In addition to challenging acid-base homeostasis, variations in CO_2 , pH, and HCO_3^- can be important modulators of physiological processes. The second part of this article will discuss three such examples: (a) the frequent pHi changes experienced by red blood cells (RBCs) as they circulate between the respiratory surfaces and the tissues, and how these pHi changes play an essential role in the delivery of O_2 throughout the body; (b) the effect of pH on ammonia metabolism, and how active acidification of intra- and extracellular compartments can be used to promote ammonia excretion or accumulation, and (c) the extreme pH microenvironments that are generated by coral cells, and their roles in mediating metabolic

communication with their photosynthetic symbionts and in promoting skeletal calcification. Some of the potential evolutionary links between pHi regulation and other physiological processes are emphasized throughout this article.

2 | COMMON ACID-BASE DISTURBANCES IN AQUATIC ENVIRONMENTS

In many water bodies, photosynthetic activity during the day may outpace respiration and result in elevated environmental O_2 (hyperoxia), reduced PCO_2 (hypecapnia), and elevated pH. However, at night, respiration in the absence of photosynthesis can result in hypoxia, elevated PCO_2 (hypercapnia), and decreased pH. Hypercapnia is particularly evident in environments with high densities of organisms and slow water flow such as lakes, swamps, kelp forests, reefs, mangroves, and tide pools (Duarte, Ferreira, Wood, & Val, 2013; Hofmann et al., 2011; Kline et al., 2012; Truchot & Duhamel-Jouve, 1980). Another example of environmental hypercapnia is the gradual elevation of PCO_2 in water bodies due to increased absorption of anthropogenic CO_2 emissions ("ocean acidification" and "freshwater acidification"; Caldeira & Wickett, 2003; Van de Waal, Verschoor, Verspagen, van Donk, & Huisman, 2009).

In the majority of naturally occurring cases of environmental hypercapnia, PCO_2 remains lower than that of the internal fluids of the organism. However, the reduced PCO_2 gradient between the internal fluids and the environment limits the excretion of endogenously produced CO_2 , leading to an elevation in PCO_2 and a higher $[H^+]$ (and $[HCO_3^-]$) by the law of mass action (Figure 1a; Melzner et al., 2009). But in environments with a very high density of respiring biomass at night (Furch & Junk, 1997), in the proximity of geological CO_2 seeps (Hall-Spencer et al., 2008), and in high-density aquaculture systems (Ellis, Urbina, & Wilson, 2017), environmental PCO_2 can be elevated above the internal PCO_2 of an organism. In these cases, CO_2 will diffuse into the animal down its partial pressure gradient, and induce a much more pronounced acidosis.

Metabolic acidosis in fish is routinely observed after exhaustive exercise (e.g., Milligan & Wood, 1986) and during exposure to environmental hypoxia (e.g., Thomas & Hughes, 1982) due to increased reliance on anaerobic metabolism and the higher H⁺ production associated with ATP depletion relative to ATP production. Sessile aquatic invertebrates living in the intertidal zone may likewise experience hypoxia or anoxia during aerial emersion at low tide, as their gas exchange surfaces are ineffective in air, or the animal needs to minimize gas exchange to avoid desiccation, or both (Bayne, Bayne, Carefoot, & Thompson, 1976). A metabolic alkalosis typically develops in the blood of fish upon the consumption of a large meal ("alkaline tide"), which is due to the secretion of H⁺ into the stomach and the absorption of HCO₃⁻ into the blood (e.g., Wood, Kajimura, Mommsen, & Walsh, 2005). Conversely, a blood metabolic acidosis develops after feeding in agastric fish, which is due to the secretion of HCO₃⁻ into the gastrointestinal tract and the absorption of H⁺ into the blood ("acidic tide"; Wood, Bucking, & Grosell, 2010).

3 | BASIC CONCEPTS OF pH REGULATION

The logarithmic pH scale, where pH = $-\log [H^+]$ (Sørensen, 1909) easily masks relative changes in the actual [H⁺] within a fluid, which is the ion that directly interacts with molecules. As such, at any point of the pH scale, a 1 unit pH change represents a 10-fold change in [H⁺], a 0.3 pH unit change is an approximately twofold change in [H⁺], and a 0.1 pH unit change is an approximately 25% change in [H⁺]. Consequently, the range of the pH scale over which changes are observed matters greatly when assessing the magnitude of an acid-base disturbance. For example, a decrease from pH 7.4 to 7.3 reflects a 10 nM increase in [H⁺], but a decrease from pH 8.0 to 7.9 reflects only a 2.5 nM increase. Thus, the H⁺ load associated with a pH change from 7.4 to 7.3 is fourfold larger than the H⁺ load that changes pH from 8.0 to 7.9, and will require proportionally more resources in terms of buffering capacity or energy to remove the excess H⁺ from a given compartment and prevent adverse effects on cellular function.

Intracellular buffering is the first line of defense against fluctuations in pHi. The total intracellular buffering capacity is determined by the sum of the HCO₃⁻ and non-HCO₃⁻ buffering systems, which can bind and release H⁺ to lessen an acidosis or an alkalosis, respectively. The main component of the non-HCO3 system is the imidazole of the histidine groups in side chains of amino acids. Their pK_a is in the range of approximately 6.0-7.0, which is close to the pHi set point of most cells and therefore histidine groups are particularly effective at buffering excess H⁺ during physiologically relevant decreases in pHi. For instance, muscle contraction generates a large H⁺ load that can induce muscle fatigue and contractile failure (Jarvis, Woodward, Debold, & Walcott, 2018) and accordingly, fish muscle cells contain large amounts of the histidinerich dipeptides carnosine, anserine, and balenine resulting in a non-HCO₃⁻ buffering capacity that is approximately two to three times greater than that of other tissues (Walsh & Milligan, 1989). Also, different types of muscle fibers create different acidic conditions that determine the cellular strategy of homeostasis. Fast-twitch white muscle relies largely on anaerobic metabolism that produces H⁺ (Kieffer, 2000), whereas slow-twitch, red muscle relies on aerobic metabolism and predominantly produces CO₂. Thus, to compensate for a more rapid and pronounced metabolic acidosis, white muscle contains more histidine-rich dipeptides that elevate the intracellular buffering capacity over that of red muscle (Dolan et al., 2019).

As a rapid, reversible, and passive strategy buffers are critical to maintaining pHi homeostasis; however, their capacity is finite and when overwhelmed, pHi regulation hinges on active mechanisms (Figure 2). In most animal cells, Na $^+$ /K $^+$ -ATPase (NKA) activity drives H $^+$ excretion by secondarily active transporters such as the ubiquitous Na $^+$ /H $^+$ exchanger isoform 1 (NHE1). NKA activity can also drive HCO $_3^-$ uptake via Na $^+$ /HCO $_3^-$ cotransporters (NBCs) and Na $^+$ dependent CI $^-$ /HCO $_3^-$ exchangers (NCBDEs); an increase in intracellular [HCO $_3^-$] reacts with and decreases [H $^+$], thus is equivalent to active H $^+$ extrusion (reviewed in Casey, Grinstein, & Orlowski, 2010). In cancer cells growing in acidic microenvironments, the

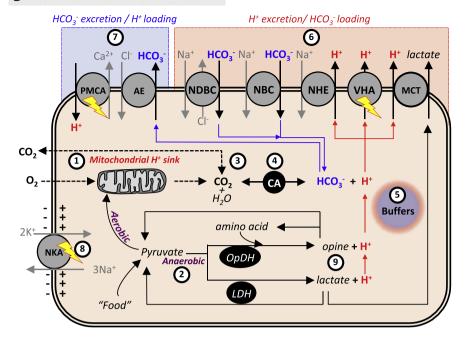


FIGURE 2 Summary of pHi regulatory mechanisms. Schematic of a generic eukaryotic cell depicting the most common pHi regulatory mechanisms. (1) The mitochondrial H⁺ sink maintains a close balance between H⁺ production and consumption during resting aerobic metabolism. However, an increase in (2) anaerobic metabolism or (3) PCO₂ can result in an intracellular H⁺ load that acidifies pHi. (4) The activity of carbonic anhydrase (CA) mediates the nearly instantaneous reversible equilibration between CO₂ with HCO₃⁻ and H⁺. (5) Buffering is the first line of defense against pHi fluctuations. (6) When an acidic load breaches the buffering capacity, cells actively excrete H⁺ through Na⁺/H⁺ exchanger (NHE), V-type ATPase (VHA) and monocarboxylate transporter (MCTs), or take up HCO₃⁻ through Na⁺/HCO₃⁻ cotransporter (NBCs), and/or Na⁺-dependent Cl⁻/HCO₃⁻ exchangers (NDCBEs). (7) Active intracellular acidification can be mediated by anion exchanger (AE) proteins and by plasma membrane Ca²⁺-ATPase (PMCA) (which links intracellular pH with Ca²⁺ homeostasis). (8) The driving force for most of these transporters is provided by the inward-directed Na⁺ electrochemical gradient and the inside negative membrane potential established by the Na⁺/K⁺-ATPase (NKA). However, VHA and PMCA directly hydrolyze ATP and their activities are not dependent on NKA. The lighting bolts indicate ATP hydrolysis. (9) The end products of anaerobic fermentation can have different fates. The lactate that is produced by lactate dehydrogenase (LDH) is typically excreted from cells together with H⁺ via MCTs; however, some cells can retain the lactate and use it to replenish their glycogen stores. Similarly, the "opines" produced by opine dehydrogenases (OpDH) during fermentation in invertebrates are retained intracellularly and reconverted into the original substrates upon the return of aerobic conditions [Color figure can be viewed at wileyonlinelibrary.com]

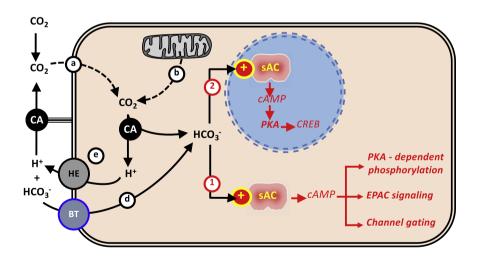
V-type H⁺-ATPase (VHA) is another active H⁺ extruding mechanism that helps counteract intracellular acidification (reviewed in Torigoe et al., 2002). Notably, H⁺ excretion by VHA does not depend on NKA activity; however, VHA-dependent H⁺ excretion must occur in concert with the net transport of a counter ion (typically Cl⁻ excretion or Na⁺ absorption; Tresguerres, 2016).

Cells that produce lactate as the end product of fermentation typically excrete H⁺ together with lactate through monocarboxylate-H⁺ cotransporters (MCTs). However, several important differences exist between aquatic animals and mammals. For example, white muscle in fish expresses MCTs at a relatively low abundance and retains a significant proportion of the lactate that is produced during exhaustive exercise, which allows for the localized replenishment of glycogen stores in situ from lactate (reviewed in Weber, Choi, Gonzalez, & Omlin, 2016). Likewise, aquatic invertebrates that produce imino acids ("opines") in the final step of fermentation may retain these end products intracellularly for later oxidization when aerobic conditions return, or reconvert them into the original pyruvate and amino acid substrates (Ellington, 1983). In some cases, the

accumulation of fermentative metabolites may be associated with pronounced intracellular acidification that can inhibit glycogenic and gluconeogenic metabolism through pH effects on enzyme activity and substrate or end-product inhibition (Walsh & Milligan, 1989).

Cases of intracellular alkalinization are less common than those of acidification. Nonetheless, when an alkaline load is experienced, some cells use anion exchangers (AEs) that excrete HCO_3^- in exchange for CI^- , thereby acting as "acid-loading" transporters that help counteract an alkaline load. And some cells experiencing elevated intracellular Ca^{2+} levels use plasma membrane Ca^{2+} -ATPases to extrude Ca^{2+} in exchange for extracellular H^+ thereby acidifying the cytosol (reviewed in Casey et al., 2010).

Active pHi regulation requires the ability to sense disturbances from a set point and to trigger compensatory responses. One such mechanism relies on pH-dependent amino acid conformational changes that render acid-secreting proteins such as NHE1 inactive when pH increases, and acid-loading proteins such as AE3 inactive when pH decreases (reviewed in Casey et al., 2010). Other molecular acid-base sensors are coupled to signal transduction pathways


(Tresguerres, Buck, & Levin, 2010), of which the soluble adenylyl cyclase (sAC) is arguably the best characterized in aquatic animals (Tresguerres, Barott, Barron, & Roa, 2014). This evolutionarily conserved enzyme is directly stimulated by HCO₃⁻ to produce the ubiquitous second messenger cyclic adenosine monophosphate (cAMP; Chen et al., 2000) that regulates the activity of effector proteins via PKA-dependent phosphorylation, exchange protein activated by cAMP, and cAMP gating of membrane channels (Figure 3). In many systems, sAC activity is directly stimulated by HCO₃⁻; however, in the presence of CA, changes in [HCO₃] almost instantaneously reflect changes in [CO₂] and [H⁺], enabling sAC to indirectly sense extracellular and intracellular acid-base disturbances of any origin (Tresguerres, Levin, & Buck, 2011). Indeed, sensing cytosolic [HCO₃⁻] may be more rapid and reliable for pHi regulation than sensing [H⁺] because the repeated association and dissociation with cytosolic macromolecules slows down H⁺ diffusion, which may confound the detection of an H⁺ load (Chang & Oude Elferink, 2014). To our knowledge, the role of sAC in pHi regulation has only been established in corals (Barott, Barron, & Tresguerres, 2017). However, given that corals are phylogenetically deeply rooted metazoans, the role of sAC in pHi regulation most likely extends to most other animals Phyla. In addition, the presence of sAC in the nucleus of mammalian (Zippin et al., 2004) and shark (Roa & Tresguerres, 2017) cells suggests a conserved role in regulating gene expression in response to changing acid-base conditions (Figure 3).

Aquatic animals have specialized cells ("acid-base ionocytes") on the gills and skin epithelia that actively maintain blood pH by exchanging acid-base equivalents with the environment; this centralized strategy of pHe homeostasis lessens the need for pHi regulation by every individual cell (reviewed in Larsen et al., 2014). The identity and kinetics of the ion transporting proteins involved in pHe regulation varies greatly between species and environments; however, these proteins are all derived from those involved in pHi regulation (i.e., CAs, NKA, NHEs, NBCs, NDBCEs, VHA, AEs, sAC). The differential placement of transport proteins in the ionocyte's apical or basolateral membrane allows for the vectorial transport of $\rm H^+$ and $\rm HCO_3^-$ between the internal fluids and the external environment for the purposes of pHe regulation. Similarly, many of the ion-transporting proteins and regulatory pathways involved in pHi regulation take on novel physiological functions when regulating the pH of other internal compartments to promote systemic $\rm O_2$ transport, ammonia excretion, biomineralization, and $\rm CO_2$ delivery to photosymbionts.

4 | COUPLED pH REGULATION AND PREFERENTIAL pHi REGULATION

A severe acid-base challenge that overwhelms the capacity for pHe regulation will result in a disturbance to both pHe and pHi. However, some animals are able to tightly regulate pHi even when the pHe defenses have been breached. This capacity gives them an unusual resilience to environmental hypercapnia, and possibly during other acid-base challenges as discussed below.

Environmental hypercapnia results in a sustained elevation in blood PCO_2 and potentially a large acid-base disturbance, and permits investigating the relative contributions of pHi and pHe regulation. Exposure to severe hypercapnia induces a rapid and large

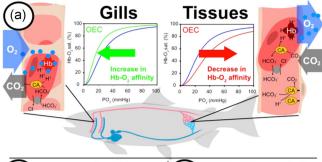
FIGURE 3 Acid-base sensing by sAC. Separate pools of sAC in (1) the cytoplasm and (2) the nucleus can be stimulated by HCO₃⁻ from the following sources: (a) Carbonic anhydrase (CA)-dependent hydration of external CO₂; (b) CA-dependent hydration of CO₂ generated through mitochondrial respiration; (d) entry through bicarbonate transporters (BT) such as the ones shown in Figure 2 or through channels such as cystic transmembrane conductance regulator (CFTR). (e) The activities of H⁺ extruding transporters (HE) (Figure 2) remove H⁺ from the cell and may prevent the slowing down of the CO₂ hydration reaction. The cyclic adenosine monophosphate (cAMP) that is generated by sAC can regulate the activities of multiple and diverse target proteins via Protein Kinase A (PKA)-dependent phosphorylation, exchange protein activated by cAMP (EPAC) signaling, and gating of membrane channels. In the nucleus, the sAC-AMP-PKA pathway can regulate the activity of the gene transcription factor, cAMP-responsive element-binding (CREB). Modified from Tresguerres et al. (2014) [Color figure can be viewed at wileyonlinelibrary.com]

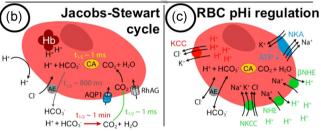
reduction in pHe that is often followed by a less pronounced reduction in pHi. During continuous exposure to CO₂, complete pHi recovery is associated with significant (>50–100%) pHe recovery, and therefore this acid-base regulatory pattern has been termed "coupled pH regulation" (Shartau, Baker, Crossley, & Brauner, 2016). Coupled pH regulation during exposure to a respiratory acidosis has been observed in most amphibians, reptiles, and mammals investigated to date and thus coupled pH regulation appears to be widespread amongst vertebrates (Shartau, Baker et al., 2016). This pattern has also been observed in the few invertebrates where simultaneous measurements of tissue pHe and pHi have been made during exposure to hypercapnia, and include the land snail (*Otala lacteal*; Barnhart & McMahon, 1988), a deep-sea bivalve (*Acesta excavate*; Hammer, Kristiansen, & Zachariassen, 2011), and the peanut worm (*Sipunculus nudus*; Pörtner, Reipschläger, & Heisler, 1998).

However, some aquatic vertebrates display a different pattern of acid-base regulation, where tissue pHi is completely regulated despite large reductions in pHe during the first few hours of exposure to environmental hypercapnia, and in some cases, pHi even increases relative to control values despite a large reduction in pHe (Baker et al., 2009). This pattern of rapid and tight pHi regulation during a transient reduction in pHe during acute CO₂ exposure has been termed "preferential pHi regulation". Importantly, it does not imply the absence of pHe regulation; just that pHi regulation may be virtually instantaneous and more robust than pHe regulation.

In white sturgeon (Acipenser transmontanus) exposed to a PCO_2 of 6 kPa, pHe was reduced by 0.7 pH units within 15 min (Baker et al., 2009). Despite the severe blood acidosis, heart pHi increased by 0.05 pH units and was maintained over the subsequent 90 min of hypercapnia (Baker, 2010). Similarly, when sturgeon were exposed to 3 and 6 kPa PCO_2 , the pHi of the brain, liver, and white muscle was tightly regulated. At that time, blood pH was reduced below the blood buffer line indicating a net acid excretion from the cells to the blood, and this reflects the preferential regulation of the intra- over the extracellular compartment (Baker et al., 2009). Therefore in hypercapnic sturgeon pHi regulation occurs more rapidly than pHe regulation, resulting in an H^+ transfer from the cells to the blood that is faster than their excretion to the environment at the gills.

In addition to sturgeon, preferential pHi regulation has been observed in a number of other fishes including the armored catfish (*Pterygoplichthys pardalis*), the marbled swamp eel (*Synbranchus marmoratus*), the striped catfish (*Pangasianodon hypophthalmus*), and three species of gar (*Lepisosteus oculatus*, L. osseus, and *Atractosteus spatula*; reviewed in Shartau et al., 2020). Preferential pHi regulation was also observed in the late stage developing embryos of the common snapping turtle (*Chelydra serpentine*; Shartau, Crossley, Kohl, & Brauner, 2016) and American alligator (*Alligator missispipiensis*; Shartau, Crossley, Kohl, Elsey, & Brauner, 2018). Thus, it has been proposed that preferential pHi regulation may be a general trait in vertebrate embryos before the complete development of the extracellular compartments and structures for acid-base regulation (Shartau, Baker et al., 2016). This trait is then either retained or lost during development depending on the animal's life history and/or the


environment. For example, the greater siren (*Siren lacertian*) is the only tetrapod known to retain preferential pHi regulation into adulthood (Heisler, Forcht, Ultsch, & Anderson, 1982), and this eellike amphibian inhabits stagnant wetlands where the water is routinely hypercapnic and hypoxic, or even anoxic (Ultsch, 1973; Ultsch & Antony, 1973). To our knowledge, there is no evidence for preferential pHi regulation in invertebrates; however, very few studies have simultaneously measured pHe and pHi in invertebrates during the early stages of exposure to severe hypercapnia.


While exposure to elevated PCO2 has been used as a tool to induce a large acidosis to investigate the presence or absence of preferential pHi regulation, a more common acid-base disturbance may result from anaerobic metabolism due to an O2 limitation. Armored catfish can tolerate long periods of severe hypoxia or even anoxia (Armbruster, 1998), where they preferentially regulate pHi of the brain, heart, liver, and white muscle despite a severe blood acidosis (Harter et al., 2014). Also, white sturgeon are considered hypoxia-tolerant (Cech and Crocker (2002), however, not to the extent of the air-breathing armored catfish. During a hypoxic challenge induced by air exposure, sturgeon demonstrated some capacity for preferential pHi regulation in the heart and brain; however, the pHi of the liver and white muscle decreased during this challenge (Shartau, Baker, & Brauner, 2017). These findings on armored catfish and white sturgeon may point towards a link between preferential pHi regulation and the ability to survive in O₂ limited environments; however, this hypothesis must be tested with further comparative studies. In addition, questions remain regarding the molecular and cellular mechanisms underlying preferential pHi regulation that provide exciting avenues to further investigate the evolution and prevalence of preferential pHi regulation.

5 | THE ROLE OF RED BLOOD CELL pHi ON SYSTEMIC GAS TRANSPORT

RBCs in the vertebrate circulatory system come in close contact with every other cell type and carry high concentrations of hemoglobin (Hb) and CA that enhance O₂ delivery and CO₂ removal in all tissues. Cardiovascular gas transport is modulated by the RBC microenvironment and by the fluctuations in pH that occur between arterial and venous blood, with every pass through the circulatory system. The diffusion of CO2 into the blood at the tissue capillaries causes a decrease in blood pH, whereas the systemic excretion of CO2 at the gas exchange surfaces causes an increase in pH (Figure 4a). These cyclical changes in pH between the arterial and venous systems are dampened by the buffer capacity of the blood that, in water breathers, is largely provided by nonbicarbonate buffers. In fishes, these buffers are proteins in the plasma and Hb and organic phosphates within the RBCs and, while most species rely on both intra- and extracellular buffers, their individual contributions may vary greatly among the major fish lineages. On one end of the spectrum are the Antarctic icefishes that have lost RBCs and Hb from the circulation, and where the only nonbicarbonate buffers in the

FIGURE 4 The role of red blood cell (RBC) pHi on systemic O₂ transport in fish. (a) At the capillaries, CO₂ from the tissues diffuses into the blood and into the RBCs. In the presence of carbonic anhydrase (CA) within the RBC CO₂ is rapidly converted into H⁺ and HCO₃⁻. The binding of H⁺ to Hb decreases its affinity for O₂ (Bohr effect; a right shift in the oxygen equilibrium curve; OEC), which is then released to the tissues. The binding of H⁺ to Hb also buffers arterial-venous pH differences promoting pH homeostasis. Within RBCs, the produced HCO₃ is exported into the plasma by the anion exchanger (AE). At the gills the process is reversed: when CO2 diffuses out of the blood and into the water, HCO₃⁻ is taken up into the RBC and converted into CO₂, which maintains the diffusion gradient for excretion. At the same time, the binding of O₂ to Hb decreases its affinity for H⁺ (Haldane effect), which are released into the RBC and are used by CA to dehydrate HCO_3^- . In the absence of H^+ binding, Hb increases its affinity for O_2 , which promotes oxygenation of the blood (left shift of the OEC). (b) The Jacobs-Stewart cycle describes the transfer of H⁺ across the RBC membrane. H⁺ are charged ions and do not readily diffuse across lipid membranes. In the plasma, H⁺ reacts with HCO₃⁻ to form CO₂ which rapidly diffuses across the membrane and this is often facilitated by channel proteins such as aquaporin 1 (AQP1) and RhAG. Within the RBC CO₂ will dissociate into H⁺, that bind to intracellular buffers, and HCO₃⁻ that is exported into the plasma by AE. (c) Summary of transporters that regulate RBC pHi in fish. The Na⁺/K⁺-ATPase (NKA) creates trans-membrane gradients for Na⁺ and K⁺ that are used by secondary active transporters to drive ion transport. Alkalinizing transporters: Na⁺-H⁺ exchangers (NHE) use the Na⁺ gradient to extrude H⁺; β-adrenergically activated NHEs (β-NHE) are activated by catecholamine binding to a receptor on the RBC membrane; Na⁺-K⁺-2CI⁻-cotransporter (NKCC) uses the Na⁺ gradient to drive net CI⁻ uptake. Because the activities of Cl⁻ are linked to those of H⁺ (via the Jacobs-Stewart cycle), NKCC activity will increase RBC pHi. On the other hand, the K⁺-2Cl⁻-cotransporter (KCC) will lead to a decrease in RBC pHi due to the net excretion of Cl⁻. See text for further details and references [Color figure can be viewed at wileyonlinelibrary.com]

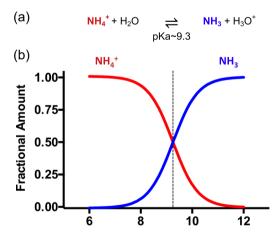
blood are histidine-rich plasma proteins (Feller, Poncin, Aittaleb, Schyns, & Gerday, 1994). On the other hand, lamprey relies almost entirely on buffers within the RBC, which prevents pHi fluctuations but leads to large arterial-venous changes in blood pHe (Tufts & Haldane effect links the transport of O2 and CO2 in the blood and is particularly important in teleost fishes (Harter & Brauner, 2017).

Due to their charge, extracellular H⁺ has no direct access to RBC intracellular buffers, such as Hb. However, the Jacobs-Stewart cycle (Jacobs & Stewart, 1942) links the activities of H+ to the transmembrane fluxes of CO₂ and HCO₃ by the reversible hydration and dehydration reactions in the plasma and within the RBC (Figure 4b). CO₂ crosses the RBC membrane by diffusion (Wagner, 1977), a process that may be facilitated by aquaporin 1 and RhAG (Musa-Aziz et al., 2009), while HCO₃ is transported by the abundant RBC AE. Band 3 (Romano & Passow, 1984). Within the RBC the equilibration between CO₂, HCO₃⁻, and H⁺ is catalyzed by CA (Itada & Forster, 1977), whereas the blood plasma of many vertebrates lacks CA (Henry & Swenson, 2000) and often contains CA inhibitors that ensure an absence of CA activity against a background of constant RBC lysis that releases soluble CA (Henry, Gilmour, Wood, & Perry, 1997). Without CA activity, the uncatalyzed CO₂ hydration and dehydration reactions in the plasma are slow and typically the rate-limiting step in the Jacobs-Stewart cycle (Motais, Fievet, Garcia-Romeu, & Thomas, 1989). However, at the tissue capillaries, membrane-bound, plasma-accessible CA (paCA) isoforms that are unaffected by plasma CA inhibitors (Gervais & Tufts, 1998; Heming et al., 1993), will accelerate the Jacobs-Stewart cycle and effectively link pHe and RBC pHi.

In a theoretical steady-state, H⁺ is passively distributed across the RBC membrane in a Donnan-like equilibrium; however, the negative charge of Hb and organic phosphates favors a higher [H⁺] inside the RBC, resulting in a lower pHi relative to pHe (Jensen, 2004). This pH gradient across the RBC membrane is of physiological significance as it renders the blood an effective sink for CO₂ that removes the gas from the tissues. Due to the higher plasma pHe (typically 7.8-8 in fishes) and the relatively low pKa of the CO2-HCO3 equilibrium (~6.1; Boutilier, Heming, & Iwama, 1984) more than 90% of CO₂ can be transported as HCO₃⁻ in the plasma. This increases the capacitance of blood for CO2 far beyond the physical solubility of the gas in plasma and severely reduces the convection requirements for CO₂ excretion (Tufts & Perry, 1998).

The active regulation of RBC pHi is largely driven by the Na⁺ and K⁺ gradients that are generated by RBC NKA activity (Figure 4c; Thomas & Egée, 1998). A decrease in RBC pHi is typically due to a net K⁺ efflux via a K⁺-2Cl⁻-cotransporter (KCC) and the loss of Cl⁻ displaces H+ from equilibrium via the Jacobs-Stewart cycle (Cossins & Gibson, 1997). Whereas an increase in RBC pHi is driven by a net Na⁺ influx, either through Na⁺-K⁺-Cl⁻-cotransporters (NKCC) or NHEs (Nikinmaa, 2003). The β-adrenergically activated NHEs (β-NHE) of teleosts are particularly effective regulators of RBC pHi and presumably have evolved to protect O2 transport by pH-sensitive Hb during a systemic acidosis (Berenbrink, Koldkjaer, Kepp, & Cossins, 2005). The binding of H⁺ to Hb decreases its affinity for O2 and this Bohr effect (Bohr, Hasselbalch, & Krogh, 1904) describes the prominent role of pH in fine-tuning cardiovascular O₂ transport in nearly all vertebrates (Figure 4a). Teleost fishes have exceptionally pH-sensitive Hbs with large Bohr coefficients and in addition, have a Root effect where H^+ binding prevents a complete O_2 saturation of Hb even at very high PO_2 (see Berenbrink et al., 2005). Based on this high pH-sensitivity of Hb, several physiological mechanisms have evolved in teleosts that actively acidify the blood to increase O_2 unloading to specialized tissues.

Perhaps the best-known examples are the teleost *retia mirabilia*, vascular counter-current exchangers that are coupled to acidifying tissues that trigger the Root effect. This mechanism can produce PO_2 values of several hundred atmospheres allowing teleosts with gas-filled bladders to regulate buoyancy at depth (Nielsen & Munk, 1964; Pelster, 1997) and to drive O_2 across large diffusion distances to their avascular retinas (Wittenberg & Wittenberg, 1962). Similarly, the intestine of marine teleosts, which secretes large amounts of HCO_3^- into the lumen, may acidify the blood sufficiently to enhance $Hb-O_2$ unloading and thereby meet its high metabolically demand for O_2 (Cooper, Regan, Brauner, De Bastos, & Wilson, 2014).


More recently, in vivo studies have shown that rainbow trout may actively modulate RBC pHi to enable higher tissue PO2 compared to those in mammals (Rummer, McKenzie, Innocenti, Supuran, & Brauner, 2013) and that can be maintained even in the face of exercise or hypoxia (McKenzie et al., 2004). When the RBC β-NHEs are activated by catecholamines, the extrusion of H⁺ exceeds the rate of reequilibration via the Jacobs-Stewart cycle due to the absence of CA activity in teleost plasma. However, when RBCs reach the tissue capillaries the Jacobs-Stewart cycle accelerates in the presence of paCA and the sudden linkage between pHe and pHi effectively "shortcircuits" β -NHE activity. The result is a rapid transfer of H^+ into the RBC that enhances O2 unloading to the tissue via the Bohr effect. When the RBCs leave the capillaries and the site of CA, β -NHE activity recovers pHi and Hb-O₂ affinity during venous transit, securing the renewed oxygenation of Hb at the gills (Harter, May, Federspiel, Supuran, & Brauner, 2018). This mechanism of β-NHE short-circuiting is not tied to morphological structures, such as the retes, and therefore, it may be generally available to enhance Hb-O₂ unloading to all tissues in teleosts (Randall, Rummer, Wilson, Wang, & Brauner, 2014). In fact, in swimming Atlantic salmon β-NHE short-circuiting allows for a reduction in cardiac output by nearly a third, which may enable the athletic performance of this migratory species (Harter, Zanuzzo, Supuran, Gamperl, & Brauner, 2019). Many other teleost species, besides salmonids, also have RBC β-NHE that may be short-circuited to enhance O₂ unloading (Berenbrink et al., 2005; Harter & Brauner, 2017). Whether other transporters that create H⁺ gradients across the RBC membrane (i.e., NHE, KCC, NKCC) can also be short-circuited in the presence of CA remains unexplored, and if substantiated may extend the relevance of this mechanism to species that lack β -NHE, such as other fishes, birds, and mammals.

Furthermore, many invertebrate species also have Hbs or hemocyanins, some of which display pH-sensitive O_2 binding characteristics that resemble the Bohr effect of vertebrate Hbs (van Holde & Miller, 1995). Invertebrate respiratory pigments that are dissolved in the plasma lack the cellular mechanism that fine-tune gas

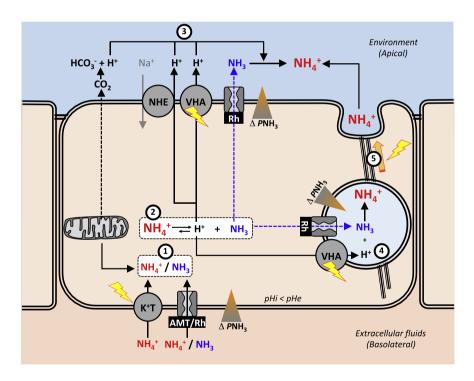
transport in vertebrates by modulating the RBC microenvironment. However, as shown in cephalopods, the changes in hemolymph pH during circulatory transit may be sufficient to alter the O_2 binding properties of their hemocyanins, and thus, to modulate cardiovascular O_2 transport and facilitate pH homeostasis, much like in vertebrates (Brix, Lykkeboe, & Johansen, 1981). This remarkable example of convergent evolution illustrates the powerful regulatory effects of pH on physiological systems and its ubiquity across animal taxa.

6 | LINKS BETWEEN pH AND AMMONIA METABOLISM

In solution, NH₃ and NH₄⁺ follow the pH-dependent equilibrium shown in Figure 5a. Since the pKa of this reaction is approximately 9.3, over 95% of ammonia will be present as NH₄⁺ at the pH values found in most biological fluids and the external environment (Figure 5b). Furthermore, NH₃ is a gas and thus crosses cellular membranes much faster than NH₄⁺ ions (Boron, 2010). Thus, small but physiologically relevant pH changes result in relatively large changes in the partial pressure of NH₃ (PNH₃), and the resulting difference in partial pressure can drive the diffusion of the gas across a cellular membrane. Additionally, NH₄⁺ has nearly identical hydration shell sizes, ionic conductance, and water mobility rates compared to those of K⁺, which allows NH₄⁺ to "hijack" K⁺ carrier proteins such as NKA, NKCC, and K⁺ channels (Weiner & Verlander, 2017). In combination, these physico-chemical characteristics permit the unregulated entry of ammonia into cells and subcellular compartments, where it can have toxic effects through disruptions in pH,

FIGURE 5 pH-dependent chemical equilibrium of ammonia. (a) Equation describing the hydration of NH₄⁺ and the subsequent equilibrium reaction with NH₃. The pKA shown under the reaction is the negative logarithm of the dissociation constant and indicates the pH at which NH₃ and NH⁺ are found in equimolar amounts. (b) pH-dependent relative proportion of NH₃ and NH₄⁺. Notice that at physiological pH, NH₄⁺ is by far the dominant species, that acidification further favors NH₄⁺, and that alkalinization favors NH₃

[Color figure can be viewed at wileyonlinelibrary.com]


membrane potential, the inner mitochondrial H⁺ gradient, cell volume, and the Krebs cycle (see Ip & Chew, 2010 for review).

The main source of endogenous ammonia production (ammoniagenesis) in animals is as a by-product of the transdeamination reactions during amino acid catabolism within the mitochondrial matrix. These reactions result in the equimolar production of $\mathrm{NH_4}^+$ and $\mathrm{HCO_3}^-$, and predominantly take place in the kidney in mammals (Weiner & Verlander, 2017) and in the liver in fish (Ip & Chew, 2010). Additionally, the intestine of carnivorous fishes can catabolize amino acids and produce significant ammonia load following a meal (Karlsson, Eliason, Mydland, Farrell, & Kiessling, 2006). The deamination of serine by serine-dehydratase is another important ammoniagenic pathway, especially in mollusks. The purine nucleotide cycle is a third ammoniagenic pathway and is prominent during pHi acidification induced by anaerobic metabolism in both fish white muscle (Mommsen & Hochachka, 1988) and intertidal invertebrates (Campbell, 1991).

In mammals, the most common causes of ammonia build-up are due to diseases that alter ammonia metabolism and excretion (Weiner & Verlander, 2017). However, aquatic animals may be

exposed to high environmental ammonia levels resulting from organic matter degradation, during hypoxic conditions that impair nitrification, in overcrowded and confined environments, and from agricultural, sewage, and industrial run-offs (Alabaster & Lloyd, 1980). These conditions can impair the excretion of endogenous ammonia and in extreme cases result in ammonia influx leading to internal ammonia accumulation in internal fluids. In general, the toxicity of a given environmental ammonia concentration increases as environmental pH increases due to the resulting increase in the proportion of ammonia present as NH₃, which more readily diffuses into the animal (Randall & Tsui, 2002).

In aquatic animals, waste ammonia is typically excreted to the surrounding water across the gills and the skin (Weihrauch & Allen, 2018). The transport of ammonia across cellular membranes is facilitated by ammonium transporters (AMTs) and Rh glycoproteins (Rhs; Figure 6). AMTs are broadly present in bacteria, algae, and invertebrates (Huang & Peng, 2005) and can electrogenically excrete $\mathrm{NH_4}^+$ into the external medium (Wacker, Garcia-Celma, Lewe, & Andrade, 2014). In the anal papillae of mosquito larvae, AMT1 was found in the basolateral membrane of epithelial cells

FIGURE 6 Acid-trapping of ammonia. (1) Intracellular ammonia (the sum of NH_3 and NH_4^+) is predominantly derived from amino acid catabolism in mitochondria, from facilitated diffusion through ammonium transporters (AMTs) and Rhesus channel glycoptroteins (Rhs), and through import by K⁺-transporting proteins (K⁺T) such as Na^+/K^+ -ATPase, $Na^+-K^+-2Cl^-$ -cotransporter, K⁺-2Cl⁻-cotransporter, and K⁺-channels. (2) At a typical intracellular pH (pHi), most ammonia is present as NH_4^+ (see Figure 5). However, acidification of (3) the external boundary layer or (4) intracellular vesicles acts as a siphon for NH_3 , producing NH_4^+ that gets trapped outside of the cell or in the vesicle, while sustaining a favorable NH_3 partial pressure gradient (ΔPNH_3) that promotes further ammonia transport and trapping. The acidification can take place through H^+ transport by Na^+H^+ Exchanger (NHE) or V-type- H^+ -ATPase (NHA), and NHA diffusion is facilitated by Rh. In addition, NHA may diffuse across cellular membranes or paracellularly (not shown). (5) The vesicles can be trafficked to the apical membrane in microtubule-dependent manner, and the trapped NHA^+ excreted via exocytosis, as reported in the gills of some marine crabs (note that the cuticle at the apical side has been omitted for clarity). In addition, similar acidic and NHA^+ -rich vesicles can be stored within the body tissues of deep-sea cephalopods and other marine invertebrates for the purpose of achieving buoyancy (however, the pathways for NHA and NHA transport remain unknown) [Color figure can be viewed at wileyonlinelibrary.com]

(Chasiotis et al., 2016). Although AMTs have also been proposed to be present in the apical membrane of gill epithelial cells of marine polychaetes (Thiel et al., 2017), this putative cellular localization has not been confirmed. In addition to AMTs, invertebrates have the Rh isoform Rhp1, which is expressed in the apical membrane of ammonia excreting epithelial cells (Hu et al., 2014, 2017, Thomsen et al., 2016). On the other hand, vertebrates lack Amts and express several Rh isoforms. The most comprehensive analysis of Rh localization in fish has been performed in pufferfish (Takifugu rubripes), which express Rhcg1 and Rhcg2 in the apical membrane of ionocytes and pavement cells, and Rhbg in the basolateral membrane of pavement cells (Nakada, Westhoff, Kato, & Hirose, 2007), Additionally, Rhag is expressed in RBCs, and in some cases is present in the apical and basolateral membranes of fish epithelial cells (reviewed in Wright & Wood, 2009). Although nontetrapod vertebrates have an Rhp2 gene, its expression has only been shown in sharks (Nakada et al., 2010). Rhp2 mRNA is highly expressed in the shark kidney, and the protein is present in the basolateral membrane of renal tubule cells (Nakada et al., 2010). Lower levels of Rhp2 mRNA were also present in shark blood, gill, brain, intestine, liver, rectal gland, and stomach (Nawata, Walsh, & Wood, 2015), however, cellular localization in these tissues has not been explored.

The substrate specificity of the various Rh channels has large implications for the reciprocal relationship between pH and ammonia transport. When NH₃ is transported into a compartment its protonation to NH₄⁺ consumes H⁺ and thus has an alkalinizing effect, a response that is stimulated by a greater H⁺ availability in compartments that have a lower pH (the opposite is the case for NH₄⁺ transport). Unfortunately, substrate specificity studies are not trivial due to the interrelationship between pHi, pHe, NH₃/NH₄⁺ ratios, and the greater molecular mass and higher pKa of the radiolabeled NH₄⁺ analog, 14 C-methyl-ammonium, compared to NH₄⁺ (~10.6 vs. ~9.3). Heterologous expression in Xenopus oocytes suggests that mammalian Rhag and Rhbg can transport both NH₃ and NH₄⁺ and that Rhcg exclusively transports NH3 (Caner et al., 2015); however, this remains a highly debated subject (Weiner & Verlander, 2017). Knowledge about the substrates transported by the Rhs from aquatic species is even more limited: the substrate for Rhp1 is unknown, Rhp2 seems to preferentially transport NH₃ (Nakada et al., 2010), and detailed substrate specificity studies for other Rhs from aquatic species are lacking. In addition, some Rhs may facilitate CO2 transport (Musa-Aziz et al., 2009), and therefore caution should be used when inferring potential Rh functions in aquatic organisms.

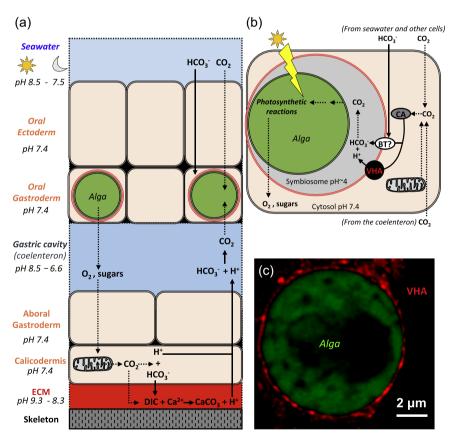
7 | ACID-TRAPPING OF AMMONIA

Acidification of a given compartment favors ammonia speciation into NH_4^+ and reduces PNH_3 , thus facilitating NH_3 diffusion into the compartment and trapping it as NH_4^+ . This mechanism is known as "acid-trapping of ammonia", and is an effective means for excreting ammonia or for accumulating it into subcellular compartments. The acidification can be generated by the hydration of excreted CO_2 at

the external surfaces and by H^+ excretion via VHA and NHEs, while the diffusion of NH_3 across cellular membranes is facilitated by Rh channels (Figure 6).

Acid-trapping is a generalized strategy to excrete ammonia by freshwater fishes (Ip & Chew, 2010) and invertebrates (Weihrauch & O'Donnell, 2017). In theory, acid-trapping of ammonia is less advantageous for marine animals due to the challenge of secreting sufficient H⁺ to acidify highly buffered seawater (Wilkie, 2002). Indeed, the marine polychaetae (Eurythoe complanate) directly excretes NH₄⁺ across its gills, possibly through AMTs (Thiel et al., 2017). However, many marine invertebrates use acid-trapping to excrete ammonia into a stagnant or enclosed fluid. For example, the gills of cephalopods have intricate infoldings that create a semitubular luminal space that limits ventilation volume, permitting apical excretion of H⁺ via NHE to acidify the seawater and acid trap NH₃ that diffuses through apical Rhp (Hu et al., 2014). Likewise, excretion of CO₂ and H⁺ into the palial cavity of bivalves results in a typical pH of approximately 7.5 (and as low as pH 6.5 during aerial exposure; Littlewood & Young, 1994). The ammonia that is trapped in this acidified fluid can be released into the bulk seawater when the animal opens its valves while submerged, or can potentially be volatilized into air while emerged. Similarly, marine animals may utilize acid-trapping into internal fluids such as that in the renal lumen, a mechanism that has been proposed to contribute to the production of ammonia-rich urine in octopuses (Hu et al., 2017).

A variation of acid-trapping of ammonia occurs in the gills of marine carbs and is known as vesicular acid-trapping (Figure 6). Here, acidification of intracellular vesicles by VHA promotes NH_3 diffusion and subsequent trapping as NH_4^+ . The vesicles are thereafter trafficked via microtubules to the apical membrane, and NH_4^+ is excreted into the environment via exocytosis (Weihrauch, Ziegler, Siebers, & Towle, 2002). Vesicular acid-trapping of ammonia has also been proposed in the goldfish kidney (Fehsenfeld, Kolosov, Wood, & O'Donnell, 2019).


Since NH₄⁺ is lighter than seawater, acid-trapping may also be used to accumulate ammonia in coelomic cavities or in vacuoles within body tissues for the purpose of buoyancy (Voight, Pörtner, & O'Dor, 1995). Indeed, the tissues of some deep-sea cephalopods can reach [NH₄⁺] upwards of 500 mmol/L⁻¹ (Seibel, Goffredi, Thuesen, Childress, & Robison, 2004), with approximately 50-60% of their total body mass being comprised of NH₄+-rich fluid (Voight et al., 1995). The protein-rich diet of cephalopods enables this buoyancy strategy by providing the necessary source of ammonia through amino acid catabolism. These squids maintain their pHe at approximately 7.2 while the pH of sequestration sites can reach values as low as 5 (Voight et al., 1995). Together, these pH set-points provide the necessary transmembrane pH and PNH3 gradients to permit acid-trapping of ammonia, first within the hemolymph and thereafter within the sequestration sites. Similar NH₄⁺ sequestration may provide buoyancy in tunicate embryos (Lambert & Lambert, 1978) and pelagic crustaceans (Sanders & Childress, 1988). Although the molecular mechanisms underlying NH₄⁺ sequestration have yet to be elucidated, they likely involve Rhp and VHA.

8 | EXTREME pH MICROENVIRONMENT IN CORAL CELLS

Reef-building corals that host photosymbiotic algae experience some of the most extreme acid-base disturbances found among animals. While a carbon concentrating mechanism (CCM) promotes photosynthesis by acidifying the algal microenvironment to pH values as low as 4, skeleton calcification is promoted by creating an alkaline microenvironment where pH values can be greater than 9 (reviewed in Tresguerres et al., 2017). Remarkably, this 100,000-fold difference in [H⁺] exists over just a few hundred microns that separate the cells that host symbiotic algae from those that build the skeleton (Figure 7a). Since corals lack specialized organs, acid-base homeostasis relies on regulatory mechanisms within each individual cell.

The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyzes the first major step in photosynthetic CO₂ fixation

(Cooper, Filmer, Wishnick, & Lane, 1969). However, rubisco's relatively low affinity for CO2 compared to contemporary environmental PCO₂ levels and to its significant affinity for O₂ may lead to photorespiration and diminished carbon fixation efficiency (Tamiya & Huzisige, 1948). In response, many phytoplankton species have developed CCMs that elevate PCO2 at the site of rubisco (Reinfelder, 2011). Likewise, a CCM is essential for sustaining the photosynthetic activity of coral's symbiotic algae (Yellowlees, Rees, & Leggat, 2008). However, these algae reside inside an intracellular compartment of coral gastrodermal cells called the symbiosome (Figure 7), which can be modulated by the coral host cell. Recently, a novel host-controlled CCM has been identified whereby VHA that is abundantly expressed in the symbiosome membrane acidifies the lumen down to pH~4 (Barott, Venn, Perez, Tambutté, & Tresguerres, 2015; Figure 7b,c). Together with HCO₃⁻ transport through yet unidentified mechanisms, this VHA-dependent acidification is

FIGURE 7 Extreme pH microenvironments in corals. (a) Simplified coral histology diagram showing the movements of acid-base relevant molecules between seawater, host cells with algal symbionts, and the site of calcification (ECM: extracellular calcifying medium). Together with Ca^{2+} transport into the ECM and vesicular transport of amorphous $CaCO_3$ (not shown), the alkaline pH in the SCM promotes coral skeleton formation. DIC: dissolved inorganic carbon $(CO_2+HCO_3^-+CO_3^{2-})$. The pH of extracellular and intracellular compartments is noted to the left (sun and moon indicating day- and nighttime pH for seawater respectively). Photosynthesis and calcification are linked by translocation of photosynthetic products to the site of calcification (i.e., oxygen and sugars) and calcification byproducts (H⁺) to host cells. (b) Schematic of a coral host cell containing an algal symbiont to illustrate the CCM. The alga is not drawn to scale to allow for clarity but usually occupies >90% of a host cell's volume. BT: HCO_3^- transporter; CA: carbonic anhydrase; VHA: V-Type H⁺-ATPase. (c) VHA immunostaining (red signal) of a symbiont-containing coral gastrodermal cell showing abundant VHA presence in the symbiosome membrane. The other proteins involved in transport of ions and other molecules are omitted for simplicity, and in many cases their identities are unknown [Color figure can be viewed at wileyonlinelibrary.com]

thought to drive CO_2 flux into the symbiosome lumen and thereby enhance the delivery of CO_2 to the site of fixation. VHA activity in the coral symbiosome membrane has been proposed to additionally slow down symbiotic alga cell division, as well as to drive the transport of phosphates, amino acids, sugars, and ammonia by acid-trapping (Tang, 2015; Tresguerres et al., 2017; Figure 7). The presence of an analogous VHA-driven CCM in giant clams that host symbiotic algae in their gut (Armstrong, Roa, Stillman, & Tresguerres, 2018) suggests that this mechanism has evolved convergently in different species.

While coral photosynthesis requires an acidified microenvironment, it alkalinizes the rest of the coral because it consumes CO2 and H⁺ and it generates OH⁻ (Allemand, Furla, & Bénazet-Tambutté, 1998). At the onset of photosynthesis, the pHi of the coral host cells immediately increases from approximately 7.0 to 7.4 (Barott et al., 2017; Laurent, Tambutte, Tambutte, Allemand, & Venn, 2013). The rate of photosynthesis increases linearly with light irradiance, and so does the initial alkalinization of the host cell cytoplasm. However, pHi plateaus after approximately 20 min despite the continuous photosynthetic activity, indicating the activation of pHi regulatory mechanisms (Laurent et al., 2013). At this time, cytosolic H⁺ is being replenished at the same rate as they are being consumed by photosynthesis and a new steady state is reached. The molecular mechanisms involved in this response are unknown. Although certain AEs is a common mechanism used to counteract an intracellular alkalosis (Figure 2), they extrude HCO₃ from the cell and this would conflict with the need for dissolved inorganic carbon transport for photosynthesis. Alternatively, transport of HCO₃⁻ into the symbiosome as proposed in Figure 4b would fulfill the need for both pHi regulation and CCM. Intracellular buffering is also important to help cope with the immediate alkalinizing effect of algal photosynthesis, and this is reflected in symbiont-containing cells having approximately 25% higher buffering capacity compared to symbiont-free cells (Laurent et al., 2014). Indeed, their buffering capacity is higher than that of mussel retractor muscle (Zange, Grieshaber, & Jans, 1990) and squid mantle (Pörtner, Boutilier, Tang, & Toews, 1990), which may imply that the magnitude of the alkaline challenge induced by symbiont photosynthesis is greater than the acidic challenge resulting from muscle contraction.

On the other hand, coral calcification takes place in an actively alkalinized environment and represents a source of acidic stress for the rest of the coral. The cells responsible for coral skeleton formation are called calicoblastic cells and form an epithelium that is situated directly above the extracellular calcifying fluid (ECF) that separates it from the skeleton. The calicoblastic cells express an abundance of SLC4 transporters that presumably help deliver HCO₃⁻ to the ECF (Barott, Perez, Linsmayer, & Tresguerres, 2015; Tresguerres et al., 2017; Zoccola et al., 2015). These cells also express Na⁺/Ca²⁺ exchangers (Barron et al., 2018) and plasma membrane Ca²⁺-ATPases that help deliver the required Ca²⁺ (Barott, Perez et al., 2015; Zoccola et al., 2004); the latter might additionally mediate H⁺ removal from the ECF. The combined activities of these transporters generate an elevated aragonite saturation state in the

ECF that promotes skeleton calcification and counteracts its dissolution. Some of these transporters are likely under regulatory control by sAC, which is expressed in calicoblastic cells and mediates the alkalinization of the ECF and the growth of skeletal CaCO₃ crystals (Barott, Venn, Thies, Tambutté, & Tresguerres, 2020). A similar role of sAC in regulating CaCO₃ precipitation has been demonstrated or proposed in the intestine of marine teleosts (Tresguerres, Levin, Buck, & Grosell, 2010) and in the teleost inner ear (Kwan, Smith, & Tresguerres, 2020). Thus, an evolutionary pattern is emerging whereby sAC-regulated transepithelial acid-base relevant ion-transport generates alkaline conditions that promote calcification in extracellular space.

Other components of the coral calcification mechanism include acidic proteins that promote Ca²⁺ precipitation (Mass et al., 2013), and abundant vesicles in the calicoblastic cells that are formed by macropinocytosis from the ECF (Ganot et al., 2020) and potentially also by transcytosis from the oral tissues (Mass et al., 2017). Interestingly, calcifying foraminifera produces their chambered shells by endocytosis of seawater into vesicles, which they subsequently alkalinize to a pH > 9.0 thus promoting CaCO₃ precipitation (Bentov, Brownlee, & Erez, 2009; de Nooijer, Toyofuku, & Kitazato, 2009). Incubation with the VHA inhibitor bafilomycin A1 significantly decreased H⁺ efflux from the newly forming chambers and resulted in weakly calcified chamber walls, indicating the involvement of VHA in calcification (Toyofuku et al., 2017). A similar role for VHA in calcification was proposed in the calcifying vesicle of coccolitophorids, which are another eukaryotic phytoplankton with an external CaCO₃ shell (Corstjens, Araki, & González, 2001; Mackinder et al., 2011). It is worth investigating whether VHA is also present in the vesicles within coral calicoblastic cells and whether it plays a role in coral skeleton formation.

The H^+ that is removed from the ECF during calcification eventually reaches the coral gut cavity, where they combine with HCO_3^- to form CO_2 that may be used by photosynthesis within the symbiotic algae (Figure 7b). Thus, coral calcification and photosynthesis are linked to each other through the complementary and synergistic production and consumption of CO_2 , H^+ , and HCO_3^- . This is one of the mechanisms by which the photosynthetic activity of the symbiotic algae stimulates coral skeletal growth, a phenomenon known as "light enhanced calcification" (Kawaguti & Sakumoto, 1948).

9 | SUMMARY

As substrates and products of many biochemical reactions CO₂, H⁺, and HCO₃⁻ molecules are intrinsically linked to aerobic and anaerobic metabolism, O₂ transport, ammonia homeostasis, metabolic communication between symbiotic partners, and calcification. Future comparative studies at all levels of the organization will undoubtedly continue to reveal novel aspects about the evolutionary links between intra- and extracellular acid-base regulation and their effects on multiple aspects of organismal physiology. From a practical perspective, understanding the effects of metabolic and environmental

acid-base disturbances on homeostatic processes may help predict the resilience and vulnerability of species to environmental disturbances, both natural and anthropogenic in origin, as well as to artificial environments such as those experienced in intensive aquaculture.

ACKNOWLEDGMENTS

Supported by National Science Foundation (NSF) IOS #1754994 to Martin Tresguerres, SIO Postdoctoral Scholar fellowship to Alexander M. Clifford, NSF Graduate Research (GRFP 2019271478) and SIO Doctoral Scholar Fellowships to Angus B. Thies, NSF Postdoctoral Fellowship (PRFB 1709911) to Jinae N. Roa, and Natural Sciences and Engineering Research Council (NSERC) Discovery grant (2018-04172) to Colin J. Brauner.

ORCID

Martin Tresguerres http://orcid.org/0000-0002-7090-9266

REFERENCES

- Alabaster, J. S., & Lloyd, R. (1980). Ammonia. Water Quality criteria for fresh water fish (2nd edition.). London, U.K.: Butterworth Scientific.
- Allemand, D., Furla, P., & Bénazet-Tambutté, S. (1998). Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. *Canadian Journal of Botany*, 76, 925–941.
- Armbruster, J. W. (1998). Modifications of the digestive tract for holding air in Loricariid and Scoloplacid catfishes. *Copeia*, 1998(3), 663–675.
- Armstrong, E. J., Roa, J. N., Stillman, J. H., & Tresguerres, M. (2018). Symbiont photosynthesis in giant clams is promoted by V-type H⁺-ATPase from host cells. *The Journal of Experimental Biology*, 221, jeb177220. https://doi.org/10.1242/jeb.177220
- Baker, D. W. (2010). Physiological responses associated with aquatic hypercarbia in the CO₂-tolerant white sturgeon *Acipenser transmontanus*. (PhD thesis). University of British Columbia, Vancouver, Canada. Retrieved from https://open.library.ubc.ca/clRcle/collections/ubctheses/24/items/1.0071525
- Baker, D. W., Matey, V., Huynh, K. T., Wilson, J. M., Morgan, J. D., & Brauner, C. J. (2009). Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 296, R1868-R1880. https://doi.org/10.1152/ajpregu.90767.2008
- Barnhart, M. C., & McMahon, B. R. (1988). Depression of aerobic metabolism and intracellular pH by hypercapnia in land snails, *Otala Lactea*. The Journal of Experimental Biology, 138, 289–299.
- Barott, K. L., Barron, M. E., & Tresguerres, M. (2017). Identification of a molecular pH sensor in coral. *Proceedings of the Royal Society B*, 284, 20171769. https://doi.org/10.1098/rspb.2017.1769
- Barott, K. L., Perez, S. O., Linsmayer, L. B., & Tresguerres, M. (2015). Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 309, R235–R246. https://doi.org/10.1152/ ajpregu.00052.2015
- Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S., & Tresguerres, M. (2015). Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. *Proceedings of the National Academy of Sciences*, 112, 607–612. https://doi.org/10.1073/pnas.1413483112
- Barott, K. L., Venn, A. A., Thies, A. B., Tambutté, S., & Tresguerres, M. (2020). Regulation of coral calcification by the acid-base sensing enzyme soluble adenylyl cyclase. *Biochemical & Biophysical Research*

- *Communications*, **20**, **79**. https://doi.org/10.1016/j.bbrc.2020.02.115. in press.
- Barron, M. E., Thies, A. B., Espinoza, J. A., Barott, K. L., Hamdoun, A., & Tresguerres, M. (2018). A vesicular Na⁺/Ca²⁺ exchanger in coral calcifying cells *PLOS One*, 13, e0205367. https://doi.org/10.1371/journal.pone.0205367
- Bayne, B. L., Bayne, C. J., Carefoot, T. C., & Thompson, R. J. (1976). The physiological ecology of *Mytilus californianus* Conrad: 2. Adaptations to low oxygen tension and air exposure. *Oecologia*, 22, 229–250. https://doi.org/10.1007/BF00344794
- Bentov, S., Brownlee, C., & Erez, J. (2009). The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. *Proceedings of the National Academy of Sciences*, 106, 21500–21504.
- Berenbrink, M., Koldkjaer, P., Kepp, O., & Cossins, A. R. (2005). Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. *Science*, 307(5716), 1752–1757. https://doi.org/ 10.1126/science.1107793
- Bohr, C., Hasselbalch, K., & Krogh, A. (1904). About a new biological relation of high importance that the blood carbonic acid tension exercises on its oxygen binding. *Skandinavisches Archiv Fuer Physiologie*, 16, 402–412.
- Boron, W. F. (2010). Sharpey-Schafer lecture: Gas channels. Experimental Physiology, 95, 1107–1130. https://doi.org/10.1113/expphysiol.2010. 055244
- Boutilier, R. G., Heming, T. A., & Iwama, G. K. (1984). Gills anatomy, gas transfer, and acid-base regulation. In W. S. Hoar & D. J. Randall (Eds.), *Appendix: Physicochemical parameters for use in fish respiratory physiology* (pp. 403–430). New York, NY: Elsevier.
- Brix, O., Lykkeboe, G., & Johansen, K. (1981). The significance of the linkage between the Bohr and Haldane effects in cephalopod bloods. *Respiration Physiology*, 44, 177–186. https://doi.org/10.1016/0034-5687(81)90036-0
- Caldeira, K., & Wickett, M. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365. https://doi.org/10.1038/425365a
- Campbell, J. W. (1991). Excretory nitrogen metabolism. In C. L. Prosser (Ed.), Comparative Animal Physiology, Environmental and Metabolic Animal Physiology (4th ed., pp. 277–324). New York, NY: Wiley.
- Caner, T., Abdulnour-Nakhoul, S., Brown, K., Islam, M. T., Hamm, L. L., & Nakhoul, N. L. (2015). Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins. *American Journal of Physiology-Cell Physiology*, 309, C747–C758. https://doi.org/10.1152/ajpcell.00085.2015
- Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology, 11, 50–61. https://doi.org/10.1038/nrm2820
- Cech, J. J., & Crocker, C. E. (2002). Physiology of sturgeon: Effects of hypoxia and hypercapnia. *Journal of Applied Ichthyology*, 18, 320-324.
- Chang, J.-C., & Oude Elferink, R. P. (2014). Role of the bicarbonateresponsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Frontiers in Physiology, 5, https://doi.org/10.3389/fphys. 2014.00042
- Chasiotis, H., Ionescu, A., Misyura, L., Bui, P., Fazio, K., Wang, J., ... Donini, A. (2016). An animal homolog of plant Mep/Amt transporters promotes ammonia excretion by the anal papillae of the disease vector mosquito Aedes aegypti. The Journal of Experimental Biology, 219, 1346–1355. https://doi.org/10.1242/jeb.134494
- Chen, Y., Cann, M. J., Litvin, T. N., Iourgenko, V., Sinclair, M. L., Levin, L. R., & Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. *Science*, 289, 625–628.
- Cooper, C. A., Regan, M. D., Brauner, C. J., De Bastos, E. S. R., & Wilson, R. W. (2014). Osmoregulatory bicarbonate secretion exploits H^+ -sensitive haemoglobins to autoregulate intestinal O_2 delivery in euryhaline teleosts. *Journal of Comparative Physiology B*, 184, 865–876. https://doi.org/10.1007/s00360-014-0844-x

- Cooper, T. G., Filmer, D., Wishnick, M., & Lane, M. D. (1969). The active species of "CO₂" utilized by ribulose diphosphate carboxylase. *Journal of Biological Chemistry*, 244, 1081–1083.
- Corstjens, P. L., Araki, Y., & González, E. L. (2001). A coccolithophorid calcifying vesicle with a vacuolar-type ATPase proton pump: Cloning and immunolocalization of the V₀ subunit c. *Journal of Phycology*, 37, 71–78.
- Cossins, A. R., & Gibson, J. S. (1997). Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. *The Journal of Experimental Biology*, 200, 343–352.
- Dejours, P. (1994). Environmental factors as determinants in bimodal breathing: An introductory overview. *Integrative and Comparative Biology*, 34, 178–183. https://doi.org/10.1093/icb/34.2.178
- Dolan, E., Saunders, B., Harris, R. C., Bicudo, J. E. P. W., Bishop, D. J., Sale, C., & Gualano, B. (2019). Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acidbase regulation of skeletal muscle. *Comparative Biochemistry and Physiology A*, 234, 77–86. https://doi.org/10.1016/j.cbpa.2019.04.017
- Duarte, R. M., Ferreira, M. S., Wood, C. M., & Val, A. L. (2013). Effect of low pH exposure on Na⁺ regulation in two cichlid fish species of the Amazon. *Comparative Biochemistry and Physiology A*, 166, 441–448. https://doi.org/10.1016/j.cbpa.2013.07.022
- Ellington, W. R. (1983). The recovery from anaerobic metabolism in invertebrates. *The Journal of Experimental Zoology*, 228, 431–444.
- Ellis, R. P., Urbina, M. A., & Wilson, R. W. (2017). Lessons from two high CO2 worlds—Future oceans and intensive aquaculture. *Global Change Biology*, 23, 2141–2148. https://doi.org/10.1111/gcb.13515
- Fehsenfeld, S., Kolosov, D., Wood, C. M., & O'Donnell, M. J. (2019). Section-specific H⁺ flux in renal tubules of fasted and fed goldfish. *The Journal of Experimental Biology*, 222, jeb200964. https://doi.org/10.1242/jeb.200964
- Feller, G., Poncin, A., Aittaleb, M., Schyns, R., & Gerday, C. (1994). The blood proteins of the Antarctic icefish *Channichthys rhinoceratus*: Biological significance and purification of the two main components. *Comparative Biochemistry and Physiology*, B, 109, 89-97.
- Furch, J., & Junk, W. J. (1997). Physicochemical conditions in the floodplains, *The Central Amazon floodplain* (pp. 69–108). Berlin, Heidelberg: Springer.
- Ganot, P., Tambutté, E., Caminiti-Segonds, N., Toullec, G., Allemand, D., & Tambutté, S. (2020). Ubiquitous macropinocytosis in anthozoans. eLife, 9, e50022. https://doi.org/10.7554/eLife.50022
- Gervais, M. R., & Tufts, B. L. (1998). Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (*Amia calva*), a primitive air-breathing fish. *The Journal of Experimental Biology*, 201, 2205–2212.
- Gilmour, K. M. (2001). The CO₂/pH ventilatory drive in fish. *Comparative Biochemistry and Physiology A*, 130, 219–240.
- Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., ... Buia, M. C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. *Nature*, 454, 96–99.
- Hammer, K. M., Kristiansen, E., & Zachariassen, K. E. (2011). Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Marine Environmental Research, 72, 135–142. https://doi.org/10.1016/j.marenvres.2011.07.002
- Harter, T. S., & Brauner, C. J. (2017). The O₂ and CO₂ transport system in teleosts and the specialized mechanisms that enhance Hb-O₂ unloading to tissues. In A. K. Gamperl, T. E. Gillis, A. P. Farrell & C. J. Brauner (Eds.), Fish Physiology: Vol. 36B: The Cardiovascular System: Morphology, Control and Function (pp. 1–107). New York, NY: Academic Press.
- Harter, T. S., May, A. G., Federspiel, W. J., Supuran, C. T., & Brauner, C. J. (2018). The time-course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 315, R397-R407.

- Harter, T. S., Shartau, R. B., Baker, D. W., Jackson, D. C., Val, A. L., & Brauner, C. J. (2014). Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, *Pterygoplichthys pardalis. Journal of Comparative Physiology B*, 184, 709–718. https://doi.org/10.1007/s00360-014-0838-8
- Harter, T. S., Zanuzzo, F. S., Supuran, C. T., Gamperl, A. K., & Brauner, C. J. (2019). Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish. *Proceedings of the Royal* Society B, 286, 20190339. https://doi.org/10.1098/rspb.2019.0339
- Heisler, N., Forcht, G., Ultsch, G. R., & Anderson, J. F. (1982). Acid-base regulation in response to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respiration Physiology, 49, 141–158. https://doi.org/10.1016/0034-5687(82)90070-6
- Heming, T. A., Vanoye, C. G., Stabenau, E. K., Roush, E. D., Fierke, C. A., & Bidani, A. (1993). Inhibitor sensitivity of pulmonary vascular carbonicanhydrase. *Journal of Applied Physiology*, 75, 1642–1649.
- Henry, R. P., Gilmour, K. M., Wood, C. M., & Perry, S. F. (1997). Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. *Physiological Zoology*, 70, 650–659.
- Henry, R. P., & Swenson, E. R. (2000). The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. *Respiration Physiology*, 121, 1–12. https://doi.org/10.1016/S0034-5687(00)00110-9
- Hochachka, P. W., & Mommsen, T. P. (1983). Protons and anaerobiosis. Science, 219, 1391–1397. https://doi.org/10.1126/science.6298937
- Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., ... Martz, T. R. (2011). High-frequency dynamics of ocean pH: A multiecosystem comparison. *PLOS One*, 6, e28983. https://doi.org/10. 1371/journal.pone.0028983
- van Holde, K. E., & Miller, K. I. (1995). Hemocyanins. In C. B. Anfinsen, Frederic M. Richards, John T. Edsall & David S. Eisenberg (Eds.), Advances in Protein Chemistry (Vol. 47). New York, NY: Academic Press. https://doi.org/10.1016/S0065-3233(08)60545-8
- Hu, M. Y., Guh, Y.-J., Stumpp, M., Lee, J.-R., Chen, R.-D., Sung, P.-H., ... Tseng, Y.-C. (2014). Branchial NH₄⁺-dependent acid-base transport mechanisms and energy metabolism of squid (*Sepioteuthis lessoniana*) affected by seawater acidification. *Frontiers in Zoology*, 11(55), https://doi.org/10.1186/s12983-014-0055-z
- Hu, M. Y., Sung, P.-H., Guh, Y.-J., Lee, J.-R., Hwang, P.-P., Weihrauch, D., & Tseng, Y.-C. (2017). Perfused gills reveal fundamental principles of pH regulation and ammonia homeostasis in the cephalopod *Octopus vulgaris*. Frontiers in Physiology, 8, 162. https://doi.org/10.3389/fphys. 2017.00162
- Huang, C.-H., & Peng, J. (2005). Evolutionary conservation and diversification of Rh family genes and proteins. *Proceedings of the National Academy of Sciences*, 102, 15512–15517. https://doi.org/10. 1073/pnas.0507886102
- Ip, Y. K., & Chew, S. F. (2010). Ammonia production, excretion, toxicity, and defense in fish: A review. Frontiers in Physiology, 1, 134. https:// doi.org/10.3389/fphys.2010.00134
- Itada, N., & Forster, R. E. (1977). Carbonic anhydrase activity in intact red blood cells measured with ¹⁸O exchange. *Journal of Biological Chemistry*, 252, 3881–3890.
- Jacobs, M. H., & Stewart, D. R. (1942). The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte. *The Journal of General Physiology*, 25, 539–552.
- Jarvis, K., Woodward, M., Debold, E. P., & Walcott, S. (2018). Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. *Journal of Muscle Research and Cell Motility*, 39, 135–147. https://doi.org/10.1007/s10974-018-9499-7
- Jensen, F. B. (2004). Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O₂ and CO₂ transport. Acta Physiologica Scandinavica, 182, 215–227.

- Karlsson, A., Eliason, E. J., Mydland, L. T., Farrell, A. P., & Kiessling, A. (2006). Postprandial changes in plasma free amino acid levels obtained simultaneously from the hepatic portal vein and the dorsal aorta in rainbow trout (Oncorhynchus mykiss). The Journal of Experimental Biology, 209, 4885-4894.
- Kawaguti, S., & Sakumoto, D. (1948). The effect of light on the calcium deposition of corals. Bulletin of the Oceanographical Institute of Taiwan, 4. 65-70.
- Kieffer, J. D. (2000). Limits to exhaustive exercise in fish. Comparative Biochemistry and Physiology A, 126, 161-179.
- Kline, D. I., Teneva, L., Schneider, K., Miard, T., Chai, A., Marker, M., ... Hoegh-Guldberg, O. (2012). A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports, 2, 413. https:// doi.org/10.1038/srep00413
- Koch, A. L., & Silver, S. (2005). The first cell. Advances in Microbial Physiology, 50, 227-259. https://doi.org/10.1016/S0065-2911(05)50006-7
- Kwan, G. T., Smith, T. R., & Tresguerres, M. (2020). Immunological characterization of two types of ionocytes in the inner ear epithelium of Paciic Chub Mackerel (Scomber japonicus). https://doi.org/10.1007/ s00360-020-01276-3
- Lambert, C. C., & Lambert, G. (1978). Tunicate eggs utilize ammonium ions for flotation. Science, 200, 64-65. https://doi.org/10.1126/science.
- Larsen, E. H., Deaton, L. E., Onken, H., O'Donnell, M., Grosell, M., Dantzler, W. H., & Weihrauch, D. (2014). Osmoregulation and excretion. Comprehensive Physiology, 4, 405-573. https://doi.org/10. 1002/cphv.c130004
- Laurent, J., Tambutte, S., Tambutte, E., Allemand, D., & Venn, A. (2013). The influence of photosynthesis on host intracellular pH in scleractinian corals. The Journal of Experimental Biology, 216, 1398-1404. https://doi.org/10.1242/jeb.082081
- Laurent, J., Venn, A., Tambutté, É., Ganot, P., Allemand, D., & Tambutté, S. (2014). Regulation of intracellular pH in cnidarians: Response to acidosis in Anemonia viridis. FEBS Journal, 281, 683-695. https://doi. org/10.1111/febs.12614
- Littlewood, D. T. J., & Young, R. E. (1994). The effect of air-gaping behaviour on extrapallial fluid pH in the tropical oyster Crassostrea rhizophorae. Comparative Biochemistry and Physiology Part A: Physiology, 107(1), 1-6. https://doi.org/10.1016/0300-9629(94)90264-X
- Mackinder, L., Wheeler, G., Schroeder, D., von Dassow, P., Riebesell, U., & Brownlee, C. (2011). Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environmental Microbiology, 13, 3250-3265.
- Mass, T., Drake, J. L., Haramaty, L., Kim, J. D., Zelzion, E., Bhattacharya, D., & Falkowski, P. G. (2013). Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Current Biology, 23, 1126-1131. https://doi.org/10.1016/j.cub.2013.05.007
- Mass, T., Giuffre, A. J., Sun, C. Y., Stifler, C. A., Frazier, M. J., Neder, M., ... Gilbert, P. (2017). Amorphous calcium carbonate particles form coral skeletons. Proceedings of the National Academy of Sciences, 114, E7670-E7678. https://doi.org/10.1073/pnas.1707890114
- McKenzie, D. J., Wong, S., Randall, D. J., Egginton, S., Taylor, E. W., & Farrell, A. P. (2004). The effects of sustained exercise and hypoxia upon oxygen tensions in the red muscle of rainbow trout. Journal of Experimental Biology, 207(21), 3629-3637. https://doi.org/10.1242/ ieb.01199
- Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., ... Pörtner, H.-O. (2009). Physiological basis for high CO₂ tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences, 6, 2313-2331. https://doi.org/ 10.5194/bg-6-2313-2009
- Milligan, C. L., & Wood, C. M. (1986). Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout. The Journal of Experimental Biology, 123, 123-144. https://doi.org/10. 1016/0026-0495(88)90170-9

- Mommsen, T. P., & Hochachka, P. W. (1988). The purine nucleotide cycle as two temporally separated metabolic units: A study on trout muscle. Metabolism: Clinical and Experimental, 37, 552-556. https://doi.org/10. 1016/0026-0495(88)90170-9
- Motais, R., Fievet, B., Garcia-Romeu, F., & Thomas, S. (1989). Na+-H+ exchange and pH regulation in red blood cells: Role of uncatalyzed H₂CO₃ dehydration. American Journal of Physiology, 256, C728-C735.
- Musa-Aziz, R., Chen, L. M., Pelletier, M. F., & Boron, W. F. (2009). Relative CO₂/NH₃ selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proceedings of the National Academy of Sciences, 106, 5406-5411. https://doi.org/10.1073/pnas.0813231106
- Nakada, T., Westhoff, C. M., Kato, A., & Hirose, S. (2007). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. The FASEB Journal, 21, 1067-1074. https://doi.org/10.1096/fj.06-6834com
- Nakada, T., Westhoff, C. M., Yamaguchi, Y., Hyodo, S., Li, X., Muro, T., ... Hirose, S. (2010). Rhesus glycoprotein p2 (Rhp2) is a novel member of the Rh family of ammonia transporters highly expressed in shark kidney. Journal of Biological Chemistry, 285, 2653-2664. https://doi. org/10.1074/jbc.M109.052068
- Nawata, C. M., Walsh, P. J., & Wood, C. M. (2015). Physiological and molecular responses of the spiny dogfish shark (Squalus acanthias) to high environmental ammonia: Scavenging for nitrogen. The Journal of Experimental Biology, 15, 238-248. https://doi.org/10.1242/jeb. 114967
- Nielsen, J. G., & Munk, O. (1964). A hadal fish (Bassogigas profundissimus) with a functional swimbladder. Nature, 204, 594-595.
- Nikinmaa, M. (2003). Gas transport. In I. Bernhardt & J. C. Ellory (Eds.), Red cell membrane transport in health and disease (pp. 489-509). Berlin, Germany: Springer.
- de Nooijer, L. J., Toyofuku, T., & Kitazato, H. (2009). Foraminifera promote calcification by elevating their intracellular pH. Proceedings of the National Academy of Sciences, 106(36), 15374-15378.
- Pelster, B. (1997). Buoyancy at depth. In D. Randall & A. Farrell (Eds.), Fish Physiology, vol. 16: Deep-sea fishes (pp. 195-238). New York, NY: Academic Press.
- Pörtner, H. O., Boutilier, R. G., Tang, Y., & Toews, D. P. (1990). Determination of intracellular pH and PCO₂ after metabolic inhibition by fluoride and nitrilotriacetic acid. Respiration Physiology, 81, 255-273.
- Pörtner, H. O., Reipschläger, A., & Heisler, N. (1998). Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. The Journal of Experimental Biology, 201, 43-55
- Randall, D. J., Rummer, J. L., Wilson, J. M., Wang, S., & Brauner, C. J. (2014). A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes. The Journal of Experimental Biology, 217, 1205-1214.
- Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17-23. https://doi.org/10.1016/S0025-326X(02)
- Reinfelder, J. R. (2011). Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3, 291-315. https://doi.org/10.1146/annurev-marine-120709-142720
- Roa, J. N., & Tresguerres, M. (2017). Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues. Physiological Reports, 5(2):e13090. https://doi.org/10.14814/ phv2.13090
- Romano, L., & Passow, H. (1984). Characterization of anion transport system in trout red blood cell. American Journal of Physiology, 246, C330-C338.
- Rummer, J. L., McKenzie, D. J., Innocenti, A., Supuran, C. T., & Brauner, C. J. (2013). Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science, 340, 1327-1329. https://doi. org/10.1126/science.1233692

- Sanders, N. K., & Childress, J. J. (1988). Ion replacement as a buoyancy mechanism in a pelagic deep-sea crustacean. The Journal of Experimental Biology, 138, 333–343.
- Seibel, B. A., Goffredi, S. K., Thuesen, E. V., Childress, J. J., & Robison, B. H. (2004). Ammonium content and buoyancy in midwater cephalopods. *Journal of Experimental Marine Biology and Ecology*, 313, 375–387. https://doi.org/10.1016/j.jembe.2004.08.015
- Shartau, R. B., Baker, D. W., & Brauner, C. J. (2017). White sturgeon (Acipenser transmontanus) acid-base regulation differs in response to different types of acidoses. Journal of Comparative Physiology B, 187, 985-994. https://doi.org/10.1007/s00360-017-1065-x
- Shartau, R. B., Baker, D. W., Crossley, D. A., & Brauner, C. J. (2016). Preferential intracellular pH regulation: Hypotheses and perspectives. The Journal of Experimental Biology, 219, 2235–2244. https://doi.org/ 10.1242/jeb.126631
- Shartau, R. B., Baker, D. W., Harter, T. S., Aboagye, D. L., Allen, P. J., Val, A. L., ... Brauner, C. J. (2020). Preferential intracellular pH regulation is a common trait fish exposed to high environmental CO₂. The Journal of Experimental Biology, 2020, jeb.208868. https://doi.org/10.1242/jeb.208868
- Shartau, R. B., Crossley, D. A., Kohl, Z. F., & Brauner, C. J. (2016). Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges. The Journal of Experimental Biology, 219, 1994–2002. https://doi.org/10.1242/jeb. 136119
- Shartau, R. B., Crossley, D. A., Kohl, Z. F., Elsey, R. M., & Brauner, C. J. (2018). American alligator (Alligator mississippiensis) embryos tightly regulate intracellular pH during a severe acidosis. Canadian Journal of Zoology, 96, 723–727. https://doi.org/10.1139/cjz-2017-0249
- Sørensen, S. P. L. (1909). Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochemische Zeitschrift, 21, 131–304.
- Tamiya, H., & Huzisige, H. (1948). Effect of oxygen on the dark reaction of photosynthesis. *Acta Phytochimica*, 15, 83–104.
- Tang, B. L. (2015). Thoughts on a very acidic symbiosome. Frontiers in Microbiology, 6, 816. https://doi.org/10.3389/fmicb.2015.00816
- Thiel, D., Hugenschütt, M., Meyer, H., Paululat, A., Quijada-Rodriguez, A. R., Purschke, G., & Weihrauch, D. (2017). Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). The Journal of Experimental Biology, 220, 425–436. https://doi.org/10.1242/jeb.145615
- Thomas, S., & Egée, S. (1998). Fish red blood cells: Characteristics and physiological role of the membrane ion transporters. *Comparative Biochemistry and Physiology A*, 119, 79–86.
- Thomas, S., & Hughes, G. M. (1982). A study of the effects of hypoxia on acid-base status of rainbow trout blood using an extracorporeal blood circulation. *Respiration Physiology*, 49, 371–382. https://doi.org/10.1016/0034-5687(82)90123-2
- Thomsen, J., Himmerkus, N., Holland, N., Sartoris, F. J., Bleich, M., & Tresguerres, M. (2016). Ammonia excretion in mytilid mussels is facilitated by ciliary beating. The Journal of Experimental Biology, 219, 2300–2310. https://doi.org/10.1242/jeb.139550
- Torigoe, T., Izumi, H., Ise, T., Murakami, T., Uramoto, H., Ishiguchi, H., ... Kohno, K. (2002). Vacuolar H⁺-ATPase: Functional mechanisms and potential as a target for cancer chemotherapy. *Anti-Cancer Drugs*, 13, 237–243.
- Toyofuku, T., Matsuo, M. Y., De Nooijer, L. J., Nagai, Y., Kawada, S., Fujita, K., ... Kitazato, H. (2017). Proton pumping accompanies calcification in foraminifera. *Nature Communications*, 8, 14145. https://doi.org/10.1038/ ncomms14145
- Tresguerres, M. (2016). Novel and potential physiological roles of vacuolar-type H⁺-ATPase in marine organisms. *The Journal of Experimental Biology*, 219, 2088–2097. https://doi.org/10.1242/jeb. 128389
- Tresguerres, M., Barott, K. L., Barron, M. E., Deheyn, D. D., Kline, D. I., & Linsmayer, L. B. (2017). Acid-base balance and nitrogen excretion in invertebrates. In D. Weihrauch & M. O'Donnell (Eds.), Cell biology of

- reef-building corals: Ion transport, acid/base regulation, and energy metabolism (pp. 193–213). Basel, Switzerland: Springer.
- Tresguerres, M., Barott, K. L., Barron, M. E., & Roa, J. N. (2014). Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals. *The Journal of Experimental Biology*, 217, 663–672. https://doi.org/10.1242/jeb. 086157
- Tresguerres, M., Buck, J., & Levin, L. R. (2010). Physiological carbon dioxide, bicarbonate, and pH sensing. *Pflügers Archiv*, 460, 953–964. https://doi.org/10.1007/s00424-010-0865-6
- Tresguerres, M., Levin, L. R., & Buck, J. (2011). Intracellular cAMP signaling by soluble adenylyl cyclase. *Kidney International*, 79, 1277–1288. https://doi.org/10.1038/ki.2011.95
- Tresguerres, M., Levin, L. R., Buck, J., & Grosell, M. (2010). Modulation of NaCl absorption by [HCO+-] in the marine teleost intestine is mediated by soluble adenylyl cyclase. *American Journal of Physiology-Regulatory*, *Integrative and Comparative Physiology*, 299(1), R62–R71. https://doi.org/10.1152/ajpregu.00761.2009
- Truchot, J.-P., & Duhamel-Jouve, A. (1980). Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. *Respiration Physiology*, *39*, 241–254. https://doi.org/10.1016/0034-5687(80)90056-0
- Tufts, B. L., & Boutilier, R. G. (1989). The absence of rapid chloride/bicarbonate exchange in lamprey erythrocytes: Implications for CO₂ transport and ion distributions between plasma and erythrocytes in the blood of Petromyzon marinus. The Journal of Experimental Biology, 144, 565–576.
- Tufts, B. L., & Perry, S. F. (1998). Carbon dioxide transport and excretion.
 In S. F. Perry & B. L. Tufts (Eds.), Fish Physiology: Vol. 17: Fish respiration (pp. 229–282). New York, NY: Academic Press.
- Ultsch, G. R. (1973). The effects of water hyacinths (Eichhornia crassipes) on the microenvironment of aquatic communities. Archive fur Hydrobiolgie, 72, 460–473.
- Ultsch, G. R., & Antony, D. S. (1973). The role of the aquatic exchange of carbon dioxide in the ecology of the water hyacinth (*Eichhornia* crassipes). Florida Scient, 36, 16-22.
- Voight, J. R., Pörtner, H. O., & O'Dor, R. K. (1995). A review of ammoniamediated buoyancy in squids (cephalopoda: Teuthoidea). Marine and Freshwater Behaviour and Physiology, 25, 193–203. https://doi.org/10. 1080/10236249409378917
- Van de Waal, D. B., Verschoor, A. M., Verspagen, J. M., van Donk, E., & Huisman, J. (2009). Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Frontiers in Ecology and the Environment, 8(145), 152.
- Wacker, T., Garcia-Celma, J. J., Lewe, P., & Andrade, S. L. A. (2014). Direct observation of electrogenic NH₄⁺ transport in ammonium transport (Amt) proteins. Proceedings of the National Academy of Sciences, 111, 9995–10000. https://doi.org/10.1073/pnas.1406409111
- Wagner, P. D. (1977). Diffusion and chemical reaction in pulmonary gas exchange. *Physiological Reviews*, 57, 257–312.
- Walsh, P. J., & Milligan, C. L. (1989). Coordination of metabolism and intracellular acid-base status: Ionic regulation and metabolic consequences. Canadian Journal of Zoology, 67(12), 2994–3004. https:// doi.org/10.1139/z89-422
- Weber, J.-M., Choi, K., Gonzalez, A., & Omlin, T. (2016). Metabolic fuel kinetics in fish: Swimming, hypoxia and muscle membranes. *The Journal of Experimental Biology*, 219, 250–258.
- Weihrauch, D., & Allen, G. J. P. (2018). Ammonia excretion in aquatic invertebrates: New insights and questions. The Journal of Experimental Biology, 221, jeb169219. https://doi.org/10.1242/jeb.169219
- Weihrauch, D. & O'Donnell, M. (Eds.) (2017). Acid-base balance and nitrogen excretion in invertebrates: Mechanisms and strategies in various invertebrate groups with considerations of challenges caused by ocean acidification, Basel, Switzerland: Springer.
- Weihrauch, D., Ziegler, A., Siebers, D., & Towle, D. W. (2002). Active ammonia excretion across the gills of the green shore crab *Carcinus maenas*:

- Participation of Na⁺/K⁺-ATPase, V-type H⁺-ATPase and functional microtubules. *The Journal of Experimental Biology*, 205, 2765–2775.
- Weiner, I. D., & Verlander, J. W. (2017). Ammonia transporters and their role in acid-base balance. *Physiological Reviews*, 97, 465–494. https://doi.org/10.1152/physrev.00011.2016
- Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. *Journal of Experimental Zoology*, 293, 284–301.
- Wittenberg, J. B., & Wittenberg, B. A. (1962). Active secretion of oxygen into the eye of fish. *Nature*, 194(4823), 106–107. https://doi.org/10.1038/194106a0
- Wood, C. M., Bucking, C., & Grosell, M. (2010). Acid-base responses to feeding and intestinal Cl⁻ uptake in freshwater- and seawater-acclimated killifish, *Fundulus heteroclitus*, an agastric euryhaline teleost. *The Journal of Experimental Biology*, 213, 2681–2692. https://doi.org/10.1242/jeb.039164
- Wood, C. M., Kajimura, M., Mommsen, T. P., & Walsh, P. J. (2005). Alkaline tide and nitrogen conservation after feeding in an elasmobranch (*Squalus acanthias*). *The Journal of Experimental Biology*, 208, 2693–2705. https://doi.org/10.1242/jeb.01678
- Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: Role of Rhesus (Rh) glycoproteins. The Journal of Experimental Biology, 212, 2303–2312. https://doi.org/10. 1242/jeb.023085
- Yellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. *Plant, Cell & Environment*, 31, 679–694. https://doi.org/10.1111/j.1365-3040. 2008.01802.x

- Zange, J., Grieshaber, M. K., & Jans, A. W. H. (1990). The regulation of intracellular pH estimated by ³¹P-NMR spectroscopy in the anterior byssus retractor muscle of *Mytilus edulis L. The Journal of Experimental Biology*, 150, 95–109.
- Zippin, J. H., Farrell, J., Huron, D., Kamenetsky, M., Hess, K. C., Fischman, D. A., ... Buck, J. (2004). Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. *The Journal of Cell Biology*, 164, 527–534. https://doi.org/10.1083/jcb.200311119
- Zoccola, D., Ganot, P., Bertucci, A., Caminiti-Segonds, N., Techer, N., Voolstra, C. R., ... Tambutté, S. (2015). Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. *Scientific Reports*, 5, 9983. https://doi.org/10.1038/ srep09983
- Zoccola, D., Tambutté, E., Kulhanek, E., Puverel, S., Scimeca, J. C., Allemand, D., & Tambutté, S. (2004). Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochimica & Biophysa Acta, 1663, 117–126.

How to cite this article: Tresguerres M, Clifford AM, Harter TS, et al. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. *J Exp Zool.* 2020;1–17. https://doi.org/10.1002/jez.2367