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We present a general theory of exceptional points of degeneracy (EPD) in periodically time-variant
systems. We show that even a single resonator with a time-periodic component is able to develop EPDs,
contrary to parity-time- (PT) symmetric systems that require two coupled resonators. An EPD is a special
point in a system parameter space at which two or more eigenmodes coalesce in both their eigenvalues
and eigenvectors into a single degenerate eigenmode. We demonstrate the conditions for EPDs to exist
when they are directly induced by time-periodic variation of a system without loss and gain elements.
We also show that a single resonator system with zero time-average loss-gain exhibits EPDs with purely
real resonance frequencies, yet the resonator energy grows algebraically in time since energy is injected
into the system from the time-variation mechanism. Although the introduced concept and formalism are
general for any time-periodic system, here, we focus on the occurrence of EPDs in a single LC resonator
with time-periodic modulation. These findings have significant importance in various electromagnetic and
photonic systems and pave the way for many applications, such as sensors, amplifiers, and modulators.
We show a potential application of this time-varying EPD as a highly sensitive sensor.
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I. INTRODUCTION

Frequency splitting phenomena at exceptional points
of degeneracy (EPDs) are adopted to serve in sensing
applications [1,2]. Frequency splitting occurs at degener-
ate resonance frequencies where multiple eigenmodes of
the system coalesce. Such degenerate resonance frequen-
cies are extremely sensitive to small changes in the system,
which lead to a detectable shift in the system variables.
This concept is used in modern sensing devices such as
optical microcavities [2—4], bending curvature sensors [5],
and optical gyroscopes [6,7].

The splitting point of degenerate resonance frequencies
varying a system parameter is referred to as an EPD and
it emerges in a system when two or more eigenmodes
coalesce in both their eigenvalues and eigenvectors into
a single degenerate eigenmode. The concept of EPDs has
received a surge of interest in recent years [8—16]. EPDs
have been found in non-Hermitian parity-time- (P7) sym-
metric coupled systems, i.e., systems with balanced gain
and loss [9,11,14,17,18]. EPDs based on the concept of
PT symmetry have been investigated in coupled waveg-
uides whose eigenmodes’ evolution is described in space
[1,8,19], and also in coupled resonators where the eigen-
modes’ evolution is described in time [10,12,15,20]. EPDs
may also exist in lossless-gainless periodic waveguides,
which support multiple polarization eigenmodes that are
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periodically mixed and usually occur at the transmission
band edge [13,21-30]. In essence, EPDs are obtained when
the system matrix is similar to a matrix that contains a
Jordan block [23,31,32]. At the EPD, the system eigen-
state is represented in terms of generalized eigenvectors
rather than the regular eigenvectors [22,23], which, in turn,
leads to algebraic growth in the system eigenstates [23,32].
There are different unique properties associated with the
emergence of EPDs, which lead to various potential appli-
cations, such as enhancing the gain of active systems
[16,33-37], directivity in antennas [38], enhanced sensors
[1,2,39], etc.

We demonstrate the occurrence of EPDs directly
induced by temporal-periodic variation of a system. The
newly introduced concept for systems that are periodi-
cally time varying is analogous to EPDs found in spatially
periodic waveguides [13,16,21-24,28,30].

In Fig. 1, we show two examples of temporally periodic
systems that exhibit EPDs. Note that time variation was
already considered in PT-symmetric systems with EPDs
[40—44]. The time variation was used to enhance some
features in systems that had already developed EPDs due
to PT symmetry. In contrast, in this paper, we show that
EPDs are directly induced in a single resonator by periodic
time variation of the system itself, without the need for
elements that exhibit time-invariant gain. As an example,
we demonstrate the concept using the simplest possible
resonator, i.e., an LC resonator, though the formalism is
general and applicable to any time-periodic photonic or
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FIG. 1. Two examples of systems with time-periodic variation:
(a) LC resonator with a time-varying capacitor C(¢). (b) Metallic
resonator filled with a dielectric that has a time-varying permit-
tivity (). These single resonators are able to exhibit EPDs when
a precise modulation frequency is applied.

radio frequency system. Remarkably, we demonstrate that
the occurrence of EPDs is solely due to time-periodic vari-
ations in a linear time-periodic (LTP) system. Hence, the
presence of time-invariant gain or loss (namely a transis-
tor, a pumped active medium, or material losses) is not
necessary to generate an EPD. When an EPD is directly
induced by time modulation, as proposed in this paper, the
system receives energy in a subtle way through the time-
variation process. Therefore, in an LTP system, the EPD
is simply obtained by tuning the period of the time mod-
ulation, which is a standard practice in many engineering
applications, in contrast to P7T-symmetric systems where
the requirements on gain and loss elements may be diffi-
cult to achieve in practice. Moreover, gain elements always
include parasitic reactances that have to be included in any
PT-symmetric double-resonator realistic design.

In Sec. I, we provide the general theory and formulation
for EPDs to exist in linear time-periodic systems. We also
show that even a single passive resonator (without gain
or loss elements such as transistors or negative resistors)
exhibit EPDs once time-periodic modulation is introduced.
Then we further investigate two other linear time-periodic
systems that include negative resistance and we derive the
necessary and sufficient conditions for second-order EPDs
to occur. Finally, we show how a simple resonator with
time modulation can perform as an extremely sensitive
sensor.

II. FORMULATION FOR EPD INDUCED BY
TIME-PERIODIC VARIATION

Time-periodic variation is introduced in a system
through any time-varying system parameter. Generally,
an LTP system may be comprised of multiple compo-
nents, therefore, we will assume that the state vector W(r)
describing this system is N-dimensional, i.e.,

V() = [V () --- UyO], (1)

where T denotes the transpose operator. The temporal
evolution of the state vector obeys the multidimensional

first-order differential equation

d
7O =MOYQ), 2

where M(7) is the N x N time-variant system matrix. For
LTP systems with period T, the state vector evolution
from the time instant ¢ to t + 7}, is given by

Wt +Tn) = @t + Tn, W), A3)

where ®(¢+ T,,,1) is the state transition matrix [45]. In
the following, for simplicity and without loss of generality,
we assume the matrix M(?) is represented by a piecewise
constant periodic function, hence, we relate the transition
matrix to the system matrices as

J
@=[]_ . (4)

where M, is the system matrix in the jth interval
T;, and the system modulation frequency is f,, = 1/T,

where T, = Zle T;. Solutions of an LTP system in

general satisfy
V(4 T,) =e '), (5)

which means that W () can be represented in terms of the
Floquet harmonics. Using the transition matrix to repre-
sent the time evolution of the state vector, we formulate
the eigenvalue problem as

DU(1) = AW(1). (6)

The eigenvalues X, = exp(—iw,T,,), n=1,...,N, with
w, being the system eigenfrequencies, are obtained by
solving the characteristic polynomial

det(® — AI) = 0. (7)

When the transition matrix is diagonalizable, we can write
@® = UAU!, where U is a nonsingular similarity trans-
formation matrix whose columns are the eigenvectors of
® that are all independent. This analysis is valid unless an
EPD emerges at which the transition matrix @ is nondiag-
onalizable and it is similar to a matrix A, that contains at
least a nontrivial Jordan block with P degenerate eigenval-
ues [32]. Therefore, at the EPD, the algebraic multiplicity
P of an eigenvalue A, (and its correspondent eigenfre-
quency w,) of (6) is higher than its geometrical multiplicity
(the number of independent eigenvectors associated with
that eigenvalue) because two or more eigenvectors coa-
lesce. The similarity transformation at the EPD is written
as ¢ = V_AJX*1 where the columns of V are composed of
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regular eigenvectors and generalized eigenvectors that are
found through

(@ — A IPW,(1) =0, p=12,....P. (8)

Here, W, with p > 1 are the generalized eigenvectors and
P is the order of degeneracy (see Chap. 7 in [31]).

III. TIME-VARIYING INDUCED SECOND-ORDER
EPD

For the sake of simplicity, the following analysis and
examples focus on second-order EPDs that emerge in LTP
systems, hence the transition matrix @ has dimensions
2 x 2. For a system described by a real 2 x 2 transition
matrix, the characteristic polynomial det(® — AI) = 0 has
real coefficients so that the eigenvalues A; and A, are
either both real or are a complex conjugate pair. Since the
determinant of the matrix can be expressed as

2
det(®) = njdp = [ M), )
o

=1

where tr denotes the trace of the matrix, then the determi-
nant can be either

det(@) = e, (10)

when A, = A}, where the symbol * denotes the complex
conjugate operation, or

det(g) — eis‘ﬂe(lm{w|}+1m{w2})Tm , (11)

when A; and A, are both real, where w; and w, are the
eigenfrequencies of the eigensystem (6) and s is an inte-
ger. At the EPD, the 2 x 2 transition matrix ® is similar
to a Jordan block with two degenerate eigenvalues that
are associated with a regular eigenvector and a general-
ized eigenvector obtained from (8). On the other hand, the
eigenvalues of any 2 x 2 matrix ® are [46]

b = tr(@)/2 % |/ [w(@)/2F — det(@) . (12)

where the upper and lower signs hold for » = 1,2. The
associated eigenvectors of the system described by a non-
diagonal @ are

\I’n = [¢12,)\n - ¢11]T5 n= 132’ (13)
where ¢ and ¢, are elements of the matrix @ [45]. It is
clear from the expression of the eigenvectors that degen-
erate eigenvalues lead to degenerate eigenvectors (i.e.,

identical eigenvectors) unless the matrix @ is diagonal.
Therefore, to guarantee the emergence of EPDs in a system

described by a nondiagonal transition matrix ®, it is suffi-
cient to have degenerate eigenvalues, i.e., it is sufficient to
satisfy the condition

tr(®)/2 = +/det(P). (14)
The presented formulation is general and describes the
occurrence of EPDs in any system described with the set
of differential equations in (2). Without loss of generality
and to provide a physical description of a 2 x 2 LTP sys-
tem, we demonstrate all the above concepts by using very
simple LC resonator examples.

A. Time-periodic system without gain and loss
elements

Consider first the lossless LC resonator with time-
periodic capacitance as depicted in Fig. 2(b); this example
demonstrates the existence of EPDs in a simple LTP sys-
tem made of a lossless and gainless resonator. We define
the system state vector as W(f) = [¢(¢) i(£)]”, where g()
is the instantaneous charge on the capacitor and i(¢) is

@ s / 0.5
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FIG. 2. (a) Real and imaginary parts of dispersion diagram

of the eigenfrequencies (complex resonance frequencies w) vs
normalized modulation angular frequency w,,. (b) The linear
algebraic growth of the inductor current at an EPD for an LC
resonator with a time-varying capacitor. Therefore, the energy
stored in the inductor grows quadratically.
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the inductor current as shown in the circuit depicted in
Fig. 2(b).

The time-variant capacitor is given by a two-level piece-
wise constant time-periodic function: C; in the interval
0<t<T;and C,in T| <t < T,,. The time evolution of the
state vector W(¢) is described by (2), where M(¢) = M, for
0<t<T and M(¢¥) =M, for | <t < T, with

0 -1 .
n_qu[l/(LOCj) 0 ] j=12. (15

Figure 2(a) illustrates the dispersion of the eigenfrequen-
cies w of ®, symmetrically located with respect to the cen-
ter of the Brillouin zone (BZ), vs the normalized angular
modulation frequency (w;,/wy), where wy = 1/4/LoCy and
Co =(C; + (1)/2. Note that the system is periodic, so that
for an eigenfrequency w, there corresponds all the Floquet
harmonics w + sw,,, where s is an integer. For the system
matrices (15) with real-valued elements, it can be shown
that det(®) = 1, which implies either that ||| = |A;| =
1 (hence, Im{w;} = Im{w,} = 0) when A, = A}, or that
A2 = 1/x; (hence, Im{w;} = —Im{w,}) when both eigen-
values are real. This means that at the EPDs, the degenerate
eigenvalue A, = %1, therefore, w, is purely real. This
finding agrees with what is shown in the complex dis-
persion diagram depicted in Fig. 2(a). The parameters of
the LC resonator are set as Lo =10 uH, C; =50 nF, and
C, =150 nF. The two w solutions coalesce for some modu-
lation angular frequencies w,, and become exactly equal at
the EPDs. In this particular example, EPDs occur at either
the center of the BZ (Re{w} = 0) or at the edge of the BZ
(Re{w/w,,} = £0.5). It is important to point out that for a
lossless and gainless system, the imaginary part of the dis-
persion diagram is symmetric with respect to the center of
the BZ and it vanishes at the EPDs, i.e., EPDs occur at
real-valued frequencies.

In Fig. 2(b), we show the time-domain simulation of the
state vector element i(¢) at one of the EPDs (w,, = 0.44w)
assuming a capacitor charge initial condition of ¢.(07) =
50 nC. It is clear from Fig. 2(b) that the capacitor current
is growing linearly with time even in the absence of gain
element, which resembles one of the most important char-
acteristics associated with the generalized eigenvector of a
second-order EPD. Note that even though there is no gain
element in the system, the time-periodic LC resonator is
not isolated, and it receives energy from, or provides it
to, the time-variation process. The time-variant capacitor
in this system can be implemented using a varactor diode
where a pump signal changes its capacitance.

The general condition (14) is sufficient for a system
described by a nondiagonal 2 x 2 transition matrix to
exhibit EPDs. In particular, for the lossless and gain-
less time-periodic LC resonator in Fig. 2, this sufficient

3
— F=1
e F=-1
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. -~ M3
0.15 0.2 0.25
C,/C,

FIG. 3. The function F' of the lossless LC resonator depicted in
Fig. 2(b) vs the capacitance C, and the normalized modulation
angular frequency w,,/w. Solid (blue) and dashed (green) con-
tours on the color map represent points which satisfy the EPDs’
condition F = +£1 in (16).

condition reads

F = cos(21T1) cos(2,7>)

LS L 9 Gy 1) sin(@aT) = +1
- = — — | sin sin =41,
3 e c, 111 21

(16)

where Q; = (LyC;)~'/? with j = 1,2 are the resonance
frequencies of the LC resonator in the time intervals 7}
and T, respectively. Figure 3 shows the function F vary-
ing the capacitance C, (C) is constant) and the normalized
angular modulation frequency (w,,/wy). The solid blue and
dashed green contours represent points on the color map
where an EPD exists: the blue contours represent points
where F =1, which are associated with EPDs at the cen-
ter of the BZ, while the dashed green contours represent
points where F' = —1, which are associated with EPDs at
the edge of the BZ.

Energy-wise, a time-periodic system (e.g., a time-
periodic LC circuit) is not isolated, and such a system is
in a continuous interaction with the source of time vari-
ation. Such an interaction can transfer energy into or out
of the system, i.e., the system will gain energy from or
lose energy to the time-variation source. The procedure of
periodically varying the capacitance to add energy to the
circuit is referred to as pumping [45,47—49], contrary to
adding energy to the system directly from an input source
such as a transistor, a time-invariant pump, or an optically
active medium, which are referred to in this manuscript
as time-invariant gain mechanisms [50,51]. The average
energy transfer into or out of an LTP component can be
calculated using the time-domain solution of the multidi-
mensional first-order differential equations in (2). It can be
easily shown that the state vector of a periodically time-
variant system experiencing an EPD grows linearly with
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time, and therefore, the average transferred energy to the
system will have a quadratic growth.

B. Time-periodic system with gain and loss elements

As a second example, we show that a system with time-
periodic loss and/or gain also exhibits EPDs. To demon-
strate the emergence of EPDs in this type of time-periodic
system, we use an RLC resonator with time-periodic
piecewise constant conductance, as depicted in Fig. 4(b).
Analogous to the previous example, we assume a two-
level piecewise constant time-periodic conductance: G for
0<t<T) and G, for T} <t < T,. In general, G| and G,
can be positive (representing a loss in the system) or neg-
ative (representing a gain). The state vector is defined as
W(1) = [g(t) i(£)]7, with g(f) as the instantaneous charge
on the capacitor and i(¢) as the inductor current. The con-
stant system matrices of the two-time intervals are given
by

[ =G/ -1 o
Mf—[ U(LoCo) 0 } f=ba (D

Such a system develops EPDs in two different scenarios;
the first scenario is through using time-periodic conduc-
tance with non-zero time average, whereas the second one
is through using time-periodic conductance with zero time
average, i.e.,

GiT+ G, T, =0. (18)

In addition, a system with a positive time-average con-
ductance has a dominant loss and a system with a negative
time-average conductance has a dominant gain. Moreover,
a system with a zero time average has a time-periodic gain
and loss balance.

1. Non-zero time-average conductance

Figure 4(a) shows the complex dispersion diagram of
a system with a positive time-average conductance (i.e.,
G T, + G, T, > 0). The parameters of the LC resonator are
Ly=10 uH, Cy =100 nF, G; =101 mS, G, =—99 mS,
and Ty = T, = T,,/2. Figure 4(b) shows the inductor current
at an EPD with w,, = 0.37w, and ¢.(0~) = 50 nC.

Note that for all the EPDs in such a system, the imag-
inary part of the eigenfrequencies is negative, which is a
result of the dominant time-average loss in the system and
this leads to an exponential decay of the system state vector
in addition to the linear algebraic growth (visible at early
times) due to the degeneracy.

Similar to the system with a dominant time-periodic
loss, a system with a dominant time-periodic gain (i.e.,
G\ T\ + G, T, < 0) will develop EPDs in its dispersion dia-
gram. However, eigenfrequencies away from the band gaps

@ (4 4 G 0.4
0.35 0.35
(=}
203 0.3
3
0.25 0.25¢ >
0.2 0.2
-0.5 0 0.5 -0.2 0 0.2
Re(w)/wm Im(w)/w

-5 ‘ :
0 0.2 0.4 0.6 0.8
Time (ms)
FIG. 4. (a) Dispersion diagram of the eigenfrequencies (com-

plex resonance frequencies w) of the resonator depicted in (b)
vs modulation angular frequency w,,. The vertical dashed line
represents the Im{w} = 0 to point out that the imaginary part is
negative. (b) Time evolution of the inductor current at an EPD
for the time-periodic lossy resonator with a positive time-average
conductance as shown in the figure.

have a positive imaginary part, which leads to an exponen-
tial growth of the state vector with time in addition to the
linear growth at the EPD.

2. Zero time-average conductance

The determinant of the transition matrix is
2

det(®) = 1_[ letr(Mij) — ¢ (GITITGT/QC)  (19)
j:

Therefore, when (18) is satisfied, det(®) = 1, which leads
to the same conclusion found for the lossless-gainless LC
resonator discussed in relation to Fig. 2. This means that at
the EPDs, A, = %1, and therefore, w, is purely real.

Assuming 71 = o Ty, then T, = (1 — «)T,,, and assum-
ing G| > 0, then to satisfy the time-average condition (18),
the conductance G, = —a G /(1 — ).

The schematic of a time-periodic gain- and loss-
balanced LC resonator is depicted in Fig. 5(b) where the
time-variant conductance is assumed to satisfy (18). The
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FIG. 5. (a) Dispersion diagram of the eigenfrequencies (com-

plex resonance frequencies w) of the resonator depicted in (b) vs
modulation angular frequency w,,. (b) Algebraic growth of the
inductor current at an EPD of the time-periodic gain-loss bal-
anced resonator, where the conductance is temporally periodic
with zero time average.

dispersion diagram shown in Fig. 5(a) is based on param-
eters Lo=10 uH, Cy=100 nF, G;=—-G,=100 mS,
and Ty =T,="T,/2, and modulation frequency w, =
0.32wy with wy = 1/4/LyCy. The time-domain evolution
of the inductor current i(f), assuming an initial capac-
itance charge ¢.(07) = 50 nC, is shown in Fig. 5(b).
Since the system has a second-order EPD and a time-
periodic gain and loss balance, we only observe a dom-
inant linear growth in the current of the resonator at
the EPD.

From (14), we find the sufficient condition for EPDs to
emerge in a system with time-variant conductance to be

F = cos(2;T) cos(2,7,)

2
Wy 1Ga | . .
— 1 - sin(£2171) sin(2,75) = %1,
9192[ 4G3] (21 Ty) sin(2:77)
(20)

where Gy = /Cy/Ly and ©; = wy,/1 — Gf/(4G(2)),j =

1,2, are the real parts of the complex resonance

(@) b) _r_1___F=1
0.4 5 04r Ty an —
[ \!
\
$ \!
\gs 0.3 0 03
‘S L
025 _
0 0.5 1 > 0'20 0.5 1
G,/G. G,/G.

FIG. 6. (a) The function F' in terms of the conductance G| and
the normalized modulation angular frequency w,,/@, for @ = 0.6.
(b) Contours of points which satisfy the EPD condition in (20).

frequencies for the resonator in the time intervals T}
and T,, respectively. In Fig. 6(a), we show the func-
tion ' vs conductance G; and the normalized angular
modulation frequency w,,/wy, where we assume a zero
time-average conductance with o = 0.6. There exists a
critical value of the conductance G; that is denoted by
G. = 2Goymax{l, (1 — «)/a}, beyond which both €; and
2, become purely imaginary and the system cannot exhibit
EPDs. In Fig. 6(b), the solid blue contours (F = 1) and the
dashed green contours (F = —1) represent points on the
color map where an EPD exists.

IV. SENSITIVITY TO SYSTEM PERTURBATION

As discussed in the introduction, the eigenvalues at the
EPDs are extremely sensitive to the perturbations of the
system parameters. In general, introducing a perturbation
¢ to any of the system parameters leads to a perturbed
transition matrix ®(g) and perturbed eigenvalues 1, (e),
with p =1, 2, ..., P where P is the order of the EPD. We
represent A, (¢) near the EPD eigenvalue A, by a single
convergent Puiseux series containing only powers of &!/%,
where the Puiseux series coefficients are calculated using
the explicit recursive formulas given in [52]. For a second-
order EPD (P =2), we use a first-order approximation of
Ap(e) as

)"p(e) %Ae+(—1)pa1ﬁ, (21

where

= J—@f(s,)»)/ﬁe)g . 22)

=0,A=

and f (e, A) = det[®(g) — AI]. As an illustrative example,
consider an LC resonator with time-variant capacitance
as described in Fig. 2, but with a lossy inductor with a
quality factor of 100, and assume C, is now perturbed
from its nominal value as (1 4+ ¢) C,. When C; is not per-
turbed, the system exhibits an EPD with an eigenvalue
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FIG. 7. (a) Variation of the eigenvalues away from the EPD of
a lossy LC resonator as in Fig. 2(b), but with a lossy inductor,
when the capacitor C, is perturbed. (b) The complex reso-
nance frequency w; exhibits large variations even for very small
perturbations &.

Ao = —0.98 for a modulation frequency w,, = 0.44wy. In
Fig. 7(a), we show the two perturbed eigenvalues A vs the
perturbation ¢ calculated from the exact eigenvalue prob-
lem (6) and by using the Puiseux series approximation.
The most important thing to notice from Fig. 7 is that an
extremely small perturbation in capacitor C, will lead to a
much larger change in the eigenvalues of the system. This
property is actually one of the most exceptional physical
properties associated with EPDs and it can be exploited
in designing extremely sensitive sensors [8,15]. The large
perturbation of the eigenvalues, in turn, implies a sharp
change in the complex resonance frequency of the LTP
LC resonator as shown in Fig. 7(b). For a positive but
very small e-perturbation, the imaginary part of the com-
plex resonance frequency shows a sharp change, while its
real part remains constant. Furthermore, a very small neg-
ative e-perturbation causes a rapid change of the real part
of the resonance frequency. For example, a +0.1% per-
turbation in the dielectric permittivity of the capacitor C,
(i.e., € =0.001) will change the imaginary part of the res-
onance frequency by 0.34wy, which implies 76% change
in the quality factor of the resonator. Hence, this highly
sensitive system can be employed to measure the dielec-
tric permittivity (that can be changed by an environmental

parameter, such as acidity or humidity, or a gas presence)
with very high accuracy.

V. CONCLUSION

Time-periodic systems support EPDs of different orders
directly induced by the time modulation of a parameter of
the system. Therefore, the existence of an EPD does not
require the presence of time-invariant gain or loss elements
in the system as implied in all the PT-symmetry examples
shown in the literature. Forced time variation of a system
element is another way to inject energy into the system,
and the EPD is obtained by properly tuning the modula-
tion frequency. The proposed way to obtain EPDs, directly
induced by periodic-time variation, enables even single
resonators to exhibit EPDs, in contrary to the minimum
of two resonators as implied by PT symmetry. Indeed, in
this paper, the time variation is not used to enhance the
properties of EPDs, but rather as a way to generate EPDs.

Second-order EPDs are demonstrated analytically and
supported with examples. We have shown the analytic suf-
ficient conditions for such EPDs to exist. Also, we have
demonstrated that in the absence of any time-invariant
gain- and loss-circuit elements, the resonance frequency
of an EPD is purely real. Furthermore, this property also
holds when gain and loss elements are explicitly intro-
duced in the system, assuming that the time average of
the gain and loss is zero. At the second-order EPDs, the
energy inside a time-periodic resonator grows quadrati-
cally with time even when the resonance frequency is
purely real, with the injected energy coming from the time-
modulation process. Moreover, we have illustrated how
such temporally induced EPDs lead to systems where the
eigenvalue (i.e., the complex eigenfrequency) is exception-
ally sensitive to a perturbation of the system. This may
have potential applications in conceiving highly-sensitive
devices.

In summary, the proposed way to obtain EPDs via time
modulation may present practical advantages compared to
PT-symmetric systems, since a single resonator is suffi-
cient to obtain an EPD as shown in this paper by just
introducing time modulation to one of its elements. More-
over, in many engineering applications, it is easier to tune
the modulation frequency than to realize devices with a
precise gain amount as required in P7T-symmetric systems
because gain devices possess parasitic reactances that have
to be included in any design.
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APPENDIX: ANALYTICAL TIME-DOMAIN
SOLUTION OF THE EVOLUTION EQUATIONS

An analytical time-domain solution of the evolution
equation in (2) with a two-level piecewise coefficient can
be obtained using the method explained in Ref. [45], where
the state vector W(¢) at any time instant t = mT,,, + x, with
x <T,1is

V(1) = @(x, 002" (T, 0)¥(0), (Al)
where W(0) is the initial condition of the state vector and
P(1,,11) is the state transition matrix between the time
instants #; and #,.

Let us consider first the time interval [0, 7)) within
which the system is time invariant. The transition matrix
relating the state vector between two instants #; and #,
belonging to [0, T) is found as [45]

@ (n,11) = W, ()W, (1), (A2)
where W, (¢) is the Wronskian matrix of the solutions in the
time interval [0, 77). Using the general Wronskian matrix
properties

W) = W(-0), (A3)

Wi)W(h) = Wt + 1), (A4)
the transition matrix between time instants #; and #, when
they belong to the time interval 7 is

B, (2, 11) = W, ()W (1) = W, ()W, (—11)

=W, (n —1). (A5)
Analogously, the transition matrix between time instants
t; and #, when they belong to the time interval 75 is
@, (02, 11) = Wy(ta — 1y).

Accordingly, when #; and #, are within two adjacent
different time intervals, the state transition matrix reads as

®(tr,11) = s (12, 1) R (te, 1) = Wy(ta — t0)W, (1. — 1),
(A6)

where . is the critical time instant at which the system
coefficient changes (i.e., at = t. = T), and the subscripts
J = 1,2 of W,denote the two different time intervals of
lengths 77 and T,. As an example, we consider the LC

resonator with time-variant capacitor, where the two Wron-
skian matrices of the solutions associated with each time
interval, 7; are given by

1 .
cos ;¢ o Sin ;¢

&
—;sinQ2;t cos 2t

W, (1) = [ } . (A

where Q; = (LyC;)~!/? with j = 1,2 are the resonance
frequencies of the LC resonator in the time intervals 7T}
and 7>, respectively. Therefore, the state transition matri-
ces at different time instants x for different pieces of the
time-variant capacitor read as

cos Q%
cos Q21 x
(A8)

QL]SiIlQU(
—Q;sinQ x ’

P(x,0) =2,(x,0) = [
if0 < x <Tj,or

@(x,0) = @,(x, 71)2,(T1,0)
_ [ cos(x —T1) g sinRa(x —T) }

—QsinQ(x —T1)  cosQu(x — T1)
cos 2Ty o-sinQ Ty
1 A9
|: —leinngl COSQ[T] ’ ( )

if T} < x <T,. Using the state transition matrices in
(A8) and (A9), one can find the solution to the evolution
equation in (2) knowing the initial state of the system.
Note that the derived transition matrix ®(7,,, 0)obtained
by substituting x = T, in (A9) is equal to the one
given in (4).
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