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Abstract: An oscillator scheme based on the degenerate band edge (DBE) in a periodic, double-ladder resonant circuit made of
lumped elements is proposed for the first time. The circuit exhibits a DBE in the dispersion diagram of its phase-frequency
eigenstates and possesses unique resonance features associated with a high loaded Q-factor resonance, compared to a single-
ladder circuit. This oscillator is shown to have an oscillation threshold that is half that of a single LC ladder circuit having the
same total quality factor, and thus is more robust than an LC oscillator in the presence of losses. Moreover, the double-ladder
oscillators have a unique mode selection scheme that leads to stable single-frequency oscillations even when the load is varied.
It is also shown that the output amplitude of the double-ladder oscillator is much less sensitive to the output loading compared to
single-ladder oscillators. The authors show the analysis and design of such oscillators that potentially lead to enhancing the

efficiency of RF components and sources.

1 Introduction

Oscillators are essential components of any radio frequency (RF)
system. Typically, an RF oscillator operates via a positive feedback
mechanism utilising a gain device with a selective reactive circuit
that generates a single tone used as the carrier frequency. The most
common oscillator configuration is based on an LC tank [1-4]. The
negative resistance required for positive feedback can be obtained
from topologies such as Pierce, Colpitts, and Gunn diode
waveguide oscillators, as well as a cross-coupled transistor pair [3,
5-7]. While widely used, all designs based on an LC-tank circuit
have some important limitations; their performance largely
depends on the loading conditions as well as the need for active
buffers. While oscillator based on LC tank is the most common,
other designs may feature distributed [8, 9], ring [10, 11], coupled
[12], or multi-mode [13] oscillators which come with their own set
of challenges.

The focus of this paper is on the latter; to propose a new
oscillator concept based on degeneracy condition as explained in
Section 2. The proposed oscillator is called the ‘double-ladder
oscillator’ and it utilises the degenerate band edge (DBE) property
that exists in a circuit made of cascaded unit cells, each consisting
of reactive components.

Some of the potential advantages of the double-ladder circuit
are that its criteria for oscillation are more relaxed, its oscillation
frequency is independent of loading, and it does not need active
output buffer stages for the load termination. Furthermore, while
the design presented here utilises lumped elements, all of the
introduced oscillator concepts can be easily applied to different
implementations since the DBE has already been demonstrated in
microstrip [14, 15] and circular waveguide [16, 17] technologies.
While electron-beam-based oscillators and lasers schemes based on
the DBE phenomenon have been shown very recently in [18] and
[19], respectively, the new radio frequency oscillator regime based
on lumped element ladder circuit with DBE is presented here for
the first time. A major benefit of the lumped circuit approach is the
simplicity of the DBE oscillator design. This simplicity is
manifested in the comprehensive understanding of its behaviour
and how it can be suitable to improving oscillator design.
Furthermore, the lumped circuit double ladder considered in this
manuscript mimics the distributed model of transmission lines
(TL). Therefore, the lumped element circuit gives an accurate
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representation of a potential TL design by means of precise time
domain simulations without an actual realisation of a TL circuit.
Furthermore, in some cases, it is convenient to perform the time
domain analysis of TLs by approximating distributed elements
with lumped element circuits; therefore, these findings provide a
direct path to understanding TL-based DBE oscillators, which is a
topic for future research. The basic properties of the DBE are
shown in [20] when realised with lumped elements, in [21, 22]
when realised using multilayer environments and in [23] when
realised using TLs.

In Section 2, a brief description of the properties of single- and
double-ladder circuits is provided. In Section 3, the resonance
characteristics, including the effect of losses on the double ladder,
are explored. In Section 4, we analyse the threshold conditions for
oscillation by a negative differential resistance. In Section 5, we
investigate time-domain behaviour of the oscillators that includes
the active device non-linearity. In Sections 2, 3, and 4, we assume
that the circuits are operating in the sinusoidal steady state so that
all voltages and currents are represented by phasors.

2 Single- and double-ladder circuits
2.1 Single-ladder circuit

We consider a periodic resonant circuit made up of LC ladder cells
connected in tandem. A simple example of such a cell, comprising
a series inductor and a shunt capacitor, is shown in Fig. 1a. Finite-
length implementations of periodic circuits have many applications
including filters, pulse-shaping networks, and delay lines [24-26].
Let us now suppose that Fig. la ladder of infinite length is
excited by a sinusoidal source with frequency w, and is operating
in steady state. For this mode of operation, all of the currents and
voltages can be expressed as phasors; in particular, the phasor ratio
Vi(n+1)/Vi(n) can be determined by simply finding the
eigenvalues and eigenvectors of the transmission matrix describing
the unit cell (note that these eigenvalues are not the same as the
circuit's natural frequencies; see Ch. 8 in [27]). Moreover, it can be
shown that for sufficiently low angular frequency w, Vi(n+1)/
V1(n) has unity magnitude; i.e. all voltages and currents have the
same amplitude, differing only by a fixed phase shift ¢(w).
Therefore, we define the eigenstates for a periodic circuit as the
possible solutions of the eigenvalue problem describing the
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Fig. 1 Basic unit cell geometries and their dispersion relation

(a) Unit cell of a periodic single-ladder lumped circuit, (b) Dispersion diagram, real
phase shift versus frequency, of the periodic single-ladder circuit that develops an
RBE at an angular frequency wg, (¢) Unit cell of a periodic double-ladder lumped
circuit, (d) Dispersion diagram of the periodic double-ladder circuit that develops a
DBE at an angular frequency wg. Also, the asymptotic dispersion relation typical of

DBE, w — w; = aly — 7'[]4, is plotted as square symbols

evolution of the voltages and currents from one cell to the next in
the periodic circuit following the Bloch—Floquet theory (see Ch. 8
in [27], and also [28]). In general, each eigenstate is characterised
by voltages and currents that vary from cell to cell as exp( — jy),
where y = ¢ — ja is the complex phase shift from one unit cell to
the next.

The relation between the applied frequency and the phase shift
between cells in an infinitely long periodic ladder is known as the
dispersion relation. For the ‘single’ ladder in Fig. la, it can be
shown that the eigenvalues of the transfer matrix [20, 27] are given
by

2 2
e’”:l—Z(ﬂ) +22 (ﬂ) -1 (1)
Wg Wg Y\ Wg

where w, = +/1/(LC). For @ = w,, these two eigenvalues coalesce
and have unity magnitude at which y = ¢ =z and a =0. The
corresponding dispersion relation is shown in the curve labelled
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regular band edge (RBE) in Fig. 16 at w, =+/1/(LC). The
dispersion of these states of phase near w = w, behaves as
(g — @) x (y - 7)*. (In this curve the range of principal values of
the inverse tangent function used to obtain ¢@(w) is chosen to be
from 0 to 2z, and only the dispersion of eigenstates for which
a =0 are plotted in a conventional manner [27]). The frequency
@, known as the band edge, defines the passband for the periodic
circuit. At frequencies higher than w, the eigenvalues will no
longer have unity magnitude, and thus Vi(n+ 1)/V1(n) will have
both an attenuation factor and a phase shift. This range of
frequencies corresponds to the stopband, and the condition is
known as an evanescent state.

Note that in Fig. 1b at w=w, the two phase shifts
corresponding to the eigenvalues in (1) coalesce into a single value.
This phenomenon is well-known in periodic structures that
naturally exhibit an electromagnetic band gap [27]. In general,
periodic structures composed of TLs or waveguides have been
shown to demonstrate unique properties associated with ‘slow-
light’ properties near the band edge [27-29]. Such properties are
associated with very high group delay near the band edge and
consequently lead to enhancing the quality factor of resonators.
Several applications have been investigated in lasers and high-
power electron beam devices based on the band-edge operation
[29-32].

2.2 Double-Ladder circuit

We now consider a periodic double-ladder circuit whose unit cell
with four ports is shown in Fig. lc. Since each unit cell is a
grounded four-port network, this circuit supports four eigenstates
rather than two, as was the case for the unit cell in Fig. 1a [7, 21].
Under an appropriate choice of the circuit elements, at a certain
frequency, these four eigenstates coalesce at ¢ =z and a =0
resulting in the so-called DBE condition [15, 16, 22, 33]. The four
sets of voltage and currents associated with these eigenstates are no
longer independent at this degeneracy point [20]. A DBE can only
be found in double ladders since it represents the degeneracy of
four eigenstates [20]. Near the DBE condition, the phase-frequency
dispersion relation of these states is characterised by
(wg— o) = a(y — n)' where a is a geometry-dependent fitting
constant, whose analytic expression is given in [20]. It is also
worth noting that the above relation is exactly satisfied at
w/wy =1, there providing the exact normalised complex phase
shift y/x=1, and almost nearly satisfied for a wide range of
complex phase shift y/z values in the vicinity of 1, because of the
quartic dependence, as seen in Fig. 1d. This property is not shared
by the RBE as seen in Fig. 1b, where at w/w, = 1, the frequency
dispersion relation Aw/w, (Ay/my’ is exactly satisfied, but
almost nearly satisfied for a much smaller range of y/z values than
for the DBE case. This provides some tolerance against
perturbations of the circuit elements in determining the resonance
frequency. The study of how tolerant the circuit is to those
perturbations will be carried out in the future as the main focus of
this paper is the introduction to the new DBE oscillator concept
and its basic operation principles.

For the unit cell shown in Fig. 1¢, the DBE angular frequency is
given by @, = 1/\/LC, while the characteristic impedance is
Z. =+/L/C [20]. The theory of lumped circuits with DBE has been
developed in [20], where different double-ladder circuit
configurations composed of cascaded identical unit cells are
studied. The normalised dispersion diagram for the four-port
periodic circuit with the proposed unit cell is depicted in Fig. 1d.
Note that the circuit in Fig. lc exhibits an RBE, as well, at an
angular frequency w, = wy//2 for the double ladder, at which two
of the eigenstates coalesce similar to the dispersion of a single LC
ladder. However, at = w,;, a DBE, where all four states coalesce,

can be observed. For the circuit in Fig. 1c, a value of a=120 g1
was used to fit the curve in Fig. 1d. To provide a practical
implementation at RF, values for the lumped capacitors and
inductors are chosen from commercially available lumped elements
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Fig. 2 Periodic arrangement of unit cells of Fig. 1(c)

(a) Double LC ladder periodic circuit made of N unit cells operated near the DBE. P1 through P4 represent the four ports of the N-cell circuit, () circuit with excitation voltage Vj,

and source resistance of 50, and 50 Q load at P3, (¢) double-ladder oscillator with terminations and active device configuration (other configurations may have an active device in

each unit cell)
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Fig. 3 Joltage transfer function between the upper output P3 and upper
input P1 nodes of the circuit with terminations as shown in Figs. 2b for

(a) Different number of unit cells and no loss in the elements and, () Different quality
factors for elements in an 8 unit cells resonator. The important resonance is the one
close to @y, denoted as w, 4, (¢) Voltage distribution corresponding to Qp =200 in the
upper ladder nodes and the lower ladder nodes of the circuit composed of 8 unit cells
at the DBE resonance occurring at ;. 4, (d) Current distribution in the upper ladder

nodes and the lower nodes of the circuit composed of 8 unit cells

whose Q, factor can exceed 200 [34, 35]. Namely, the following
ladder circuits are composed of inductors and capacitors whose
values are L=45nH and C=56 pF, respectively. As a result, the
circuit has a DBE frequency f, =1/ (Zn:\/lf) =~ 100.26 MHz and
Z.=283 Q.

3 Resonances of passive double-ladder circuit

In this section, we consider double-ladder circuits as shown in
Fig. 2a made by cascading a finite number N of unit cells shown in
Fig. 1c, and analyse their resonance characteristics related to the
DBE. In particular, we first investigate important characteristics of
passive double-ladder circuits, for which the effects of element
losses on the transfer functions, loaded quality factor, and driving

952

o 2 4 6 8

point admittance are explored in detail. These particular features
allow for an unconventional way to construct oscillators. We also
compare the double-ladder and single-ladder oscillators, while
highlighting the advantages of the former and demonstrating that
single-ladder oscillators can operate with multiple resonant modes
and thus can generate multiple frequencies, while double-ladder
oscillators can only oscillate at a single frequency.

Another undesirable property of the single-ladder configuration
is mode jumping, in which the frequency of oscillation can change
with the load resistance, as reported in the literature [13]. However,
here we demonstrate that double-ladder oscillators are not prone to
load-dependent variations, thereby exhibiting a more stable
oscillation frequency and lower threshold for oscillation as
compared to a single-ladder implementation.

As shown in Fig. 2a, every unit cell has four terminal nodes,
each of which is identified by two indices: / € {1,2} denoting the
upper or lower ladder, respectively, and n € {0,1,2,...,N}
denoting the node location along the double ladder. As such, each
cell's terminal nodes in Fig. 2a ladder will be referred to using the
notation (/, n). When a double-ladder circuit composed of N cells is
terminated at both ends by resistive loads, there will be a number
of complex-valued natural frequencies, corresponding to resonance
modes. It can be shown that the resonance angular frequencies
associated to the peaks in Fig. 3a are approximated by
@g — @y, = a(m/N)* near the DBE angular frequency w, where m
is a positive integer designating the resonance mode (similar to
other periodic structures with DBE in [18, 22, 36]). We focus here
on the closest resonance to the DBE corresponding to m =1 with
angular frequency ,, since it retains most of the properties
associated with the DBE; consequently, it is the sharpest one and
provides a ‘giant’ resonance as explained in [22]. To be consistent
with [20], we will refer to this frequency as w,4 throughout the rest
of this paper.

Characteristics of the DBE resonator have been discussed
thoroughly in [16-20, 23] and in particular double-ladder lossless
circuit properties have been shown in depth in [20]. Instead, here
we focus on the effect of losses on the performance of the DBE
resonator and how they are related to threshold criteria for
oscillation and the performance of DBE-based oscillators in
general.
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Fig. 4 Loaded quality factor scaling versus
(a) Number of unit cells N for different element quality, as well as for the lossless
theoretical limit, () Element quality factor Q¢ for different number of unit cells

3.1 Transfer function

As mentioned in the previous Section, the DBE resonance mode is
associated with an excitation of all four eigenstates [22, 33, 36]. In
this Section, we assume, as shown in Fig. 25, that the double ladder
is terminated with a 50 Q load at port 3, and with a voltage source
Vin in series with 50 Q at port 1. The lower ladder is shorted to
ground at ports 2 and 4. We first calculate the voltage transfer
function, |V,(N)/V(0)|, of this circuit for frequencies near the
DBE, for N=8, 10, and 12; the magnitudes of these transfer
functions are shown in Fig. 3a. As shown in [20], the DBE-related
transmission resonance peak at w,q in the double-ladder circuit
exhibits the highest O among the other resonances, and its quality
factor has been shown to scale as N° [20]. As noted previously
[33], the group delay near the DBE is very large as can be observed
by the flat region of the dispersion diagram in Fig. 1d, which
corresponds to a high-quality factor even when the circuit is
terminated by its characteristic impedance. (This impedance is the
result of the chosen L and C for oscillation frequency at 100 MHz,
as described in Section 2.2). Furthermore, as can be seen from
Fig. 3a, by increasing the number of unit cells, the DBE resonance
frequency , 4 approaches the DBE frequency w,. However, when
losses are introduced into each L and C in the circuit, the
resonance-loaded quality factor at w, g is significantly reduced as
compared to other resonances of the circuit. In Fig. 3b, the transfer
function of the double-ladder circuit is depicted only for the
resonance closest to the DBE for N=8. For simplicity, it is
assumed that all elements have the same quality factor Q..

Figs. 3¢ and d show how voltage and current magnitudes at the
frequency , 4 vary throughout the circuit for Q,=200. These
voltages and currents are evaluated at the nth node, n=0, 1, ... 8§,
in the finite double-ladder circuit in Fig. 2b. In Fig. 3¢, the voltage
distributions on the lower TL (red) and the upper TL (blue) are
depicted; likewise, in Fig. 3d, the current distributions for the upper
and lower lines are plotted. It is interesting to note that both the
voltage and current reach their peak magnitudes in the middle of
the lower ladder; these magnitudes are approximately six times
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larger than those of the upper ladder, even when losses are present.
On one hand, the reason for excitation of such voltage and current
in the resonator is due to the excitation of all of the eigenstates of
the periodic double ladder near the DBE condition, which is a
general property of DBE resonators [18, 22, 33, 36]. On the other
hand, the eigenstates of such particular periodic ladders have a
voltage distribution that is mostly confined to the lower ladder, in
the sense that the upper ladder nodes are essentially RF grounds;
this is also true of the middle node in the lower ladder (node with /
=2, n=4) [20]. The same behaviour can be seen for the current
distribution as well. Therefore, most of the energy stored in the
resonator is confined in the lower ladder's components. As can be
seen from the voltage distribution inside the eight-cell structure
shown in Figs. 3¢ and d, the maximum voltage amplitude occurs in
the middle of the structure, while the voltage is attenuated by an
order of magnitude at the edges. Since the load resistor is
connected at one of these edges, its value will not have a
substantial effect on the circuit's oscillation behaviour. Note that
the voltage amplitude in the middle is quite high (3 V), due to the
DBE effect. As a result, the presented oscillator will require less
DC power, as compared to an LC tank with an active buffer, even
though the eight-cell structure has many more lossy elements.

3.2 Total quality factor

To provide a comprehensive analysis of the performance of the
lossy resonator, we calculate the loaded quality factor Oy, of the
double ladder — that is, the quality factor of the circuit including the
resistive port terminations as well as the losses in the L and C
components. This loaded quality factor associated with the
resonance o, 4 is defined as [27]

W.+ W
Ot = wr.d% 2

where W, and W,, are the total time-average energy stored in the
circuits in the capacitors and inductors, respectively, and P; is the
time-average power dissipated in the resistive terminations and in
the components' loss. In [20], the loaded quality factor of a lossless
double ladder is thoroughly analysed, and instead the focus here is
the effect of component losses on Qy. For this circuit and for other
structures with DBE [17, 33, 37] and without losses, Qi is

proportional to N’ for large N as shown in [20]. Fig. 4 shows how
the loaded quality factor scales with number of unit cells N and
lumped element's quality factor Q., showing that for a realistic Q,,
of around 200 as chosen in this paper, eight unit cells is the optimal
number to have a good Qy.

As can be seen from the phase noise formulation in [38—40],
phase noise is a function of the inverse of the loaded quality factor
Oiot» among other parameters such as resonant frequency and
power of the signal. All oscillators suffer from phase and amplitude
perturbations, phase being the more prevailing of the two since the
amplitude has an inherent stabilisation due to loop gain [38]. Thus,
a design with inherent high Oy, such as ours, allows for natural
reduction of the phase noise. The precise role of the
(wg — w) = a(y — ©)* dispersion flatness on phase noise at w ~ w,
has yet to be studied. Since the goal of this paper was the
introduction of the new concept of the DBE oscillator, the detailed
phase noise analysis is left for the future studies where an in-depth
comparison with a single ladder and an LC tank will be performed.

3.3 Driving point admittance Yin

The most important characteristic for estimating the oscillation
criteria is the driving-point impedance at the location where an
active device will be connected in order to start the oscillation [2].
As of the very large resonance voltage and current in the lower
ladder relative to the DBE as seen in Fig. 3¢, driving the lower
ladder, especially near the middle of the resonator at the node
denoted by (/,n)=(2, N/2) with a negative conductance, would
have the greatest impact in compensating the effect of losses in the
circuit to achieve oscillation. Note that in other circuit
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Fig. 5 Magnitude of admittance near the DBE throughout the different
nodes of the double ladder circuit for

(a) N=8 unit cells and (h) N=16 unit cells. Square symbols denote the resonance
frequency at which Im(Y2(n)) =0, (¢) magnitude of the driving point admittance at the
resonance frequency versus quality factor of elements for N=8 cell double ladder
resonator, (d) Characteristic for the active device = —g,V+¢ V3 in which

C=gnl (3V,2,), that exhibits small-signal negative resistance

configurations, the same analysis is necessary to predict the
location of the peak voltage and consequently the driving point.

To provide a meaningful assessment of the oscillation threshold,
we consider a single-ended loading scheme in which port 3 is
terminated by 50 Q load, while ports 1, 2, and 4 are terminated by
a short circuit as shown in Fig. 2c.

In Figs. 5a and b, we show the magnitude of the driving-point
admittance versus normalised frequency at the three middle nodes
of the circuit for N=8 and N= 16 unit cells (i.e. nodes n=4, 5, 6
and n=38, 9, 10, respectively, with /=2). Both lossless and lossy
elements with Q, =200 are considered. From the results shown in
Figs. 5a and b, it can be seen that the lower ladder's node in the 5th
and 9th unit cell, corresponding to N =8 and N = 16, respectively,
exhibit the lowest input admittances; thus they constitute the
appropriate driving points for both configurations. It can also be
seen from Figs. 5a and b that as the number of cells increases, the
trend for the input admittance is different for the lossy and lossless
circuits.

When N increases from 8 to 16, the admittance decreases by
50% for the lossless case (dashed lines in Figs. 5a and b), while it
increases by 40% for the case with Q,=200 (solid lines). (Note
that the minimum value of the admittance's magnitude does not
exactly correspond to the resonance condition at which Im(Y;,) =
0); the resonance frequency is indicated in Figs. 5a and b with a
square symbol.

To realise an oscillator, we use the circuit shown in Fig. 2c,
which shows all of the port terminations and the placement of the
active device, and plot the real part of the input admittance at
resonance for an eight-cell double-ladder circuit as a function of
the loaded quality factor of elements, shown in Fig. 5c. It can be
observed that the admittance rapidly decreases as Q, increases, and
saturates after some value (for O, < 2000, we have Re(Y)=0.2
mS). Thus, selecting elements with very high O, is not necessary
when constructing an oscillator since the applied negative
resistance value required for oscillation will only be slightly higher
in magnitude. (To compare these characteristics with those of a
single LC ladder filters, we refer the reader to [13, 25, 26] for
filtering characteristics of a single ladder, as well as for the scaling
of the quality factor of regular band edge resonators).

It is very important to point out the DBE oscillator could
operate in two different ways. One would be by applying an active
device to each unit cell. This could be done by using a set of
differential cross-coupled pairs, for instance. Thus, working near
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the DBE would not only provide for good conditions for the
driving point admittance but would also provide nearly 180° phase
shift from one cell to the next such that a cross-coupled pair
between two cells would guarantee fully differential operation. The
other way would be to connect just one single-ended active device
(such as those in [2, 41], for example) which we investigate next.

4 Active double ladder circuit

In this section, we investigate the oscillation condition of the
double-ladder circuit and compare some of the important
characteristics of oscillations of the proposed double-ladder
oscillator to a single-ladder-based oscillator. For purposes of the
comparison, we will use the same number of cells in both
structures. The proposed oscillator is composed of a double ladder
terminated by a single-ended resistive load in the upper ladder end
as seen in Fig. 2¢ (as described in Section 2.2), while the active
device (a single-ended negative resistance) is attached to the
driving point. As in most LC-based oscillators, the conditions for
oscillation are formulated using the Barkhausen criteria for the
feedback system [3, 42].

An active device used to induce oscillations can be
characterised by its operating /-J curves. A negative resistance can
be practically implemented by CMOS transistors or diodes and an
example for a third-order /-7 characteristic is shown in Fig. 5d,
which utilises the following equation:

I=— gmv + gVS’ (3)

where — g, is the slope of the /-V curve in the negative resistance
region, and ( is the third-order non-linearity constant that models
the turning points of the characteristic. (It is this characteristic that
determines the steady-state oscillation amplitude.) To realise a
constant DC voltage-biased active device, we choose the turning
point V}, of the I-V characteristics to be constant under different
biasing levels. In particular, we set ¢ = g,/(3V}), as shown in
Fig. 5d. We also assume that the capacitances in the ladder are
much larger than any parasitic capacitance associated with the
negative resistance device. Calculations are carried out using ADS
transient solver.

4.1 Transconductance parametrisation

As previously discussed, the negative conductance required to
cancel losses, thereby allowing oscillations to start up, is to
measure the driving-point admittance at the port where this
conductance will be inserted. From Fig. 5a, Yj, of the Sth cell is
~1.2mS. Fig. 6a shows the minimum magnitude of the
transconductance versus the number of cells of the double ladder.

The lossless double ladder's threshold follows the same trend as
its quality factor varying as a function of length; i.e. since Qi N’
the double ladder's threshold g min 1/N° when the active device
is attached to every cell. In addition, it can be observed that when
the active device is connected only to the middle cell, the threshold
is higher and its trend versus N is fitted to gu, mn & 1/N>7. This is a
remarkable feature of DBE resonators in general as compared to
single-ladder oscillators in which scaling is gu mn  1/N° when
active devices are connected to each cell [16]. When element
losses are considered here with Q.=200, the minimum g,
increases from the lossless case, particularly for large N. However,
we see that for large N, the threshold saturates, which is a
consequence of the saturation feature of Oy factor versus Q,.

To provide a meaningful comparison, we compare the threshold
&m.min at the ([,n) = (2, N/2) node cell only, varying as a function of
the Q. as well as Q. For all of the remaining simulations, the
driving point for negative resistance is set to be the (/2 + 1)th cell.
It is shown in Fig. 6b that for a given Oy, the double-ladder
exhibits a lower oscillation threshold than the single ladder.

Moreover, when comparing the threshold versus the element
0., the double ladder shows a lower threshold even for a relatively
low element Q. < 100. The reason for the better behaviour of the
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Fig. 6 Minimum gy, gy min. (to start oscillations) scaling versus

(a) Number of unit cells N for the double-ladder oscillator. The plot also shows for the
lossless case a trend corresponding to g, min & /N, (b) Different values for loaded
quality factor Qtot, (¢) Lumped element quality factor, Qe, for double ladders and
single ladders of two different sizes N=8 and N= 16, (d) Inductor quality factor O,
for double and single ladders with eight unit cells (all the other Qs and load are kept
constant). In all of cases the threshold of the double ladder is lower than that of the
single ladder

double ladder is that it features a fourth-order degeneracy. Fig. 6¢
shows how the threshold transconductance varies as a function of
Q. for a double ladder and single ladder of two different sizes with
N=8 and N=16 unit cells. We can see that for a low element
quality factor, the eight-cell double-ladder circuit has the lowest
threshold, for Q. > 100. Furthermore, the single ladder of 16 cells
has a higher threshold than all other configurations, which
indicates that a double ladder has an improved characteristic
compared to a single ladder. This is a novel phenomenon that could
be further investigated in order to enhance the efficiency of
microwave oscillators. Fig. 6d shows threshold transconductance
versus inductor quality factor, Q;, while keeping capacitor O, of
460 unchanged from the previously reported value. Realistic values
of inductor Q; drop rapidly as frequency of operation increases,
especially in integrated circuits technology, but even at low Oy
values, above ~5 (below which oscillation does not happen), DBE
oscillators based on double ladder demonstrates 75% lower
threshold than RBE oscillators based on single ladder, up to Oy of
50. This remarkable property is again due to the DBE phenomena
and its ability to have a higher Oy even with low element Q's.
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5 Double-Ladder oscillator

In this section, we study the time-domain response of the proposed
double-ladder oscillator (DLO), as well as the loading effect. The
transient behaviour of this oscillator is simulated using Keysight
ADS and the I-V characteristics of the active device was modelled
asin (3) with V=1 V.

5.1 Start oscillation thresholds

Fig. 7a and b show one of the main advantages of the double-
ladder circuit over a single ladder: An eight-cell double-ladder
circuit requires 30% less g, than an eight-cell single-ladder and
57% less g, than a 16-cell single-ladder for the circuit to have
stable oscillation. In addition, Fig. 7b shows the steady-state output
voltage amplitude for single- and double-ladder oscillators (both
made of 8 unit cells) versus g, The double-ladder oscillator
produces higher load voltage amplitudes, in comparison with the
single-ladder counterpart, for small g,, (above threshold) up to g,
=2.92 mS. Above this value, the amplitude of the single ladder
becomes higher. However, as g,, keeps increasing, this increases in
the amplitude saturates, producing negligible returns for both
ladders. The lower oscillation threshold of the double ladder can be
attributed to the DBE resonance and the way the voltages and
currents are distributed inside the eight-cell structure, which are
shown in Figs. 3c and d. Since the maximum voltage amplitude
occurs in the middle of the structure, and the voltage is attenuated
by an order of magnitude at the edges, lumped elements that are
further away from the middle of the structure have very little effect
on the Qi of the structure, which manifests itself in lower g, min
to start the oscillation as compared to a single ladder. The obvious
implication is that the double-ladder structure has advantages of
low-threshold oscillations, specifically in applications requiring
low power consumption, while producing diminishing returns for
higher values of g,,,.

Fig. 7c shows the steady-state output voltage amplitude for
single- and double-ladder oscillators, with 6 and 8 cells, and all of
the inductors and capacitors having half of the quality factor found
in [34] and [35], i.e. half of 160 and 210 for 45 and 90 nH
inductors, respectively, and half of 460 for the 112 pF capacitor. It
is seen from the figure that the double-ladder oscillator always has
a lower threshold as compared to an equivalent (in number of cells
and Q,'s) single-ladder oscillator. It is observed that the double
ladder with 8 cells and half of Q,'s has a lower threshold as
compared to a single ladder with only 6 cells and half Q,'s. This is
a remarkable since 8 cell double-ladder structure has 40 lossy
lumped elements, while 6 cell single ladder has only 12 lossy
lumped elements.

5.2 Isolation of the loading effect

One remarkable advantage of the double-ladder oscillator, besides
having a lower threshold than the single ladder, is demonstrated in
terms of the reduced sensitivity of the oscillation frequency on the
load variations. Typically, the oscillation amplitude decreases (and
for some cases the oscillator may not even operate) when the
output termination resistance is changed from its nominal value.
Often, for this reason, the output buffer stages for LC oscillators
are needed to isolate it against those variations. Moreover, single-
ladder oscillators have been shown to demonstrate mode jumping
where the oscillation frequency and mode of operation changes for
various loads (see for example the analysis in [13], and the
explanation of this behaviour in [20] near the band edge). To
demonstrate this effect in ladder oscillators, the steady-state load
voltage calculated from transient simulations varying as a function
of load is considered. The spectrum of the load voltage is then
calculated by applying a windowed Fourier transform (rectangular
window with width of 1 ps) on the saturated voltage waveform.
The single-ladder load voltage spectrum versus the load
resistance, for g, =3 mS and all elements with O, =200 with N=
8, is shown in Fig. 8a. From this spectrum, it can be seen that the
oscillation frequency jumps from the desired frequency near the
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Fig. 7 Oscillation behavior for single- and double-ladder structures as
well as peak output voltage

(a) Transient load voltage for three different cases of single-ladder and double-ladder
oscillators in comparison, (b) Steady-state output voltage amplitude for different
values of g, comparing single and double ladders with 8 cells with original Q,'s, (c)
Steady-state output voltage amplitude for different values of g, comparing single and

double ladders with 6 and 8 cells, with half of the previously reported Qp's

RBE of the single ladder (~100 MHz) to a lower frequency (~87
MHz) for sufficiently high load impedance. Moreover, this circuit
does not oscillate for impedances below 1000 Q. Indeed, the single
ladder threshold for 50 Q found from Fig. 65 confirms that g,, =3
mS is below the threshold for such a load. In contrast, with the
double-ladder oscillator with N=8 and Q,=200, the oscillation
frequency is independent of the variation for the load resistance as
seen from Fig. 8b. Such a remarkable feature of DBE-based
oscillators shows the robustness of the design and its resistance to
load pulling. The single ladder exhibits multimode oscillation at
particular load values (for instance at 3 kQ the single ladder
oscillator can oscillate at both 0.99 w; and 0.88 w,), instead, the
double ladder oscillates at only a single frequency at ~0.995 wy
demonstrating the unique mode selection scheme of double
ladders. Importantly, the double-ladder oscillator also generates the
same oscillation frequency for higher values of g,,. These
properties can also be observed when the load has a reactive
component.

Fig. 8c shows the power delivered to the load resistor R; for
three values of g,, above the g, min and Q. of 200 for all of the
elements. The maximum power delivered to R; occurs when its
value is close to 28 Q which is the characteristic impedance Z, of

956

20log|V;(f)| [dBV/Hz]

0
l-i
0

R, [kQ]
w s W

(3]

20log|7;(f)| [dBV/Hz]

5
_ 4
g,
=
1
0
0.8 0.9 1
wlwy
gm=2'2gm,mm b
Sl gm=1'5gm.mm
. gm=1-3gm:mm
200 T
3 ] E
5150 ¢ ] 108
=g E j| - 3’ |
= £ 18107 lossless
NIOOE (il —-Q—’OO%
50 £ 10 E
2 ! : — | Pesmm————etT T =
0 ‘ ) 10 . T R
10° 100 100 10’ 10° 100 100 10’
R, [Q] R, [Q]
c d

Fig. 8 Spectrum of load voltage 20log| Vi (f)| for

(a) Single-ladder oscillator, (h) double-ladder oscillator, both with 8 unit cells, varying
as a function of the load resistance Ry, for g, =3 mS, with all elements with Q=
200; the plots show the stability of the oscillation frequency of the double-ladder
oscillator over a very large variation of the load resistance, (¢) Average steady state
power delivered to the load versus loading R, for O, =200 showing that maximum
power is delivered when Rj matches the characteristic impedance of Port 3, (d)
Minimum loaded quality factor corresponding to the lossless double-ladder resonator
when varying the load resistance, and almost constant total quality factor considering
lossy elements

Port 3 of the structure in Fig. 2a. Fig. 84 is another example of how
the double ladder is resistant to load variations. In the lossless case,
over a very large range of values of the load resistance, the O never
decreases under a given minimum, and such a minimum has a large
O value. In other words, the plot shows that the Q is large for any
load resistance in the lossless case. When lumped element losses
are considered, Oy is practically unchanging for a very large range
of values of the load resistance.

6 Conclusion and remarks

A novel oscillator concept, based on a periodic double-ladder
lumped-element circuit, has been presented in which a DBE
condition occurs. The passive behaviour of the double-ladder
resonator has been analysed by considering the quality factor
scaling over size and effects of loss. It has been shown that the
conditions for oscillation are relaxed for the double-ladder as
compared to the single-ladder circuit, thus allowing lower power
dissipation from the negative conductance circuit that is required.
Moreover, the invariability of the oscillation frequency in the
presence of variation in the load impedance has been shown to
prevent mode-jumping behaviour that can be observed in single
ladders. This advantage can result in less power consumption for
the active elements.
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While the lumped element circuit studied here gives a great
foundation for building an oscillator with DBE phenomena, mainly
due to the simplicity of the unit cell, it has some limitations that
must be considered. One issue that must be considered when
implementing this design in the gigahertz frequency range and
above, is the decrease of inductor quality factor with increasing
frequency, especially in the integrated circuit technology where
inductor Q is only 20-30. An obvious workaround the inductor low
Q. limitation is the elimination of all lumped elements by means of
implementation of the unit cell with degeneracy condition in
another technology, such as microstrip or waveguide where there is
no need for lumped elements [14, 16, 43, 44]. As previously
mentioned, the simple lumped element structure of this paper
already mimics the RF/microwave distributed TL model and, with
minor alteration, can easily be translated to a different technology
such as TLs, and more specifically microstrip waveguides. We can
use microstrip line's inductance and capacitance to avoid the need
for realisation of an actual inductor/capacitor and use proximity
coupling to imitate the coupling capacitor used in the lumped
element design. To avoid a large integration area, equivalent
inductance realised by a microstrip line should be as small as
current IC technology allows. Since f; « 1/{/LC, where f; is the
DBE frequency, a compact microstrip design would best be
realised at higher RF frequencies since it will not require big
inductor and capacitor values. The elimination of all lumped
elements from the design, and inductors and capacitors in general,
as well as the implementation of the DBE oscillator concept using
waveguides, has a potential to be a very power efficient and stable
oscillator design based on what discussed here.

Comparison between the proposed double-ladder oscillator and
a conventional LC-tank oscillator circuit will be carried out in the
future that would account for phase noise, power consumption, and
other practical aspects. DBE-based oscillator design may avoid the
need for stages of power-hungry current-mode logic buffers to
reach acceptable oscillation amplitude at the low impedance
termination, as well as improvements to the phase noise.
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