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Abstract— We investigate the modal characteristics of
coupled-mode guiding structures in which the supported
eigenmodes coalesce; the condition we refer to as an exceptional
point of degeneracy (EPD). EPD is a point in a system parameter
space at which the system eigenmodes coalesce in both their
eigenvalues and eigenvectors, where the number of coalescing
eigenmodes at the EPD defines the order of the degeneracy.
First, we investigate the prospects of gain/loss balance and how
it is related to realizing an EPD. Under geometrical symmetry
in coupled resonators or coupled waveguides such scheme is
often attributed to PT-symmetry; however, we generalize the
concept of PT-symmetry to coupled waveguides exhibiting EPDs
that do not necessarily have perfect geometrical symmetry.
Secondly, we explore the conditions that lead to the existence of
EPDs in periodically coupled waveguides that may be lossless
and gainless. In general, we investigate properties associated to
the emergence of EPDs in various cases: i) uniform, and ii)
periodic, lossy or lossless, coupled-mode structures. Generally,
the EPD condition is very sensitive to perturbations; however, it
was shown recently with experimental and theoretical studies
that EPDs’ unconventional properties exist even in the presence
of loss and fabrication errors. Extraordinary properties of such
systems at EPDs, such as the giant scaling of the quality factor
and the high sensitivity to perturbation, provide opportunities
for various applications in traveling wave tubes, pulse
compressors and generators, oscillators, switches, modulators,
lasers, and extremely sensitive sensors.
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I. INTRODUCTION

Exceptional ~points of degeneracy (EPDs) in
electromagnetics are points at which two or more eigenmodes
coalesce in both their eigenvalues and eigenvectors. At these
points, the matrix describing the wave propagation is
defective, 1.c., it has degenerate eigenvalues associated with
degenerate eigenvectors and the matrix is similar to a Jordan
block or to a matrix containing at least a non-trivial Jordan
block. The simplest EPD in a spatially uniform (i.e., z-
invariant) waveguide can be found at the cutoff frequency
where two modes, the forward and backward modes, coalesce
at the propagation wavenumber k=0. The number of
coalescing eigenmodes at the EPD defines the order of the
degeneracy. For instance, the system exhibits 2™ order EPD if
only two eigenmodes are coalescing at the EPD, and we call
it the regular band edge (RBE). Similarly, we define the
stationary inflection points (SIP), and the degenerate band
edge (DBE) as the 3™ and 4 order EPDs, respectively [1]-[3]
in systems with loss and gain. For a structures exhibiting an
EPD with order m (m eigenmodes coalesce into one
eigenmode), the system dispersion relation has an asymptotic

behavior of (w—w,) o< (k—k,)" near the EPD, where @

and £ are the angular frequency and the guided wavenumber,
respectively, and the EPD is designated with the subscript e.

Such dispersion behavior is accompanied by severe reduction
in the group velocity of waves propagating in those structures
(slow wave structures) and tremendous improvement in the
local density of states [4] resulting in a giant increase in the
loaded quality factor of the structure [5]. Recently, structures
exhibiting exceptional points were proposed in developing
and enhancing wide range of applications such as sensors [6],
high power devices [7], RF oscillators [8] and lasers [9].

EPD conditions can be engineered in various structures
such as photonic crystals [1], [10], [11], coupled transmission
lines (CTL) [12], [13], and ladder circuits [8], [14]. For
natural uniform CTLs, where each line supports forward
propagating modes, a second order EPDs may be obtained
(beyond the cutoff frequency) based on the concept of parity-
time (PT-) symmetry by using balanced and symmetrical gain
and loss or even with asymmetric distributions of gain and
loss [12]. However, for uniform CTLs where one line
supports propagating modes and the other one supports
evanescent modes, EPDs may be obtained without the need
of gain or loss.

In this paper, we investigate general properties of the
emergence of EPDs in various cases: uniform or periodic,
lossy or lossless, coupled mode structures. The EPD
condition, in general, is very sensitive to perturbations;
however it was shown recently with experimental and
theoretical studies that EPDs is robust to the presence of loss
and fabrication errors [15], [16]. The extraordinary properties
of the systems at EPDs, such as the giant scaling of the quality
factor and the high sensitivity of the system eigenvalue to
perturbation, provides eccentric opportunities for applications
such as sensors [6], switches, modulators, Q-switching
devices, pulse generation and lasers [17], [18].

II. MATHEMATICAL DESCRIPTION OF EPDS IN COUPLED
MODE STRUCTURES

To mathematically explain the existence of EPDs in
coupled mode waveguides, guided wave dynamics are
represented by two-dimensional vector mode amplitudes
a(z) and b(z) representing multiple waves propagating in
the +z and —z directions, respectively. Hence, the space
evolution of the waves along the waveguide direction is
described by  the state  vector Y where

T
\V(Z)=[aT(z) bT(z)] and 7T denotes the transpose

operation. The space-evolution equation that describes the
system wave dynamics is written as Oy /0z =iM(z)y ,

where M(z) represents the system matrix.
Uniform coupled mode systems: For uniform systems

(non-periodic), the EPD is a point in the system parameter
space at which the eigenvalues and eigenvectors of the matrix



M coalesce, i.e., there is an eigenvalue of M whose

geometric multiplicity is less that its algebraic multiplicity
[19]. Hence at the EPD, M is non-diagonalizable yet similar
to a matrix that has one or more Jordan blocks [1], [19]. This
is the general condition that leads to an EPD, where we cannot
represent the system evolution using regular eigenvectors.
Instead, generalized eigenvectors are used to represent the
system evolution, hence the solutions algebraically diverge

along the z-direction as ‘l’(z)oczqfle"kz ‘l’q(O) , where

q =2,3,...,m with m being the order of the EPD, and we have

—iot

adopted the e time convention.

Periodic coupled mode systems: Analogous EPD
conditions may arise in periodic coupled waveguides. Within
a unit cell, the state vector is translated between points z and
z+d, where d is the period, as y(z+d)=T(z+d,z)y(z) .
Similar to the uniform case, the EPD emerges in this periodic
system when the transfer matrix T is non-diagonalizable, i.e.,
it is similar to a non-trivial Jordan block. Moreover, the
degenerate eigenmode solution in such periodic systems
algebraically diverges along the z-direction. In this case the
system may have EPD also when it is lossless and gainless,
and still T is similar to a Jordan block.

In proximity of an EPD at a wavenumber £, , a degenerate

eigenmode wavenumber k follows the law (k—k,)" « & ,

where m is the order of the EPD, and ¢ is a small detuning in
the parameter space of the system [20] (such as gain/loss,
coupling coefficient, or frequency, etc.).

III. DIFFERENT TOPOLOGIES OF COUPLED MODE STRUCTURES
TO REALIZE EPDs

Here we show examples of EPDs manifested in different
topologies of coupled mode structures both in the case of
uniform structures, as well as in periodic structures.

Uniform loss-gain balanced coupled mode structures:
Here we focus on the emergence of EPD in coupled uniform
waveguides with “balanced gain and loss” (a system with
parity-time (PT-) symmetry is a particular case) as shown in
Fig. 1(a) [12]. In fact, such coupled waveguides through the
proper design of the introduced gain and loss may exhibit a
second order or higher order EPDs at which the system matrix
M can be reduced to a nontrivial Jordan block. Introducing

gain into naturally lossy structures provides the conditions
whereby exceptional points of non-Hermitian degeneracies
can be manifested, such as in PT-symmetric structures.

Uniform lossless and gainless coupled mode structures: Let
us consider two coupled uniform lossless and gainless
waveguides, where each waveguide (when uncoupled) may
support forward propagating, backward propagating, or
evanescent modes as shown in Fig. 1(b). The novel idea is
that a fourth order EPD may emerge in such structure by a
proper design of one the coupled waveguides to support
evanescent modes so that the system matrix M is similar to

a nontrivial Jordan block. Fig. 2(a) shows a configuration of
two CTLs supporting propagating and evanescent modes
when uncoupled and therefore it may exhibit an EPD. The 3D
dispersion diagram of such system is shown in Fig. 2(b)

(a) (b)

Coupled
transmission lines

(c)
Fig. 1. (a) Uniform coupled waveguides with balanced gain and loss
(not necessarily topologically-symmetric) develop an EPD of order 2
for a proper combination of parameters. (b) Uniform lossless and
gainless coupled waveguides where EPD emerges due to the coupling
between propagating and evanescent modes. (c) Periodic Coupled TLs,
capable of supporting EPDs of orders 2 and 4.
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Fig. 2. (a) Uniform lossless and gainless two CTL exhibiting EPD at
frequency 5 GHz with the per unit length parameters C,=0.12pF/m,
Ly =02puH/m, C,, =5.06fF-m and L, =16.88nH-m . (b) The 3D

dispersion diagram of the system where the four modes coalesce at a
point where k=0 .

where the system parameters are given in the figure caption.
This dispersion diagram shows a fourth order EPD at
frequency 5 GHz, at which the four wavenumbers coalesce as
k=ky=ky=kys=0.

Periodic lossless and gainless coupled mode structures:
we also demonstrate that the concept of EPD applies to
lossless and gainless periodic structures. For instance,
consider the periodic coupled transmission lines shown in
Fig. 1(c). Such periodic structure can support EPDs of
different orders in the k— dispersion; by proper engineering
of the different system parameters so that the transfer matrix
T is similar to a Jordan block [16], [19].

IV. CONCLUSION

We have illustrated the general characteristics of coupled
mode structures to exhibit exceptional points of degeneracy
(EPD) and we have provided mathematical conditions for the
EPDs to exist. Different topologies of coupled mode systems,
either lossless or with gain-loss balance are considered. Such
EPD concepts provide unprecedented opportunities for
enhancing slow-light characteristics in coupled systems for
various applications including lasers, high power sources,
pulse compressors and sensors.
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