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Abstract— We investigate wave properties in coupled
transmission lines (CTLs) under a special condition known as
the exceptional point of degeneracy (EPD) at which two or more
of the supported eigenmodes of the system coalesce. At an EPD,
not only the eigenvalues (resonances or wavenumbers) of the
system (a resonator or a waveguide) coalesce but also the
eigenvectors (polarization states) coalesce, and the number of
coalescing eigenmodes defines the order of the degeneracy. We
investigate different structures, either periodic or uniform
CTLs, that are capable of exhibiting EPDs in their dispersion
diagram. Secondly, we show an experimental verification of the
existence of EPDs through measuring the dispersion of
microstrip-based CTLs in the microwave spectrum. For
antenna array configurations, we discuss the effect of CTLs
radiative and dissipative losses on EPDs and how introducing
gain to the CTLs compensate for such losses restoring the EPD
in a fully radiating array, in what we define as the gain and
distributed-radiation balance regime. Therefore, we show how to
obtain large linear and planar arrays that efficiently generate
microwave oscillations, and by spatial combination they are able
to generate collimated beams with large radiation intensity.
Finally, we show other promising applications based on the
concept of EPDs in ultra-sensitive sensors or reconfigurable
antennas.
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[. INTRODUCTION

The emerging concept of exceptional point of degeneracy
(EPD) and Parity-Time (PT)-symmetry have raised the
attention to interesting phenomena in electromagnetics and
physics [1]-[3]. Exceptional points of degeneracy (EPDs) are
points at which two or more eigenmodes coalesce in both their
eigenvalues and eigenvectors. For instance, at an EPD, the
matrix describing the mode evolution in the structure is similar
to a Jordan block or to a matrix containing at least a non-trivial
Jordan block. On the other hand, PT-symmetry is a condition
at which the system possesses real eigenvalues despite having
losses and gain; and is implemented in CTLs by using
balanced and symmetrical gain and loss or even with
asymmetric distributions of gain and loss [4] where loss in our
case is actually representing radiation leaking away from a
microwave structure. These EPDs can also exist in coupled
resonator structures whose system evolution is described in
time [5], [6].

The EPD is defined by its order which is equivalent to the
number of coalescing eigenmodes. For instance, the system
exhibits 2™ order EPD if only two eigenmodes are coalescing
and we refer to this case as the regular band edge (RBE).
Similarly, in a lossless system we define the 3™ and 4™ order
EPDs as the stationary inflection point (SIP), and the
degenerate band edge (DBE), respectively [7], [8]. The DBE
based on two coupled microstrips was shown in [9], whereas
an experimental demonstration of the DBE at microwave
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Fig. 1. (a) Periodic coupled TLs (CTLs), capable of exhibiting EPDs of
orders 2 and 4. In this case the two CTLs are made of two coupled
microstrip lines on a grounded dielectric slab. (b) Uniform coupled
waveguides with balanced gain and loss (not necessarily topologically-
symmetric) develop an EPD in their dispersion diagram. (c) Two
coupled resonators made of two finite length CTLs where one is
terminated with loss and the other with gain. These circuits can form an
oscillator based on EPD or a sensor based on EPD.

frequencies was shown in [10] in the case of cylindrical
waveguides with periodic inclusions. Here we show an
experimental demonstration of the DBE in CTLs made of two
coupled microstrip lines as shown in Figs. 1(a) and 2.

Generally, the system dispersion relation at an EPD of
order m has an asymptotic behavior of (w—a®,) o« (k—k,)"

near the EPD, where @ and k are the angular frequency and
the guided wavenumber, respectively, and the EPD is
designated with the subscript e. Such dispersion behavior is
accompanied by severe reduction in the group velocity of
waves propagating in those structures. When designing a
cavity based on CTL with an EPD, we get giant scaling of the
loaded quality factor ( Oy 404 ) compared to a cavity without

an EPD according to the scaling law [7], [11], [12]
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where N is the number of unit cells in a periodic CTL [Fig
1(a)]. This giant scaling of Q has several interesting
applications such as making oscillators with low threshold or
with high power efficiency.

II. EXCEPTIONAL POINTS OF DEGENRACY IN CTLS

To explain the existence of EPDs in CTLs, we start by

representing field amplitudes in the two CTLs by voltage and
T

V@) =[1(2) ¥ ()] and

current vectors
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Fig. 2. (a) The fabricated microstrip unit cell of a periodic CTL that
exhibits fourth order EPDs, namely the DBEs. (b) Dispersion relation
measurement versus full-wave simulation of the unit cell of a periodic
CTL. This structure exhibits DBEs occurring at various frequencies as
shown in the dispersion diagram. Only the real part of the wavenumber
versus frequency is shown here.

I(Z):[II(Z) 1, (z)]T where 7T denotes the transpose

operation, as shown in Fig.1 (b). It is convenient to describe
the system evolution by defining the four-dimensional state

vector \V(z):[VT(Z) IT(Z)]T.

equation along the z-direction is  written as
oy / 0z =—jM(z)y, with M(z) being the 4x4 CTL system

The system evolution

matrix, where we have adopted the ¢/®" time convention.
Uniform CTLs: For uniform (i.e., z-invariant) CTLs as
shown if Fig. 1(b), the EPD is a point in the system parameter

space at which there is an eigenvalue of the system matrix M

whose geometric multiplicity is less than its algebraic
multiplicity [13]. At the EPD the system evolution cannot be
described using regular eigenvectors therefore we use the
generalized eigenvectors instead. Hence, the eigenmodes
algebraically  diverge along the  z-direction as

¥(z)oc 247 W (0), where ¢ =2.3,...,m with m being

the order of the EPD. In this case we can get the EPD based
on the PT-symmetry concept by introducing gain in one
transmission line while the other has losses.

Periodic CTLs: The EPD condition may also arise in
periodic coupled waveguides as those shown in Fig. 1(a). The
state vector across the unit cell is translated between two
points z and z+d, where d is the period, as
y(z+d)=T(z+d,z)y(z) . Similar to the uniform case, the

EPD emerges in this periodic system when the transfer matrix
T is similar to a matrix possessing a non-trivial Jordan block,

i.e.,, it is non-diagonalizable. Moreover, the degenerate
eigenmode solution in such periodic systems algebraically
diverges along the z-direction. In this case the system may
have an EPD also when it is lossless and gainless, and still T

is similar to a Jordan block.

In analogy to systems where the mode evolution is
described in space, along the z direction, EPDs also exist in
systems with temporal mode evolution [5], [6]. An example
of such system is the finite length coupled resonators made of
two CTLs in Fig. 1(c) where one of them is terminated by a
load (it could be a resistor or an antenna), represented by
positive conductance G, while the other TL is terminated by
gain, represented by a negative conductance —G .
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Fig. 3. (a) CTL with gain and loss balance made of a finite number of
unit cells. The gain in each unit cell is represented by a negative
conductance g,. The structure is terminated in short circuits and
oscillates for sufficiently large g,,. (b) Minimum gain (i.e., the oscillating
threshold) lumped conductance —g, needed to start oscillations is
calculated for different number of unit cells V. The oscillation threshold
shows the N trend with N while due to dissipative losses this trend
ceases for large values of N. (c) Steady state oscillation voltage V(¢) at
the center of the array where it oscillates at a single frequency coinciding
with the DBE one.

III. EXPERIMENTAL VERFICATION OF THE EXISTENCE OF
EPDs

In this section, we show experimentally the existence of
the EPD in the unit cell shown in Fig. 2(a). The unit cell is
fabricated on Rogers RT/Duroid 6010.8 laminate, with
dielectric constant of 10.8, loss tangent 0.001, and the
substrate height of 1.27 mm over a ground plane. The TL
appearing at the top of the figure is designed to have a
characteristic impedance of 50 Ohms. To verify the existence
of the EPD in the unit cell, we perform the scattering (S)-
parameter measurement of the four-port unit cell using a four-
port Rohde & Schwarz Vector Network Analyzer (VNA)
ZVA 67. The measured scattering parameters are then
elaborated with Matlab and the solution for the 4x4 transfer
matrix eigenvalues is found numerically. The dispersion
diagram in Fig. 2(b) shows only the real part of the
wavenumber versus frequency and it is in good agreement
with the results based on full-wave simulations of the S-
parameters performed using Keysight Technologies ADS
based on the Method of Moments (MoM). Fig. 2(b) shows
different DBEs at different microwave frequencies. The
perfect DBE exists in lossless structures [1], [7], [10], [12],
[13]. Here losses, fabrication tolerances and connectors have
an impact on the ideal EPD condition, though the general
structure of the DBE is still visible.

IV. APPLICATIONS OF CTLS WITH EPDs

The existence of EPDs in CTLs is associated with unique
characteristics due to the severe reduction of the group
velocity which makes such structures very promising towards
many applications. From the various applications of CTLs
with EPDs, we mainly focus here on two applications which
are the low-threshold oscillators and the highly sensitive
sensors.



The DBE exists in lossless structures where the presence
of losses would deteriorate such condition. Here we aim at
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Fig. 4. (a) Schematic of a radiating oscillator based on EPDs using two
coupled microstrips where one of them has gain. (b) Schematic of a
sensor with EPD based on two finite CTLs; one is terminated with loss
and the other with gain, where the under test sample changes the
coupling parameter between the CTLs. The EPD enhances the
sensitivity of the sensor.
recovering EPDs by introducing gain in each unit cell until
we reach the condition of loss and gain balance. We
demonstrate an application of a 4" EPD with gain and loss
balance to conceive a new class of distributed single-
frequency oscillators especially grid oscillators [7]. We
design the CTL with a unit cell as in Fig. 2(a) to have a DBE
at kd = 0. Such finite structure when terminated by short
circuits, as shown in Fig. 3(a), forms an oscillator and it
oscillates at a single frequency, in the close proximity of the
EPD frequency. The time domain simulations of this finite
structure is shown in fig. 3(c). Interestingly, the oscillation
threshold (defined as the minimum negative conductance
needed to start the oscillation) scales with the number of unit

cells N in the finite structure as 1/ N° , as shown in F ig. 3(b).
Although this scaling behavior is shown for lossless structure
[7], it is still valid for lossy CTLs for small number of unit

cells where the N trend ceases to exist for large number of
unit cells [12]. In this oscillating structure, the loss needed in
one of the transmission lines can be designed to be the
radiation from an antenna, therefore we can use the same
concept to design a radiating oscillator array as an attractive
application. As shown in Fig. 4(a), the antennas can be
attached to each unit cell such that the array radiates at the
oscillation frequency.

Another unique feature of CTLs with EPDs is its ultra-
sensitivity to perturbations which make such CTLs very
promising to conceive extremely sensitive devices, like
tunable antennas and sensors. The enormous and desirable
sensitivity enhancement to perturbation at EPDs is due to the
coalescence of eigenvectors of the system [14]. In general,
the induced perturbation, proportional to a small number &,
leads to a perturbed transfer matrix, and as a consequence it
leads to perturbed eigenvalues 4, (p=12,..m and mis the

order of EPD). The small perturbation & could represent, for
example, the variation in the dielectric constant of a capacitor
of an LC circuit or the variation in the mutual capacitance of

the two coupled resonators in Fig. 1(c) or Fig. 4(b). When the
resonator or two coupled resonators work at a second order
EPD, the perturbed eigenvalues are proportional to the

perturbation as /1p oc \/g . Note that, when & << 1 then one

has /& >> & that implies much higher sensitivity to a small
variation & . If the resonator works at an EPD of m™ order,
then the perturbed eigenvalue is proportional to the m™ root

of the perturbation &, i.e., /lp oc %[5 based on the Puiseux

series expansion near an EPD. As an example of a sensing
device based on EPDs, we can use the two CTLs terminated
with gain and loss as shown in Fig. 4(b), where the
eigenvalues are directly related to the resonance frequency of
the oscillating structure as 4, = jw,, . In such system, the

under test sample will perturb the coupling parameter
between the two CTLs which results in a huge variation of
the eigenvalues, hence the resonance frequencies.

V. CONCLUSION

We have illustrated the general conditions that lead to the
existence of exceptional points of degeneracy (EPDs) in
coupled transmission lines (CTLs). wWe have also shown an
experimental verification of the existence of EPD (4" order
EPD) in CTLs at microwave frequencies through the
measurement of the unit cell dispersion relation. More
importantly, we have shown two promising applications of
CTLs with EPDs. Importantly, we have demonstrated a novel
paradigm for radiating array oscillators formed by coupled-
waveguides utilizing EPDs. The first application is in
radiating array oscillators that are based on gain and radiation-
loss balance (losses represent radiation, from a circuit point of
view). This has led to a radiating oscillator with a single
frequency oscillation and broadside radiation that shows
unprecedented scaling of its oscillation threshold with the

array length as 1/ N 3 This could be used in various devices
requiring coherent emission at microwaves and millimeter
waves and it may lead to very power-efficient radiation at
millimeter waves. The other application is in highly senstive
sensors based on EPDs where we have shown that the system
eigenvalues greatly change with the introduced perturbation

as A oc ’(’/g where m is the order of the EPD.
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