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Abstract
In 2012, Lévéque, Maffray and Trotignon conjectured that if a graph does not
contain an induced subdivision of K4, then it is 4-colorable. Recently, Le showed

that every such graph is 24-colorable. In this paper, we improve the upper bound to
8.
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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A subdivision of G is
a graph obtained from G by replacing the edges of G with independent paths of
length at least one between their end vertices. For a graph H, we say that G contains
H if H is isomorphic to an induced subgraph of G, and otherwise, G is H-free. For a
family F of graphs, we say that G is F-free if G is F-free for every graph F € F.
An ISK4 of G is an induced subgraph of G that is ismorphic to a subdivision of Ky,
where K4 denotes the complete graph on four vertices. A graph is ISK4-free if it
does not contain any induced subdivision of Kjy.
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Gyarfas [2] defined that a class of graphs G is y-bounded if there exists a y-
bounding function f such that y(G) <f(w(G)) holds for every graph G € G, where
7(G) is the chromatic number of G and w(G) is the maximum size of a clique in G.
Scott [7] conjectured that for any graph H, the class of those graphs that do not
contain any subdivision of H is y-bounded, and proved this conjecture in the case
that H is a forest. However, this conjecture was disproved by Pawlik et al. [6]. In
2012, Lévéque, Maffray and Trotignon [5] showed that the chromatic number of
ISK4-free graphs is bounded by a constant ¢, which implies that Scott’s conjecture
is true when H = K4. The proof is based on a decomposition theorem for ISK4-free
graphs in [5] and a result of Kiihn and Osthus [3], from which it follows that c is at

least 22" . Since no example of an ISK4-free graph whose chromatic number is 5 or
more is known, Lévéque, Maffray and Trotignon [5] proposed the following
conjecture.

Conjecture 1.1 (Lévéque, Maffray and Trotignon [5]) If G is an ISK4-free graph,
then y(G) <4.

A hole of a graph is an induced cycle of length at least four. A wheel is a graph
that consists of a hole H plus a vertex which has at least three neighbors on
H. Lévéque, Maffray and Trotignon [5] proved that every {ISK4, wheel }-free graph
is 3-colorable. Trotignon and Vuskovi¢ [8] showed that every ISK4-free graph with
girth at least 5 is 3-colorable. In the same paper, they further conjectured that every
{ISK4, triangle}-free graph is also 3-colorable. Le [4] showed that the chromatic
number of every {ISK4, triangle}-free graph is at most 4. Recently, Chudnovsky
et al. [1] confirmed the conjecture of Trotignon and Vuskovi¢ [8] and they obtained
the following result.

Theorem 1.2 (Chudnovsky et al. [1]) If G is an {ISK4, triangle}-free graph, then
72(G) <3.

By using a layering approach, Le [4] gave a new upper bound for the chromatic
number of ISK4-free graphs. He proved the following theorem.

Theorem 1.3 (Le [4]) If G is an ISK4-free graph, then y(G) < 24.

In [4], Le mentioned that the bound 24 could be slightly improved by excluding
more structures in each layer. We actually improve the upper bound to 8 by
applying a similar idea in [4] and by Theorem 1.2.

Theorem 1.4 If G is an ISK4-free graph, then y(G) <8.

In order to prove Theorem 1.4, we apply the layering approach introduced in [4].
We mainly consider the properties of the triangles within layers and then find an
independent set whose deletion results in a triangle-free subgraph in each layer. It
follows from Theorem 1.2 and a result in [4] that each layer can be 4-colored, and
hence the whole graph is 8-colorable.
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2 Preliminaries

We follow the notation used in [4, 5]. Let G be a graph with vertex set V(G) and
edge set E(G). For any S C V(G) and C C V(G)\S, we denote by N¢(S) the set of
neighbors of S in C. Let N(S) = Ny)\s(S). We say that S dominates C if
Nc¢(S) = C. We denote by G — S the graph obtained from G by deleting the vertices
in S together with their incident edges and denote by GI[S] the subgraph of
G induced by S.

The line graph L(G) of G is the graph with vertex set E(G), where two vertices
are adjacent in L(G) if and only if the corresponding edges are adjacent in G. A
complete bipartite (resp., complete tripartite) graph K, ; (resp., K, ;) is a graph
whose vertex set can be partitioned into two (resp., three) independent sets of size p
and g (resp., p, q and r) such that every pair of vertices from two different
independent sets are adjacent. A complete bipartite or complete tripartite graph is
thick if it contains a K3 3.

A square S = {vi,v,,v3,v4} is an induced cycle C of length four such that
V1, V2,v3,v4 occur on C in this order. For a path P = x;x;. . .x,, we say that x| and x,,
are the end vertices of P and x», .. ., x,_ are the interior vertices of P. A link of S is
an induced path P of G with end vertices p and p’ such that either p = p’ and
Ns(p) = S, or Ns([)) = {V],Vz} and Ns<p/) = {V3,V4}, or Ns([)) = {V17V4} and
Ns(p') = {v2,v3}, and there are no edges between S and the interior vertices of P. A
rich square is a graph K that contains a square S such that there are at least two
components in K — §, each of which is a link of S. It is easy to see that K, is the
smallest rich square. A prism is a graph consisting of three vertex-disjoint induced
paths P; = x;...y1, P» = x3...y2, P3 = x3...y3 of length at least 1, such that x;x,x3
and y;y,y3 are triangles and there are no edges between these paths except those of
the two triangles.

For any nonnegative integer &, a k-cutset in a graph G is a subset SCV(G) of size
k such that G — S is disconnected. A cligue cutset S is a cutset which is also a clique.
A proper 2-cutset of a graph G is a pair of nonadjacent vertices {a,b} if
V(G)\{a, b} can be partitioned into two sets X and Y satisfying that there is no edge
between X and Y and neither G[X U {a, b}] nor G[Y U {a, b}] is a path from a to b.

Lévéque, Maffray and Trotignon [5] proved the following two decomposition
theorems for ISK4-free graphs, which will be used in our later proof.

Lemma 2.1 (Lévéque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If
G contains a K33, then either G is a thick complete bipartite or complete tripartite
graph, or G has a clique cutset of size at most 3.

Lemma 2.2 (Lévéque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If
G contains a rich square or a prism, then either G is the line graph of a graph with
maximum degree 3 or a rich square, or G has a clique cutset of size at most 3, or
G has a proper 2-cutset.

Le [4] verified that two classes of graphs mentioned in Lemma 2.2 are
4-colorable.
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Lemma 2.3 (Le [4]) If G is the line graph of a graph with maximum degree 3 or a
rich square, then y(G) <4.

Note that every thick complete bipartite or complete tripartite graph is 3-
colorable, and the line graph of a graph with maximum degree 3 or a rich square is
4-colorable (by Lemma 2.3). Hence by applying Lemmas 2.1 and 2.2, we may
assume the existence of a K33, a prism or a K»5> in an ISK4-free graph G always
implies that G has a clique cutset of size at most 3 or a proper 2-cutset. It is easy to
see that if G contains such a cutset K, then V(G)\K can be partitioned into two
vertex-disjoint sets such that there are no edges between them. It follows from the
proof of Theorem 1.4 in [5] that we can immediately show x(G) < 8 by applying the
induction method (see Sect. 3 for more details). Therefore, we can mainly consider
the class of {ISK4, K33, prism, K, }-free graphs when proving Theorem 1.4.

For two distinct vertices s and ¢ of G, the distance d(s, t) between s and ¢ is the
number of edges in a shortest path from s to ¢ in G. Let u € V(G), we define
Vo(u) = {u} and Vi(u) = {v|d(v,u) =i} for each i>1. Obviously, there are no
edges between V;(u) and V;(u) for all i, j with |i —j| > 2.

In [4], Le introduced two special induced subgraphs called the upstairs path and
the confluence. We will use these two structures to connect two or three vertices in
the same layer through only the upper layers. The following three results were
observed in [4].

Lemma 2.4 (Le [4]) Let G be a graph and let u € V(G). If x and y are two distinct
vertices in V;(u), then there exists an induced path P in G from x to y such that
V(P) C{utUVi(u)U---UV;(u) and |V(P) N Vi(u)| <2 for each 1 <j<i.

The path P satisfying the conditions in Lemma 2.4 is called the upstairs path of
{x,y}. For three distinct vertices x, y, z of a graph G, a graph H is called a
confluence of {x,y,z} if it is one of the following two types:

(1) Type 1: H consists of three internally vertex-disjoint induced paths Py, Py, P,
from a vertex u to x, y, z, respectively, such that there are no edges between
these paths.

(2) Type 2: H consists of a triangle x'y'7 and three vertex-disjoint induced paths
P, Py, P, connecting x and x’, y and y’, z and 7/, respectively, such that there
are no edges between these paths except those of the triangle x'y'7.

We call u the center of H if it is of Type 1 and x'y'7’ the center triangle of H if it is
of Type 2. Note that it is possible the length of the path P, is 0 when x = u (Type 1)
or x = x' (Type 2).

Lemma 2.5 (Le [4]) Let G be a graph and let u € V(G). If x, y, z are three distinct
vertices in V;(u), then there exists a set S C {u} UV (u)U---UV,_|(u) such that
G[SU {x,y,z}] is a confluence of {x,y,z}.

Lemma 2.6 (Le [4]) Let G be a graph and let u € V(G). Then
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2(G) < max 7(G[Vi(u)]) + max z(G[V;(u))).

i odd J even

The final lemma in this section is about the class of {ISK4, triangle, K3 3 }-free
graphs. It demonstrates that if there is a set S that dominates V(C) where C is a hole,
then there must exist some vertices in S which have only one or two neighbors in

V(C).

Lemma 2.7 (Le [4]) Let G be an {ISK4, triangle, K53 }-free graph and let C be a
hole in G. If there is a subset S C V(G)\V(C) such that S dominates V(C), then one
of the following holds:

(i) there exist four distinct vertices uy, uy, us,uq in S and four distinct vertices
vi, V2,3, V4 in V(C) such that for each 1 <i<4, Ny(c)(u;) = {vi};

(i)  there exist three distinct vertices uy,uy,us in S and three distinct vertices
vi,v2,v3 in V(C) such that for each 1<i<3, Nyc)(u;) = {vi} and
V1, Vo, V3 are pairwise non-adjacent,

(iii)  there exist three distinct vertices uy,up,u3 in S and four distinct vertices
vi,v2,v3,V3 in V(C) such that Ny)(ur) = {vi}, Nyc)(uz) = {v2},
Ny(cy(u3) = {v3,v3} and vy, v3,v2, V5 occur on C in this order.

3 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by applying the layering approach in [4] and
by considering the structures of the triangles in each layer.

Proof of Theorem 1.4 We prove the theorem by induction on IV(G)l. Since
72(G) <|V(G)|, we may assume that |[V(G)|>9 and the result holds for smaller
values of IV(G)I.

In the following, we will show we can suppose that G contains none of {Kj3,
prism, K>, }. Note that the idea used here is the same as the proof of Theorem 1.4
in [5] (as well as the proof of Theorem 4 in [4]). However, for the sake of
completeness, we give the proof here.

Suppose that G contains a K33, a prism or a K, (a rich square). Since every
thick complete bipartite or complete tripartite graph is 3-colorable and the line
graph of a graph with maximum degree 3 or a rich square is 4-colorable (by
Lemma 2.3), then by Lemmas 2.1 and 2.2, we may assume that either G has a
clique cutset of size at most 3 or G has a proper 2-cutset. In both cases, there exists a
cutset K in G such that V(G)\K can be partitioned into two sets X and Y and there
are no edges between them.

If K is a clique cutset of size at most 3, then by the induction hypothesis, the two
subgraphs of G induced by X U K and Y U K are 8-colorable. We can combine these
two 8-colorings so that they coincide on K and obtain an 8-coloring of G. So we
may assume that G has no clique cutset of size at most 3 and hence K is a proper 2-
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cutset, say K = {a,b}. This implies that G is 2-connected and there exists an
induced path Py with end vertices a and b and with interior vertices in Y. Let G be
the subgraph of G induced by X U V(Py). Then every interior vertex of Py has
degree 2 in GYy. Let G be the graph obtained from G’ by deleting all the interior
vertices of Py and adding a new edge between a and b. Similarly, we can define the
graphs G and GY . Since GY is an induced subgraph of G, we know that G} is an
ISK4-free graph. Then it is easy to see that Gy is also an ISK4-free graph. The same
holds for G%. By the induction hypothesis, both G% and G} admit an 8-coloring.
Since a and b receive different colors in both colorings, we can combine them so
that they coincide on {a,b} and obtain an 8-coloring of G again. Hence by the
arguments as above, we may assume that G is an {ISK4, K33, prism, K, }-free
graph from now on.

Let u be a vertex of G. Suppose that G[V;(u)] is triangle-free for each i > 1. By
Theorem 1.2, we have y(G[V;(u]) <3. By applying Lemma 2.6, we conclude that
7(G) <6<8 and the assertion of the theorem holds. So there must exist a triangle
x1x2x3 in G[V;(u)] for some i. Note that i > 2; otherwise, {u, x1, X2, x3} induces a Ky,
a contradiction. For each x; (1 <k<3), we call a vertex y € V;_1(u) a private
neighbor of x; if N(y) N {x1,x2,x3} = {x}.

Claim 1. We may assume that [Ny, (x1)| =[Ny, (x3)| =1 with
NVH(H) (xl) 7& NVH(u) (X3), |NVH(u) (x2)| >2, NVi—l(”) (xl) - NVi—l(M) (Xz) and
Ny, (x3) € Ny w)(x2)-

We first suppose that each x; has a private neighbor y; in V,_; (u) for 1 <j <3. By
Lemma 2.5, there exists a confluence H of {y|,y,y3}. If H is of Type 1, then
V(H) U {x1,x2,x3} induces an ISK4, a contradiction. If H is of Type 2, then V(H) U
{x1,%2,x3} induces a prism, again a contradiction.

So we assume without loss of generality that x; and x, share a common neighbor
v € Vi_i(u). Then vx3 € E(G); otherwise, {v,x1,x2,x3} induces a K4, a contradic-
tion.

Let w be a neighbor of x3 in V;_(u). If w is a private neighbor of x3, then by
Lemma 2.4, there exists an upstairs path P of {v,w} and V(P) U {x,x,,x3} induces
an ISK4, a contradiction. Note that w is not adjacent to every vertex in {xy, X2, X3 };
otherwise, {w,x,x»,x3} induces a Ky, again a contradiction. By symmetry between
x; and x,, we may assume that wx, € E(G) and wx; & E(G).

We now show that Ny, ,,)(x3) = {w}. Suppose on the contrary that there exists
another neighbor z of x3 in V;_; (). Then by the same argument as above for w, we
see that z is also not a private neighbor of x3. Note that z is not adjacent to every
vertex in {xy,x,,x3}; otherwise, {z, x1,x2,x3} induces a K4, a contradiction. Then z
has exactly one neighbor in {x;,x,}.

If zx; ¢ E(G) and zx; € E(G), then by Lemma 2.4, there exists an upstairs path P
of {w,z} and V(P) U {x2,x3} induces an ISK4, a contradiction. So we may assume
that zx; € E(G) and zx, € E(G).

By applying Lemma 2.5, we find a confluence H of {v,w, z}. Suppose first that H
is of Type 1. Let v* be the center of H. By symmetry, we may assume that v* # w
and v* # z. Then V(H) U {x2,x3} induces an ISK4, a contradiction. Hence we may
further assume that H is of Type 2. Let v'w'Z be the center triangle of H. If
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{v,w,z} ={V,w', 7}, then V(H) U {x,x2,x3} induces a K, », a contradiction. So
we have |[{v,w,z}N{V,w' 7} <2. By symmetry, we may assume that
w ¢ {V,w,7'}. Therefore V(H) U {x2,x3} induces a prism, again a contradiction.
This implies that Ny, ,(x3) = {w}. Similarly, we can prove that
Ny, () (x1) = {v}. So Claim 1 holds.

Following the notation of Claim 1, for each triangle T = x;xx3 in G[V;(u)], we
call x, the core of T and x; and x3 the non-cores of T. Note that every triangle in
G[Vi(u)] has a unique core.

Claim 2. For two distinct triangles in G[V;(u)] which share a common edge, the
core of these two triangles must be one end vertex of the common edge.

Let xyz and x"yz be two triangles in G[N;(u)] which share the common edge yz. To
prove Claim 2, it suffices to show that the core of xyz and x'yz is y or z. Suppose on
the contrary that the cores of xyz and x'yz are x and x/, respectively. By Claim 1, let
y* and z* be the unique neighbors of y and z in V;_; (u), respectively. Then we have
xy*,xz*, x'y*, x¥'z* € E(G). Note that xx’ € E(G); otherwise, {x,x’,y, z} induces a Ky,
a contradiction. If y*z* € E(G), then {x,x’,y,z,y*,z"} induces a K;,,, a contra-
diction. If y*z* & E(G), then {x,x’,y,y*, 7"} induces an ISK4, again a contradiction.
This proves Claim 2.

Claim 3. For two triangles in G[V;(u)] with exactly one common vertex, the core
of these two triangles must be this common vertex.

Let xyz and xy'z’ be two triangles in G[V;(«)] which share the common vertex x.
We need to show that the core of xyz and xy'7’ is x. Suppose on the contrary that the
cores of xyz and xy'7’ are y and y/, respectively. Then by Claim 1, let x*, z*, 7* be the
unique neighbors of x,z,7 in V;_;(u), respectively. Hence we have
yx*,yz*,y'x*y'7* € E(G). Note that it is possible z* = z”*. It is easy to see that
yY € E(G); otherwise, {x,x*,y,y'} induces a Ky, a contradiction. By Claim 2, we
know that y7',y'z & E(G). If z* =Z7*, then {x,y,)',z,z"} induces an ISK4, a
contradiction. So we may assume that z* # z*. Therefore, we have yz* € E(G) or
y'z" € E(G); as otherwise, by Lemma 2.4, there exists an upstairs path P of {z*,z"*}
and V(P) U {x,y,y,z} induces an ISK4, a contradiction. But now, we notice that
{x,y,y,7,72*} Gf yZ* € E(G)) or {x,y,Y,z,z*} (if yz* € E(G)) induces an ISK4,
again a contradiction. So Claim 3 holds.

Claim 4. For two triangles in G[V;(«)] with no common vertex, there are no edges
between their non-core vertices of different triangles.

Let x1x2x3 and x4x5x6 be two triangles in G[V;(u)] with no common vertex. Let x,
and xs be the cores of xjxpx3 and x4xsxg, respectively. We now show that
X1X4,X1X6, X3X4,X3X6 & E(G). Suppose on the contrary that one of these four edges
exists, say x3x4 € E(G). By Claim 3, we have xjx4,xox4,x3%5,x3%6 & E(G).
Applying Claim 1 again, let y;,y,,y3 and y4 be the unique neighbors of xj,x3,x4
and xg in V;_1(u), respectively. Then we have x,yi,x2y2,Xs5y3,Xs5y4 € E(G). For
convenience, by Lemma 2.4, let P; be the upstairs path of {y;,y.} for 1 <j k<4
and j # k. We consider two cases.

Case 1. [{y1,y2} N{y3,ys}[ < 1.

First, suppose that y, =y;. We claim that xx¢ & E(G); otherwise,
{x2,x3,%4,%¢,y2} induces an ISK4, giving a contradiction. We also have x,y4 €
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E(G) or x1x¢ € E(G); for otherwise, V(P14) U {x1,x2,x3, X4, X6} induces an ISK4, a
contradiction. Suppose that x,y4 € E(G). Then by symmetry, we may assume that
xsy1 € E(G). But now, we see that V(P 4) U {x2,x5} (if xox5s € E(G)) or V(P 4) U
{x2,%3, x4, x5} (if xox5 ¢ E(G)) induces an ISK4, giving a contradiction. So we may
assume that x;ys ¢ E(G) and hence x1x¢ € E(G). In this case, we conclude that
V(P24) U {x1,x2,x3,%¢} induces an ISK4, again a contradiction.

Next, assume that y; # y3. By symmetry, we only need to consider the following
three cases: (a) {y1,y2} N {y3,ya} = 0; or (b) y; = y4; or (c) y2 = y4. In all three
cases, we have xy; € E(G); for otherwise, V(P13) U {x1,x2,x3,x4} induces an
ISK4, a contradiction. But then, V(P,3) U {x2,x3,x4} induces an ISK4, again a
contradiction.

Case 2. [{y1,y2} N {ys,y4}| = 2.

In this case, we have {y,y>} = {y3,ya}. If y1 = y3 and y, = y4, then V(P;,) U
{x2,x3,%4} induces an ISK4, a contradiction. So we deduce that y; =y, and
y2 = y3. Note that x,xs € E(G); otherwise, V(P;) U {x2,xs} induces an ISK4, a
contradiction. We also have xjxs € E(G); as otherwise, {xi,x,x3,%1,%5,y1}
induces an ISK4, a contradiction. Now, we see that {xi,x3,x4,Xs,y,} induces an
ISK4, again a contradiction. This proves Claim 4.

Let % be the set of the cores of all triangles in G[V;(u)]. For each v € €, let G, be
the subgraph of G[V;(u)] induced by all the vertices of the triangles containing v.

Claim 5. G, — {v} is a forest.

Suppose on the contrary that G, — {v} is not a forest. Let C be an induced cycle
in G, — {v} and let S be the set of all the neighbors of V(C) in V;_;(u). Then by
Claim 1, we know that every vertex of V(C) has exactly one neighbor in S and v is
adjacent to all the vertices of V(C) US.

We consider the graph G[V(C) U S]. If there exist three vertices in V(C) U S such
that these three vertices induces a triangle in G[V(C) U S], then these three vertices
together with the vertex v induce a K4 in G, a contradiction. So we see that
G[V(C) U §] is triangle-free, which implies that C is a hole in G[V(C)] U S. Since
G[V(C) U §] is an induced subgraph of G, we deduce that G[V(C) U S] is an {ISK4,
triangle, K33}-free graph. We now apply a weaker version of Lemma 2.7 for
G[V(C)US], S and C. Note that the idea used here is inspired by the proof of
Lemma 8 in [4].

If (i) or (ii) of Lemma 2.7 holds, then there exist three distinct vertices sy, 52, 53 in
S and three distinct vertices cy,cz,c3 in V(C) such that for each 1<j<3,
Ny(c)(s;) = {cj}. By applying Lemma 2.5, there exists a confluence F of {51, 52,53}
in G. If F is of Type 1, then V(F) U V(C) induces an ISK4, a contradiction. If F is
of Type 2, then V(F) U {v} induces an ISK4, a contradiction.

If (iii) of Lemma 2.7 holds, then there exist two distinct vertices sy, s, in S and
three distinct vertices cy,cz,¢5 in V(C) such that Ny (si) ={ci} and
Ny(c)(s2) = {c2,¢3}. By Lemma 2.4, there exists an upstairs path P of {s;, s} in
G and V(P) U V(C) induces an ISK4, again a contradiction. So Claim 5 holds.

Now let € = {vy,v2,...,vy}. Then by Claim 5, for each 1 <j<m, we see that
G,, — {v;} is a forest and hence admits a bipartition (V/, V4) such that both VJ and

Vé are independent sets in G,, — {v;}. By Claim 4, there are no edges between
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G,, — {v;} and G,, — {w} for 1 <j, k <mand j # k. This implies that V* = [ JI", V/
is an independent set in G[V;(u)]. Moreover, G[V;(u)] — V* is an {ISK4, triangle}-
free graph. Then by Theorem 1.2, G[V;(u)] — V* is 3-colorable. Hence we can show
a 4-coloring of G[V;(u)] as follows: assign colors 1, 2, 3 to V;(#)\V* and color 4 to
V*. By Lemma 2.6, we conclude that y(G)<8. This completes the proof of
Theorem 1.4. [
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