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Abstract
In 2012, Lévêque, Maffray and Trotignon conjectured that if a graph does not

contain an induced subdivision of K4, then it is 4-colorable. Recently, Le showed

that every such graph is 24-colorable. In this paper, we improve the upper bound to

8.
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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A subdivision of G is

a graph obtained from G by replacing the edges of G with independent paths of

length at least one between their end vertices. For a graph H, we say that G contains

H if H is isomorphic to an induced subgraph of G, and otherwise, G is H-free. For a

family F of graphs, we say that G is F -free if G is F-free for every graph F 2 F .

An ISK4 of G is an induced subgraph of G that is ismorphic to a subdivision of K4,

where K4 denotes the complete graph on four vertices. A graph is ISK4-free if it

does not contain any induced subdivision of K4.
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Gyárfás [2] defined that a class of graphs G is v-bounded if there exists a v-

bounding function f such that vðGÞ� f ðxðGÞÞ holds for every graph G 2 G, where

vðGÞ is the chromatic number of G and xðGÞ is the maximum size of a clique in G.

Scott [7] conjectured that for any graph H, the class of those graphs that do not

contain any subdivision of H is v-bounded, and proved this conjecture in the case

that H is a forest. However, this conjecture was disproved by Pawlik et al. [6]. In

2012, Lévêque, Maffray and Trotignon [5] showed that the chromatic number of

ISK4-free graphs is bounded by a constant c, which implies that Scott’s conjecture

is true when H ¼ K4. The proof is based on a decomposition theorem for ISK4-free

graphs in [5] and a result of Kühn and Osthus [3], from which it follows that c is at

least 22225

. Since no example of an ISK4-free graph whose chromatic number is 5 or

more is known, Lévêque, Maffray and Trotignon [5] proposed the following

conjecture.

Conjecture 1.1 (Lévêque, Maffray and Trotignon [5]) If G is an ISK4-free graph,

then vðGÞ� 4.

A hole of a graph is an induced cycle of length at least four. A wheel is a graph

that consists of a hole H plus a vertex which has at least three neighbors on

H. Lévêque, Maffray and Trotignon [5] proved that every {ISK4, wheel}-free graph

is 3-colorable. Trotignon and Vušković [8] showed that every ISK4-free graph with

girth at least 5 is 3-colorable. In the same paper, they further conjectured that every

{ISK4, triangle}-free graph is also 3-colorable. Le [4] showed that the chromatic

number of every {ISK4, triangle}-free graph is at most 4. Recently, Chudnovsky

et al. [1] confirmed the conjecture of Trotignon and Vušković [8] and they obtained

the following result.

Theorem 1.2 (Chudnovsky et al. [1]) If G is an {ISK4, triangle}-free graph, then

vðGÞ� 3.

By using a layering approach, Le [4] gave a new upper bound for the chromatic

number of ISK4-free graphs. He proved the following theorem.

Theorem 1.3 (Le [4]) If G is an ISK4-free graph, then vðGÞ� 24.

In [4], Le mentioned that the bound 24 could be slightly improved by excluding

more structures in each layer. We actually improve the upper bound to 8 by

applying a similar idea in [4] and by Theorem 1.2.

Theorem 1.4 If G is an ISK4-free graph, then vðGÞ� 8.

In order to prove Theorem 1.4, we apply the layering approach introduced in [4].

We mainly consider the properties of the triangles within layers and then find an

independent set whose deletion results in a triangle-free subgraph in each layer. It

follows from Theorem 1.2 and a result in [4] that each layer can be 4-colored, and

hence the whole graph is 8-colorable.
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2 Preliminaries

We follow the notation used in [4, 5]. Let G be a graph with vertex set V(G) and

edge set E(G). For any S � VðGÞ and C � VðGÞnS, we denote by NCðSÞ the set of

neighbors of S in C. Let NðSÞ ¼ NVðGÞnSðSÞ. We say that S dominates C if

NCðSÞ ¼ C. We denote by G� S the graph obtained from G by deleting the vertices

in S together with their incident edges and denote by G[S] the subgraph of

G induced by S.

The line graph L(G) of G is the graph with vertex set E(G), where two vertices

are adjacent in L(G) if and only if the corresponding edges are adjacent in G. A

complete bipartite (resp., complete tripartite) graph Kp;q (resp., Kp;q;r) is a graph

whose vertex set can be partitioned into two (resp., three) independent sets of size p

and q (resp., p, q and r) such that every pair of vertices from two different

independent sets are adjacent. A complete bipartite or complete tripartite graph is

thick if it contains a K3;3.

A square S ¼ fv1; v2; v3; v4g is an induced cycle C of length four such that

v1; v2; v3; v4 occur on C in this order. For a path P ¼ x1x2. . .xn, we say that x1 and xn
are the end vertices of P and x2; . . .; xn�1 are the interior vertices of P. A link of S is

an induced path P of G with end vertices p and p0 such that either p ¼ p0 and

NSðpÞ ¼ S, or NSðpÞ ¼ fv1; v2g and NSðp0Þ ¼ fv3; v4g, or NSðpÞ ¼ fv1; v4g and

NSðp0Þ ¼ fv2; v3g, and there are no edges between S and the interior vertices of P. A

rich square is a graph K that contains a square S such that there are at least two

components in K � S, each of which is a link of S. It is easy to see that K2;2;2 is the

smallest rich square. A prism is a graph consisting of three vertex-disjoint induced

paths P1 ¼ x1. . .y1, P2 ¼ x2. . .y2, P3 ¼ x3. . .y3 of length at least 1, such that x1x2x3

and y1y2y3 are triangles and there are no edges between these paths except those of

the two triangles.

For any nonnegative integer k, a k-cutset in a graph G is a subset S(VðGÞ of size

k such that G� S is disconnected. A clique cutset S is a cutset which is also a clique.

A proper 2-cutset of a graph G is a pair of nonadjacent vertices fa; bg if

VðGÞnfa; bg can be partitioned into two sets X and Y satisfying that there is no edge

between X and Y and neither G½X [ fa; bg� nor G½Y [ fa; bg� is a path from a to b.

Lévêque, Maffray and Trotignon [5] proved the following two decomposition

theorems for ISK4-free graphs, which will be used in our later proof.

Lemma 2.1 (Lévêque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If

G contains a K3;3, then either G is a thick complete bipartite or complete tripartite

graph, or G has a clique cutset of size at most 3.

Lemma 2.2 (Lévêque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If

G contains a rich square or a prism, then either G is the line graph of a graph with

maximum degree 3 or a rich square, or G has a clique cutset of size at most 3, or

G has a proper 2-cutset.

Le [4] verified that two classes of graphs mentioned in Lemma 2.2 are

4-colorable.
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Lemma 2.3 (Le [4]) If G is the line graph of a graph with maximum degree 3 or a

rich square, then vðGÞ� 4.

Note that every thick complete bipartite or complete tripartite graph is 3-

colorable, and the line graph of a graph with maximum degree 3 or a rich square is

4-colorable (by Lemma 2.3). Hence by applying Lemmas 2.1 and 2.2, we may

assume the existence of a K3;3, a prism or a K2;2;2 in an ISK4-free graph G always

implies that G has a clique cutset of size at most 3 or a proper 2-cutset. It is easy to

see that if G contains such a cutset K, then VðGÞnK can be partitioned into two

vertex-disjoint sets such that there are no edges between them. It follows from the

proof of Theorem 1.4 in [5] that we can immediately show vðGÞ� 8 by applying the

induction method (see Sect. 3 for more details). Therefore, we can mainly consider

the class of {ISK4, K3;3, prism, K2;2;2}-free graphs when proving Theorem 1.4.

For two distinct vertices s and t of G, the distance d(s, t) between s and t is the

number of edges in a shortest path from s to t in G. Let u 2 VðGÞ, we define

V0ðuÞ ¼ fug and ViðuÞ ¼ fvjdðv; uÞ ¼ ig for each i� 1. Obviously, there are no

edges between ViðuÞ and VjðuÞ for all i, j with ji� jj � 2.

In [4], Le introduced two special induced subgraphs called the upstairs path and

the confluence. We will use these two structures to connect two or three vertices in

the same layer through only the upper layers. The following three results were

observed in [4].

Lemma 2.4 (Le [4]) Let G be a graph and let u 2 VðGÞ. If x and y are two distinct

vertices in ViðuÞ, then there exists an induced path P in G from x to y such that

VðPÞ � fug [ V1ðuÞ [ � � � [ ViðuÞ and jVðPÞ \ VjðuÞj � 2 for each 1� j� i.

The path P satisfying the conditions in Lemma 2.4 is called the upstairs path of

fx; yg. For three distinct vertices x, y, z of a graph G, a graph H is called a

confluence of fx; y; zg if it is one of the following two types:

(1) Type 1: H consists of three internally vertex-disjoint induced paths Px;Py;Pz

from a vertex u to x, y, z, respectively, such that there are no edges between

these paths.

(2) Type 2: H consists of a triangle x0y0z0 and three vertex-disjoint induced paths

Px;Py;Pz connecting x and x0, y and y0, z and z0, respectively, such that there

are no edges between these paths except those of the triangle x0y0z0.

We call u the center of H if it is of Type 1 and x0y0z0 the center triangle of H if it is

of Type 2. Note that it is possible the length of the path Px is 0 when x ¼ u (Type 1)

or x ¼ x0 (Type 2).

Lemma 2.5 (Le [4]) Let G be a graph and let u 2 VðGÞ. If x, y, z are three distinct

vertices in ViðuÞ, then there exists a set S � fug [ V1ðuÞ [ � � � [ Vi�1ðuÞ such that

G½S [ fx; y; zg� is a confluence of fx; y; zg.

Lemma 2.6 (Le [4]) Let G be a graph and let u 2 VðGÞ. Then
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vðGÞ� max
i odd

vðG½ViðuÞ�Þ þ max
j even

vðG½VjðuÞ�Þ:

The final lemma in this section is about the class of {ISK4, triangle, K3;3}-free

graphs. It demonstrates that if there is a set S that dominates V(C) where C is a hole,

then there must exist some vertices in S which have only one or two neighbors in

V(C).

Lemma 2.7 (Le [4]) Let G be an fISK4, triangle, K3;3g-free graph and let C be a

hole in G. If there is a subset S � VðGÞnVðCÞ such that S dominates V(C), then one

of the following holds:

(i) there exist four distinct vertices u1; u2; u3; u4 in S and four distinct vertices

v1; v2; v3; v4 in V(C) such that for each 1� i� 4, NVðCÞðuiÞ ¼ fvig;

(ii) there exist three distinct vertices u1; u2; u3 in S and three distinct vertices

v1; v2; v3 in V(C) such that for each 1� i� 3, NVðCÞðuiÞ ¼ fvig and

v1; v2; v3 are pairwise non-adjacent;

(iii) there exist three distinct vertices u1; u2; u3 in S and four distinct vertices

v1; v2; v3; v
0
3 in V(C) such that NVðCÞðu1Þ ¼ fv1g, NVðCÞðu2Þ ¼ fv2g,

NVðCÞðu3Þ ¼ fv3; v
0
3g and v1; v3; v2; v

0
3 occur on C in this order.

3 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by applying the layering approach in [4] and

by considering the structures of the triangles in each layer.

Proof of Theorem 1.4 We prove the theorem by induction on |V(G)|. Since

vðGÞ� jVðGÞj, we may assume that jVðGÞj � 9 and the result holds for smaller

values of |V(G)|.

In the following, we will show we can suppose that G contains none of {K3;3,

prism, K2;2;2}. Note that the idea used here is the same as the proof of Theorem 1.4

in [5] (as well as the proof of Theorem 4 in [4]). However, for the sake of

completeness, we give the proof here.

Suppose that G contains a K3;3, a prism or a K2;2;2 (a rich square). Since every

thick complete bipartite or complete tripartite graph is 3-colorable and the line

graph of a graph with maximum degree 3 or a rich square is 4-colorable (by

Lemma 2.3), then by Lemmas 2.1 and 2.2, we may assume that either G has a

clique cutset of size at most 3 or G has a proper 2-cutset. In both cases, there exists a

cutset K in G such that VðGÞnK can be partitioned into two sets X and Y and there

are no edges between them.

If K is a clique cutset of size at most 3, then by the induction hypothesis, the two

subgraphs of G induced by X [ K and Y [ K are 8-colorable. We can combine these

two 8-colorings so that they coincide on K and obtain an 8-coloring of G. So we

may assume that G has no clique cutset of size at most 3 and hence K is a proper 2-

123

Graphs and Combinatorics (2020) 36:719–728 723



cutset, say K ¼ fa; bg. This implies that G is 2-connected and there exists an

induced path PY with end vertices a and b and with interior vertices in Y. Let G0
X be

the subgraph of G induced by X [ VðPYÞ. Then every interior vertex of PY has

degree 2 in G0
X . Let G00

X be the graph obtained from G0
X by deleting all the interior

vertices of PY and adding a new edge between a and b. Similarly, we can define the

graphs G0
Y and G00

Y . Since G0
X is an induced subgraph of G, we know that G0

X is an

ISK4-free graph. Then it is easy to see that G00
X is also an ISK4-free graph. The same

holds for G00
Y . By the induction hypothesis, both G00

X and G00
Y admit an 8-coloring.

Since a and b receive different colors in both colorings, we can combine them so

that they coincide on fa; bg and obtain an 8-coloring of G again. Hence by the

arguments as above, we may assume that G is an {ISK4, K3;3, prism, K2;2;2}-free

graph from now on.

Let u be a vertex of G. Suppose that G½ViðuÞ� is triangle-free for each i� 1. By

Theorem 1.2, we have vðG½Viðu�Þ � 3. By applying Lemma 2.6, we conclude that

vðGÞ� 6\8 and the assertion of the theorem holds. So there must exist a triangle

x1x2x3 in G½ViðuÞ� for some i. Note that i� 2; otherwise, fu; x1; x2; x3g induces a K4,

a contradiction. For each xk (1� k� 3), we call a vertex y 2 Vi�1ðuÞ a private

neighbor of xk if NðyÞ \ fx1; x2; x3g ¼ fxkg.

Claim 1. We may assume that jNVi�1ðuÞðx1Þj ¼ jNVi�1ðuÞðx3Þj ¼ 1 with

NVi�1ðuÞðx1Þ 6¼ NVi�1ðuÞðx3Þ, jNVi�1ðuÞðx2Þj� 2, NVi�1ðuÞðx1Þ � NVi�1ðuÞðx2Þ and

NVi�1ðuÞðx3Þ � NVi�1ðuÞðx2Þ.
We first suppose that each xj has a private neighbor yj in Vi�1ðuÞ for 1� j� 3. By

Lemma 2.5, there exists a confluence H of fy1; y2; y3g. If H is of Type 1, then

VðHÞ [ fx1; x2; x3g induces an ISK4, a contradiction. If H is of Type 2, then VðHÞ [
fx1; x2; x3g induces a prism, again a contradiction.

So we assume without loss of generality that x1 and x2 share a common neighbor

v 2 Vi�1ðuÞ. Then vx3 62 EðGÞ; otherwise, fv; x1; x2; x3g induces a K4, a contradic-

tion.

Let w be a neighbor of x3 in Vi�1ðuÞ. If w is a private neighbor of x3, then by

Lemma 2.4, there exists an upstairs path P of fv;wg and VðPÞ [ fx1; x2; x3g induces

an ISK4, a contradiction. Note that w is not adjacent to every vertex in fx1; x2; x3g;

otherwise, fw; x1; x2; x3g induces a K4, again a contradiction. By symmetry between

x1 and x2, we may assume that wx2 2 EðGÞ and wx1 62 EðGÞ.
We now show that NVi�1ðuÞðx3Þ ¼ fwg. Suppose on the contrary that there exists

another neighbor z of x3 in Vi�1ðuÞ. Then by the same argument as above for w, we

see that z is also not a private neighbor of x3. Note that z is not adjacent to every

vertex in fx1; x2; x3g; otherwise, fz; x1; x2; x3g induces a K4, a contradiction. Then z

has exactly one neighbor in fx1; x2g.

If zx1 62 EðGÞ and zx2 2 EðGÞ, then by Lemma 2.4, there exists an upstairs path P

of fw; zg and VðPÞ [ fx2; x3g induces an ISK4, a contradiction. So we may assume

that zx1 2 EðGÞ and zx2 62 EðGÞ.
By applying Lemma 2.5, we find a confluence H of fv;w; zg. Suppose first that H

is of Type 1. Let v� be the center of H. By symmetry, we may assume that v� 6¼ w

and v� 6¼ z. Then VðHÞ [ fx2; x3g induces an ISK4, a contradiction. Hence we may

further assume that H is of Type 2. Let v0w0z0 be the center triangle of H. If
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fv;w; zg ¼ fv0;w0; z0g, then VðHÞ [ fx1; x2; x3g induces a K2;2;2, a contradiction. So

we have jfv;w; zg \ fv0;w0; z0gj � 2. By symmetry, we may assume that

w 62 fv0;w0; z0g. Therefore VðHÞ [ fx2; x3g induces a prism, again a contradiction.

This implies that NVi�1ðuÞðx3Þ ¼ fwg. Similarly, we can prove that

NVi�1ðuÞðx1Þ ¼ fvg. So Claim 1 holds.

Following the notation of Claim 1, for each triangle T ¼ x1x2x3 in G½ViðuÞ�, we

call x2 the core of T and x1 and x3 the non-cores of T. Note that every triangle in

G½ViðuÞ� has a unique core.

Claim 2. For two distinct triangles in G½ViðuÞ� which share a common edge, the

core of these two triangles must be one end vertex of the common edge.

Let xyz and x0yz be two triangles in G½NiðuÞ� which share the common edge yz. To

prove Claim 2, it suffices to show that the core of xyz and x0yz is y or z. Suppose on

the contrary that the cores of xyz and x0yz are x and x0, respectively. By Claim 1, let

y� and z� be the unique neighbors of y and z in Vi�1ðuÞ, respectively. Then we have

xy�; xz�; x0y�; x0z� 2 EðGÞ. Note that xx0 62 EðGÞ; otherwise, fx; x0; y; zg induces a K4,

a contradiction. If y�z� 2 EðGÞ, then fx; x0; y; z; y�; z�g induces a K2;2;2, a contra-

diction. If y�z� 62 EðGÞ, then fx; x0; y; y�; z�g induces an ISK4, again a contradiction.

This proves Claim 2.

Claim 3. For two triangles in G½ViðuÞ� with exactly one common vertex, the core

of these two triangles must be this common vertex.

Let xyz and xy0z0 be two triangles in G½ViðuÞ� which share the common vertex x.

We need to show that the core of xyz and xy0z0 is x. Suppose on the contrary that the

cores of xyz and xy0z0 are y and y0, respectively. Then by Claim 1, let x�; z�; z0� be the

unique neighbors of x; z; z0 in Vi�1ðuÞ, respectively. Hence we have

yx�; yz�; y0x�; y0z0� 2 EðGÞ. Note that it is possible z� ¼ z0�. It is easy to see that

yy0 62 EðGÞ; otherwise, fx; x�; y; y0g induces a K4, a contradiction. By Claim 2, we

know that yz0; y0z 62 EðGÞ. If z� ¼ z0�, then fx; y; y0; z; z�g induces an ISK4, a

contradiction. So we may assume that z� 6¼ z0�. Therefore, we have yz0� 2 EðGÞ or

y0z� 2 EðGÞ; as otherwise, by Lemma 2.4, there exists an upstairs path P of fz�; z0�g
and VðPÞ [ fx; y; y0; zg induces an ISK4, a contradiction. But now, we notice that

fx; y; y0; z0; z0�g (if yz0� 2 EðGÞ) or fx; y; y0; z; z�g (if y0z� 2 EðGÞ) induces an ISK4,

again a contradiction. So Claim 3 holds.

Claim 4. For two triangles in G½ViðuÞ� with no common vertex, there are no edges

between their non-core vertices of different triangles.

Let x1x2x3 and x4x5x6 be two triangles in G½ViðuÞ� with no common vertex. Let x2

and x5 be the cores of x1x2x3 and x4x5x6, respectively. We now show that

x1x4; x1x6; x3x4; x3x6 62 EðGÞ. Suppose on the contrary that one of these four edges

exists, say x3x4 2 EðGÞ. By Claim 3, we have x1x4; x2x4; x3x5; x3x6 62 EðGÞ.
Applying Claim 1 again, let y1; y2; y3 and y4 be the unique neighbors of x1; x3; x4

and x6 in Vi�1ðuÞ, respectively. Then we have x2y1; x2y2; x5y3; x5y4 2 EðGÞ. For

convenience, by Lemma 2.4, let Pj;k be the upstairs path of fyj; ykg for 1� j; k� 4

and j 6¼ k. We consider two cases.

Case 1. jfy1; y2g \ fy3; y4gj� 1.

First, suppose that y2 ¼ y3. We claim that x2x6 62 EðGÞ; otherwise,

fx2; x3; x4; x6; y2g induces an ISK4, giving a contradiction. We also have x2y4 2
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EðGÞ or x1x6 2 EðGÞ; for otherwise, VðP1;4Þ [ fx1; x2; x3; x4; x6g induces an ISK4, a

contradiction. Suppose that x2y4 2 EðGÞ. Then by symmetry, we may assume that

x5y1 2 EðGÞ. But now, we see that VðP1;4Þ [ fx2; x5g (if x2x5 2 EðGÞ) or VðP1;4Þ [
fx2; x3; x4; x5g (if x2x5 62 EðGÞ) induces an ISK4, giving a contradiction. So we may

assume that x2y4 62 EðGÞ and hence x1x6 2 EðGÞ. In this case, we conclude that

VðP2;4Þ [ fx1; x2; x3; x6g induces an ISK4, again a contradiction.

Next, assume that y2 6¼ y3. By symmetry, we only need to consider the following

three cases: (a) fy1; y2g \ fy3; y4g ¼ ;; or (b) y1 ¼ y4; or (c) y2 ¼ y4. In all three

cases, we have x2y3 2 EðGÞ; for otherwise, VðP1;3Þ [ fx1; x2; x3; x4g induces an

ISK4, a contradiction. But then, VðP2;3Þ [ fx2; x3; x4g induces an ISK4, again a

contradiction.

Case 2. jfy1; y2g \ fy3; y4gj ¼ 2.

In this case, we have fy1; y2g ¼ fy3; y4g. If y1 ¼ y3 and y2 ¼ y4, then VðP1;2Þ [
fx2; x3; x4g induces an ISK4, a contradiction. So we deduce that y1 ¼ y4 and

y2 ¼ y3. Note that x2x5 62 EðGÞ; otherwise, VðP1;2Þ [ fx2; x5g induces an ISK4, a

contradiction. We also have x1x5 2 EðGÞ; as otherwise, fx1; x2; x3; x4; x5; y1g
induces an ISK4, a contradiction. Now, we see that fx1; x3; x4; x5; y2g induces an

ISK4, again a contradiction. This proves Claim 4.

Let C be the set of the cores of all triangles in G½ViðuÞ�. For each v 2 C, let Gv be

the subgraph of G½ViðuÞ� induced by all the vertices of the triangles containing v.

Claim 5. Gv � fvg is a forest.

Suppose on the contrary that Gv � fvg is not a forest. Let C be an induced cycle

in Gv � fvg and let S be the set of all the neighbors of V(C) in Vi�1ðuÞ. Then by

Claim 1, we know that every vertex of V(C) has exactly one neighbor in S and v is

adjacent to all the vertices of VðCÞ [ S.

We consider the graph G½VðCÞ [ S�. If there exist three vertices in VðCÞ [ S such

that these three vertices induces a triangle in G½VðCÞ [ S�, then these three vertices

together with the vertex v induce a K4 in G, a contradiction. So we see that

G½VðCÞ [ S� is triangle-free, which implies that C is a hole in G½VðCÞ� [ S. Since

G½VðCÞ [ S� is an induced subgraph of G, we deduce that G½VðCÞ [ S� is an {ISK4,

triangle, K3;3g-free graph. We now apply a weaker version of Lemma 2.7 for

G½VðCÞ [ S�, S and C. Note that the idea used here is inspired by the proof of

Lemma 8 in [4].

If (i) or (ii) of Lemma 2.7 holds, then there exist three distinct vertices s1; s2; s3 in

S and three distinct vertices c1; c2; c3 in V(C) such that for each 1� j� 3,

NVðCÞðsjÞ ¼ fcjg. By applying Lemma 2.5, there exists a confluence F of fs1; s2; s3g
in G. If F is of Type 1, then VðFÞ [ VðCÞ induces an ISK4, a contradiction. If F is

of Type 2, then VðFÞ [ fvg induces an ISK4, a contradiction.

If (iii) of Lemma 2.7 holds, then there exist two distinct vertices s1; s2 in S and

three distinct vertices c1; c2; c
0
2 in V(C) such that NVðCÞðs1Þ ¼ fc1g and

NVðCÞðs2Þ ¼ fc2; c
0
2g. By Lemma 2.4, there exists an upstairs path P of fs1; s2g in

G and VðPÞ [ VðCÞ induces an ISK4, again a contradiction. So Claim 5 holds.

Now let C ¼ fv1; v2; . . .; vmg. Then by Claim 5, for each 1� j�m, we see that

Gvj � fvjg is a forest and hence admits a bipartition ðVj
1;V

j
2Þ such that both V

j
1 and

V
j
2 are independent sets in Gvj � fvjg. By Claim 4, there are no edges between
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Gvj � fvjg and Gvk � fvkg for 1� j; k�m and j 6¼ k. This implies that V� ¼
Sm

j¼1 V
j
1

is an independent set in G½ViðuÞ�. Moreover, G½ViðuÞ� � V� is an {ISK4, triangle}-

free graph. Then by Theorem 1.2, G½ViðuÞ� � V� is 3-colorable. Hence we can show

a 4-coloring of G½ViðuÞ� as follows: assign colors 1, 2, 3 to ViðuÞnV� and color 4 to

V�. By Lemma 2.6, we conclude that vðGÞ� 8. This completes the proof of

Theorem 1.4. h
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