ORIGINAL PAPER

The Chromatic Number of Graphs with No Induced Subdivision of K_4

Guantao Chen¹ · Yuan Chen² · Qing Cui³ · Xing Feng⁴ · Qinghai Liu⁵

Received: 3 May 2018/Revised: 8 October 2019/Published online: 27 February 2020 © Springer Japan KK, part of Springer Nature 2020

Abstract

In 2012, Lévêque, Maffray and Trotignon conjectured that if a graph does not contain an induced subdivision of K_4 , then it is 4-colorable. Recently, Le showed that every such graph is 24-colorable. In this paper, we improve the upper bound to 8.

Keywords Chromatic number · Subdivision · ISK4

Mathematics Subject Classification 05C15 · 05C12

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A *subdivision* of G is a graph obtained from G by replacing the edges of G with independent paths of length at least one between their end vertices. For a graph H, we say that G contains H if H is isomorphic to an induced subgraph of G, and otherwise, G is H-free. For a family F of graphs, we say that G is F-free if G is F-free for every graph $F \in F$. An ISK4 of G is an induced subgraph of G that is isomorphic to a subdivision of K_4 , where K_4 denotes the complete graph on four vertices. A graph is ISK4-free if it does not contain any induced subdivision of K_4 .

Extended author information available on the last page of the article

G. Chen: partially supported by the NSF Grant DMS-1855716. Y. Chen: partially supported by the National Natural Science Foundation of China (no. 11526160) and the Science and Technology Innovation Project of Wuhan Textile University. Q. Cui: partially supported by the National Natural Science Foundation of China (no. 11501291). X. Feng: partially supported by the Foundation of Jiangxi Provincial Education Department of China (no. GJJ190490). Q. Liu: partially supported by the National Natural Science Foundation of China (no. 11871015)

Yuan Chen chenyuanmath@hotmail.com

Gyárfás [2] defined that a class of graphs \mathcal{G} is χ -bounded if there exists a χ -bounding function f such that $\chi(G) \leq f(\omega(G))$ holds for every graph $G \in \mathcal{G}$, where $\chi(G)$ is the chromatic number of G and $\omega(G)$ is the maximum size of a clique in G. Scott [7] conjectured that for any graph H, the class of those graphs that do not contain any subdivision of H is χ -bounded, and proved this conjecture in the case that H is a forest. However, this conjecture was disproved by Pawlik et al. [6]. In 2012, Lévêque, Maffray and Trotignon [5] showed that the chromatic number of ISK4-free graphs is bounded by a constant c, which implies that Scott's conjecture is true when $H = K_4$. The proof is based on a decomposition theorem for ISK4-free graphs in [5] and a result of Kühn and Osthus [3], from which it follows that c is at least $2^{2^{2^{25}}}$. Since no example of an ISK4-free graph whose chromatic number is 5 or more is known, Lévêque, Maffray and Trotignon [5] proposed the following conjecture.

Conjecture 1.1 (Lévêque, Maffray and Trotignon [5]) *If G is an ISK4-free graph*, *then* $\gamma(G) < 4$.

A *hole* of a graph is an induced cycle of length at least four. A *wheel* is a graph that consists of a hole *H* plus a vertex which has at least three neighbors on *H*. Lévêque, Maffray and Trotignon [5] proved that every {ISK4, wheel}-free graph is 3-colorable. Trotignon and Vušković [8] showed that every ISK4-free graph with girth at least 5 is 3-colorable. In the same paper, they further conjectured that every {ISK4, triangle}-free graph is also 3-colorable. Le [4] showed that the chromatic number of every {ISK4, triangle}-free graph is at most 4. Recently, Chudnovsky et al. [1] confirmed the conjecture of Trotignon and Vušković [8] and they obtained the following result.

Theorem 1.2 (Chudnovsky et al. [1]) *If G is an* {*ISK*4, triangle}-*free graph, then* $\chi(G) \leq 3$.

By using a layering approach, Le [4] gave a new upper bound for the chromatic number of ISK4-free graphs. He proved the following theorem.

Theorem 1.3 (Le [4]) If G is an ISK4-free graph, then $\chi(G) \leq 24$.

In [4], Le mentioned that the bound 24 could be slightly improved by excluding more structures in each layer. We actually improve the upper bound to 8 by applying a similar idea in [4] and by Theorem 1.2.

Theorem 1.4 If G is an ISK4-free graph, then $\chi(G) \leq 8$.

In order to prove Theorem 1.4, we apply the layering approach introduced in [4]. We mainly consider the properties of the triangles within layers and then find an independent set whose deletion results in a triangle-free subgraph in each layer. It follows from Theorem 1.2 and a result in [4] that each layer can be 4-colored, and hence the whole graph is 8-colorable.

2 Preliminaries

We follow the notation used in [4, 5]. Let G be a graph with vertex set V(G) and edge set E(G). For any $S \subseteq V(G)$ and $C \subseteq V(G) \setminus S$, we denote by $N_C(S)$ the set of neighbors of S in C. Let $N(S) = N_{V(G) \setminus S}(S)$. We say that S dominates C if $N_C(S) = C$. We denote by G - S the graph obtained from G by deleting the vertices in S together with their incident edges and denote by G[S] the subgraph of G induced by S.

The *line graph* L(G) of G is the graph with vertex set E(G), where two vertices are adjacent in L(G) if and only if the corresponding edges are adjacent in G. A complete bipartite (resp., complete tripartite) graph $K_{p,q}$ (resp., $K_{p,q,r}$) is a graph whose vertex set can be partitioned into two (resp., three) independent sets of size p and q (resp., p, q and r) such that every pair of vertices from two different independent sets are adjacent. A complete bipartite or complete tripartite graph is thick if it contains a $K_{3,3}$.

A square $S = \{v_1, v_2, v_3, v_4\}$ is an induced cycle C of length four such that v_1, v_2, v_3, v_4 occur on C in this order. For a path $P = x_1x_2...x_n$, we say that x_1 and x_n are the end vertices of P and $x_2, ..., x_{n-1}$ are the interior vertices of P. A link of S is an induced path P of G with end vertices P and P' such that either P = P' and $N_S(P) = S$, or $N_S(P) = \{v_1, v_2\}$ and $N_S(P') = \{v_3, v_4\}$, or $N_S(P) = \{v_1, v_4\}$ and $N_S(P') = \{v_2, v_3\}$, and there are no edges between S and the interior vertices of P. A rich square is a graph K that contains a square S such that there are at least two components in K - S, each of which is a link of S. It is easy to see that $K_{2,2,2}$ is the smallest rich square. A prism is a graph consisting of three vertex-disjoint induced paths $P_1 = x_1...y_1$, $P_2 = x_2...y_2$, $P_3 = x_3...y_3$ of length at least S, such that S is an induced path S are triangles and there are no edges between these paths except those of the two triangles.

For any nonnegative integer k, a k-cutset in a graph G is a subset $S \subseteq V(G)$ of size k such that G - S is disconnected. A *clique cutset* S is a cutset which is also a clique. A *proper 2-cutset* of a graph G is a pair of nonadjacent vertices $\{a,b\}$ if $V(G)\setminus\{a,b\}$ can be partitioned into two sets X and Y satisfying that there is no edge between X and Y and neither $G[X \cup \{a,b\}]$ nor $G[Y \cup \{a,b\}]$ is a path from A to A.

Lévêque, Maffray and Trotignon [5] proved the following two decomposition theorems for ISK4-free graphs, which will be used in our later proof.

Lemma 2.1 (Lévêque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If G contains a K_{3,3}, then either G is a thick complete bipartite or complete tripartite graph, or G has a clique cutset of size at most 3.

Lemma 2.2 (Lévêque, Maffray and Trotignon [5]) Let G be an ISK4-free graph. If G contains a rich square or a prism, then either G is the line graph of a graph with maximum degree 3 or a rich square, or G has a clique cutset of size at most 3, or G has a proper 2-cutset.

Le [4] verified that two classes of graphs mentioned in Lemma 2.2 are 4-colorable.

Lemma 2.3 (Le [4]) If G is the line graph of a graph with maximum degree 3 or a rich square, then $\chi(G) \le 4$.

Note that every thick complete bipartite or complete tripartite graph is 3-colorable, and the line graph of a graph with maximum degree 3 or a rich square is 4-colorable (by Lemma 2.3). Hence by applying Lemmas 2.1 and 2.2, we may assume the existence of a $K_{3,3}$, a prism or a $K_{2,2,2}$ in an ISK4-free graph G always implies that G has a clique cutset of size at most 3 or a proper 2-cutset. It is easy to see that if G contains such a cutset K, then $V(G)\backslash K$ can be partitioned into two vertex-disjoint sets such that there are no edges between them. It follows from the proof of Theorem 1.4 in [5] that we can immediately show $\chi(G) \leq 8$ by applying the induction method (see Sect. 3 for more details). Therefore, we can mainly consider the class of {ISK4, $K_{3,3}$, prism, $K_{2,2,2}$ }-free graphs when proving Theorem 1.4.

For two distinct vertices s and t of G, the distance d(s, t) between s and t is the number of edges in a shortest path from s to t in G. Let $u \in V(G)$, we define $V_0(u) = \{u\}$ and $V_i(u) = \{v | d(v, u) = i\}$ for each $i \ge 1$. Obviously, there are no edges between $V_i(u)$ and $V_i(u)$ for all i, j with $|i - j| \ge 2$.

In [4], Le introduced two special induced subgraphs called the *upstairs path* and the *confluence*. We will use these two structures to connect two or three vertices in the same layer through only the upper layers. The following three results were observed in [4].

Lemma 2.4 (Le [4]) Let G be a graph and let $u \in V(G)$. If x and y are two distinct vertices in $V_i(u)$, then there exists an induced path P in G from x to y such that $V(P) \subseteq \{u\} \cup V_1(u) \cup \cdots \cup V_i(u)$ and $|V(P) \cap V_i(u)| \le 2$ for each $1 \le j \le i$.

The path P satisfying the conditions in Lemma 2.4 is called the *upstairs path* of $\{x, y\}$. For three distinct vertices x, y, z of a graph G, a graph H is called a *confluence* of $\{x, y, z\}$ if it is one of the following two types:

- (1) Type 1: H consists of three internally vertex-disjoint induced paths P_x , P_y , P_z from a vertex u to x, y, z, respectively, such that there are no edges between these paths.
- (2) Type 2: H consists of a triangle x'y'z' and three vertex-disjoint induced paths P_x, P_y, P_z connecting x and x', y and y', z and z', respectively, such that there are no edges between these paths except those of the triangle x'y'z'.

We call u the *center* of H if it is of Type 1 and x'y'z' the *center triangle* of H if it is of Type 2. Note that it is possible the length of the path P_x is 0 when x = u (Type 1) or x = x' (Type 2).

Lemma 2.5 (Le [4]) Let G be a graph and let $u \in V(G)$. If x, y, z are three distinct vertices in $V_i(u)$, then there exists a set $S \subseteq \{u\} \cup V_1(u) \cup \cdots \cup V_{i-1}(u)$ such that $G[S \cup \{x,y,z\}]$ is a confluence of $\{x,y,z\}$.

Lemma 2.6 (Le [4]) Let G be a graph and let $u \in V(G)$. Then

$$\chi(G) \le \max_{i \text{ odd}} \chi(G[V_i(u)]) + \max_{j \text{ even}} \chi(G[V_j(u)]).$$

The final lemma in this section is about the class of {ISK4, triangle, $K_{3,3}$ }-free graphs. It demonstrates that if there is a set S that dominates V(C) where C is a hole, then there must exist some vertices in S which have only one or two neighbors in V(C).

Lemma 2.7 (Le [4]) Let G be an {ISK4, triangle, $K_{3,3}$ }-free graph and let C be a hole in G. If there is a subset $S \subseteq V(G) \setminus V(C)$ such that S dominates V(C), then one of the following holds:

- (i) there exist four distinct vertices u_1, u_2, u_3, u_4 in S and four distinct vertices v_1, v_2, v_3, v_4 in V(C) such that for each $1 \le i \le 4$, $N_{V(C)}(u_i) = \{v_i\}$;
- (ii) there exist three distinct vertices u_1, u_2, u_3 in S and three distinct vertices v_1, v_2, v_3 in V(C) such that for each $1 \le i \le 3$, $N_{V(C)}(u_i) = \{v_i\}$ and v_1, v_2, v_3 are pairwise non-adjacent;
- (iii) there exist three distinct vertices u_1, u_2, u_3 in S and four distinct vertices v_1, v_2, v_3, v_3' in V(C) such that $N_{V(C)}(u_1) = \{v_1\}$, $N_{V(C)}(u_2) = \{v_2\}$, $N_{V(C)}(u_3) = \{v_3, v_3'\}$ and v_1, v_3, v_2, v_3' occur on C in this order.

3 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by applying the layering approach in [4] and by considering the structures of the triangles in each layer.

Proof of Theorem 1.4 We prove the theorem by induction on |V(G)|. Since $\chi(G) \leq |V(G)|$, we may assume that $|V(G)| \geq 9$ and the result holds for smaller values of |V(G)|.

In the following, we will show we can suppose that G contains none of $\{K_{3,3},$ prism, $K_{2,2,2}\}$. Note that the idea used here is the same as the proof of Theorem 1.4 in [5] (as well as the proof of Theorem 4 in [4]). However, for the sake of completeness, we give the proof here.

Suppose that G contains a $K_{3,3}$, a prism or a $K_{2,2,2}$ (a rich square). Since every thick complete bipartite or complete tripartite graph is 3-colorable and the line graph of a graph with maximum degree 3 or a rich square is 4-colorable (by Lemma 2.3), then by Lemmas 2.1 and 2.2, we may assume that either G has a clique cutset of size at most 3 or G has a proper 2-cutset. In both cases, there exists a cutset K in G such that $V(G)\backslash K$ can be partitioned into two sets X and Y and there are no edges between them.

If K is a clique cutset of size at most 3, then by the induction hypothesis, the two subgraphs of G induced by $X \cup K$ and $Y \cup K$ are 8-colorable. We can combine these two 8-colorings so that they coincide on K and obtain an 8-coloring of G. So we may assume that G has no clique cutset of size at most 3 and hence K is a proper 2-

cutset, say $K = \{a, b\}$. This implies that G is 2-connected and there exists an induced path P_Y with end vertices a and b and with interior vertices in Y. Let G_X' be the subgraph of G induced by $X \cup V(P_Y)$. Then every interior vertex of P_Y has degree 2 in G_X' . Let G_X'' be the graph obtained from G_X' by deleting all the interior vertices of P_Y and adding a new edge between a and b. Similarly, we can define the graphs G_Y' and G_Y'' . Since G_X' is an induced subgraph of G_X'' we know that G_X'' is an ISK4-free graph. Then it is easy to see that G_X'' is also an ISK4-free graph. The same holds for G_Y'' . By the induction hypothesis, both G_X'' and G_Y'' admit an 8-coloring. Since G_X'' and G_X'' and obtain an 8-coloring of G_X'' and Hence by the arguments as above, we may assume that G_X'' is an G_X'' is an G_X'' is an G_X'' and G_X'' and obtain an 8-coloring of G_X'' again. Hence by the arguments as above, we may assume that G_X'' is an G_X'' is an G_X'' is an G_X'' is an anomalous from the properties of G_X'' and G_X'' a

Let u be a vertex of G. Suppose that $G[V_i(u)]$ is triangle-free for each $i \ge 1$. By Theorem 1.2, we have $\chi(G[V_i(u)] \le 3$. By applying Lemma 2.6, we conclude that $\chi(G) \le 6 < 8$ and the assertion of the theorem holds. So there must exist a triangle $x_1x_2x_3$ in $G[V_i(u)]$ for some i. Note that $i \ge 2$; otherwise, $\{u, x_1, x_2, x_3\}$ induces a K_4 , a contradiction. For each x_k $(1 \le k \le 3)$, we call a vertex $y \in V_{i-1}(u)$ a *private neighbor* of x_k if $N(y) \cap \{x_1, x_2, x_3\} = \{x_k\}$.

Claim 1. We may assume that $|N_{V_{i-1}(u)}(x_1)| = |N_{V_{i-1}(u)}(x_3)| = 1$ with $N_{V_{i-1}(u)}(x_1) \neq N_{V_{i-1}(u)}(x_3)$, $|N_{V_{i-1}(u)}(x_2)| \geq 2$, $N_{V_{i-1}(u)}(x_1) \subseteq N_{V_{i-1}(u)}(x_2)$ and $N_{V_{i-1}(u)}(x_3) \subseteq N_{V_{i-1}(u)}(x_2)$.

We first suppose that each x_j has a private neighbor y_j in $V_{i-1}(u)$ for $1 \le j \le 3$. By Lemma 2.5, there exists a confluence H of $\{y_1, y_2, y_3\}$. If H is of Type 1, then $V(H) \cup \{x_1, x_2, x_3\}$ induces an ISK4, a contradiction. If H is of Type 2, then $V(H) \cup \{x_1, x_2, x_3\}$ induces a prism, again a contradiction.

So we assume without loss of generality that x_1 and x_2 share a common neighbor $v \in V_{i-1}(u)$. Then $vx_3 \notin E(G)$; otherwise, $\{v, x_1, x_2, x_3\}$ induces a K_4 , a contradiction.

Let w be a neighbor of x_3 in $V_{i-1}(u)$. If w is a private neighbor of x_3 , then by Lemma 2.4, there exists an upstairs path P of $\{v, w\}$ and $V(P) \cup \{x_1, x_2, x_3\}$ induces an ISK4, a contradiction. Note that w is not adjacent to every vertex in $\{x_1, x_2, x_3\}$; otherwise, $\{w, x_1, x_2, x_3\}$ induces a K_4 , again a contradiction. By symmetry between x_1 and x_2 , we may assume that $wx_2 \in E(G)$ and $wx_1 \notin E(G)$.

We now show that $N_{V_{i-1}(u)}(x_3) = \{w\}$. Suppose on the contrary that there exists another neighbor z of x_3 in $V_{i-1}(u)$. Then by the same argument as above for w, we see that z is also not a private neighbor of x_3 . Note that z is not adjacent to every vertex in $\{x_1, x_2, x_3\}$; otherwise, $\{z, x_1, x_2, x_3\}$ induces a K_4 , a contradiction. Then z has exactly one neighbor in $\{x_1, x_2\}$.

If $zx_1 \notin E(G)$ and $zx_2 \in E(G)$, then by Lemma 2.4, there exists an upstairs path P of $\{w, z\}$ and $V(P) \cup \{x_2, x_3\}$ induces an ISK4, a contradiction. So we may assume that $zx_1 \in E(G)$ and $zx_2 \notin E(G)$.

By applying Lemma 2.5, we find a confluence H of $\{v, w, z\}$. Suppose first that H is of Type 1. Let v^* be the center of H. By symmetry, we may assume that $v^* \neq w$ and $v^* \neq z$. Then $V(H) \cup \{x_2, x_3\}$ induces an ISK4, a contradiction. Hence we may further assume that H is of Type 2. Let v'w'z' be the center triangle of H. If

 $\{v,w,z\}=\{v',w',z'\}$, then $V(H)\cup\{x_1,x_2,x_3\}$ induces a $K_{2,2,2}$, a contradiction. So we have $|\{v,w,z\}\cap\{v',w',z'\}|\leq 2$. By symmetry, we may assume that $w\not\in\{v',w',z'\}$. Therefore $V(H)\cup\{x_2,x_3\}$ induces a prism, again a contradiction. This implies that $N_{V_{i-1}(u)}(x_3)=\{w\}$. Similarly, we can prove that $N_{V_{i-1}(u)}(x_1)=\{v\}$. So Claim 1 holds.

Following the notation of Claim 1, for each triangle $T = x_1x_2x_3$ in $G[V_i(u)]$, we call x_2 the *core* of T and x_1 and x_3 the *non-cores* of T. Note that every triangle in $G[V_i(u)]$ has a unique core.

Claim 2. For two distinct triangles in $G[V_i(u)]$ which share a common edge, the core of these two triangles must be one end vertex of the common edge.

Let xyz and x'yz be two triangles in $G[N_i(u)]$ which share the common edge yz. To prove Claim 2, it suffices to show that the core of xyz and x'yz is y or z. Suppose on the contrary that the cores of xyz and x'yz are x and x', respectively. By Claim 1, let y^* and z^* be the unique neighbors of y and z in $V_{i-1}(u)$, respectively. Then we have $xy^*, xz^*, x'y^*, x'z^* \in E(G)$. Note that $xx' \notin E(G)$; otherwise, $\{x, x', y, z\}$ induces a K_4 , a contradiction. If $y^*z^* \in E(G)$, then $\{x, x', y, z, y^*, z^*\}$ induces an ISK4, again a contradiction. This proves Claim 2.

Claim 3. For two triangles in $G[V_i(u)]$ with exactly one common vertex, the core of these two triangles must be this common vertex.

Let xyz and xy'z' be two triangles in $G[V_i(u)]$ which share the common vertex x. We need to show that the core of xyz and xy'z' is x. Suppose on the contrary that the cores of xyz and xy'z' are y and y', respectively. Then by Claim 1, let x^*, z^*, z'^* be the unique neighbors of x, z, z' in $V_{i-1}(u)$, respectively. Hence we have $yx^*, yz^*, y'x^*, y'z'^* \in E(G)$. Note that it is possible $z^* = z'^*$. It is easy to see that $yy' \notin E(G)$; otherwise, $\{x, x^*, y, y'\}$ induces a K_4 , a contradiction. By Claim 2, we know that $yz', y'z \notin E(G)$. If $z^* = z'^*$, then $\{x, y, y', z, z^*\}$ induces an ISK4, a contradiction. So we may assume that $z^* \neq z'^*$. Therefore, we have $yz'^* \in E(G)$ or $y'z^* \in E(G)$; as otherwise, by Lemma 2.4, there exists an upstairs path P of $\{z^*, z'^*\}$ and $V(P) \cup \{x, y, y', z\}$ induces an ISK4, a contradiction. But now, we notice that $\{x, y, y', z', z'^*\}$ (if $yz'^* \in E(G)$) or $\{x, y, y', z, z^*\}$ (if $y'z^* \in E(G)$) induces an ISK4, again a contradiction. So Claim 3 holds.

Claim 4. For two triangles in $G[V_i(u)]$ with no common vertex, there are no edges between their non-core vertices of different triangles.

Let $x_1x_2x_3$ and $x_4x_5x_6$ be two triangles in $G[V_i(u)]$ with no common vertex. Let x_2 and x_5 be the cores of $x_1x_2x_3$ and $x_4x_5x_6$, respectively. We now show that $x_1x_4, x_1x_6, x_3x_4, x_3x_6 \notin E(G)$. Suppose on the contrary that one of these four edges exists, say $x_3x_4 \in E(G)$. By Claim 3, we have $x_1x_4, x_2x_4, x_3x_5, x_3x_6 \notin E(G)$. Applying Claim 1 again, let y_1, y_2, y_3 and y_4 be the unique neighbors of x_1, x_3, x_4 and x_6 in $V_{i-1}(u)$, respectively. Then we have $x_2y_1, x_2y_2, x_5y_3, x_5y_4 \in E(G)$. For convenience, by Lemma 2.4, let $P_{j,k}$ be the upstairs path of $\{y_j, y_k\}$ for $1 \le j, k \le 4$ and $j \ne k$. We consider two cases.

Case 1. $|\{y_1, y_2\} \cap \{y_3, y_4\}| \le 1$.

First, suppose that $y_2 = y_3$. We claim that $x_2x_6 \notin E(G)$; otherwise, $\{x_2, x_3, x_4, x_6, y_2\}$ induces an ISK4, giving a contradiction. We also have $x_2y_4 \in$

E(G) or $x_1x_6 \in E(G)$; for otherwise, $V(P_{1,4}) \cup \{x_1, x_2, x_3, x_4, x_6\}$ induces an ISK4, a contradiction. Suppose that $x_2y_4 \in E(G)$. Then by symmetry, we may assume that $x_5y_1 \in E(G)$. But now, we see that $V(P_{1,4}) \cup \{x_2, x_5\}$ (if $x_2x_5 \in E(G)$) or $V(P_{1,4}) \cup \{x_2, x_3, x_4, x_5\}$ (if $x_2x_5 \notin E(G)$) induces an ISK4, giving a contradiction. So we may assume that $x_2y_4 \notin E(G)$ and hence $x_1x_6 \in E(G)$. In this case, we conclude that $V(P_{2,4}) \cup \{x_1, x_2, x_3, x_6\}$ induces an ISK4, again a contradiction.

Next, assume that $y_2 \neq y_3$. By symmetry, we only need to consider the following three cases: (a) $\{y_1, y_2\} \cap \{y_3, y_4\} = \emptyset$; or (b) $y_1 = y_4$; or (c) $y_2 = y_4$. In all three cases, we have $x_2y_3 \in E(G)$; for otherwise, $V(P_{1,3}) \cup \{x_1, x_2, x_3, x_4\}$ induces an ISK4, a contradiction. But then, $V(P_{2,3}) \cup \{x_2, x_3, x_4\}$ induces an ISK4, again a contradiction.

Case 2. $|\{y_1, y_2\} \cap \{y_3, y_4\}| = 2$.

In this case, we have $\{y_1, y_2\} = \{y_3, y_4\}$. If $y_1 = y_3$ and $y_2 = y_4$, then $V(P_{1,2}) \cup \{x_2, x_3, x_4\}$ induces an ISK4, a contradiction. So we deduce that $y_1 = y_4$ and $y_2 = y_3$. Note that $x_2x_5 \notin E(G)$; otherwise, $V(P_{1,2}) \cup \{x_2, x_5\}$ induces an ISK4, a contradiction. We also have $x_1x_5 \in E(G)$; as otherwise, $\{x_1, x_2, x_3, x_4, x_5, y_1\}$ induces an ISK4, a contradiction. Now, we see that $\{x_1, x_3, x_4, x_5, y_2\}$ induces an ISK4, again a contradiction. This proves Claim 4.

Let $\mathscr C$ be the set of the cores of all triangles in $G[V_i(u)]$. For each $v \in \mathscr C$, let G_v be the subgraph of $G[V_i(u)]$ induced by all the vertices of the triangles containing v. Claim 5. $G_v - \{v\}$ is a forest.

Suppose on the contrary that $G_v - \{v\}$ is not a forest. Let C be an induced cycle in $G_v - \{v\}$ and let S be the set of all the neighbors of V(C) in $V_{i-1}(u)$. Then by Claim 1, we know that every vertex of V(C) has exactly one neighbor in S and v is adjacent to all the vertices of $V(C) \cup S$.

We consider the graph $G[V(C) \cup S]$. If there exist three vertices in $V(C) \cup S$ such that these three vertices induces a triangle in $G[V(C) \cup S]$, then these three vertices together with the vertex v induce a K_4 in G, a contradiction. So we see that $G[V(C) \cup S]$ is triangle-free, which implies that C is a hole in $G[V(C)] \cup S$. Since $G[V(C) \cup S]$ is an induced subgraph of G, we deduce that $G[V(C) \cup S]$ is an {ISK4, triangle, $K_{3,3}$ }-free graph. We now apply a weaker version of Lemma 2.7 for $G[V(C) \cup S]$, S and C. Note that the idea used here is inspired by the proof of Lemma 8 in [4].

If (i) or (ii) of Lemma 2.7 holds, then there exist three distinct vertices s_1, s_2, s_3 in S and three distinct vertices c_1, c_2, c_3 in V(C) such that for each $1 \le j \le 3$, $N_{V(C)}(s_j) = \{c_j\}$. By applying Lemma 2.5, there exists a confluence F of $\{s_1, s_2, s_3\}$ in G. If F is of Type 1, then $V(F) \cup V(C)$ induces an ISK4, a contradiction. If F is of Type 2, then $V(F) \cup \{v\}$ induces an ISK4, a contradiction.

If (iii) of Lemma 2.7 holds, then there exist two distinct vertices s_1, s_2 in S and three distinct vertices c_1, c_2, c_2' in V(C) such that $N_{V(C)}(s_1) = \{c_1\}$ and $N_{V(C)}(s_2) = \{c_2, c_2'\}$. By Lemma 2.4, there exists an upstairs path P of $\{s_1, s_2\}$ in G and $V(P) \cup V(C)$ induces an ISK4, again a contradiction. So Claim 5 holds.

Now let $\mathscr{C} = \{v_1, v_2, \dots, v_m\}$. Then by Claim 5, for each $1 \le j \le m$, we see that $G_{v_j} - \{v_j\}$ is a forest and hence admits a bipartition (V_1^j, V_2^j) such that both V_1^j and V_2^j are independent sets in $G_{v_j} - \{v_j\}$. By Claim 4, there are no edges between

 $G_{v_j} - \{v_j\}$ and $G_{v_k} - \{v_k\}$ for $1 \le j, k \le m$ and $j \ne k$. This implies that $V^* = \bigcup_{j=1}^m V_1^j$ is an independent set in $G[V_i(u)]$. Moreover, $G[V_i(u)] - V^*$ is an {ISK4, triangle}-free graph. Then by Theorem 1.2, $G[V_i(u)] - V^*$ is 3-colorable. Hence we can show a 4-coloring of $G[V_i(u)]$ as follows: assign colors 1, 2, 3 to $V_i(u) \setminus V^*$ and color 4 to V^* . By Lemma 2.6, we conclude that $\chi(G) \le 8$. This completes the proof of Theorem 1.4. \square

References

- 1. Chudnovsky, M., Liu, C.-H., Schaudt, O., Spirkl, S., Trotignon, N., Vušković, K.: Triangle-free graphs that do not contain an induced subdivision of K_4 are 3-colorable. J. Graph Theroy **92**, 67–95 (2019)
- Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastow Mat. Appl. Math. 19, 413–441 (1987)
- Kühn, D., Osthus, D.: Induced subdivisions in K_{s,s}-free graphs of large average degree. Combinatorica 24, 287–304 (2004)
- 4. Le, N.K.: Chromatic number of ISK4-free graphs. Graphs Comb. 33, 1635–1646 (2017)
- 5. Lévêque, B., Maffray, F., Trotignon, N.: On graphs with no induced subdivision of K_4 . J. Comb. Theory Ser. B **102**, 924–947 (2012)
- Pawlik, A., Kozik, J., Krawczyk, T., Lasoń, M., Micek, P., Trotter, W.T., Walczak, B.: Triangle-free intersection graphs of line segments with large chromatic number. J. Comb. Theory Ser. B 105, 6–10 (2014)
- 7. Scott, A.D.: Induced trees in graphs of large chromatic number. J. Graph Theroy 24, 297–311 (1997)
- Trotignon, N., Vušković, K.: On triangle-free graphs that do not contain a subdivision of the complete graph on four vertices as an induced subgraph. J. Graph Theroy 84, 233–248 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Guantao Chen¹ · Yuan Chen² · Qing Cui³ · Xing Feng⁴ · Qinghai Liu⁵

Guantao Chen gchen@gsu.edu

Qing Cui cui@nuaa.edu.cn

Xing Feng

fengxing_fm@163.com

Qinghai Liu qliu@fzu.edu.cn

- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, People's Republic of China
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China

- Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Center for Discrete Mathematics, Fuzhou University, Fuzhou 350108, People's Republic of China

